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Abstract: Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syn-
drome and is the most common cause of chronic liver disease in developed countries. Certain
conditions, including mild inflammation biomarkers, dyslipidemia, and insulin resistance, can trig-
ger a progression to nonalcoholic steatohepatitis (NASH), a condition characterized by inflammation
and liver cell damage. We demonstrate the usefulness of machine learning with a case study to
analyze the most important features in random forest (RF) models for predicting patients at risk
of developing NASH. We collected data from patients who attended the Cardiovascular Risk Unit
of Mostoles University Hospital (Madrid, Spain) from 2005 to 2021. We reviewed electronic health
records to assess the presence of NASH, which was used as the outcome. We chose RF as the algo-
rithm to develop six models using different pre-processing strategies. The performance metrics was
evaluated to choose an optimized model. Finally, several interpretability techniques, such as feature
importance, contribution of each feature to predictions, and partial dependence plots, were used to
understand and explain the model to help obtain a better understanding of machine learning-based
predictions. In total, 1525 patients met the inclusion criteria. The mean age was 57.3 years, and 507 pa-
tients had NASH (prevalence of 33.2%). Filter methods (the chi-square and Mann–Whitney–Wilcoxon
tests) did not produce additional insight in terms of interactions, contributions, or relationships
among variables and their outcomes. The random forest model correctly classified patients with
NASH to an accuracy of 0.87 in the best model and to 0.79 in the worst one. Four features were the
most relevant: insulin resistance, ferritin, serum levels of insulin, and triglycerides. The contribution
of each feature was assessed via partial dependence plots. Random forest-based modeling demon-
strated that machine learning can be used to improve interpretability, produce understanding of the
modeled behavior, and demonstrate how far certain features can contribute to predictions.

Keywords: non-alcoholic fatty liver disease; random forest; interpretability

1. Introduction

So-called fatty liver disease, which involves fat deposition in the liver, may have
several causes [1]. Although the most widely accepted cause is alcohol consumption, it also
occurs in the absence of alcohol abuse, mainly due to the risk factors of obesity, type 2
diabetes mellitus (T2DM), hyperlipidemia, and metabolic syndrome (MS) [2]. This clinical
condition is then called nonalcoholic fatty liver disease (NAFLD), and several studies have
associated it with obesity and MS due to the lack of alcohol abuse or other forms of injury
(drugs, autoimmune diseases, virus, or hemochromatosis) [3]. NAFLD demonstrates a
wide clinical spectrum, from a mild elevation of transaminases to a fibrosis that may lead
to cirrhosis and hepatocellular carcinoma [4]. It is estimated that 1 billion people have
NAFLD, in both developing and developed countries. However, about a quarter of this
population will eventually develop nonalcoholic steatohepatitis (NASH), a further step in
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the natural course of NAFLD [4]. NASH is characterized by inflammation and liver cell
damage, with or without fibrosis Lomonaco2021. It is estimated that 2% of adults with
NASH may progress to cirrhosis; among these patients, the incidence of primary malignant
tumors of the liver reaches 1–2% per year [3].

NASH is particularly prevalent in patients with T2DM and MS, and the American
Diabetes Association recommends assessment for NASH in patients with elevated serum
levels of transaminases [5]. Indeed, NAFLD progression, whether to NASH or to fibrosis,
is more intense in patients with T2DM or MS. The rationale for these recommendations is
that fatty liver disease entails greater mortality and morbidity due to cardiovascular causes,
as, from a cardiovascular point of view, NAFLD and NASH can be considered part of the
hepatic manifestations of MS and thus can increase cardiovascular events [6].

Both NAFLD and NASH can be treated and even reversed with appropriate thera-
peutic strategies, such as weight loss or the use of certain drugs [7,8]. However, the gold
standard for assessing the grade of disease activity is liver biopsy, which is an invasive
technique and may not always be practical, convenient, or even available in certain clini-
cal settings [9]. Given these limitations, routine screening should be centered on clinical
features, serum biomarkers [10,11], and what can be obtained from certain noninvasive
liver-related techniques, such as elastography (which determines liver stiffness) or ultra-
sonic attenuation [12]. These noninvasive techniques generally correlate with the grade of
fibrosis. However, they are not available in all clinical settings, and there is little informa-
tion available on patients at a high risk for cardiovascular disease (MS, T2DM, obesity) in
outpatient clinics [13–15].

Our objective was to develop a classification model based on clinical features and
laboratory biomarkers to accurately predict NASH in individuals who are attending a
general internal medicine outpatient setting. By developing this model, we hoped to
identify the most relevant features for use as therapeutic targets in these patients.

We applied the random forest (RF) algorithm and other tools to assist the interpreta-
tion of RF [16]. Predictive models based on machine learning algorithms can have issues
when applied to health-related data because of the heterogeneous nature of patients and
diagnoses or because clinicians cannot explain predictions in a meaningful way. Then,
a complex machine learning-based model can become problematic. In this study, we ap-
plied tools to support interpretability. The first tool was to compute feature importance by
permuting the values of each feature one by one and checking how this changed model
performance. Feature importance is a useful tool for analyzing what features are most
important for an overall RF model. Another approach we adopted was to use partial de-
pendence plots (PDPs), which connect the direct relationship between a class label and one
or more features of interest. A PDP isolates to what degree the changes made in predictions
come from one or another specific feature. A PDP can compute a graphical depiction (plot)
of the marginal effect of a feature on the class label [17,18]. Finally, we analyzed individual
observations using strategies such as following the prediction path for a single observation
to a predicted class, which functions by gathering contributions for a given prediction from
each node [19].

Related Work

The relationship between metabolic syndrome, T2DM, and NAFLD has caught re-
searchers’ attention into new diagnostic strategies. The use of machine learning to classify
NASH is not new, and has been proposed by several recent publications, since artificial
intelligence can bring new insights into patients with liver diseases. Logistic regression,
decision trees, RF, eXtreme Gradient Boosting (XGBoost), or k-nearest neighbors (KNN)
have been used with electronic health records (EHR), while neural networks and deep
learning have been used for histology and images. Indeed, current machine learning
approaches have identified T2DM as a strongly correlated feature with some degree of liver
fibrosis and adverse hepatic outcomes (cirrhosis, malignancy) [20]. In addition, machine
learning-based predictions are probably more accurate compared with traditional statisti-
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cal approaches [21]. Most of the previous studies found on medical literature focused on
bivariate analyses and developed logistic regression models to find associations between
factors causing NASH and the disease. In machine learning-based models, studies aimed
to distinguish patients with NASH from healthy individuals. These machine learning
models allow researchers to include any number of clinical, laboratory, and demographic
features to detect hidden patterns for disease classification. While an extensive revision of
literature is beyond the scope of our current study, a recent publication [22] reviewed and
discussed advantages and disadvantages of the most frequently used algorithms and other
aspects of data (both EHR and imaging). Sowa et al. [23] included EHR of 126 patients to
develop a final model with an accuracy of 0.79. However, this model relied on features
that are not easily collected or measured, such as apoptosis markers. However, some other
machine learning-based strategies have demonstrated a high sensitivity rate for predicting
NASH or NAFLD from easily collectable EHR.

Suresha et al. [24] compared several models (logistic regression, RF, and XGBoost), but,
according to their results, recurrent neural networks (RNN) achieved the best performance
and highest accuracy. Yip et al. [25] included 922 patients to compare logistic regression,
AdaBoost, and ridge regression. Finally, the logistic regression model achieved an accuracy
of 87–88% and six relevant features, such as insulin resistance, triglycerides, or alanine
aminotransferase. Cheng et al. [26] developed several models using KNN, RF, and support
vector machines (SVM) to detect NAFLD. They observed that SVM had 86.9% accuracy
in men, and RF had 80% in women. Both models selected some relevant features, includ-
ing cholesterol-related and insulin resistance-related factors. Other algorithms, such as
decisions trees, were successfully used by Birjandi et al. [27] for classification of NAFLD.

Fialoke et al. [28] used EHR databases to gain insight into NAFLD. Their study used
supervised machine learning to correctly identify patients with NASH using 23 features.
They compared performance metrics produced from several models: logistic regression,
decision trees, RF, and XGBoost, after preprocessing and cleaning the data. Authors
were interested in assessing the contribution of each feature for NASH classification.
Although RF produced good performance metrics (accuracy 0.79, precision 0.80, sensitivity
0.76, AUROC 0.87), finally the XGBoost model gave the best performance (accuracy 0.79,
precision 0.80, sensitivity 0.77, AUROC 0.87), very similar to RF. When RF was used to rank
feature importance, impurity decrease was calculated. It is worth mentioning the study by
Doherty et al. [29]. They compared filter methods, KNN, RF, and XGBoost to develop a
model for classification of patients with NASH in a cohort of 704 individuals. XGBoost was
the best model, with AUROC of 0.82, sensitivity of 0.81, and precision of 0.81. Although
the full model included 14 features, a more simplified version included five features with
only slightly reduced performance (AUROC 0.79, sensitivity 0.80, and precision 0.80).
Nevertheless, most of these studies stressed that their models should not be considered the
only diagnostic test, but rather a complementary tool to other tests.

The remainder of this manuscript is structured as follows. In the next section, we intro-
duce the workflow of the data-mining process that we used to collect data and to preprocess
them. In addition, we briefly present the RF algorithm and the main interpretability tools
used in this research. Following this, we present the results of our experiments and select
the final predictive model and the most relevant features. In the final section, we dis-
cuss those results and their implications for daily practice for clinicians, and we draw
conclusions from them.
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2. Methods
2.1. Data Collection, Exploratory Data Analysis, and Preprocessing

We performed data-mining of electronic health records to build a raw dataset with
patients attended at Cardiovascular Risk Unit at Mostoles University Hospital (Madrid,
Spain) from 2005 to 2021. All patients had a medical history and a physical examination,
from which we collected demographic, anthropometric, and clinical data such as sex,
age, height, weight, systolic blood pressure (SBP), and diastolic blood pressure (DBP).
Using data from our Department of Clinical Biochemistry, we collected information re-
lated to cardiovascular risk, such as levels of cholesterol, fasting plasma glucose (FPG),
glycated hemoglobin (HbA1c), blood insulin, and vitamin D. Liver and kidney panels
were also included. A Cobas E-601 (Roche Diagnostic, Florham Park, NJ, USA) was used
to perform all laboratory analyses. We included 37 independent variables in our dataset
(Table 1). T2DM was diagnosed in reference to the American Diabetes Association (ADA)
criteria [30]. Insulin resistance was assessed using the homeostatic model assessment of
insulin resistance (HOMA-IR), estimated as insulin (mU/L) × FPG (mg/dL)/22.5.

Among our patients, the diagnosis of NASH was based on the appropriate exclusion
of inflammatory liver diseases: absence of alcohol consumption (less than 20 g per day),
autoimmune hepatitis, viral hepatitis (both B and C hepatitis viruses), Wilson disease,
and alpha 1 antitrypsin deficiency. The diagnosis was confirmed via transient elastography
using the ultrasound device FibroScan, which assesses fibrosis by measuring the stiffness
of the liver. Transient elastography is a painless and noninvasive procedure. Values of
F ≥ 2 were considered NASH.

Because we were applying a machine learning classification approach, class labels
were considered an outcome. These labels indicate whether or not a patient has been
diagnosed with NASH. In terms of types of data, sex was categorical, T2DM and the class
label were Boolean, and the remaining 37 features were continuous (numeric), as shown in
Table 1.

Next, we explored our dataset to identify aberrant data and outliers. First, the dataset
was curated to remove values caused by measurement variability that were nevertheless
probable, as well as aberrant data resulting from experimental error. Rows with the latter
were reviewed manually to identify the source of error, and, if the values could be amended,
the changes were made. If the source of error could not be identified, the whole row of
data was discarded. In the final data, no missing values were present. Only 15 rows were
excluded because of missing data, and no imputation was needed. Our dataset included
real data and no simulations. We consider this to be an opportunity to handle real patients’
data to produce accurate and reliable results. Our objective here was to obtain a well-
structured, consistent, and complete dataset, suitable for later analyses. Figure 1 shows the
workflow we used to assess our data. A final dataset with 1525 observations was produced.

We also plotted every continuous variable to check its distribution, although normality
was also mathematically checked using the Shapiro–Wilk test. Some variables were left-
skewed, so a log-transformation was applied, to prevent unstable estimates. We used
base-10 logarithm transformation for these variables (Table 1).
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Figure 1. Workflow of the modeling approach used for our dataset.

Data preparation also involved using standardization to rescale numeric features
prior to training a machine learning-based model because non-scaled variables can have a
significant impact on model performance or in its interpretability. In our dataset, some fea-
tures had widely different scales, leading to the risk that those with a wider range would
overshadow the others or that small changes in any single feature could significantly
change the prediction relative to changes with a narrower range. To make the training
task less sensitive to the scales of the predictors, we standardized these ranges so that our
final models could be more stable and more reliable. In addition to log-transformation,
we also transformed numeric features using the z-score so that they followed a normal
distribution, with mean = 0 and standard deviation = 1. The z-score standardization
was given by (xi − µ)/σ, where xi is the value of the feature, µ is the mean, and σ is the
standard deviation.
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Table 1. Dataset features.

Feature Name Type Measurement Unit Skewness

Age numeric years no
Sex categorical Men, Woman
Weight numeric kg no
Height numeric centimeters no
Systolic blood pressure (SBP) numeric mmHg no
Diastolic blood pressure (DBP) numeric mmHg no
Vitamin D numeric ng/dL no
Folic acid numeric ng/dL no
Serum albumin numeric g/dL no
Bilirubin numeric mg/dL left-skewed
Serum calcium numeric mg/dL left-skewed
Creatine phosphokinase (CPK) numeric mg/dL left-skewed
Cholesterol numeric mg/dL left-skewed
LDL-cholesterol numeric mg/dL left-skewed
HDL-cholesterol numeric mg/dL left-skewed
Triglycerides numeric mg/dL left-skewed
Alkaline phosphatase (ALP) numeric IU/L left-skewed
Serum iron numeric µg/dL no
Ferritin numeric mg/dL left-skewed
Transferrin saturation percentage numeric percentage no
Gamma-glutamyl transferase (GGT) numeric mg/dL left-skewed
HOMA-IR numeric NA left-skewed
Insulin numeric µU/mL left-skewed
Glycated hemoglobin (HbA1c) numeric percentage left-skewed
Fasting plasma glucose (FPG) numeric mg/dL left-skewed
Lactate dehydrogenase (LDH) numeric IU/L no
Platelet count numeric cells per mL left-skewed
Serum proteins numeric g/dL left-skewed
Uric acid numeric mg/dL left-skewed
Vitamin B12 numeric ng/L no
Creatinine numeric mg/dL left-skewed
Cystatin C numeric mg/dL left-skewed
C-reactive protein (CRP) numeric mg/L left-skewed
Body mass index (BMI) numeric kg/m2 no
CKD-EPI-Creatinine numeric mL/min/1.72 m2 no
CKD-EPI-Cystatnin C numeric mL/min/1.72 m2 no
Type 2 diabetes mellitus (T2DM) Boolean 0.1
Nonalcoholic steatohepatitis (NASH) Boolean 0.1

The class label was NASH (1, “disease” label, or 0, “non-disease” label). If a single feature was left-skewed,
it was log-transformed. CKD-EPI-Creat: creatinine-based Chronic Kidney Disease Epidemiology Collaboration
filtration rate. CKD-EPI-Cyst: cystatin C-based Chronic Kidney Disease Epidemiology Collaboration filtration
rate. HOMA-IR: homeostasis model assessment–insulin resistance. LDL: low density lipoprotein. HDL: high
density lipoprotein.

2.2. Class Imbalance

Using real data can be challenging, and health data are more complex than most,
as there are unequal instances of the class “disease” because there are usually more healthy
individuals than disease cases. In our dataset, the class “no-disease” outweighed the
class “disease” at a 3.4:1 ratio. This phenomenon is called data imbalance, and it can
have a significant impact on evaluation metrics, such as accuracy, precision, recall, and F1
score. Such metrics may in fact be quite poor in the case of imbalanced classes, as most
predictions belong to the majority class. However, there are techniques that can help
address this phenomenon and improve prediction performance. We used weighting and
sampling techniques because they have the greatest impact on the aforementioned metrics.
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We applied class weighting, which imposes a heavier cost when errors are made in the
minority class. We also used undersampling to select a subset of samples from the class
with more instances to match the number of samples coming from each class; that is,
we randomly removed instances from the minority class. The main disadvantage here
is that we may lose potentially relevant information from the omitted samples. Finally,
we applied oversampling to replicate instances in the minority class; that is, we randomly
replicated samples from the minority class to bring it to the same size as the majority class.
The main disadvantage is that, while it avoids losing information, it may lead to overfitting,
i.e., an overestimation of model performance [31–35].

Because we did not know which technique would perform best, we decided to develop
several models, attending to the imbalance approach. The first model was a raw-data model,
in which features had not been standardized, log-transformed, or resampled. The second
was preprocessed, i.e., scaled and log-transformed, but its data were imbalanced. For the
third, fourth, and fifth models, we used class weighting, undersampling, and oversampling,
respectively, after scaling and log-transforming. The sixth model was a parsimonious
model, using the most relevant features.

2.3. Data Splitting and Metrics for Performance

After building the five models mentioned, we tested their performance on a testing
set. To this end, we split the dataset into two samples with a 3.5 to 1 ratio, i.e., a training
sample (70% of the observations) and a testing sample (30% of the observations).

As mentioned, some metrics can be misleading in the context of class-imbalanced
datasets. In addition to the use of techniques that can improve performance in such
datasets, robust metrics should be adopted. The first such metric is accuracy, defined as the
agreement between predicted values and observed outcomes. Mathematically, classification
accuracy is expressed as the number of correctly classified individuals (both true positives
and true negatives) among the total number of cases. Sensitivity and specificity are
related metrics. Sensitivity, or recall, was expressed as the probability of predicting NASH,
i.e., the number of true-positive predictions among all positive predictions (both true
positives and false negatives). Specificity was expressed as the probability of predicting
a disease-free status, i.e., the number of true negatives among all disease-free patients
(both true negatives and false positives). Precision shows the probability of having a
correct positive prediction, i.e., the number of true positives among all positives retrieved
(both true and false positives). The F-measure is calculated from precision and recall,
and it provides some balance between these two metrics. The F1 score is used because it
does not favor either precision or recall, and it can be calculated as the harmonic mean of
both metrics. We also used the area under the receiver operating characteristic (AUROC)
curve as a performance metric to evaluate classification models because it computes
whether the model is able to correctly rank new samples. We calculated metrics using the
following equations:

Accuracy = (TP + TN)/TP + TN + FP + FN
Precision = (TP)/(TP + FP)
Sensitivity = (TP)/(TP + FN)
F1score = (2 × TP)/(2 × TP + FN + FP)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.

2.4. Modeling with the Random Forest Algorithm and Searching for Tuning Parameters

RF is an algorithm based on decision trees, which follows the same principles as
a decision tree. A decision tree makes a binary prediction and is simple to implement,
but it has very low prediction power. Each node of a decision tree is a decision function.
The node child is the potential choice of the previous node. This procedure is performed
repeatedly until the tree reaches its end. RF can improve predictions by training a group
of decision trees within a random subset of a dataset. By building many decision trees,
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RF obtains predictions from each individual tree and then predicts the class that obtains
the most votes from among the individual trees. In this way, RF generates a wide range
of classifiers and aggregates the results. Each node corresponds to a randomly selected
feature. In the end, the selected classification results are yielded by the majority of the
random decision trees [16,36,37].

In developing an RF model, it is important not to make assumptions, as the algorithm
processes data randomly. Finding the best hyperparameters can help obtain better results.
In this study, we selected two parameters that we considered would have the largest impact
in the model accuracy. The first is the number of randomly selected variables available
for splitting at each tree node. The second is the number of trees or branches of a single
tree that grow after each split (called mtry and ntree, respectively, following Breiman [36]).
Both hyperparameters have a strong influence on the importance estimate for the predictor
variable. In addition, a larger number of trees produce more stable models and feature
importance estimates but require more computational resources, such as additional memory
and a longer run time. For small datasets, 50 trees may be sufficient. For larger datasets,
500 or more might be required [38,39]. Despite the computational cost, we used 5000 trees
in all experiments.

We used the packages randomForest [40] and caret [41] from their R language version
3.5.1 [42] to perform our analyses. The package caret allowed us to fine-tune the hyperpa-
rameters by means of resampling. Although several methods are available, such as bootstrap
or leave-one-out, we used 10-fold cross-validation (10-fold-CV) as the resampling strategy.

2.5. Interpretability of Random Forest Models

Correctly interpreting a well-fitted model is as important as obtaining it. A model’s
predictions may be accurate, but, most of the time, researchers need to know which features
are most predictive. As such, several strategies have been developed to make models more
interpretable, to make them white boxes, as opposed to black boxes. Unlike a single decision
tree, which is an intuitive model in which each node represents a series of binary queries
on the data, eventually leading to a predicted class, RF can yield uninterpretable models,
called black boxes [43]. Because a forest consists of a large number of trees, coming to a full
understanding of the entire model or even a single tree can be challenging. Furthermore,
a single tree can have hundreds or thousands of nodes, so producing an explanatory model
is not feasible. Here, we present several approaches to make our model more interpretable.

2.5.1. Importance of features

Feature importance is one of the most useful tools of interpretation. Moreover, it is
only reliable if the model is trained with suitable hyperparameters. The default method
for computing feature importance in RF is the mean decrease in impurity mechanism, also
called Gini importance, but this strategy can be biased [36]. It is computed by measuring
how effective the given feature is at reducing uncertainty in the creation of decision trees
within RF. This is a rapid method but can give an inaccurate picture of importance, as it
tends to overestimate the importance of some features. Strobl et al. [38] demonstrated that
this approach is not reliable when predictors vary in their scale of measurement.

However, RF implementation also provides an alternative technique: permutation
importance [44,45]. This approach was introduced by Breiman and Cutler [36,37]. After re-
folding baseline accuracy by passing a testing set through the model, a single column
(i.e., one single feature) is permuted, testing samples are passed back through the model,
and accuracy is recomputed. The importance of that permuted feature is the difference
between the baseline accuracy and the new computed accuracy after the column is per-
muted. Obviously, the permutation strategy is more computationally expensive than the
Gini method, but the results are more reliable.

In addition to the permutation method, we also used an automatic method for feature
selection, called recursive feature elimination (RFE), in which RF is used each iteration to
evaluate the model. This method is performed to explore all possible subsets of attributes.
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When all attributes are used, the resulting plot shows the cross-validation-based accuracy
of the different subsets, and, from this, researchers can select a parsimonious model in
which a mild loss of accuracy is acceptable.

2.5.2. Partial Dependence Plots

PDPs show the marginal effect of each individual predictor on response probability. This
method was introduced by Friedman [17] to allow easier interpretation of complex machine
learning algorithms, such as RF. It is useful to find feature importance, but doing so does
not indicate whether the feature positively or negatively affects the final model. PDPs are
low-dimensional graphical renderings of predictive functions that make the relationship
between the feature and the outcome easier to understand [18].

2.5.3. Contribution of each feature to the predictions

There are several methods that can be used to explain single predictions. Each of these
compute feature contributions for single predictions. A prediction can be written down in
terms of the changes in the value of a feature along a prediction path. Because each node
gives a value from a feature, the prediction is defined as the sum of the feature contributions
plus bias. One implementation of this approach is the prediction interpretation algorithm
introduced by Saabas [46] and Li [19] for RF models. In an RF model, each prediction can
be decomposed into a sum of contributions from each feature, as follows:

prediction = bias + f eature1 contribution + . . . + f eaturen contribution

The idea here is that, for each decision (i.e., each node of the tree), there is a path from
the root to the leaf. Each decision is conditioned by a particular feature that contributes
to the final prediction. This concise definition captures the meaning of the tree in the
forest: a path through a set of decision nodes that reaches a prediction, together with the
information that is available for each node. We used the breakDown package in R, a tool for
decomposition of predictions for several black-box type algorithms, such as RF. It provides
a table that shows the contribution of each feature to a final prediction. This table can be
plotted in a concise, graphical way [47].

2.6. Experimental Setup

Having introduced RF and several strategies to interpret and understand its models,
we present our experimental setup. After collecting and cleaning the data, we split the
dataset into training (70% of observations) and testing (30%) sets. We first fitted the model
to a raw training dataset to establish a starting point. Then, we preprocessed (scaled and
log-transformed) imbalanced data, balanced data using undersampling, balanced data
using oversampling, balanced data using class weighting, and balanced data using class
weighting in a parsimonious model given by RFE. In this way, we produced six models,
and all of their metrics were compared, using their results in a testing set (the remaining
30% were not used for training the models). Specificity, sensitivity (recall), precision,
accuracy, F1 score, and AUROC were computed.

Next, we chose the best model and plotted feature importance. For this, we followed
two approaches. The first was to rank features using the permutation method. The other
was to use RFE with cross-validation. As noted above, the idea behind the latter is that
we cannot know in advance how many features are valid. Therefore, selecting only the
top features and achieving a parsimonious model, RFE can allow us to find the optimal
number of features through cross-validation to score different feature subsets and select
the best scoring collection of features. In this way, a parsimonious model can be developed.

Finally, with the most relevant features selected with RFE, we analyzed the contribu-
tion of each feature to the model using PDPs. In addition to these global interpretation
approaches, we also explored a method for exploring single predictions by analyzing the
contribution of each feature to them (by decomposing the predictions).
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3. Results
3.1. Descriptive Analyses

The final dataset included 1525 patients. Table 2 shows the main clinical characteristics
of our cohort. The prevalence of NASH among our participants was 33.2%. Women repre-
sented 50.8% of all individuals but were more common in the NASH group, with 57.4%
of the cases. A simple bivariate analysis revealed that most features were associated with
NASH, including sex, age, T2DM, dyslipidemia, insulin resistance, and hypertransami-
nasemia. We used filter methods (the chi-square and Mann–Whitney–Wilcoxon tests) to
evaluate the relevance of the features because this approach is fast, independent from the
classifier, and allows the researcher to ignore irrelevant features. However, because these
methods ignore interactions among variables and the classifier (RF, in our case), predictor
dependencies could also be ignored. These methods could not identify a relationship
among predictors and were not useful for developing our model.

3.2. Modeling and Predicting with Random Forest

Table 3 shows the six developed models. The first model was a complete dataset,
without dropping variables, with no scaling and no transformation. We used 10-fold-
CV as a resampling method in RF and grid search to evaluate all of the combinations of
mtry in the searching space using cross-validation. Despite there being no preprocessing
strategy, it achieved a high prediction score. The next experiment consisted of fitting RF
on a scaled, log-transformed but imbalanced dataset. Its performance was similar to the
previous model. From that point forward, we perform the experiments after addressing
data imbalance. Our first approach was to use class weighting to handle imbalance, and it
showed good performance. Next, we used undersampling to handle imbalance. Although
its performance was the worst among our experiments, the results obtained were quite
good. Finally, we fitted RF using oversampling, and its performance metrics were as
good as the previous methods. Confusion matrices for each model are shown in Figure 2.
Additionally, we plotted the out-of-bag (OOB) score as a way of validating the RF model
(Figure 3).
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Table 2. Demographic and clinical characteristics of our studied cohort.

Total With NASH Without NASH p Value

Patients 1525 507 1018
Sex (men) 48.9 42.4 52.1 0.2
Age 57.3 ± 13.4 54.8 ± 11.6 58.5 ± 14.0 <0.001
Weight 78.3 ± 15.1 81.0 ± 15.6 77.6 ± 14.9 <0.001
Height 161.3 ± 14.4 162.9 ± 11.0 160.2 ± 30.2 0.3
SBP (mmHg) 146.8 ± 20.0 148.0 ± 19.8 146.2 ± 20.1 0.174
DBP (mmHg) 85.6 ± 11.2 87.6 ± 10.9 84.6 ± 11.2 <0.001
Vitamin D 18.0 ± 6.7 17.9 ± 7.1 18.1 ± 6.5 0.32
Folic acid 14.0 ± 5.9 13.8 ± 6.0 14.2 ± 5.8 0.96
Serum albumin 4.1 ± 0.4 4.1 ± 0.5 4.1 ± 0.4 0.552
Bilirubin 0.8 (0.5) 0.9 (0.4) 0.8 (0.5) <0.001
Serum calcium 10.2 (0.5) 10.3 (0.6) 10.2 (0.5) <0.001
CPK 146.0 (118.0) 180.0 (173.5) 143.0 (91.8) <0.001
Cholesterol 224.3 (40.0) 231.3 (46.0) 220.8 (36.2) <0.001
LDL 139.0 (32.0) 144.6 (33.5) 136.2 (30.9) <0.001
HDL 67.8 (18.9) 67.1 (20.5) 68.1 (18.0) 0.29
Triglycerides 167.0 (118.0) 194.0 (138.0 152.0 (104.0 <0.001
ALP 86.0 (32.0) 90.0 (36.5) 84.0 (32.8) <0.001
Serum iron 56.6 ± 23.3 54.9 ± 21.0 57.5 ± 24.4 0.139
Ferritin 185.0 (176.2) 247.0 (238.0) 162.0 (136.0) <0.001
Transferrin sat. (%) 13.2 (7.7) 12.5 (8.2) 13.2 (7.5) 0.33
GGT 38.0 (46.0) 63.0 (80.0) 31.0 (29.0 <0.001
HOMA-IR 4.5 (2.9) 5.2 (5.2) 4.5 (1.9) <0.001
Insulin 16.5 (9.2) 18.5 (16.0) 16.5 (6.3) <0.001
HbA1c (%) 6.2 (1.0) 6.3 (1.7) 6.2 (0.8) <0.001
FPG 117.0 (42.0) 127.0 (64.0) 114.0 (36.0) <0.001
LDH 300.9 ± 86.7 309.2 ± 93.1 296.8 ± 83.0 0.17
Platelet count 288.0 (94.0) 293.0 (85.0) 284.5 (97.0) 0.137
Serum proteins 7.70 (0.5) 7.76 (0.5) 7.6 (0.6) 0.223
Uric Acid 7.2 (2.7) 7.7 (3.5) 6.9 (2.2) <0.001
Vitamin B12 451.6 ± 152.2 470.0 ± 159.8 442.4 ± 147.4 0.3
Creatinine 0.8 (0.2) 0.8 (0.3) 0.8 (0.2) 0.9
Cystatin C 0.7 (0.2) 0.7 (0.2) 0.8 (0.2) <0.001
C-RP 8.7 (15.1) 10.8 (15.5) 7.7 (13.9) <0.001
CKD-EPI-Creatinine 92.8 ± 18.5 97.5 ± 15.8 90.4 ± 19.3 <0.001
CKD-EPI-Cystatin C 101.5 ± 22.5 107.5 ± 20.3 98.6 ± 23.0 <0.001
T2DM (%) 43.3 54.7 37.6 <0.001

Data are shown as means ± standard deviations or as medians (interquartile ranges), where appropriate. Cate-
gorical and binary features are expressed as percentages. The results of Mann–Whitney–Wilcoxon tests are given
for numeric features, and the results of the chi-square test are given for categorical variables.

Table 3. Performance metrics of the five different computed models.

No Preprocessing Preprocessing Methods

No Imbalance
Method

Class
Weighting Undersampling Oversampling

Parsimonious
Model

Accuracy 0.872 0.869 0.872 0.796 0.865 0.867
Sensitivity 0.642 0.715 0.728 0.794 0.741 0.702
Specificity 0.966 0.947 0.943 0.798 0.927 0.950
Precision 0.906 0.869 0.874 0.886 0.877 0.864
F1-score 0.751 0.806 0.807 0.739 0.801 0.805
AUC 0.837 0.831 0.836 0.796 0.834 0.829
EER 0.162 0.168 0.162 0.207 0.165 0.147
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Figure 3. Out-of-bag (OOB) error rate to assess the quality of random forest prediction in both
training and testing data sets, shown as a function of the number of decision trees generated during
machine learning.

ROC curves can seen in Figure 4. We also included Detection Error Tradeoff curves
(DET), which are a graphical plot of error rates for binary classification, showing the false
rejection rate versus false acceptance rate. It is worth noting that both x- and y-axes are
scaled nonlinearly, so DET curves are more linear than traditional ROC curves, as seen in
Figure 5. Model 4, i.e., the preprocessed, undersampling model, showed a significant lower
performance than that remaining. On the contrary, the rest of the models showed similar
performance metrics, as mentioned in Table 4. Equal Error Rate (EER), as performance
metrics, was computed for every model, and shown in Table 3.

0.00

0.25

0.50

0.75

1.00

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

False positive rate

T
ru

e
 p

o
si

ti
v
e
 r

a
te

Model 1 
 
Model 2 

Model 3 

Model 4 

Model 5 

Model 6 

Figure 4. Receiver Operating Characteristic (ROC) curves for every single computed model. Model 1:
No preprocessing method; Model 2: preprocessed, but no imbalance strategy; Model 3: Preprocessed,
class weighting method; Model 4: Preprocessed, undersampling method; Model 5: Preprocessed,
oversampling method; Model 6: Preprocessed, class weighting, parsimonious model.
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Figure 5. Detection Error Tradeoff (DET) curves of every single computed model. Model 1: No pre-
processing method; Model 2: preprocessed, but no imbalance strategy; Model 3: Preprocessed,
class weighting method; Model 4: Preprocessed, undersampling method; Model 5: Preprocessed,
oversampling method; Model 6: Preprocessed, class weighting, parsimonious model.

Based on Table 3, we cannot conclude that the performance metrics of a certain
model were better than the performance of another model on a visual interpretation alone,
so we calculated the significance levels using pairwise comparison. Table 4 shows the
statistical analyses that were performed to assess the differences among the predictive
models. Pairwise comparison using the method of Delong et al. [48] showed no differences
among the models, except for the undersampling model, which showed a significantly
lower performance.

Table 4. Pairwise comparison of ROC curves.

No Imbalance
Method

Class
Weighting

Undersampling Oversampling Parsimonious
Model

No preprocessing Z = 0.946
p-value = 0.343

Z = 0
p-value = 1

Z = 3.170
p-value = 0.001

Z = 0.391
p-value = 0.695

Z = −1.235
p-value = 0.216

No Imbalance
Method

Z = −1.070
p-value = 0.284

Z = 2.505
p-value = 0.012

Z = −0.430
p-value = 0.666

Z = −1.870
p-value = 0.061

Class
Weighting

Z = 3.068
p-value = 0.002

Z = 0.537
p-value = 0.591

Z = −1.408
p-value = 0.160

Undersampling Z = −2.904
p-value = 0.003

Z = −3.601
p-value = 0.003

Oversampling Z = −1.64
p-value = 0.101

Z stands for Z-statistics by Delong [48].
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3.3. Importance of Features

We selected the class-weighting model to compute feature importance and RFE.
As stated previously, we used the permutation method for this. In short, this method works
by permuting the values of each feature one by one and establishing how this changes
model performance. Figure 6 presents the permutation feature importance, but only the
top 20 features are displayed. Here, the serum level of iron was the least important feature,
so the remaining variables, which are not displayed, have no relevance in the model.

Figure 6. Importance of features based on permutation method using all features.

RF also allows the researcher to perform RFE [49], as noted. The plot in Figure 7
displays the number of features in the model and their cross-validated test scores and vari-
ability, visualizing the selected number of features. The most accuracy was achieved with
24 features. However, because our aim was to obtain a parsimonious model, we trained the
model with the top 11 features, which involved only a minor loss of accuracy. The perfor-
mance of this model is described in the last column of Table 3, and the resultant confusion
matrix is shown in Figure 2.

We plotted the model that resulted from using the top 11 features selected from the RFE
algorithm, as shown in Figure 8. The top four features matched in both plots. This strategy
allowed us to select ferritin, serum levels of insulin, HOMA-IR, and triglycerides as the
four most important features in the final model.

Figure 7. Plot showing accuracy of the model based on the number of features.
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Figure 8. Importance of features based on a permutation method using a parsimonious model with
eleven features.

3.4. Partial Dependence Plots

As indicated, PDPs show how each variable affects the model’s predictions. Thus,
next, we selected the parsimonious 11-featured model to generate a PDP. We individually
plotted the four most relevant features in our selected model (Figure 9), as well as ferritin
and insulin for two-variable analyses (Figure 10). In Figure 9, the y-axis does not show the
predicted value but the impact of changing the value of the given feature in the positive
class, i.e., the odds of having NASH. To take ferritin as an example: we note that the x-axis
displays a log-transformed, scaled magnitude and not the actual measurements of ferritin.
The plot predicts the impact of the values 2, 3, and so on, on the model. PDP computes
multiple observations, so the plots display the average predicted class along the vertical
axis (y-axis). For ferritin and triglycerides, the slope is moderate and smooth, while,
for insulin and HOMA-IR, the slope is steep at a certain value, probably because a point is
reached where insulin resistance becomes irreversible, overt T2DM.

Figure 9. Partial dependence plots of NASH probability and the risk factors ferritin, insulin, HOMA-
IR, and triglycerides. Horizontal axis (x-axis) shows log-transformed, scaled values. All four variables
show a rising trend: the higher their values, the greater the probability of correctly classifying the
positive class (here, NASH).
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We also plotted the partial dependence of two features at once. Figure 10 shows the
interaction between ferritin and insulin (the two most relevant features, according to our
fitted model) with the probability of having NASH. Both ferritin and insulin increase the
probability of NASH, regardless of the value of the other variable. However, an interesting
interaction occurs at higher values of both variables, namely, a summation effect on the
probability of correctly predicting NASH.
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Figure 10. Partial dependence of ferritin and insulin plotted on a probability scale; in this case,
the probability of correctly diagnosing NASH.

3.5. Contribution of Each Feature to the Predictions

Using the breakDown package in R, we plotted the average contribution in
Figures 11 and 12 We analyzed the contribution of each feature in each class (NASH = 1
and for NASH = 0), so its use is based on individual observations or instances. A positive
value indicates that the given variable contributes to the correct classification of the disease.
A negative value indicates that the probability of a correct classification decreases. It is
interesting to observe the behavior of the model in relation to predictions. The pattern of
behavior of the model and the features of the four groups presented is quite clear. Values for
triglycerides, uric acid, or kidney biomarkers are the least relevant of the eleven selected
features and have only a mild impact on predictions. HOMA-IR and insulin usually predict
a positive class. Ferritin, however, is very positive in NASH = 1, indicating that it has a
significant effect on predictions.



Entropy 2021, 23, 763 17 of 23

Figure 11. Contributions of features to a final prediction for disease (NASH = 1), showed in terms of
both values and contribution.

Figure 12. Contributions of features to a final prediction for non-disease (NASH = 0), showed in
terms of both values and contribution.

4. Discussion

This study investigated physiological phenomena in relation to NASH using predic-
tive models created with RF. RF provides several tools for interpreting the results, such as
indicating the importance of variables, the interactions among them, and contribution of
each variable to the prediction of NASH.

We chose RF not only because it is one of the most accurate learning algorithms
available but also because it is easy to implement. Several methods have been developed
to enable its interpretability. It can handle many predictors or features and provides
estimates of the importance of different predictors using several methods (including Gini
importance and permutation importance). It requires no formal distributional assumptions
because RF is non-parametric and can deal with skewed and multi-modal data, as well
as categorical and continuous data [16,36,37]. We believe that this is why the model with
raw data showed such good performance. Despite these results, no single setting can
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be reliable, and several settings must be tested to choose the best model for a given
scenario. Although hyperparameters go beyond the scope of this research, it is worth
noting that conflicting evidence is reported in scientific literature on the importance of
mtry values. Some authors have found that mtry does not affect the classification of the
RF model or performance metrics because these remain stable under different values
of mtry [37]. However, other authors have reported a significant influence of mtry on
feature importance [39]. In our study, we developed five models with different mtry values,
ranging from 5 to 13. With the exception of the model using undersampling as an imbalance
method, the performance of the models was similar in terms of classification, which raises
the question of how the different values of mtry actually affect the classification accuracy.
In any case, RF is a robust classification algorithm because it can handle left-skewed,
non-scaled data while retaining good performance.

In our experiments, we selected an RF model computed with log-transformed,
scaled variables, and data imbalances that were handled with class weighting. All ex-
periments, except those that used undersampling for data imbalances, yielded similar
results in terms of performance (Table 3 and Figure 2). Hence, we consider RF to be a versa-
tile, robust algorithm, able to deal with data imbalances and non-scaled, non-transformed
variables as mentioned before. This phenomenon does not always occur. We do not know
beforehand which algorithm, method, or approach will work better. As a simple example,
the filter methods shown in Table 2 did produce insight into interactions, contributions,
or even relationships among variables or between single variables and the class. In basic
statistics, filter methods are used to perform feature selection, but, in our case, they did not
provide useful information. Likewise, we could not make assumptions regarding which
method would perform better in RF. In our dataset, when data were not preprocessed,
performance was quite good, but if that had been our unique approach, the results would
not be reliable, and overfitting should have been suspected. In this research, several strate-
gies were used, but, for the sake of simplicity, we selected only one model for interpreting
the results.

We were aware that the RF algorithm is invariant to monotonic transformations of
individual features, i.e., per feature scaling will not change results in an RF model. Random-
Forest is tree based, and, for tree based algorithms, scaling is not required. We decided
to scale and log-transform because of two main reasons: (1) while it is not necessary,
scaling or log-transforming will not harm the final model; if only predictions are required,
then common sense says that scaling is not required. However, if either feature importance
or feature selection are under consideration, then scaled vs. unscaled data might give
different feature-related results, as pointed out by Strobl et al. [38]. In addition, (2) scaling
and log-transforming are healthy habits when using machine learning approaches, and can
be valuable both for making patterns in the data more interpretable and for helping to meet
the assumptions of inferential statistics. Our preprocessing methods did not hamper the
results or the performance of our proposed approaches. Indeed, our models yielded similar
results in terms of performance, which helps to demonstrate some of the advantages of RF:
it works with both categorical and continuous features, it handles nonlinear parameters,
it is robust to outliers, and it is very stable, since results will not be affected regardless of
the scale or the skewness.

The use of interpretability tools demonstrated that RF is not a black box and can be
made into a white box when the appropriate tools are used. The first tool for interpreting
our results was feature importance. We used the permutation strategy instead of the impu-
rity method. A more parsimonious model could be achieved with the feature importance
tool. Instead of considering all 37 variables, we selected the most relevant ones using both
RFE and the feature importance plot via permutation. The top four features were ferritin,
insulin, HOMA-IR, and triglycerides. Permutation importance is a reasonably efficient,
reliable method of computing feature importance and usually achieves high performance
and interpretability. It directly measures feature importance by observing the effects on
model accuracy, after shuffling each feature. Permutation importance can be recommended
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for RF either for classification or for regression tasks, as it can avoid issues with model
parameter interpretation [50]. However, although permutation importance is efficient,
Strobl et al. [38,39] showed that it often over-estimates the importance of correlated predic-
tors. In our case, insulin and HOMA-IR are correlated, and we found a risk for potential
bias toward these correlated features. This issue can be overcome using the drop-column
importance mechanism, but this approach is prohibitively expensive in terms of computing
resources, given the high number of features involved. From a clinical point of view,
the contribution of a serum level of insulin and HOMA-IR is the same, as we demonstrated
that insulin resistance is a key factor in the development of NASH and thus can be used as
a therapeutic target.

With the aid of PDP, we could analyze the marginal effects of the four selected features.
The greater the amount of ferritin, the greater the odds of having NASH (Figures 9 and 10).
The same is true for the other three variables. PDP shows a threshold above which the
probability of having NASH increases. After reverse log-transformation and scaling,
the average thresholds were 177 mg/dL for ferritin (upper normal limit: 250 mg/dL),
53 mIU/L for insulin (normal value: <25 mIU/L), 2.0 for HOMA-IR (normal range:
0.5–1.4), and 170 mg/dL for triglycerides (normal value: <170 mg/dL).

Using PDP and feature importance, we covered the global interpretability of a model
that can be used in a whole dataset of a population with similar demographic and clinical
characteristics as our cohort. Local interpretability techniques have a significant advantage
for the analysis of the local contribution of every feature in single observations and can
help the researcher explain incorrect model predictions for a given individual. We have
established both the global and local (individual) interpretability of our model. The modal-
ities are not incompatible, and a researcher should select the technique that best suits a
given clinical scenario.

From a clinical point of view, this study builds upon our recent study on NASH and
machine learning techniques where least absolute shrinkage and selection operator and
RF were adopted to find the most relevant features [11,51]. In this study, we conducted
thorough analyses using a variety of methods to improve preprocessing data and tools
to better understand and explain our results. We found that, in insulin resistance (deter-
mined by either HOMA-IR or serum levels of insulin), high levels of serum ferritin and
triglycerides are related to the probability of having NASH. Iron in the form of ferritin is
stored in the liver, probably due to mild systemic inflammation, which can include liver
inflammation [52]. Ferritin is considered an acute-phase protein, which may be elevated
not only in systemic inflammation but also in mild inflammation as induced by metabolic
syndrome and T2DM [53,54]. Although it remains unclear whether ferritin is the cause or
consequence of NASH, its association with direct injury in the liver has been demonstrated,
and the severity of the histological lesions in both NASH and NAFLD has been predicted.
Thus, this can be a useful biomarker for identifying patients at a high risk for NASH [55,56].

Both insulin resistance and hypertriglyceridemia are related to liver damage, probably
because they can induce mild systemic inflammation and the progression of NAFLD to
NASH [57]. Obesity, metabolic syndrome, and insulin resistance play a role in both NAFLD
and NASH because dysregulation of several adipokines induced by hyperinsulinemia may
lead to local inflammatory processes and liver damage [57–59]. Another major clinical
implication of our research is the identification of a therapeutic target: if insulin resistance
is involved in the development of NASH, the use of hypoglycemic drugs can be useful for
preventing NASH, as reported in a recent meta-analysis [60].

Limitations

The main limitation of our study was the intrinsic characteristics of our population.
Our cohort tended to be obese and hypertensive, and many had prediabetes, diabetes,
or metabolic syndrome. This high-risk population tends to have a high prevalence of NASH,
more than the general population. Although the prevalence identified here is relevant to
this cohort, we do not know their true importance for other populations. For instance,
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a recent work established that the prevalence of NAFLD in a middle-aged population in
the United States was 38%, with a NASH prevalence of 14% [61].

5. Conclusions

This study highlights the use of complex machine learning algorithms such as RF,
several strategies for preprocessing data prior to analyzing them, and several tools for
interpreting, understanding, and explaining the results. We developed a reliable and un-
derstandable predictive model, demonstrating some optimal techniques for analyzing real
data on patients at a high risk for NASH. The performance of this model, in terms of pre-
diction accuracy, AUROC, precision, recall, and F1-score, can be considered good. Features
considered the most relevant are consistent with their physiological role. Unlike other
alternatives, whether invasive or noninvasive, such as biopsy, elastography, or analysis
of serum biomarkers, our noninvasive approach can be used in daily clinical practice,
not only to screen patients for liver biopsy [62,63] but also to identify therapeutic targets
such as triglycerides and insulin resistance. Furthermore, our main technical contribution
was to provide a machine learning strategy to make black box models such as RF more
interpretable, while remaining simple and well-fitted for identifying NASH in populations
at risk.
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