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Abstract

Climate is assumed to strongly influence species distribution and abundance.

Although the performance of many organisms is influenced by the climate in

their immediate proximity, the climate data used to model their distributions

often have a coarse spatial resolution. This is problematic because the local cli-

mate experienced by individuals might deviate substantially from the regional

average. This problem is likely to be particularly important for sessile organ-

isms like plants and in environments where small-scale variation in climate is

large. To quantify the effect of local temperature on vital rates and population

growth rates, we used temperature values measured at the local scale (in situ

logger measures) and integral projection models with demographic data from

37 populations of the forest herb Lathyrus vernus across a wide latitudinal gra-

dient in Sweden. To assess how the spatial resolution of temperature data

influences assessments of climate effects, we compared effects from models

using local data with models using regionally aggregated temperature data at

several spatial resolutions (≥1 km). Using local temperature data, we found

that spring frost reduced the asymptotic population growth rate in the first of

two annual transitions and influenced survival in both transitions. Only one of

the four regional estimates showed a similar negative effect of spring frost on

population growth rate. Our results for a perennial forest herb show that ana-

lyses using regionally aggregated data often fail to identify the effects of cli-

mate on population dynamics. This emphasizes the importance of using

organism-relevant estimates of climate when examining effects on individual

performance and population dynamics, as well as when modeling species dis-

tributions. For sessile organisms that experience the environment over small

spatial scales, this will require climate data at high spatial resolutions.
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INTRODUCTION

To assess the importance of climate as a driver of
population dynamics and species distributions, researchers
have often used climate data aggregated on regional scales
(kilometer spatial resolution) (Bennie et al., 2014;
Compagnoni et al., 2021; Thuiller et al., 2005). The rele-
vance of such analyses rests on the assumption that
regionally aggregated climate data adequately reflect the
conditions experienced by the focal organisms. There is,
however, an increasing awareness that locally measured
climate can differ considerably from the regional average
(Lembrechts et al., 2018, 2019) and, thus, that organisms
with restricted mobility experience climatic conditions dif-
fering from those suggested by regionally aggregated data
(Blonder et al., 2018; Greiser et al., 2020). Differences
between regionally aggregated and local climate can be
particularly pronounced in topographically heterogeneous
environments and in forest understories where canopy
density influences the buffering of extreme temperatures
(De Frenne et al., 2021; Greiser et al., 2018; Zellweger
et al., 2019). Yet, we still know little about how such local
deviations from regionally aggregated climate data influ-
ence our ability to identify and quantify the effects of cli-
mate on organism performance.

A given change in a climatic driver might affect an
individual differently during different phases of its life
cycle (Doak & Morris, 2010; Oldfather & Ackerly, 2018).
Therefore, to assess the overall effects of climate on indi-
vidual performance and the consequent population
growth rate, we need approaches that integrate informa-
tion about the effects of climate during all phases of the
life cycle (Ehrlén & Morris, 2015). For plants in seasonal
environments, the timing of key life-cycle events, such as
emergence, development, and reproduction, to suitable
climate conditions in spring has important effects on
demographic vital rates (Iler et al., 2021). Early spring
development is associated with a longer growing season,
which could increase resource acquisition and reproduc-
tive success (Ehrlén & Valdés, 2020). However, early
development might also increase exposure to frost dam-
age on developing leaves and flowers (Augspurger, 2011;
Inouye, 2008). Spring temperature, in terms of both the
frequency and severity of frost events and in terms of
accumulated heat, are thus likely to be important for
population dynamics of many early-emerging organisms
in seasonal environments.

We used local temperature data from in situ loggers
and demographic data collected from individuals in
37 populations over a 3-year period to explore how spring
temperature influenced vital rates and the asymptotic
population growth rate of the understory forest herb
Lathyrus vernus. We also explored whether models using
regionally aggregated temperature data (≥1 km spatial
resolution) captured the effects identified using local tem-
peratures. Lathyrus vernus emerges and flowers as soon
as conditions are suitable for growth in spring, and favor-
able conditions for resource acquisition occur only during
a relatively short period before canopy closure. We there-
fore focused on the effects of two aspects of spring tem-
perature that we judged to be particularly important for
the study species: accumulated frost (freezing degree days
[FDDs]) and accumulated heat (growing degree
days [GDDs]). We also included other potentially impor-
tant drivers of population dynamics: light availability,
grazing, and intraspecific density (Dahlgren et al., 2014;
Ehrlén, 1995a; Greiser et al., 2020). We asked three spe-
cific questions: (1) How does locally measured spring
temperature affect among-population variation in popu-
lation growth rate? (2) Are regionally aggregated temper-
ature data sufficient to identify the effects of temperature
on population dynamics indicated by locally measured
temperatures? (3) Which vital rates contribute most to
the effects of spring temperature on population
growth rate?

METHODS

Study system

Lathyrus vernus (L.) Bernh. (Fabaceae) is a long-lived herb
growing in mesic forests on nutrient-rich soils in central and
northern Europe (Hultén & Fries, 1986). In Sweden,
L. vernus occurs mainly in southern parts but is also seen
further north along the coast and in valleys (Mossberg &
Stenberg, 2010, Appendix S1: Figure S1). Resources accumu-
lated during one growing season are stored in overwintering
rhizomes and used for growth in the following season
(Ehrlén, 2002). One to several shoots emerge from the rhi-
zome in spring, and flowering occurs before canopy closure
(Ehrlén, 1995a). All aboveground parts senesce in autumn.
Lathyrus vernus is slow growing and flowers only after
10–15 years. Flowers are pollinated by bumblebees. Fruits
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contain few large seeds that are sometimes predated by the
larvae of the beetle Bruchus atomarius (Ehrlén, 1995b).
Mammal grazers sometimes consume most of the above-
ground parts in spring (Ehrlén, 1995b).

Demographic data

During the summer of 2017, we established a permanent
plot in each of 37 different populations evenly spread
across the species’ Swedish distribution range
(Appendix S1: Figure S1). The distribution of L. vernus is
patchy, and we defined a population as a patch of
individuals clearly separated from other patches. The
minimum distance between two populations included in
the study was 24 km. Plot size was chosen to include an
adequate number of individuals in each plot and ranged
from 3 to 94.5 m2 (mean ± SD = 28.5 ± 23). The number
of individuals at the first census ranged from 14 to
72 (mean ± SD = 49 ± 12) (Appendix S1: Table S1).

We collected demographic data yearly from 2017 to
2020 (summarized in Appendix S1: Table S2). Each popu-
lation was recorded after the growth and development of
seeds were completed, that is, between late June and late
August. We marked all individuals in each plot with
numbered flags during the first census and mapped their
position. For each shoot, we noted flowering state
(flowering vs. nonflowering), size, grazing (having visible
mammal grazing damage of shoot stem or being intact),
number of fruits, number of seeds per fruit, and number
of predator entrance holes per fruit. Size was calculated
as the natural logarithm of the sum of the products of
cross-sectional area (in square millimeters) and height
(in millimeters) of each shoot. This aboveground volume
estimate strongly correlates with dry biomass (Ehrlén,
1995a). We imputed diameter from height for shoot
diameters <0.5 to avoid damaging the stem when mea-
suring (Appendix S1: Table S3). Growth was estimated by
changes in size between years. To estimate the effects of
grazing as accurately as possible, we assigned the effects
to the year subsequent to the incidence of the damage,
that is, as the change in state and size to the recording
the year after damage. We therefore imputed shoot
height for grazed individuals in the year of damage using
shoot diameters of grazed shoots and the allometric rela-
tionship between height and stem diameter in nongrazed
shoots (Appendix S1: Table S4). New recruits (distin-
guished based on size) and individuals dormant at the
first recording were included in the study from the year
in which they were first recorded.

Individuals reappearing after being absent in a
given year were recorded as alive and dormant in that year.
For individuals that lacked aboveground structures in the

final census year (2020), we assumed that the proportion
that was dormant equaled the average in 2018 and 2019,
and we imputed their status (dormant or dead) based on
size (Appendix S1: Table S5). Individuals that lacked
aboveground structures in two consecutive censuses were
considered dead as individuals of this species are almost
never dormant in more than one season (Ehrlén, 2002).

We counted the total number of seeds and the num-
ber of predated seeds in up to three random fruits per
shoot. The total number of seeds produced by an individ-
ual and the number of predated seeds were estimated by
the products of the total number of fruits and the average
number of seeds per fruit and the total number of fruits
and the average number of predated seeds per fruit,
respectively. After counting, the seeds were dispersed in
the near vicinity of the individual. Opened fruits were
collected, and seed number was determined in the lab
based on the number of indentations in the fruit walls.
The number of predated seeds in opened fruits was esti-
mated using the number of entrance holes on the fruits
and a previously estimated relationship between the
number of predated seeds, the total number of seeds, and
the number of entrance holes in fruits for L. vernus
(Fogelström & Ehrlén, 2019). Recruitment in terms of the
probability that a seed produced in a given year resulted
in a surviving seedling in the next year was calculated as
the number of new individuals below a threshold size
divided by the total number of intact seeds produced in
the previous year. The threshold size chosen, 15 mm3,
corresponds to the maximum observed size of newly
emerged seedlings (Ehrlén, unpublished data). We calcu-
lated recruitment probability and seedling sizes across
years with one estimate per population.

Spring temperature and other potential
drivers of population dynamics

We estimated local spring temperature, light, grazing,
and intraspecific density for each plot. Local measures of
temperature were recorded hourly by loggers (EasyLog
EL-USB-2, Lascar Electronics, Erie, Pennsylvania, USA)
placed about 20 cm above ground at the center of each
plot and shielded from direct sunlight and rain with
white plastic pots. We calculated accumulated heat in
terms of growing degree days (GDDs) and accumulated
spring frost in terms of freezing degree days (FDDs). To
capture the temperature conditions during relevant and
similar periods of plant development across the wide lati-
tudinal gradient represented by the populations, we cal-
culated GDDs and FDDs for a 60-day period from the
first day of the year’s first week with a minimum of 5�C
daily mean temperature for each population and year
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using temperature logger data. We calculated local GDDs
as the sum of daily mean temperatures above 5�C
(Forrest & Thomson, 2011) and daily mean temperatures
as the average of daily maximum and minimum tempera-
tures (Appendix S1: Equation S1). We calculated local
FDDs as the absolute sum of daily minimum tempera-
tures below 0� (Greiser et al., 2020) (Appendix S1:
Equation S2). Some plots (four in 2018, eight in 2019)
lacked local temperature measurements for part of the
period due to logger failure. For these plots, we predicted
local first spring day as well as local FDD and GDD
values using linear regressions including ERA5-Land
temperature values as predictors (Appendix S1:
Tables S6–S8). We estimated light availability in terms of
canopy gap fraction in summer 2018 by analyzing hemi-
spherical photos taken with a Sony Xperia L1 camera
with a fisheye lens (180� Supreme Fisheye Lens, Model
MFE4, MPOW) in Image J with the plugin
Hemispherical 2.0 (Beckschäfer, 2015). Intraspecific den-
sity in each plot and year was calculated as the summed
size of all individuals divided by plot area.

To examine whether the effects of spring temperature
on population dynamics detected using locally measured
temperature data could be identified also using regionally
aggregated temperature data, we used four different com-
monly used regional estimates: (1) European reanalysis of
hourly temperatures at a height of 2 m with a spatial reso-
lution of c. 11 km, using atmospheric forcing and eleva-
tion correction (ERA5-Land, Muñoz Sabater, 2019);
(2) daily minimum and maximum values from E-OBS
(Cornes et al., 2018), interpolated data from a dense net-
work of weather stations in Europe (c. 10 km resolution);
(3) daily minimum and maximum temperatures from a
topographically downscaled version of ERA5-Land using
the KrigR R package for statistical downscaling of spatial
resolution values of c. 11 to 2 km (Kusch & Davy, 2022)
(abbreviation KrigERA); (4) daily minimum and maxi-
mum estimates at a 1-km resolution from CHELSA, which
are based on ERA-Interim data and statistically down-
scaled using topography (Karger et al., 2017). From these
four sources we calculated GDD and FDD values using
the same method and the same first spring day as for the
locally measured data (see Appendix S1: Tables S9 and
S10 for an overview of all variables).

Vital rate regressions

To assess the effect of temperature and nonclimatic fac-
tors on vital rates, we modeled the probability of survival,
growth, probability of flowering, number of seeds in
flowering individuals, and proportion of seeds damaged
as functions of local FDD, local GDD, light, grazing, and

intraspecific density, as well as size. To examine whether
models using regionally aggregated temperature data
identified the same patterns as models using locally mea-
sured temperature, we repeated these analyses, replacing
local FDD and GDD estimates with each of the four dif-
ferent regional estimates (AICc comparison in
Appendix S2: Table S7).

We did all analyses in R version 4.0.5 (R Core Team,
2021). To fit the vital rate regressions, we used linear mixed
models and generalized linear mixed models using the func-
tions “lmer” and ”glmer” from the lme4 package (Bates
et al., 2015). We checked the models for multicollinearity
with the function “vif” from the car package (Fox &
Weisberg, 2019) with a threshold of 3 and examined model
diagnostics with the DHARMa package (Hartig, 2021).

We modeled growth as a regression of size on size the
prior year, with a Gaussian distribution and identity-link
function. The probabilities of survival and flowering were
modeled with binomial error distributions and logit-link
functions. We modeled square-root-transformed number
of seeds with a Gaussian distribution and identity-link
function due to model diagnostics on prior models using
Poisson or negative binomial distributions. We modeled
the proportion of seeds damaged with binomial error dis-
tribution, a logit-link function, and included a prior
weight of the total number of seeds to account for total
number of seeds. We included plant size in the prior year
in the survival model and size in the same year in models
of probability of flowering, number of seeds, and the pro-
portion of seeds damaged. We added a quadratic term for
plant size to allow for a nonlinear relationship between
plant size and vital rates. To include previously dormant
individuals, size of dormant individuals in the year of
dormancy was assigned a value corresponding to the
mean of sizes in the years immediately before and after
the year of dormancy. The rationale for using this
approach was that a considerable part of the total bio-
mass of L. vernus individuals is belowground and that the
imputed aboveground biomass in the year of dormancy is
likely to be a reasonable proxy for total biomass. For
more details on the decision for including dormant indi-
viduals, see Appendix S1: Section S1.

The growth of L. vernus individuals within a season is
determinate and draws on resources accumulated in the
previous growing season (Ehrlén, 2002). Furthermore,
leaves and flower buds are also formed during the previ-
ous growing season (Ehrlén, 2002). Therefore, we
assumed that spring temperature conditions, as well as
grazing and intraspecific density, in a given year affected
survival, size, and reproduction mainly in the transition
to the next year (see Appendix S1: Table S11 for model
comparison with models including temperature values
with no lag). In all vital rate regressions, we therefore

4 of 13 CHRISTIANSEN ET AL.

 19399170, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4191 by U

niversidad R
ey Juan C

arlos C
/T

ulipan S/N
 E

dificio, W
iley O

nline L
ibrary on [29/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



included grazing in the prior year, light (constant across
years), local FDD and GDD in the spring leading up to
the prior year (1 year lag), and intraspecific population
density in the prior year. Accounting for time-lagged
effects in this way enabled us to only explore effects on
demographics from 2018 to 2020. Information about graz-
ing was available at the level of individuals, and we esti-
mated the effect of grazing on vital rates at the individual
rather than the plot level. We included plot (one plot per
population) as a random intercept in all models and
scaled plant size and all other continuous predictor vari-
ables to unit variance and mean-centered across years
before conducting our analyses.

We modeled vital rates separately per year because
preliminary models using data pooled across years
showed significant interactions between predictor vari-
ables and year. Models including interactions with year
also performed better than models without interactions
but with quadratic terms for each driver (AICc compari-
son of models in Appendix S1: Table S12). To ensure that
our results were not dependent on the imputed values for
FDD and GDD, we repeated the vital rate regressions
excluding the populations with missing logger measure-
ments, which showed no qualitative difference in the
coefficients (Appendix S1: Table S13). See Appendix S2:
Tables S2–S6 for full summaries of vital rate regressions.

Integral projection modeling

To calculate the effects of local FDD, local GDD, light,
grazing, and intraspecific density on asymptotic popula-
tion growth rates (λ), we used the estimates obtained
from the vital rate regressions to construct deterministic
integral projection models (IPMs). IPMs are
size-structured population models with continuous state
variables (Easterling et al., 2000). To estimate the effects
of the environmental drivers on population growth rates
across populations, we included all estimated relation-
ships between vital rates and environmental factors,
regardless of their statistical significance. We estimated
the effect of a focal environmental factor in IPMs where
it was allowed to vary, while all nonfocal factors were
kept at their mean (across populations) levels. Thus, we
did not estimate the effects of environmental factors on
the growth rate of each population. We used the propor-
tion of individuals grazed in each population as estimates
of grazing in these analyses. We modeled λ for each envi-
ronmental predictor’s minimum to maximum range with
100 equal distance levels. Lastly, to assess the extent to
which models using the four regionally aggregated tem-
perature data sets were able to detect the same effects on
λ as models using locally measured temperature, we

reran the previously described analysis with estimates
from vital rate regressions that used each of the regional
estimates instead of local FDD and GDD.

To construct the deterministic IPMs, we used two
functions that represent the state transitions from one
census (time t) to the following census (t + 1), driven by
growth and survival (P, Equation 1) and fecundity
(F, Equation 2), respectively. These sum to the IPM
kernel, K (Equation 3), which is part of the transition
model (Equation 4):

P¼ S x,θð ÞG x0,x,θð Þ, ð1Þ

F ¼ pf x,θð Þ si x,θð Þ− sp x,θð Þ� �
pepd x0ð Þ, ð2Þ

K ¼ P+F, ð3Þ

nt+1 x0ð Þ ¼
ðU
L
K x0,x,θð Þnt xð Þdx, ð4Þ

where θ denotes the vector of environmental covariates
included in the vital rate models; P (Equation 1) is the
state transition function, consisting of the probability
of survival, S x,θð Þ, multiplied by growth, G x,x0,θð Þ;
F (Equation 2) is the fecundity function, which consists
of the seedling size distribution (pd) multiplied by the
number of seedlings. The number of seedlings was
derived by multiplying the probability of flowering,
pf x,θð Þ, by the number of intact seeds produced by
flowering plants, i.e., the total number of seeds, si x,θð Þ,
minus the number of damaged seeds (proportion of dam-
aged seeds multiplied by the total number of seeds,
sp x,θ½ �) and seedling establishment rate, pe. Seedling sizes
were assumed to follow a Gaussian distribution with
mean and variance estimated across years for each plot
(mean± SD= −1.37 ± 0.36 SD). The growth variance
was taken as the residual variance from the growth vital
rate regression model. The kernel K (Equation 3) is the
summed product of P and F and represents the transition of
individuals from time t to time t+1. Equation (4) describes
the entire transition model, with nt xð Þ being the size distri-
bution at time t; nt+1 x0ð Þ is the size distribution at time t
+1; and U and L are the upper (3.16) and lower (−3.77)
size range limits in units of SD from the mean,
corresponding to 10% above and below the observed size
range, respectively (cf. Merow et al., 2014). For individ-
uals with size estimates above or below these values, we
adjusted their size to the maximum or minimum limits,
respectively (Williams et al., 2012). We implemented the
model using the midpoint rule of integration to construct
a 100 × 100 matrix, representing a discretized IPM kernel,
and 100-element vectors to represent size distributions.
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To assess the uncertainty of our estimates and obtain
confidence intervals of the effects of the environmental
variables on the overall population growth rate, we reran
the five vital rate regressions using 1000 bootstrapped sam-
ples. For the bootstrapping procedure, we randomly sam-
pled our 37 plots 1000 times with replacement. For a few
iterations, the seed predation model did not converge, and
for those iterations we set seed predation rate to the mean
across populations in that transition year. We used the
re-estimated coefficients of the bootstrapped vital rate
regressions in the IPM and extracted the mean and the
0.025 and 0.975 quantiles of the resulting λ values to
derive estimates of 95% CIs. Effects on λ were interpreted
as significant if the confidence intervals of the λ values for
the minimum and maximum values of the environmental
variable did not overlap. To be able to compare effects on
λ among predictors, we show the effects on λ for each pre-
dictor’s 15th–85th quantile interval. For comparison, the
effects of FDD and GDD for the different temperature data
sets are shown as deviations from the overall population
growth rate when all predictors are at their mean, Δλ.

Life table response experiment

To determine how spring temperature contribute to dif-
ferences in population growth rate through their effects
on vital rates, we conducted a one-way fixed life table
response experiment (LTRE) analysis (Caswell, 2001)
using the function LTRE from the popbio R package
(Stubben & Milligan, 2007). First, we constructed three
kernel matrices using the values of the 15th quantile,
mean, and 85th quantile of the focal predictor (FDD or
GDD), respectively, in models of the focal vital rate,
while keeping all other predictors at their mean and all
predictors at their mean in nonfocal vital rates. Second,
we calculated difference matrices between the 15th
quantile and the mean, and the mean and the 85th
quantile matrices, for each focal predictor and focal vital
rate. Third, we calculated sensitivity matrices
corresponding to the averages of the mean matrix and
the matrices representing the 15th and the 85th quantile,
respectively. Fourth, we multiplied the two difference
matrices with the respective sensitivity matrix. Fifth, we
summed these two products to get the total contributions
of differences in λ between the 15th and 85th quantiles
for each focal predictor and focal vital rate. Finally, we
reran step 1–5 using bootstrapped estimates of the vital
rate regressions to generate 95% CIs of the estimated con-
tributions. Contributions were interpreted as significant
if the CIs did not overlap zero. We ran the LTRE analyses
for FDD and GDD from the temperature data sources

that showed a significant effect of FDD or GDD on the
overall asymptotic population growth rate.

RESULTS

Effects of locally measured spring
temperature on population growth rate

The total variation explained in the vital rate regressions
were high for growth and flowering (0.75–0.92,
R2-marginal) but generally lower for survival, number of
seeds, and proportion of damaged seeds (0.21–0.79,
R2-marginal, see also Appendix S2: Table S1;
Figures S1–S7). The mean asymptotic population growth
rate (λ) differed between the two transition intervals
(Figure 1). In models with local temperature estimates,
FDD had the largest impact on the population growth
rate of environmental variables in both transition
intervals. FDD had a negative effect on λ in the first tran-
sition (effect size between the 15th and 85th quantiles,
Δλ = −0.15), but the slope was more shallow and not
significant in the 2019–2020 period (Δλ = −0.10)
(Figure 1; Appendix S2: Figure S9). In the first transition
that included the warm summer of 2018 (mean local
GDD = 553), there was a trend of decreasing λ with
increasing GDD (Δλ = −0.13, Figure 1; Appendix S2:
Figure S9). In the second transition with cooler condi-
tions (mean GDD = 396), the effect of GDD was positive
but not significant (Δλ = 0.08) (Figure 1; Appendix S2:
Figure S9). Light had a significant positive effect on λ in
2018–2019 (Δλ = 0.09), but not in 2019–2020. Grazing
and intraspecific density had no effects in either transi-
tion interval (Appendix S2: Figure S9).

Do models based on regionally aggregated
temperature data identify the same effects
of temperature on population dynamics as
models based on locally measured
temperatures?

CHELSA (at 1-km resolution) was the only regional tem-
perature data that showed a significant negative effect of
FDD on λ similar to that found for locally estimated
FDD, but the effect was smaller (Figure 2; Appendix S2:
Figure S10). In the second transition, none of the FDD
estimates from the four regional climate data sets had an
effect on λ similar to that found for local FDD. In the first
transition, none of the regional GDD values yielded a
slope similar to the local GDD, but in the second transi-
tion, all showed a similar slope.
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Vital rate regression models including local tempera-
ture in most cases showed significantly lower AICc values
than models with regional temperatures (Appendix S2:
Table S7). One exception was seed predation, where
models including regional temperatures in most cases
had slightly lower AICc values (no difference larger
than −1.75).

Consistent with the pattern that the agreement
between effects in models with local versus regional tem-
perature data differed between regional data sets, correla-
tions between regional and local temperature data varied
between both years and temperature variables.
Correlations for FDD were stronger in 2018 than in 2019
(Appendix S2: Figure S12). Correlations between regional
GDD and local GDD also varied between years, with
most correlations being negative in year 2018 but positive
in 2019 (Appendix S2: Figure S13).

Which vital rates contribute most to the
effects of spring temperature on λ?

The effects of local FDD and GDD on λ occurred mainly
via effects on growth and survival in both transition
intervals (Figure 3). Local FDD had a significant negative
effect on survival, contributing −0.062 and −0.064 to the
difference in λ between the 15th and 85th quantiles in
the first and second transition intervals, respectively. The
negative effects of local FDD on λ occurred also through
growth in the 2018–2019 period (Δλ = −0.10). The CIs of
the contributions of local GDD to λ overlapped zero for

all vital rates in both transition intervals. Both FDD and
GDD contributions from the regional data set CHELSA
were overall smaller than the corresponding contribu-
tions in models with locally measured temperature and
overlapped zero for all vital rates.

DISCUSSION

We examined the impact of spring temperature on the
asymptotic growth rate of the forest herb L. vernus based
on individual-based data from 37 populations across a wide
latitudinal range and using both locally measured and
regionally aggregated temperature data. In the first transi-
tion, increasing sums of locally measured frost during
spring were associated with lower asymptotic population
growth rates, and higher sums of locally measured spring
heat showed a trend of decreasing the asymptotic growth
rate, while effects were not significant in the second transi-
tion. Interestingly, models using regionally aggregated tem-
perature data mostly did not detect the same effects. Only
spring frost estimated from CHELSA had a similarly nega-
tive effect on population growth rate as the locally esti-
mated data, but the effect size was smaller. The effects of
temperature acted mainly through survival and growth.
Taken together, our results show that spring temperature
can have important effects on plant population dynamics
but that identifying and understanding these effects might
require high-resolution temperature data.

Local spring temperature and light showed significant
effects on population growth rate, although effects were

F I GURE 1 Mean of predictions of 1000 bootstrap resamples of effects of local spring temperature (freezing degree days and growing

degree days) and other nonclimatic drivers on asymptotic population growth rate under conditions in which all drivers are at their mean for

two transition intervals, based on integral projection models. Each colored line represents the relationship between λ and a predictor from

the 15th to 85th quantiles of the range of the focal predictor while keeping all other predictors at their mean. Solid lines denote significant

relationships, dashed lines nonsignificant relationships. Dashed black lines denote the mean asymptotic population growth rate under mean

conditions. The predictor variables are mean-centered and shown in units of SD across years.
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only significant in the first transition. For the
early-emerging forest understory herb L. vernus, spring
temperatures before canopy closure in late spring are
likely to have a strong impact on plant performance, with
low temperatures being potentially damaging
(Augspurger, 2011; Iler et al., 2019) and high tempera-
tures allowing rapid development and efficient resource
acquisition (Blondeel et al., 2020; De Frenne et al., 2010).
For many forest understory plants, light limitation is also
typical, and previous studies suggested that light might
be more important than climate for these species
(De Pauw et al., 2021; Greiser et al., 2020). However, the
relative importance of temperature and light availability
in deciduous forest herbs should strongly depend on phe-
nology. Early-emerging plants, such as our study species,
might partly avoid light depletion through early

development but then instead become more exposed to
frost and experience lower GDD values during the time
critical for development, leading to an increased relative
importance of temperature.

The fact that we found substantial differences in tem-
perature effects between years might be explained by the
fact that the relationship between species performance
and temperature depends on other factors, climatic and
nonclimatic, that vary among years, or the fact that the
mean temperatures experienced across populations var-
ied between years. It is also possible that the exact timing
of frost events is important (Augspurger, 2011; Iler et al.,
2019) and that frost events in the first transition occurred
when individuals were more sensitive. Between-year dif-
ferences in the effects of climate on population growth
rates have been demonstrated in other systems (Nicolè

F I GURE 2 Mean of predictions of 1000 bootstrap resamples of effects of freezing degree days (FDDs) and growing degree days (GDDs)

on deviation from population growth rate under conditions in which all other drivers are at their mean (Δλ) based on locally measured

temperature and regionally aggregated temperature. Each line represents the relationship between Δλ and the 15th to 85th quantiles of the

range of FDDs or GDDs from the five different temperature data sources while keeping all other predictors at their mean. Solid lines denote

significant relationships, dashed lines nonsignificant relationships. Predictor variables are mean-centered and shown in units of SD across

years.
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et al., 2011; Peterson et al., 2021; Römer et al., 2021). An
interesting implication of such between-year differences
in climate effects on population growth rate is that to the
extent that effects in cold and warm years are negatively
correlated they will result in smaller differences in
growth rate among populations over time than suggested
by the effects in single years (Morris et al., 2008).

Regional temperature data did not reveal the same
effects on population growth rates as locally measured
data for spring temperatures. This is likely because sessile
forest herbs experience the environment over very small
spatial scales and because local temperatures can deviate
substantially from regionally aggregated temperatures

(De Frenne et al., 2021). Since the forest canopy buffers
extreme temperatures (Greiser et al., 2018; Zellweger
et al., 2019), some populations under comparatively dense
canopies are likely to have experienced less frost and lower
heat than the regional temperature data suggested. On the
other hand, some populations in sites with low canopy
cover or in depressions collecting cold air might have
experienced more heat or more frost, respectively (Greiser
et al., 2018). Regional temperatures are thus expected to
deviate more from the temperatures actually experienced
by plants than locally measured temperatures, leading to
lower significance levels for models using regional temper-
atures than for models using local temperatures. Still, the

F I GURE 3 Contributions shown as Δλ through different vital rates to effects of local versus regional (CHELSA) freezing degree days

(FDDs) and growing degree days (GDDs) on λ, as well as summed contribution. The mean effects and 95% CIs from 1000 bootstrapped

samples are shown for 15th to 85th quantiles of the range of the predictors. LTRE, life table response experiment.
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correlations between local and regional climate were sur-
prisingly low and sometimes even negative (Appendix S2:
Figures S12–S14). The mechanisms behind such patterns
are likely related to the fact that local drivers
(e.g., topography and vegetation) override regional drivers
and that populations occupy a narrower climatic niche in
relation to their distribution limit (Ackerly et al., 2020). In
the case of L. vernus, more northern populations are found
in a subset of sites that are warmer relative to regional
mean temperatures (e.g., southfacing slopes) than south-
ern populations, and this is likely to affect the correlations
between regional and local climate.

Still, spring frost estimated from CHELSA yielded a
significant negative effect on λ, albeit of a smaller magni-
tude than frost estimated locally, and the effects in
models with regionally aggregated temperatures were
also relatively similar to those yielded in models with
locally measured temperature data in some other cases.
This suggests that regional temperature data under cer-
tain conditions might be a good proxy for the conditions
actually experienced by plants but not under other condi-
tions. Local and regional temperatures might be rela-
tively similar during cloudy and windy days, whereas
they tend to differ more under clear skies and less windy
conditions as local temperatures would then be strongly
influenced by topography and vegetation (De Frenne
et al., 2021; Zellweger et al., 2020). Seed predation was
the only vital rate regression that showed higher AICc

values using local temperatures than using regional tem-
peratures. This might be due to the fact that plants are
only a part of the life cycles of beetles, and the population
dynamics of beetles might depend on climatic conditions
over a larger area and over a longer time period than cap-
tured by local temperatures during one season. Local
FDD contributed to differences in population growth rate
via its effects on the growth and survival of individuals,
whereas regional FDD did not contribute significantly
through any vital rate. That local FDD mainly acted
through survival and growth is consistent with the results
of previous studies of perennial plant species that exam-
ined the contributions of climate through different vital
rates (Dalgleish et al., 2015; Iler et al., 2019; Nicolè et al.,
2011). The estimated contributions in the LTRE analysis
are the products of two terms, the change in the vital rate
caused by the environmental factor and the sensitivity of
the population growth rate to this change. While many
studies, including the current one, have found large
effects of climate on flowering probability (Czachura &
Miller, 2020; Lindell et al., 2021; Tye et al., 2018), the
population growth rate of long-lived perennial plants is
less sensitive to changes in reproduction than to changes
in survival or growth (Dalgleish et al., 2010; Franco &
Silvertown, 2004). Consistent with this notion, the effects

of temperature that we found on survival and growth had
larger effects on population growth rate in our long-lived
study species than effects on reproduction, although
spring frost also had strong effects on flowering probabil-
ity (Appendix S2: Table S4). This suggests that it is the
sensitivity of population growth rate to changes in vital
rates, rather than the sensitivity of vital rates to climatic
factors, that explains why climate often influences popu-
lation growth rates primarily through its effects on sur-
vival and growth in long-lived perennials (Czachura &
Miller, 2020; Iler et al., 2019).

In conclusion, our results demonstrate that spring tem-
perature can have important effects on the population
dynamics of forest herbs but that currently available
regionally aggregated temperature data might not always
provide sufficient information about the temperatures rele-
vant to the performance of sessile organisms living near
the ground. Downscaling of regionally aggregated temper-
ature data with the inclusion of topography to kilometer
spatial resolution have been widely used to overcome this
discrepancy (Franklin et al., 2013; Randin et al., 2009).
However, our study suggests that models using such spa-
tial resolutions perform worse than locally validated cli-
mate models (Man et al., 2022; Stark & Fridley, 2022). Our
findings thus underscore the need to measure climate fac-
tors at organism-relevant scales and develop even more
downscaled high-resolution climate products that also take
vegetation into account to better understand how climate
influences species abundances and distributions and to
improve predictions of the effects of ongoing climate
change. A broader implication is that the many studies
that have used regionally aggregated data to investigate
the effects of climate on population dynamics of organisms
with limited mobility might have underestimated the role
of climate as a driver of population dynamics. The ecologi-
cal significance of climate extremes (Stewart et al., 2021),
combined with the predicted future increase in the fre-
quency of extreme climate events (IPCC, Seneviratne
et al., 2021), implies that our findings of discrepancies
between the effects of local and regional temperatures on
plant performance point to the urgent need to use
organism-relevant estimates of climate when assessing
risks and developing mitigation strategies.
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