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Abstract: Crowd logistics is a recent trend that proposes the participation of ordinary people in the
distribution process of products and goods. This idea is becoming increasingly important to both
delivery and retail companies, because it allows them to reduce their delivery costs and, hence, to
increase the sustainability of the company. One way to obtain these reductions is to hire external
drivers who use their own vehicles to make deliveries to destinations which are close to their daily
trips from work to home, for instance. This situation is modelled as the Vehicle Routing Problem with
Occasional Drivers (VRPOD), which seeks to minimize the total cost incurred to perform the deliveries
using vehicles belonging to the company and occasionally hiring regular citizens to make just one
delivery. However, the integration of this features into the distribution system of a company requires
a fast and efficient algorithm. In this paper, we propose three different implementations based on the
Iterated Local Search algorithm that are able to outperform the state-of-art of this problem with regard
to the quality performance. Besides, our proposal is a light-weight algorithm which can produce
results in small computation times, allowing its integration into corporate information systems.

Keywords: vehicle routing problem; crowd logistics; crowdshipping; occasional drivers; iterated
local search

1. Introduction

Nowadays, many people use e-commerce to buy and sell all kind of goods, products
and services. The 24/7 availability of the websites, the wide array of products and services,
the easy reachability to get any of them in any place, the easy way of comparing prices and
the possibility of gather opinions from other customers are some of the advantages that
support the use of the e-commerce. These reasons, together with the lack of time of most
citizens, make e-commerce continue to grow, which leads to an increase on the delivery
services, especially in the last-mile operations [1].

Both delivery companies and retailers which also distribute their products strive to
minimize the total cost and the delivery time to be more efficient [2]. However, the increase
of delivery operations impacts on the sustainability of a company, either by enlarging the
routes or by performing door-to-door distributions, which could require increasing the
number of vehicles attending customers [3]. In an early stage of the last-mile development,
ref. [4] held that the cost related to the last-mile operation may range between 13 and
75% of the total distribution cost. Therefore, the optimization of this step of the supply
chain led to an important reduction on the distribution costs for many delivery companies
that focused on solving the last-mile problem to reduce costs. Since then, many delivery
companies have focused on reducing this cost, but it is important to emphasize that this
range may vary significantly depending on the specific problem under consideration.
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Recently, a new trend called crowd logistics is gaining relevance [5–7]. The idea behind
this concept is to favor the participation of ordinary citizens in the distribution of goods.
The authors of [6] distinguish between four types of crowd logistics: crowd storage, crowd
local delivery, crowd freight shipping and crowd freight forwarding. We will only focus
on one of them: the crowd local delivery or crowdshipping, as called by other authors [8].
In particular, the key concept of crowdshipping here is to either deliver orders through
other customers, or hire regular people close to the delivery route to occasionally perform
a delivery on behalf of a logistics operator. The implementation of this idea may contribute
to the sustainability of a company because it will reduce the logistics network [6] and,
eventually, reduce the urban traffic levels [9] as well as the logistics costs [10]. In addition,
this can be an opportunity to obtain extra incomes for the occasional couriers at the cost
of slightly modifying their daily route from work to home or vice versa [6]. Note that
crowshipping can be seen as an example of sustainable transportation apart from other
typical examples such as walking, cycling, carpooling, car sharing, or green vehicles [11].

The concept of crowd logistics is mainly related to the vehicle routing problem (VRP).
The VRP aims to find the best routes to satisfy the demand of a set of customers, given a
fleet of vehicles [12,13]. Therefore, since crowd logistics involves the last-mile operations,
it can be tackled from the VRP point of view.

In this paper we propose a light-weight and efficient algorithm to optimize the last-
mile logistics including the concept of crowdshipping. As it is well-known, the last-mile
delivery problem consists on the transportation of the goods from the warehouse, called
depot in this work, and the final destination, usually the customer’s home or business. Last-
mile problems are considered very important regarding sustainability since they involve
the less efficient phase of the logistic process [14]. Furthermore, in this work, we consider
those deliveries to be performed by ordinary citizens, the occasional drivers, as part of a
crowdshipping strategy, in addition to the own staff of the delivery company. Previous
works like [15] describe the impact on sustainability of this kind of distribution models.

Given the small computation time and low complexity of our algorithm, it can be
included in a corporate information system with the objective of optimizing a set of delivery
orders taking into account both delivery routes and occasional couriers. Hence, a company
will be able to reduce its costs and increase its sustainability levels by hiring occasional
couriers, since the proposed algorithm is able to optimize the last mile routes taking into
account the collaboration of occasional drivers.

In order to assess our proposal, we have studied the Vehicle Routing Problem with
Occasional Drivers (VRPOD). VRPOD is able to model last-mile situations appearing in
delivery companies that allow crowdshipping in addition to their own staff. The VRPOD
assumes that the company has a fleet of vehicles handled by regular drivers who make
deliveries limited by the capacity of the vehicles. Furthermore, the company is able to hire
a number of occasional drivers to make a single delivery using their own vehicles. The
objective of the VRPOD is to minimize the total cost, calculated as the sum of the costs
incurred by the regular drivers performing traditional routes, beginning and ending at
the depot, plus the cost of paying the occasional drivers, since they provide their service
in exchange of remuneration. To the best of our knowledge, this problem was firstly
defined by [16], who studied the potential benefits of including occasional drivers to make
deliveries as a way of crowdshipping. The authors considered two compensation schemes
to pay fixed fees to every occasional driver.

Since then, new variants of the VRPOD have been analyzed. In the work proposed
in [17], the authors considered that occasional drivers appear dynamically and they assume
that stochastic information is known about this behaviour. Furthermore, occasional drivers
could serve one or more of the customers. The authors propose a stochastic mixed-integer
programming formulation to solve the problem. They study the effects of uncertainty
to design the routes when the occasional drivers can appear later in the day. A similar
work by [18] includes two aspects: the possibility for occasional drivers to make multiple
deliveries and the time windows for the customers and so the occasional drivers. The
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authors study the advantages of employing two different alternatives: occasional drivers
that are allowed to perform multiple deliveries and occasional drivers that can split the
deliveries. Their proposal is proven using two different mathematical models. Later on, a
variant of the VRPOD in which occasional drivers may accept or reject the assigned delivery
with a certain probability was presented in [19]. The authors solve the problem with a
bi-level methodology in which they start by including all the deliveries in regular routes
without the use of occasional drivers, and then include deliveries to occasional drivers
taking into account their acceptance probabilities modelled using a uniform distribution.

There exist other problems related to the VRPOD although they present some dif-
ferences since they focus on the crowdshipping. In [20], a variant of the dynamic pickup
and delivery problem is introduced, in which occasional drivers dynamically appear to
make deliveries in exchange for a small compensation. They study how profitable is
the use of a platform that matches deliveries and occasional drivers in order to facilitate
on-demand delivery. Furthermore, they use regular routes to serve customers for which
the use of an occasional driver is not feasible or not efficient. They solve the problem using
a rolling horizon framework approach to determine the matches based on the available
information, and propose an exact solution approach to solve the matching problem each
time new information appears. Other similar problem dealing with the crowdshipping
is studied by [21]. In this paper the authors do not consider the use of regular routes to
perform the deliveries but they just assume the use of occasional drivers (or crowdshippers),
who can accept more than one delivery to transport more than one item meanwhile the
vehicle capacity is not exceeded. They propose an exact solution methodology to solve the
specific problem.

Among all the previous works and approaches to the VRPOD, we have selected the
definition stated in [16] in order to assess our proposal. As it will be shown, we propose an
algorithm able to either obtain optimal solutions when the optimal value is known, or to
improve the best-known solutions, providing high-quality results in a reasonable amount
of time for the VRPOD. Hence, our main contribution after [16] is the new algorithmic
design, which is fast enough to be included in corporate information systems, and obtains
better solutions than the previous work. To this end, we propose three different variants
of the Iterated Local Search (ILS) algorithm, since this methodology has been successfully
used to deal with many different variants of vehicle routing problems (VRP). For instance,
in [22] an ILS algorithm solves the VRP with backhauls, being able to obtain high-quality
solutions in short computational time. In [23], an ILS method is proposed to address
another variant of this type of problems, the Multi-Commodity Multi-Trip VRP with Time
Windows, outperforming the previous algorithm. Finally, in [24], the proposed ILS deals
with the Split Delivery VRP obtaining highly competitive results.

Specifically, in this paper we present a multi-start ILS algorithm where a greedy ran-
domized constructive method is proposed, and five different neighborhoods are combined
to form a new extended neighborhood, which is explored by the local search step of ILS
for the solution of the VRPOD. Besides, three perturbation strategies have been proposed
and analyzed. In addition to the customary ILS implementation, we propose a straightfor-
ward parallelization of the ILS method, and a collaboration scheme where different ILS
configurations cooperate in parallel. All these contributions have been assessed in a set of
preliminary experiments where the final configuration and the parameter values for the
algorithm have been determined. Finally, a detailed comparison with the state of the art
is performed.

The rest of the paper is organized as follows. Section 2 describes the VRPOD problem.
Section 3 details the algorithmic proposal implemented to solve the problem under study.
Section 4 provides an extensive computational study, and performs a comparison against
the state of the art. Finally, Section 5 draws the conclusions of this work and discusses
future research.
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2. Problem Definition

The VRPOD can be formally stated as follows. Let G = (V, A) be a complete directed
graph, where V = {0, K, C} is the set of vertices, with vertex 0 as the depot, K = {1, . . . , k}
the set of vertices representing the location of the occasional drivers and C = {1, . . . , n}
the set of vertices corresponding to the location of customers (|V| = 1 + k + n). Each node
i ∈ C has an associated positive demand qi > 0. Furthermore, A = {(i, j) : i, j ∈ V, i 6= j}
is the arc set, where (i, j) represents a path between vertices i and j. For each pair (i, j) ∈ A,
let dij ≥ 0 be the length of the shortest path that connects i and j. The cost of a route is the
sum of the distances between consecutive nodes, including the depot.

Customers can be served by regular drivers on routes starting and ending at the depot.
We consider their vehicles to have a limited capacity Q. This variant of the problem allows
to hire occasional drivers to make a single delivery to a customer if the following condition
is satisfied. An occasional driver k ∈ K can serve customer i ∈ C if d0i + dik ≤ ζd0k with
ζ ≥ 1. In other words, if the extra distance to get the occasional driver from the depot
through the customer i is less than or equal to (ζ − 1) times the direct distance from the
depot to the occasional destination’s location; d0i + dik − d0k ≤ (ζ − 1)d0k. Therefore, ζ is
referred as the flexibility of the occasional drivers. It is important to emphasize that a trip
of an occasional driver is measured as the distance traveled from the depot to the customer
and from the customer to the occasional driver location. Furthermore, it is assumed that
the capacity of any occasional driver is enough to satisfy the demand of any customer but
one occasional driver can serve a maximum of one customer.

The objective of the VRPOD is to minimize the aggregated cost incurred by regular
and occasional drivers. Notice that an occasional driver is paid only if he/she serves a
customer. This payment to the occasional driver is computed considering two different
schemes, namely Scheme I and Scheme II. Both take into account a compensation rate
denoted by ρ. In Scheme I, the compensation does not depend on the occasional drivers’
destination. Thus, every occasional driver receives ρd0i as compensation for making a
delivery to customer i. In this scheme, the compensation rate is limited to 0 < ρ < 1.
Therefore, this scheme only requires to know the location of the customers, which means
that occasional drivers serving customers far from their locations are not compensated
for the extra mileage incurred. As an alternative, Scheme II defines a compensation that
actually depends on the destination of the occasional drivers, the customer location and the
depot. In this case, each occasional driver k receives a compensation of ρ(d0i + dik − d0k)
for the extra mileage incurred for serving the customer i, with ρ ≥ 1. This variant is
more difficult to put into practice since the company needs to know the destination of
the occasional drivers. For further details, see [16] where a mathematical formulation
is included.

In [16], the previously explained compensation schemes were studied to assess the
advantages and disadvantages of implementing both schemes, taking also into account
the economical benefits for the companies depending on the number and flexibility of the
occasional drivers. A detailed formulation of this problem can be found in [16]. Despite
that realistic situations may generate different compensation schemes depending on each
specific delivery company payment policy, we will assess the efficiency of our proposed
algorithms by means of a comparison with [16]. Consequently, we consider that the occa-
sional drivers can only visit one customer since they are not professional couriers because
splitting the deliveries would be more expensive for the delivery company. Besides, if the
occasional driver is available to perform a delivery, then the probability of rejecting this
service is uncertain and, likely, very low. Hence, we do not take into account this feature.

3. Algorithmic Proposal

In this paper, an Iterated Local Search (ILS) algorithm is proposed to tackle the VRPOD
problem. This metaheuristic, see [25], proposes the coupling of a local search method with
a perturbation or disturbance process that allows the local search to escape from local
optima. We selected this algorithm due to its simple design, and, at the same time, very
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effective performance. In fact, its design favors the implementation of parallel cooperative
schemes, as will be later explained. In particular, we have used a multi-start approach
for the ILS which accepts four different parameters: nc, which determines the number
of constructions to be generated, that is, the number of starts of the algorithm; α, which
controls the greediness of the construction of solutions; np, which corresponds to the
number of perturbations that will be performed; and β, which is the perturbation intensity.

The pseudo-code of our proposal is shown in Algorithm 1. As stated before, ILS
iterates nc times generating a new solution by means of the constructive method (step 3)
on each iteration. Then, a new loop begins, which will disturb and improve the solution np
times (steps 4 to 10). After the perturbation and improvement (steps 5 and 6), the objective
function value of the resulting solution S

′′
is compared with the current solution previous

to the perturbation, S. If the new solution is better, the current best solution is updated
(steps 7 to 9). Finally, the best solution is returned in step 15.

Algorithm 1 ILS(nc, α, np, β)

1: S? ← ∅

2: for 1 . . . nc do

3: S← ConstructiveMethod(α)

4: for 1 . . . np do

5: S
′ ← Perturbation(S, β)

6: S
′′ ← LocalSearch(S

′
)

7: if f (S
′′
) < f (S) then

8: S← S
′′

9: end if

10: end for

11: if f (S) < f (S?) then

12: S? ← S

13: end if

14: end for

15: return S?

Next, each one of the components of the ILS method will be described, as well as
their complexity both in terms of time and space. Notice that the complexity of ILS is the
maximum of its components.

3.1. Constructive Method

In order to generate a variety of different and good-quality initial solutions, a GRASP
methodology has been implemented. GRASP (Greedy Randomized Adaptive Search
Procedure) was proposed in [26] and formally defined in [27] as an iterative algorithm
with two phases: a randomized construction phase that uses a greedy function to build
solutions followed by a local search phase. Two main reasons lead us to select the GRASP
methodology for the constructive phase: on the one hand, it is able to produce high-quality
and diverse solutions by tunning the value of the α parameter, making possible to explore
wider regions of the solutions space; on the other hand, its simple design makes it fast,
being able to obtain a large number of initial feasible solutions in tiny computing times.
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Given that the ILS procedure performs its own local search after the perturbation, we only
execute the randomized construction phase in the constructive method.

A solution for the VRPOD is represented as a set S of assignments corresponding either
to routes of regular vehicles or to occasional drivers, considering that each occasional driver
can attend only one customer, and each customer is attended only once. Hence, we propose
a greedy function g(S, ac) for the GRASP construction phase. This function calculates the
increase of the objective cost value in a given solution S due to a route assignment ac, being
c a customer of the instance. In this context, ac represents any valid assignment that does
not break any problem constraint: each customer can be assigned either to any existing
route (in any position, as long as the maximum capacity is not exceeded), to a new route or
to any occasional driver available for the given customer.

Algorithm 2 details the pseudo-code of the proposed constructive method, which adds
assignments to an initially empty solution S (step 1). The candidate list CL is created by
including all possible assignments for each customer. We represent this process of obtaining
all the assignments for the set of customers C with the method ObtainValidAssignments
shown in step 2. The constructive procedure iterates until the CL is empty, that is, all
customers are assigned either to a regular route or to an occasional driver (steps 3–11).
At each iteration of the construction, all the assignments in CL are evaluated with the
greedy function, g(S, ac) , obtaining the best and worst values, gmin and gmax, respectively
(steps 4 and 5) to calculate the threshold, th (step 6). This threshold determines which
assignments enter to the restricted candidate list, RCL (step 7). The method is able to
control the balance between greediness and randomness by means of the parameter α,
with 0 ≤ α ≤ 1. If α = 0, then only those assignments with the best value (gmin) are
included in RCL, which is the full greedy case. If α = 1 then the RCL will contain all the
candidates and, therefore, the method will be completely random. Once the RCL is filled
with assignments, one of them is randomly selected following an uniform distribution
(step 8), whose corresponding customer is denoted as c′. This assignment is then added to
the current solution in step 9, and the CL is updated by removing all the assignments of the
selected customer (step 10). This process is repeated until there are no valid assignments
in the CL, which only happens after every customer has been assigned either to a regular
route or an occasional driver. Therefore, the space complexity of the GRASP constructive
method is O(|V|), as the data structures size scales linearly with the number of customers
and occasional drivers, while the time complexity is O(|C| × |V|).

Algorithm 2 ConstructiveMethod(α)

1: S← ∅

2: CL← ObtainValidAssignments(C)

3: while CL 6= ∅ do

4: gmin = min
v∈CL

g(S, ac)

5: gmax = max
v∈CL

g(S, ac)

6: th← gmin + α(gmax − gmin)

7: RCL← {ac : v ∈ CL∧ g(S, ac) ≤ th}

8: ac′ ← SelectRandom(RCL)

9: S← S ∪ {ac′}

10: CL← CL \ {ac ∈ CL : c = c′}

11: end while

12: return S
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3.2. Local Search

Once the construction of a solution is detailed, the local search procedure (step 6
of Algorithm 1) is next defined. In general terms, a local search algorithm traverses a
neighborhood of solutions returning the best one, which is known as the local optimum.
A neighborhood of solutions consists of the set of solutions that can be reached after
applying a move to the current solution. To take advantage of the problem knowledge,
our algorithm considers five different neighborhoods, N1 to N5. Therefore, the exploration
of several different neighbourhood structures is preferred instead of just one, in order to
reach high-quality solutions. The different neighborhoods are defined by the following
moves, where all of them but 2-opt were also used in [16]:

2-opt: a sub-sequence of a route is reversed [28]. Figure 1 shows a simple example
where the subtour delimited by customers B and E is reversed. This move produces the
neighborhood N1. The space and time complexity of completely exploring this neighbor-
hood, are O(1) and O(|C|2), respectively.

A

DEF

B C

Depot

A

DEF

B C

Depot

Figure 1. Example of 2-opt move between B and E nodes, which implies that edges AE and BF are
removed and edges AB and EF are inserted.

1-move: a customer served by a regular route is inserted into a different regular
route. Figure 2 shows how customer B is included in a different route. This move
produces the neighborhood N2. The space and time complexity of completely exploring
this neighborhood, are O(1) and O(|C|2), respectively.

A D

EBC

Depot

A D

EBC

Depot

Figure 2. Example of 1-move of B from solid line route to dashed line route.

Swap-move: a pair of customers served by different regular routes are exchanged.
Figure 3 shows the swap of customers B and E. This move produces the neighborhood N3.
The space and time complexity of completely exploring this neighborhood, are O(1) and
O(|C|2), respectively.

A D

E

F

B

C

Depot

A D

E

F

B

C

Depot

Figure 3. Example of swap move between B and E nodes.

In-move: a customer served by an occasional driver is included in a regular route.
As can be seen in Figure 4 the customer B initially visited by an occasional driver will be
served in a regular route after the in-move. This move produces the neighborhood N4.
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The space and time complexity of completely exploring this neighborhood, are O(1) and
O(|K| × |C|), respectively.

A

B

C

Depot

A

B

C

Depot

Figure 4. Example of In-move of B.

Out-move: a customer served by a regular route is assigned to an occasional driver.
Figure 5 shows how customer B, initially visited by a regular route, is now served by an oc-
casional driver. This move produces the neighborhood N5. The space and time complexity
of completely exploring this neighborhood, are O(1) and O(|K| × |C|), respectively.

A

B

C

Depot

A

B

C

Depot

Figure 5. Example of Out-move of B.

The proposed local search method considers an extended neighborhood formed by
the five defined neighborhoods. Algorithm 3 presents the pseudo-code of our proposal.
As seen in the algorithm, the method iterates while the current solution is improved
(steps 3 to 10). Hence, given an incumbent solution S, the five neighborhoods previously
defined are explored in step 4 obtaining S′, which is the best solution of the extended
neighborhood. Then, it is compared with the best solution S? in step 5, updating S?

if necessary in the following step. If no improvement was made, the guard variable is
changed in step 8. At the end, the algorithm returns the local optimum S? in step 11.

Algorithm 3 LocalSearch (S)

1: S? ← ∅

2: improve← true

3: while improve do

4: S
′ ← arg minS∈⋃5

i=1Ni(S)
f (S)

5: if f (S′) < f (S?) then

6: S? ← S′

7: else

8: improve← false

9: end if

10: end while

11: return S?
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3.3. Perturbation Procedures

Another important step of the ILS algorithm is the way in which a solution is perturbed
or modified. Given that this problem involves routes and occasional drivers assignations,
several different perturbations can be explored. Among them, three different perturbation
procedures are proposed in this paper, motivated by the need to reach a solution different
from the incumbent one and different to its neighbors, considering the neighborhoods
previously defined. The proposed perturbation procedures are next described:

RandomMove. A move from the five previously defined neighborhoods is randomly
selected and executed, without evaluating the performance impact over the objective
function. This perturbation is applied a fixed number of times, defined by the β parameter.
The complexity of this perturbation method corresponds with the time complexity of the
used neighborhood.

RouteCost. This strategy firstly ranks the routes by their cost per customer, and then
selects a route according to a probability distribution. The probability pri of choosing
a certain route ri is given by Equation (1). This approach to select the route to remove
is analogous to the one followed in [29] and [30] for the construction phase. In our
implementation, removing a route has a time complexity of O(|C|).

pri =
zri

∑
rj∈R

zrj

(1)

where zri represents the cost per customer of route ri, as seen in Equation (2), in which f (r)
represents the cost of a given route r, and |Cr| the number of customers attended by a route
r. In short, as a proportion, the more costly a route is per customer, the more likely it will
be destroyed.

zr =
f (r)
|Cr|

(2)

In case that all the customers where removed from a route, the route is deleted. This
process is repeated β times, producing a number of unassigned customers. Then, those
customers are reassigned using the proposed constructive method (see Section 3.1).

RandomDeassign. It randomly selects β customers following an uniform distribution,
and their assignments are removed from the solution. Then, these customers are reassigned
using the constructive method used in the ILS algorithm. In our implementation, removing
a random set of customers from a given solution has a time complexity of O(|C|2).

All the three perturbation methods require an input parameter which, for the sake of
clarity, we have labeled as β. This parameter determines the perturbation size, which has
different meaning on each perturbation method, as explained above. Hence, the β values
analyzed in the experimental experience will be selected accordingly.

3.4. Parallel Cooperation Proposal

The parallel implementation of an algorithm is usually a straightforward task that
allows the researcher to make use of the full performance of the computer where the
algorithm is run. Moreover, as shown by many works in the literature, parallelism can con-
tribute to the optimization search. For instance, in [31], a parallel Variable Neighborhood
Search (VNS) approach is presented, where a cooperation among threads is developed on a
master-slave scheme. The authors applied this proposal to successfully solve a well-studied
location problem, the p-median problem. Several cooperative schemes for VNS are also
studied in [32], showing that cooperation reaches better results than the straightforward
parallelization in the obnoxious p-median problem.

Based on the previously exposed ideas, we propose a cooperation scheme for the
parallel implementation of the ILS method. This cooperation is shown in Figure 6. As it can
be seen, the multi-start ILS execution is divided into N workers, namely ILS1 to ILSN . Each
worker will execute independently on a different thread following the implementation



Mathematics 2021, 9, 509 10 of 19

shown in Algorithm 1, but applying the cooperation scheme. In particular, each worker
creates a solution with the constructive procedure and, then, executes the internal for loop,
which corresponds to steps 4 to 10 in the algorithm, labelled as ILSLoop in the figure. After
a given number of executions of the loop, a migration of solutions is performed. In this
cooperation, each worker ILSi with i = 1...N “pushes” (sends) its current best solution to a
FIFO queue, qi, from which the following worker will “pull” (receive) a solution. Notice
that ILSN sends its solution to ILS1, creating a ring topology. Once a solution is taken from
the queue, the ILS loop executes on the incoming solution until the following migration or
the execution ends.

Figure 6. Parallel cooperation scheme for the ILS based on solution migrations.

The decoupling of workers by means of the queues makes this scheme very flexible,
allowing different cooperative structures like master-slave or full connection [32]. However,
we propose the ring configuration and the concept of round. A round is completed when a
solution has visited every worker once. Therefore, if we set the number of rounds to two,
each solution will visit each worker twice. In order to honor the total number of allowed
perturbations, the algorithm will divide the number of iterations of the original for loop,
given by the np parameter (see step 4 in Algorithm 1) by (N · rounds).

As it will be shown in the next section, the main advantage of this proposal is being
able to apply different configurations on each worker. Besides, given that the queues take
care of the synchronization of the threads, the execution time will be determined by the
slowest worker.

4. Computational Results

This section presents and discusses the computational experience conducted with the
algorithms proposed in this paper. Firstly, we describe a set of preliminary experiments
that allows us to tune the parameters of the algorithm. Then, we compare the performance
of our proposal against the state of the art, which was stated in [16].

In order to perform a fair comparison, we have used the very same set of instances as
the previous authors. In particular, they consider six types of instances: types C101 and
C201, where customers are clustered; types R101 and R201, where customers are randomly
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distributed; and types RC101 and RC201, where customers are partially clustered and
partially randomly distributed. Following the approach from [16], we generated the
different instances among the mentioned six types using the corresponding values for
the parameters that characterize each instance. These parameters and their values are
the following: the number of occasional drivers, |K|, with |K| = {13, 25, 50, 100}); the
compensation rate, ρ, with ρ = {0.05, 0.10, 0.20} and ρ = {1.2, 1.4, 1.6} for the compensation
schemes I and II, respectively; and the flexibility of the occasional drivers, ζ, with ζ =
{1.1, 1.2, 1.3, 1.4, 1.5, 1.6}. The combination of the values of the parameters across the six
types of instances according to [16] produced a total number of 480 instances.

The experiments were run on a machine provided with a Ryzen 7 1700 CPU running
at 3 GHz, with 16GB RAM. All the algorithms are implemented in Java 11.

4.1. Preliminary Experimentation

In order to select the best combination of parameters for our proposed algorithms, a
representative subset of 70 instances out of a total number of 480 instances, was selected
having the following final distribution: 8 instances with |K| = 13, 9 instances with |K| = 25,
26 instances with |K| = 50; and 27 instances with |K| = 100. The selection was made by
randomly picking an instance for each combination of |K|, ζ and ρ.

The first preliminary experiment is devoted to tuning the generation of the initial
solution. As stated in Section 3.1, a GRASP approach is proposed. Therefore, it is re-
quired to determine the best value of the α parameter for this method. Tables 1 and 2
show the results obtained when solutions are built using the GRASP constructive method
and the constructive method coupled with the proposed local search, respectively. In
particular, 10,000 constructions are generated in both experiments. The first column
of both tables contains the different values of the parameter α that have been studied:
α = {0, 0.25, 0.5, 0.75, 1, Random}, where Random means that a value for α was randomly
selected at each iteration, following a uniform distribution. Besides, the number of times
that the algorithm is able to attain the best value is shown in the second column (#B.),
being the best value the minimum value found by any of the compared algorithms in
each experiment; the third column averages the best costs obtained across the 70 instances
(Cost); and, finally, the last column shows the average computation time in seconds (T(s)).

Table 1. Performance of the different values of α for the proposed constructive method after
10,000 iterations.

α #B. Cost T(s)

0.00 57 542.3 5.47
0.25 0 852.3 7.20
0.50 1 1480.0 11.73
0.75 0 1947.0 13.47
1.00 0 2073.0 14.29

Random 15 569.5 11.64

Table 2. Performance of the different values of α for the proposed constructive method coupled with
the local search after 10,000 iterations.

α #B. Cost T(s)

0.00 29 470.9 11.13
0.25 22 474.0 18.44
0.50 17 479.6 24.41
0.75 16 480.2 26.61
1.00 17 484.3 27.00

Random 25 471.5 24.77
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The comparison of Tables 1 and 2 evidences the contribution of the local search.
In a pairwise comparison of rows from both tables, it can be seen that, for each value
of α, the local search reaches better results not only in the number of times that the
best value is obtained, but also in the quality of the solutions (see columns 2 and 3,
respectively). Obviously, the CPU time is increased when the local search is run after the
constructive process.

Given that the results of α = 0 and α randomly chosen are very similar when the local
search is run, both configurations will be selected for the next experiment.

In the following experiment we will assess the contribution of the proposed perturba-
tion methods. To this aim, the perturbations have been run with different values for the
perturbation size β, for both α = 0 and α randomly chosen. Table 3 shows the results of
this experiment, where the first column presents the two values of α considered in this
experiment; the second column shows the three perturbation procedures, and the third
column the values for the β parameter. The values for β have been determined experimen-
tally taking into account a similar computational effort among the selected values. The
remaining columns present the same results as in the previous experiment. To carry out
this experimentation, we have run Algorithm 1 after one construction (nc = 1), which is the
same for each instance in all the perturbation methods, hence performing a fair comparison
among them. Besides, the value of np, which is the number of times the perturbation
method is run, was set proportional to the number of occasional drivers. In particular,
np = 100 · |K|.

Table 3. Performance comparison among the proposed perturbation methods.

α Perturbation β #B. Cost T(s)

0 RandomMove 10 23 443.4 4.43
25 38 436.3 5.85
50 40 430.2 6.19
75 28 435.6 6.19

RouteCost 1 1 513.5 2.78
2 1 510.3 3.10
3 1 514.8 3.42

RandomDeassign 1 5 456.5 0.84
2 10 452.6 2.04
3 8 449.6 3.43
5 10 448.4 5.71

Random RandomMove 10 18 448.2 4.95
25 29 436.5 7.50
50 35 433.3 8.74
75 28 435.6 8.47

RouteCost 1 0 590.0 0.75
2 0 590.2 0.82
3 1 590.9 0.79

RandomDeassign 1 17 451.8 3.67
2 22 442.5 5.88
3 19 441.4 7.37
5 17 442.7 8.85

In view of the values shown in Table 3, it can be seen that the best results are obtained
by the RandomMove method with β = 50, for both α values, and that the influence of the
perturbation method over the final score is more important than the value of α.

Besides, the RandomDeassign method obtains competitive results, with a 2.5% dif-
ference with respect to the best perturbation configuration, while the RouteCost method
obtains the worst results.

Finally, in order to take into account other possible algorithmic strategies, we designed
a memetic approach [33] to tackle this problem. Here, the local search was combined with
a genetic algorithm where the routes were encoded with a double chromosome for both
the regular and the occasional drivers. The usual crossover and mutation operators were
also implemented and several configurations were explored in relation with the execution
of the local search step.
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From those preliminary experiments, we show in Table 4 the results of the most
relevant executions of the memetic approach, labeled as MA. In particular, the table
shows the comparison of number of best results obtained by the ILSM proposal, the exact
approach from the state of the art (IP) and the memetic algorithm (MA) on a subset of
small-sized instances.

Table 4. Comparison between ILSM, the exact method (IP) and the memetic algorithm (MA).

|K| ρ ζ ILSM IP MA

13 0.2 1.1 6 6 1
1.2 6 6 1
1.3 6 6 2
1.4 6 6 2
1.5 6 6 1

25 0.2 1.1 6 6 1
1.2 6 6 2
1.3 6 6 2
1.4 6 6 1
1.5 5 6 2

59 60 15

As it can be seen in the table, the memetic algorithm obtained poor results in relation
with the two other proposals, while ILSM was able to reach 59 out of the 60 optimal values.
In addition, the execution time of MA was more than 50 times longer than the ILSM
approach. Therefore, we decided to omit the memetic approach from the final comparison.

4.2. Final Comparison

Once the ILS parameters have been studied in the previous section, we now proceed
to compare our proposals with the state of the art, whose results will be labelled as SOTA.
In brief, we propose a multi-start ILS algorithm, namely ILS; a straightforward parallel
version of the multi-start ILS where the iterations of the algorithm are distributed among
N threads, called ILSP; and our proposed cooperative parallel ILS with migration of
solutions, ILSM. This experiment consists on running these algorithms on the whole set of
480 instances. Next, we describe the particular configuration selected for this proposal.

The number of iterations of ILS is 100, which corresponds to 100 constructions gener-
ated with α = 0, and the perturbation method used was RandomMove with β = 50, since
this configuration obtained the best results in the previous experimentation. The number
of executions of the perturbation method was set to np = 10 · |K|. This configuration is
repeated for ILSP given that this is a parallel implementation of ILS.

Regarding ILSM, we take advantage of the cooperative policy by applying different
configurations on each worker. In particular, we have considered N = 4 to be the number
of cores used by the parallel versions of ILS, both ILSP and ILSM. Therefore, we consider
4 different configurations for ILSM. In order to select these configurations we chose
the four best configurations in terms of number of best solutions, as shown in Table 3:
RandomMove with β = 25 (α = 0 and α = Random), and RandomMove with β = 50 (α = 0
and α = Random). The number of rounds was set to 2, making any solution go through
every configuration twice, as explained in Section 3.4.

Table 5 shows the comparison of the proposed ILS algorithms with the state of the
art for those instances with 13 and 25 occasional drivers. The results are summarized
for each value of ζ, which represents the flexibility of the occasional drivers. For each
algorithm (ILS, ILSP and ILSM) the averaged cost, the sum of best values (#B.), and
the execution time in seconds (T(s)) are calculated. Since no information is given about
execution time in [16], only the cost and the number of best results are reported for the
SOTA. As it can be seen in the table, all our ILS proposals obtain the best result for all the
instances, reaching the same average cost among them and improving the results of SOTA.
Regarding the execution time, the fastest algorithm is ILSP, which is a straightforward
parallel implementation of ILS. ILSM is slower than ILSP because its execution time is
determined by the slowest worker.
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Table 5. Performance comparison for |K| = 13 and |K| = 25 occasional drivers.

|K| ζ
ILS ILSP ILSM SOTA

Cost #B. T(s) Cost #B. T(s) Cost #B. T(s) Cost #B.

13 1.1 242.38 6 8.67 242.38 6 1.84 242.38 6 3.13 242.53 5
1.2 232.84 6 8.29 232.84 6 0.78 232.84 6 3.39 233.12 4
1.3 230.28 6 8.08 230.28 6 7.00 230.28 6 3.30 230.58 4
1.4 229.53 6 7.72 229.53 6 2.14 229.53 6 3.37 230.38 2
1.5 222.27 6 7.40 222.27 6 1.72 222.27 6 3.13 223.43 1

231.46 30 8.03 231.46 30 2.69 231.46 30 21.26 232.01 16

25 1.1 232.20 6 14.34 232.20 6 3.37 232.20 6 5.18 232.58 4
1.2 227.96 6 14.32 227.96 6 3.38 227.96 6 5.75 228.23 5
1.3 225.24 6 13.35 225.24 6 3.49 225.24 6 5.45 225.25 6
1.4 216.07 6 11.84 216.07 6 4.07 216.07 6 5.18 216.08 6
1.5 212.02 6 11.35 212.02 6 3.21 212.02 6 4.88 212.02 6

222.70 30 13.04 222.70 30 3.51 222.70 30 5.29 222.83 27

For the medium size instances, where |K| = 50, the results are aggregated by the
compensation rate (ρ) and the flexibility of the occasional drivers (ζ), as in [16]. Table 6
shows the results with the same indicators as in the small instances, but adding the relative
percentage deviation from the best-known value (Gap). Looking at the results, we can point
out that the average cost and the number of best results obtained by all the ILS proposals
are better than the SOTA. If we focus on the number of best results (#B.), it can be seen that
the basic ILS obtains practically the same results than the SOTA in this metric, however,
the parallel collaborative scheme, ILSM, obtains almost 50% more best results than the
SOTA. Furthermore, regarding the gap, it can be seen that all the proposed algorithms
obtain better relative deviations from the best-known values than the SOTA, specially the
parallel collaborative scheme, ILSM (0.21%). The execution time follows the same pattern
as for the small instances, with ILSP being the fastest algorithm and ILSM the second one.

Finally, the results for the largest instances with 100 occasional drivers are shown in
Table 7 in a similar fashion as the medium-size instances. As it can be seen, the performance
gap between the ILS proposals and SOTA widens in terms of the number of best results. In
particular, ILSM reaches more than twice the number of best results than SOTA, while also
improving the average cost and having less than half of the deviation. Note that the other
two ILS proposals do not improve the average cost of SOTA by a small margin. However,
both (ILS and ILSP) improve the number of best results obtained. Regarding the average
execution time, the results are similar than in the previous tables.

As a first conclusion from the results, we can affirm that the cooperative ILSM proposal
outperforms the basic ILS, the parallel ILSP and the SOTA methods in terms of cost and,
specially, in terms of number of best results found. As previously mentioned, the ILSM
method is slower than ILSP as its computation time is limited by the slowest worker. For
the sake of space we have omitted the detailed results of all instances. However, we will
make them publicly available at http://grafo.etsii.urjc.es/ (accessed on 16 January 2021).

In order to statistically assess the behavior of the algorithms considered in this work,
we carried out the Bayesian performance analysis for comparing multiple algorithms
over multiple instances simultaneously described in [34,35]. This analysis considers the
experimental results as rankings of algorithms, and on the basis of a probability distribution
defined on the space of rankings, it computes the expected probability of each algorithm
being the best among the compared ones. Not limited to that, it also assesses the uncertainty
related to the estimation in the form of credible intervals. These intervals are computed
using Bayesian statistics and they estimate the most likely values of the unknown parameter
to lie within the interval given a certain probability.

http://grafo.etsii.urjc.es/
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Table 6. Performance comparison for |K| = 50 occasional drivers.

ρ ζ
ILS ILSP ILSM SOTA

Cost Gap #B. T(s) Cost Gap #B. T(s) Cost Gap #B. T(s) Cost Gap #B.

0.05 1.1 539.7853 1.40% 2 419.5918 540.5165 1.53% 0 101.7118 532.3479 0.00% 4 170.3358 537.7986 1.02% 1
1.2 503.2001 0.80% 3 389.4178 500.6505 0.29% 3 64.05583 503.625 0.88% 2 203.561 499.225 0.00% 2
1.3 486.9723 0.26% 1 386.9173 488.1669 0.50% 4 95.45933 485.7328 0.00% 3 195.2685 491.2126 1.13% 0
1.4 471.8444 1.01% 3 382.2975 467.1162 0.00% 4 103.3242 470.8017 0.79% 1 193.2252 473.574 1.38% 1
1.5 453.8147 0.00% 3 383.0937 455.7323 0.42% 0 55.57933 454.9244 0.24% 2 191.0568 456.8082 0.66% 2

0.1 1.1 584.9547 0.00% 1 466.8708 585.692 0.13% 1 96.67783 585.4194 0.08% 2 233.156 587.1946 0.38% 2
1.2 551.9803 0.47% 2 430.2182 553.8638 0.81% 3 79.56183 553.4574 0.74% 3 231.1562 549.3987 0.00% 2
1.3 541.1348 0.00% 3 420.7238 547.067 1.10% 4 85.77933 546.0515 0.91% 3 222.7265 544.3012 0.59% 1
1.4 533.3659 0.59% 1 414.1407 535.6826 1.03% 3 100.1178 537.2698 1.33% 2 221.526 530.2156 0.00% 3
1.5 524.9017 1.55% 3 415.2357 517.1454 0.05% 3 117.9817 519.1073 0.43% 1 217.0753 516.8894 0.00% 3

0.2 1.1 663.5926 0.16% 3 595.0698 663.7559 0.18% 2 141.5705 662.5436 0.00% 3 315.4683 666.3268 0.57% 3
1.2 643.8584 0.38% 2 568.4518 641.8753 0.07% 3 87.92133 641.4362 0.00% 5 326.2498 642.3602 0.14% 1
1.3 641.0553 0.79% 2 562.1503 639.2008 0.50% 3 122.836 639.2933 0.51% 2 329.638 636.0185 0.00% 3
1.4 634.2417 0.24% 3 544.6653 633.5266 0.13% 3 69.31633 632.6958 0.00% 3 324.1843 634.2424 0.24% 3
1.5 626.0921 0.00% 3 535.832 626.2378 0.02% 3 81.129 627.0634 0.16% 2 320.1565 628.7249 0.42% 2

1.2 1.1 548.2522 0.05% 1 419.0178 548.4516 0.08% 2 141.4412 547.9879 0.00% 2 253.8163 556.4641 1.55% 1
1.2 532.7871 0.00% 2 427.1283 533.5399 0.14% 0 51.02833 533.2159 0.08% 2 237.4145 541.4967 1.63% 2
1.3 525.7513 0.16% 2 435.0688 532.1804 1.38% 1 109.7833 524.9333 0.00% 2 243.4765 534.9408 1.91% 1
1.4 526.8243 0.25% 0 443.8138 527.0245 0.29% 3 88.965 525.5251 0.00% 2 248.429 534.9803 1.80% 1
1.5 530.9357 0.91% 0 453.4277 526.1489 0.00% 4 66.63233 526.6752 0.10% 3 258.1862 531.9392 1.10% 1

1.4 1.1 552.3821 0.21% 1 430.4313 551.2252 0.00% 3 91.93033 551.5696 0.06% 2 234.8208 559.322 1.47% 2
1.2 538.8656 0.17% 1 432.7217 538.7884 0.15% 1 57.576 537.9606 0.00% 2 240.0383 546.494 1.59% 2
1.3 536.8756 0.47% 1 441.8725 534.9065 0.10% 3 110.9935 534.3706 0.00% 2 249.0508 543.1721 1.65% 1
1.4 536.7697 0.86% 1 450.4062 536.4604 0.80% 1 108.433 532.1984 0.00% 3 255.0165 540.0234 1.47% 2
1.5 536.2398 0.51% 1 459.4875 535.8174 0.43% 1 132.6498 533.5195 0.00% 3 265.1078 539.6146 1.14% 2

1.6 1.1 554.5638 0.98% 1 427.4273 554.5725 0.98% 2 73.339 549.1668 0.00% 4 245.174 563.0623 2.53% 0
1.2 543.4267 0.16% 3 442.693 544.2657 0.32% 0 120.5182 542.5449 0.00% 3 245.2358 551.6283 1.67% 1
1.3 543.3848 0.17% 1 451.8478 544.4085 0.36% 0 297.7438 542.4653 0.00% 3 254.8628 547.8221 0.99% 2
1.4 541.4304 0.13% 0 460.8212 540.9699 0.04% 2 517.5568 540.7474 0.00% 2 266.4755 546.7086 1.10% 2
1.5 543.274 0.36% 2 468.7355 541.3017 0.00% 2 792.5418 541.4565 0.03% 1 276.5442 547.0722 1.07% 1

549.75 0.43% 52 451.99 549.54 0.39% 64 138.81 548.54 0.21% 74 248.95 552.63 0.97% 50

Table 7. Performance comparison for |K| = 100 occasional drivers.

ρ ζ
ILS ILSP ILSM SOTA

Cost Gap #B. T(s) Cost Gap #B. T(s) Cost Gap #B. T(s) Cost Gap #B.

0.05 1.1 446.8542 0.50% 3 461.8845 446.7632 0.48% 5 50.84183 444.628 0.00% 5 176.1205 445.5205 0.20% 4
1.2 393.4636 0.01% 5 347.7535 394.1906 0.20% 4 124.0983 393.4137 0.00% 6 170.5258 397.6275 1.07% 2
1.3 309.0867 0.00% 6 220.556 309.0867 0.00% 6 76.62167 309.2135 0.04% 5 127.8515 309.1152 0.01% 5
1.4 291.847 0.09% 5 160.219 291.8418 0.09% 5 99.157 291.8761 0.10% 5 95.24367 291.5823 0.00% 4
1.5 256.6883 1.79% 5 128.2215 256.6883 1.79% 5 48.07133 252.8473 0.27% 5 79.11217 252.168 0.00% 6

0.1 1.1 523.0534 1.22% 3 654.3707 519.6255 0.56% 3 120.4445 516.7501 0.00% 6 277.8033 518.4761 0.33% 2
1.2 479.7269 0.31% 4 539.1515 481.4061 0.66% 4 157.8802 478.2522 0.00% 5 274.8117 482.0614 0.80% 4
1.3 427.8776 2.86% 3 462.71 426.3933 2.50% 3 129.64 424.1554 1.96% 4 232.155 415.9928 0.00% 3
1.4 402.368 0.16% 4 415.5207 402.368 0.16% 4 95.69033 401.7055 0.00% 6 211.4222 402.6224 0.23% 2
1.5 384.158 1.88% 4 388.4473 397.081 5.31% 3 89.23267 388.1649 2.94% 4 191.0957 377.0738 0.00% 4

0.2 1.1 639.8737 0.00% 3 1006.771 642.5748 0.42% 4 161.6953 642.3011 0.38% 3 565.708 641.3445 0.23% 3
1.2 623.6678 0.92% 4 964.2745 622.5619 0.74% 5 166.8772 623.7514 0.93% 4 591.0685 618.008 0.00% 2
1.3 605.705 0.91% 4 873.0052 605.7514 0.92% 4 158.8033 602.0615 0.30% 4 546.6782 600.2485 0.00% 3
1.4 596.3077 0.73% 4 845.7318 594.0314 0.35% 4 121.6118 594.0179 0.35% 4 540.0835 591.9684 0.00% 4
1.5 591.5529 1.30% 3 830.2405 590.8163 1.17% 3 57.886 589.4598 0.94% 3 529.7783 583.9739 0.00% 3

1.2 1.1 453.5543 0.56% 3 532.8617 451.9424 0.21% 4 124.8337 451.0063 0.00% 5 329.6615 453.9328 0.65% 1
1.2 437.11 0.56% 4 516.6463 437.2956 0.61% 2 150.8505 434.6544 0.00% 5 248.1792 439.1365 1.03% 0
1.3 413.5353 0.61% 2 470.4215 414.8368 0.93% 2 44.55867 411.0114 0.00% 6 235.5038 418.7916 1.89% 0
1.4 416.3125 1.60% 2 475.7985 413.6793 0.96% 1 127.474 409.7569 0.00% 6 255.2198 417.0191 1.77% 0
1.5 417.7203 1.80% 1 489.0567 413.7277 0.83% 3 92.63217 410.3363 0.00% 4 263.5218 414.6062 1.04% 1

1.4 1.1 457.0456 0.05% 3 537.4583 456.877 0.02% 3 128.7593 456.8032 0.00% 5 283.0257 459.9442 0.69% 1
1.2 445.1086 0.19% 2 531.8792 445.9219 0.38% 1 128.3608 444.2435 0.00% 5 265.7002 448.9299 1.05% 2
1.3 428.7152 0.66% 4 509.4325 430.9109 1.17% 1 109.2697 425.9209 0.00% 2 267.0003 435.4451 2.24% 1
1.4 431.734 0.91% 2 510.7673 428.8154 0.23% 2 110.4097 427.9069 0.01% 4 276.2122 427.8523 0.00% 2
1.5 430.9797 0.62% 2 528.5645 430.8396 0.58% 1 64.2445 428.3419 0.00% 4 292.21 432.2809 0.92% 2

1.6 1.1 461.8792 0.01% 3 558.2377 463.1208 0.28% 2 115.4152 461.8351 0.00% 4 294.3458 465.8242 0.86% 0
1.2 453.4498 0.08% 2 572.0842 453.1118 0.01% 3 78.56083 453.0686 0.00% 4 283.187 457.9317 1.07% 1
1.3 442.0516 0.25% 2 555.9252 440.9349 0.00% 3 66.0465 441.321 0.09% 3 295.9443 449.6249 1.97% 1
1.4 441.1734 0.18% 1 555.8278 440.3888 0.00% 4 109.6753 440.6528 0.06% 3 307.37 443.2396 0.65% 1
1.5 441.7029 0.27% 2 574.9573 441.3502 0.19% 3 88.07833 440.5029 0.00% 4 322.1748 443.3912 0.66% 1

451.48 0.70% 95 540.63 451.50 0.72% 97 106.59 449.67 0.28% 133 294.29 451.19 0.65% 65
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Figure 7 shows the credible intervals (5% and 95% quantiles) and the expected
probability of winning for each different implementation of the proposed algorithms and
the state-of-the-art method (SOTA) after the joint analysis of the 480 instances. We will
refer to the term winning when the algorithm is able to find the best solution in relation to
the other methods in the comparison. As seen in the figure, SOTA is the algorithm with
least chances for being the winner, with an expected probability of 0.127 of obtaining the
best solution. Besides, the probability of ILS and ILSP is quite similar (0.243 and 0.276
respectively), with overlapped credible intervals. This result proves that a straightforward
parallelization has a small contribution to the quality reached by the algorithm, and the
main advantage is the savings in computation time. However, both proposals are better
than SOTA since their probabilities of obtaining better solutions than SOTA are higher.
Moreover, the expected probability of ILSM is the highest, reaching a value of 0.354,
showing a credible interval that is not overlapped with any other. In summary, ILSM is
statistically different from all the other algorithms, and it will reach the best solutions in
almost 36% of the instances. The observed length for the intervals in Figure 7 points out
that the estimations for SOTA and ILSM permit to draw solid conclusions, while for the
case of ILSP and ILS, due to the overlapping of the intervals, both algorithms have similar
probability for being the winners.

Figure 7. Credible intervals (5% and 95% quantiles) and expected probability of winning for the
proposed Iterated Local Search (ILS) algorithms and the state of the art (SOTA).

Therefore, this statistical analysis proves that, on the one hand, all our ILS proposals
obtain better results than the state-of-the-art method and, on the other hand, the proposed
cooperative scheme makes a significant difference in relation to the other ILS proposals.

5. Conclusions

Sustainable logistics require the combination of the traditional business logistics and
crowd logistics. However, efficient optimization algorithms are required in order to merge
these approaches into corporate information systems.

In this work we propose an efficient optimization algorithm based on the Iterated Local
Search method which we have assessed on the Vehicle Routing Problem with Occasional
Drivers (VRPOD). This problem models realistic situations appearing in the transportation
of goods for delivery companies in which crowdshipping, a sustainable means of transport,
is feasible, taking into account two different compensation schemes.

In particular, the three proposed implementations of the ILS are able to overcome the
results obtained by the state of the art. The ILS design proposed in this paper includes
a greedy randomized constructive method to build initial solutions and a local search
which explores an extended neighborhood formed by the combination of neighborhoods
generated by five different moves. In addition, three perturbation strategies have been
proposed for this problem. Moreover, a parallel cooperation scheme has been designed
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for the ILS proposal. The computational experiments evidence the effectiveness of our
algorithm given that it is able to attain all the optimal values when they are known.
Besides, it obtains better results than the state-of-the-art method spending a competitive
execution time. A statistical assessment of the proposed algorithms performance has
been also included, measuring the differences between the ILS methods and the state
of the art. In the light of the computational results, we can state that the three different
implementations based on the ILS methodology are able to improve the state of the art for
the small instances (instances with 13 and 25 occasional drivers) in a few seconds, finding
17 new best-known solutions. A similar behaviour can be observed for the medium-size
instances (50 occasional drivers), finding 130 out of 180 new best-known solutions. Finally,
in the large instances (those with 100 occasional drivers), the cooperative parallel ILS with
solution migrations, ILSM, not only reduces the average cost value but also reaches 68
out of 180 new best-known solutions. Furthermore, considering all the three different
implementations based on the ILS methodology 115 in total new best-known solutions.
To prove the hypothesis that the ILSM is the best proposal, a statistical analysis has been
included where all the algorithms have been compared. As a conclusion of this analysis,
the three different implementations based on the ILS algorithm outperform the state of the
art, being ILSM the best one among all the studied alternatives.

Therefore, since the previous results are improved by including occasional drivers
with our proposal, we can state that our method is able to optimize the last-mile logistics,
as recommended in [14]. Hence, since the new routes have smaller costs, the sustainability
of the companies is favored. Besides, the reduced computation times of ILSM allows the
inclusion of our method into corporate information systems.

Future research directions could include different compensation schemes profitable
not only for the company but also for the occasional driver, which lead us to a multi-
objective optimization problem since both objectives are clearly in conflict. Furthermore,
another interesting future line would be to include the possibility of allowing more than
one delivery to every occasional driver or even sustainability features included also under
a multi-objective approach to show the trade-off among the different objective functions.
In addition, the use of more detailed instances with information about the type of vehicles
used by the occasional drives will allow to obtain sustainability measures such as the carbon
footprint of a route. Finally, in order to study more realistic scenarios, new instances with
stochastic modeling of the demand or the travelling times could be defined, as suggested
in [36]. Of course, adding new features to the considered problem would lead us to adapt
the ILS methodology and check the robustness of our algorithm since new constraints are
incorporated.

Author Contributions: Conceptualization, R.M.-S., A.D.L.-S. and J.M.C.; Data curation, R.M.-S.,
A.D.L.-S. and J.M.C.; Formal analysis, A.D.L.-S.; Funding acquisition, M.L.D.-J.; Methodology, R.M.-
S., A.D.L.-S. and J.M.C.; Project administration, M.L.D.-J.; Software, R.M.-S. and J.M.C.; Supervision,
J.M.C.; Writing—original draft, R.M.-S., A.D.L.-S. and J.M.C.; Writing—review & editing, R.M.-
S., A.D.L.-S., M.L.D.-J. and J.M.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been partially supported by the Spanish Ministerio de Ciencia, Innovación y
Universidades (MCIU/AEI/FEDER, UE) under grant ref. PGC2018-095322-B-C2; Comunidad de
Madrid y Fondos Estructurales de la Unión Europea under grant ref. S2018/TCS-4566 and the Junta
de Andalucía, FEDER-UPO Research & Development Call, under grant ref. UPO-1263769.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Detailed results and instances will be publicly available at http://
grafo.etsii.urjc.es/ (accessed on 16 January 2021).

Acknowledgments: The authors wish to express their gratitude to C. Archetti, M. Savelsbergh and
G. Speranza for their collaboration in the provision of all their previous results.

http://grafo.etsii.urjc.es/
http://grafo.etsii.urjc.es/


Mathematics 2021, 9, 509 18 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Allen, J.; Piecyk, M.; Piotrowska, M.; McLeod, F.; Cherrett, T.; Ghali, K.; Nguyen, T.; Bektas, T.; Bates, O.; Friday, A.; et al.

Understanding the impact of e-commerce on last-mile light goods vehicle activity in urban areas: The case of London. Transp.
Res. Part Transp. Environ. 2018, 61, 325–338. [CrossRef]

2. Jia, Y.H.; Chen, W.N.; Gu, T.; Zhang, H.; Yuan, H.; Lin, Y.; Yu, W.J.; Zhang, J. A dynamic logistic dispatching system with set-based
particle swarm optimization. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 1607–1621. [CrossRef]

3. Qin, G.; Tao, F.; Li, L. A vehicle routing optimization problem for cold chain logistics considering customer satisfaction and
carbon emissions. Int. J. Environ. Res. Public Health 2019, 16, 576. [CrossRef]

4. Gevaers, R.; Van de Voorde, E.; Vanelslander, T. Characteristics of innovations in last-mile logistics-using best practices, case
studies and making the link with green and sustainable logistics. Assoc. Eur. Transp. Contrib. 2009 1–21.

5. Sampaio, A.; Savelsbergh, M.; Veelenturf, L.; Van Woensel, T. Chapter 15: Crowd-Based City Logistics. In Sustainable Transportation
and Smart Logistics; Faulin, J., Grasman, S.E., Juan, A.A., Hirsch, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 381–400.

6. Carbone, V.; Rouquet, A.; Roussat, C. The Rise of Crowd Logistics: A New Way to Co-Create Logistics Value. J. Bus. Logist. 2017,
38, 238–252. [CrossRef]

7. Devari, A.; Nikolaev, A.G.; He, Q. Crowdsourcing the last mile delivery of online orders by exploiting the social networks of
retail store customers. Transp. Res. Part Logist. Transp. Rev. 2017, 105, 105–122. [CrossRef]

8. Botsman, R. Crowdshipping: Using the crowd to transform delivery. AFR Boss Mag. 2014.
9. Mckinnon, A. Crowdshipping: A Communal Approach to Reducing Urban Traffic Levels? 2016. Available online: https:

//www.alanmckinnon.co.uk/story_layout.html?IDX=714&b=56 ( accessed on 6 January 2021)
10. Guo, X.; Jaramillo, Y.J.L.; Bloemhof-Ruwaard, J.; Claassen, G. On integrating crowdsourced delivery in last-mile logistics:

A simulation study to quantify its feasibility. J. Clean. Prod. 2019, 241, 118365. [CrossRef]
11. Simoni, M.D.; Marcucci, E.; Gatta, V.; Claudel, C.G. Potential last-mile impacts of crowdshipping services: A simulation-based

evaluation. Transportation 2020, 47, 1933–1954. [CrossRef]
12. Toth, P.; Vigo, D. Vehicle Routing: Problems, Methods, and Applications; SIAM: Philadelphia, PA, USA, 2014.
13. Braekers, K.; Ramaekers, K.; Van Nieuwenhuyse, I. The vehicle routing problem: State of the art classification and review. Comput.

Ind. Eng. 2016, 99, 300–313. [CrossRef]
14. Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A review of last mile logistics innovations in an externalities cost reduction

vision. Sustainability 2018, 10, 782. [CrossRef]
15. Wang, Y.; Zhang, D.; Liu, Q.; Shen, F.; Lee, L.H. Towards enhancing the last-mile delivery: An effective crowd-tasking model

with scalable solutions. Transp. Res. Part Logist. Transp. Rev. 2016, 93, 279–293. [CrossRef]
16. Archetti, C.; Savelsbergh, M.; Speranza, M.G. The Vehicle Routing Problem with Occasional Drivers. Eur. J. Oper. Res. 2016,

254, 472–480. [CrossRef]
17. Dahle, L.; Andersson, H.; Christiansen, M. The Vehicle Routing Problem with Dynamic Occasional Drivers; Computational Logistics;
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