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Abstract: Body temperature is usually employed in clinical practice by strict binary thresholding,
aiming to classify patients as having fever or not. In the last years, other approaches based on the
continuous analysis of body temperature time series have emerged. These are not only based on
absolute thresholds but also on patterns and temporal dynamics of these time series, thus providing
promising tools for early diagnosis. The present study applies three time series entropy calculation
methods (Slope Entropy, Approximate Entropy, and Sample Entropy) to body temperature records of
patients with bacterial infections and other causes of fever in search of possible differences that could
be exploited for automatic classification. In the comparative analysis, Slope Entropy proved to be a
stable and robust method that could bring higher sensitivity to the realm of entropy tools applied in
this context of clinical thermometry. This method was able to find statistically significant differences
between the two classes analyzed in all experiments, with sensitivity and specificity above 70% in
most cases.

Keywords: time series; body temperature; Slope Entropy; Approximate Entropy; Sample Entropy;
classification; fever

1. Introduction

Body temperature is a key clinical parameter. It is usually assessed once per shift in
hospital wards and has always been considered a hallmark of infectious diseases. However,
the values obtained with the standard measurements are interpreted dichotomously: either
the patient has a fever or is afebrile.

Body temperature assessment is also highly dependent on the method of measurement.
Central methods are accurate and reliable (pulmonary artery catheter, urinary bladder,
esophagus) but they are not suitable in most clinical scenarios. Tympanic temperature
is often used as a replacement for central temperature because values are close, and
it is more convenient and less invasive [1]. Peripheral temperature can be assessed in
different anatomical locations (mouth, armpit). Despite not being as accurate [2], peripheral
measurements are the standard procedure in clinical practice.

Furthermore, the definition of fever is arguably flawed, as it depends on many factors
such as age, gender, circadian rhythms, or underlying conditions [3–5]. As a matter of
fact, there is no universal threshold for fever, as a wide range of temperatures has been
shown in individuals considered healthy [6,7]. Some efforts to standardize the normal body
temperature range have been carried out in the past [7] but they have not been transferred
into clinical practice.
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Traditionally, attempts have been made to find clinical differences in the patterns of
fever caused by infectious diseases (malaria, tuberculosis, typhoid fever) [8]. Nevertheless,
none of these approaches are sufficient to make clinical decisions [8,9]. Furthermore, a wide
spectrum of noninfectious conditions can also induce the synthesis and release of pyrogenic
cytokines and eventually cause fever [10].

Since body temperature regulation is a dynamical process, by obtaining just two or
three measurements per day, a wealth of information is lost. However, some devices are
available to obtain high-frequency measurements of body temperature. Body temperature
monitoring has been proven useful in certain clinical scenarios when more frequent mea-
surements (associated or not to alarm settings) entail earlier recognition of fever [11–14].
Moreover, temperature monitoring devices enable the registry of temperature time series.
This allows its use as a continuous variable, instead of a series of isolated values [15].

Similar to many other biological systems, thermoregulation can be considered a
complex process, and might therefore be analyzed under the scope of nonlinear dynamics.
Complexity metrics have previously been applied to other biological variables [16]. It has
been widely demonstrated that changes in complexity of biological signals are associated
with damage to or degradation of the system [17–23].

In this context, entropy statistics could be of clear interest to unveil certain char-
acteristics of the thermoregulation process and, perhaps, the underlying cause of fever.
In previous works, we have already demonstrated the feasibility of this approach. For exam-
ple, in [24], we described a method based on the entropy statistic Slope Entropy (SlpEn) [25]
to distinguish between body temperature time series from malaria and dengue patients.
The achieved accuracy was up to 90% correctly classified records with a single numerical
feature computed for each one. In another study [26], a different entropy method, Sample
Entropy (SampEn) [27], was used with the same purpose of distinguishing among body
temperature time series coming from infectious diseases, tuberculosis, nontuberculosis,
and dengue fever patients. The global accuracy achieved was close to 70%.

Other works have used a combination of features; this is the case for the work de-
scribed in [28], which used temperature temporal patterns to detect tuberculosis. In [29],
the authors used a more sophisticated approach using the Fourier transform, entropy, en-
ergy, power, and a set of additional coefficients to train a quadratic support vector machine
to carry out the classification of tuberculosis, intracellular bacterial infections, dengue,
and inflammatory and neoplastic diseases temperature time series.

The goal of this study is to assess if patients with bacterial infections have significant
changes in the entropy of their body temperature compared with patients with other infec-
tions or other causes of fever. As the entropy statistic for the analysis, we chose SlpEn for its
good performance in previous studies [24,30,31]. For comparative purposes, we included
more widely used methods such as Approximate Entropy (ApEn) [32] and SampEn, which
have been successfully used in a myriad of similar biosignal classification works [33–39].

2. Materials and Methods
2.1. SlpEn

The recently proposed time series entropy measure termed Slope Entropy (SlpEn) [25]
can achieve high classification accuracy using a diverse set of records [24,25,30]. Despite its
short life, it has already been implemented in scientific software tools such as EntropyHub
(https://github.com/MattWillFlood/EntropyHub.jl, accessed on 15 February 2022) and
CEPS (Complexity and Entropy in Physiological Signals) [40].

The first step of SlpEn computation is extraction from an input time series x =
{x0, x1, . . . , xN−1} of a set of consecutive overlapping subsequences of length m, commenc-
ing at sample i, xi = {xi, xi+1, . . . , xi+m−1}, 0 ≤ i < N − m + 1 (m being the embedded
dimension variable and n the total length of the time series, with m << N). Each of the
nm extracted subsequences, xi, can then be transformed into a new one of length m− 1 by
computing and storing the differences between each pair of consecutive samples in the
subsequence, namely, yi = {xi − xi+1, xi+1 − xi+2, . . . , xi+m−2 − xi+m−1}.

https://github.com/MattWillFlood/EntropyHub.jl
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Using, in its basic configuration [25], 5 different symbols from an alphabet—for exam-
ple +2, +1, 0, −1, −2—the differences obtained are represented by these symbols instead,
according to two input thresholds, δ and γ, and the expressions described in [25]. Further
details of SlpEn implementation and examples can be found in [24,25]. A software library
using this method is also described in [40].

In addition to SlpEn, two other entropy methods—ApEn and SampEn—were applied
to the time series in order to assess the hypothesized improvement in classification accuracy
that SlpEn could bring to the analysis. Although these methods have been used extensively,
and they are characterized and described in great detail in a number of publications [41–46],
they are depicted for completeness in the next two subsections.

2.2. Approximate Entropy

ApEn [32] is also based on extracting subsequences of length m from the input time
series, xi = {xi, xi+1, . . . , xi+m−1}, as for SlpEn. Then, a distance is computed between
every subsequence and a fixed reference xj, dij = max(|xi+k − xj+k|), with 0 ≤ k ≤ m− 1.

If the number of comparisons falling below a predefined threshold r—termed matches,
dij < r—is computed for two consecutive embedded dimensions (m and m← m + 1), two
counters can be defined as Bi(r), number of j so that dm

i,j ≤ r, and Ai(r), number of j so that

dm+1
i,j ≤ r, with 0 ≤ j < N −m + 1.

Computing the averages of these counters, Bm
i (r) =

1
N −m + 1

Bi(r) and Am
i (r) =

1
N −m

Ai(r), the main ApEn variables are calculated as φm(r) =
1

N −m + 1

N−m+1

∑
i=1

log Bm
i (r)

and φm+1(r) =
1

N −m

N−m

∑
i=1

log Am
i (r), from which the result of ApEn can be finally ob-

tained as ApEn(m, r, N) =
[
φm(r)− φm+1(r)

]
.

2.3. Sample Entropy

The first steps of the SampEn algorithm [35] are the same as for ApEn. However,
when counting the matches, subsequences are not compared with themselves, formally
0 ≤ j < N −m + 1, with j 6= i.

Then, the statistics are now Bm(r) =
1

N −m

N−m

∑
i=1

Bm
i (r) and Am(r) =

1
N −m

N−m

∑
i=1

Am
i (r),

from which SampEn is computed as SampEn(m, r, N) = − log
[

Am(r)
Bm(r)

]
.

2.4. Experimental Dataset

The study was conducted at Hospital Universitario de Móstoles (Madrid, Spain).
Patients older than 18 years old admitted to the general Internal Medicine ward presenting
with fever at admission and/or suspected infectious disease were considered suitable
for inclusion. Pregnancy and inability to cooperate with the monitoring process were
considered exclusion criteria.

Temperature values were obtained through a probe (Truer Medical, Inc., Orange, CA,
USA) placed in the external auditory canal (EAC), after otoscopy to check the integrity of
the tympanic membrane. Data from the EAC were used as surrogates of central temper-
ature [1]. The probe was wired to a Holter device (TherCom, Innovatec) that registered
one measurement per minute. When feasible, the monitoring process was performed in
real-time. Otherwise, data were stored in the device and downloaded later for analysis.
The aim was to perform 24-h recordings, but in some cases, the process was stopped
earlier due to poor compliance of the patient, displacement of the probes for long periods
(preventing the proper recording of data), or abnormally low temperatures, suggesting that
measurements were clearly inaccurate.
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Patients were classified into two categories concerning diagnosis: bacterial infection
(confirmed or suspected) or others. The latter included patients with nonbacterial infections
(viral, fungal, etc.) or with fever caused by inflammatory diseases, cancer, or fever of
unknown cause (when bacterial infection was deemed to be excluded).

Temperature time series were processed by visual inspection. In some cases, the begin-
ning and/or the end of the recording were trimmed to ensure the stability of the signal.
Disconnections of at most 5 measurements were repaired through linear interpolation.
For longer disconnections, the segment was removed, provided the remaining interval
was clean.

The experimental dataset contained 10 body temperature time series of patients with
confirmed bacterial infection and 13 from patients with other causes of fever. The lengths
of the time series are shown in Table 1. In all cases, different fixed time series lengths were
used to assess the classification accuracy of each metric and ensure length equality: 500,
600, 700, 800, 900, 1000, and 1100. Those time series below the cut-off length were discarded
in that specific experiment.

Table 1. Original lengths of the body time series used in the experiments. Length is defined in terms
of number of samples, taking into account that the sampling frequency was one sample per minute.

1 2 3 4 5 6 7 8 9 10 11 12 13

Bacterial infection 936 1231 1154 1279 1443 1134 680 710 586 1117 – – –

Other causes of fever 1284 1468 1427 1444 1295 913 1105 1017 830 537 1121 859 934

Figure 1 depicts two body temperature records from this database, with one from
each class (fever caused by a bacterial infection, and fever caused by a different clinical
condition).

0 200 400 600 800 1000Samples
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Figure 1. Example of body temperature records from the experimental database. B: Bacterial infection.
NB: Nonbacterial cause of fever.

3. Experiments and Results

All the experimental time series were processed using the three entropy calculation
methods described previously: SlpEn, ApEn, and SampEn. They were also cut short to the
lengths stated above. The remaining central part was used for the analysis, as it would
theoretically be the most stable segment (thermal equilibrium reached, probe still in place).
The entropy result was used as the classification feature applying Sensitivity (Se) and
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Specificity (Sp) [47], with a threshold obtained from the corresponding ROC curve (closest
point to (0,1); an example is shown in Figure 2) [48–50]. The statistical significance was
assessed using the Wilcoxon–Mann–Whitney test [51], with α = 0.05. Input parameters
were varied in the range m ∈ [3, 9] and γ, r ∈ [0.10, 0.90]. For SlpEn, δ was kept constant
at δ = 0.001. Time series were normalized for zero mean and unit standard deviation.
The stationarity of the input time series was assessed by computing the standard deviation
for each consecutive 50-sample window, yielding fairly similar values.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2. Example of ROC curve using Slope Entropy (SlpEn), m = 3, and γ = 0.20.

Table 2 shows the results for lengths N = 500, 600, and 700. For N = 500, SlpEn
achieved good classification accuracy for m = 3 and in the γ region of 0.15–0.30. Neither
ApEn nor SampEn reached significance for any combination of their input parameters m
and r, after a grid search for m between 3 and 9, and r between 0.10 and 0.90 in 0.05 steps.
It is important to note that these methods are very sensitive to length, and N = 500 is
arguably too short for them.

For N = 600 and N = 700 the results were similar. ApEn and SampEn did not
discriminate, SlpEn remained stable in the same region of m = 3 and γ = 0.15–0.25,
but other parameter configurations in the same region of γ with values of m such as 4, 6,
and 7 also reached discriminatory power.

Table 2. Experiment results for lengths N = 500, 600, 700 using SlpEn, Approximate Entropy (ApEn),
and Sample Entropy (SampEn). Parameter grid search for m, between 3 and 9, and r and γ, be-
tween 0.10 and 0.90 in 0.05 steps. The values of the input parameters are included as (m, r) or (m, γ)

for cases when p < 0.05 after the grid search. Otherwise, no combination provided significant results,
represented by −−. Statistical significance was only reached by SlpEn.

N = 500 N = 600 N = 700

Parameters p Se Sp Parameters p Se Sp Parameters p Se Sp

SlpEn

(m = 3,
γ = 0.15) 0.0255 0.90 0.76 (m = 3,

γ = 0.15) 0.0190 0.88 0.75 (m = 3,
γ = 0.15) 0.0448 0.87 0.75

(3, 0.20) 0.0407 0.69 0.61 (3, 0.20) 0.0330 0.77 0.75 (3, 0.20) 0.0448 1 0.66
(3, 0.25) 0.0299 0.80 0.76 (3, 0.25) 0.0466 1 1 (4, 0.15) 0.0448 0.87 0.66
(3, 0.30) 0.0545 1 0.61 (4, 0.15) 0.0330 1 0.66 (6, 0.10) 0.0307 0.66 1
−− p > 0.05 −− −− (4, 0.20) 0.0466 0.77 0.66 (7, 0.20) 0.0372 0.75 0.87

ApEn −− p > 0.05 −− −− −− p > 0.05 −− −− −− p > 0.05 −− −−

SampEn −− p > 0.05 −− −− −− p > 0.05 −− −− −− p > 0.05 −− −−

Table 3 displays the results for lengths N = 800 and 900. For N = 800, the trend is the
same as in Table 2. SlpEn is able to find differences in the vicinity of m = 3 and γ = 0.20,
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but ApEn and SampEn are unable to yield any statistically significant classification. For
N = 900, the number of parameter combinations for SlpEn increases, with γ fairly stable in
the same region around 0.20, for almost any m value except 5. Additionally, ApEn is also
significant in the region around m = 3 and r = 0.20.

Table 3. Experiment results for lengths N = 800, 900 using SlpEn, ApEn, and SampEn. Parameter
grid search for m, between 3 and 9, and r and γ, between 0.10 and 0.90 in 0.05 steps. The values of
the input parameters are included as (m, r) or (m, γ) for cases when p < 0.05 after the grid search.
Otherwise, no combination provided significant results, represented by −−. Statistical significance
was reached by SlpEn and ApEn.

N = 800 N = 900

Parameters p Se Sp Parameters p Se Sp

SlpEn

(m = 3, γ = 0.15) 0.0179 1 0.75 (m = 3, γ = 0.10) 0.0247 0.71 0.80
(3, 0.20) 0.0425 0.85 0.66 (3, 0.15) 0.0191 0.71 0.90
(4, 0.15) 0.0346 1 0.66 (3, 0.20) 0.0317 0.71 0.90
−− p > 0.05 −− −− (3, 0.25) 0.0404 0.71 0.90
−− p > 0.05 −− −− (4, 0.10) 0.0146 0.71 0.90
−− p > 0.05 −− −− (4, 0.15) 0.0247 0.71 0.90
−− p > 0.05 −− −− (4, 0.20) 0.0317 0.71 0.90
−− p > 0.05 −− −− (4, 0.35) 0.0404 0.71 0.70
−− p > 0.05 −− −− (6, 0.10) 0.0191 0.80 0.85
−− p > 0.05 −− −− (7, 0.10) 0.0247 0.70 0.85
−− p > 0.05 −− −− (7, 0.15) 0.0317 0.70 0.85
−− p > 0.05 −− −− (7, 0.20) 0.0404 0.70 0.85
−− p > 0.05 −− −− (8, 0.10) 0.0317 0.80 0.85
−− p > 0.05 −− −− (8, 0.15) 0.0191 0.90 0.71
−− p > 0.05 −− −− (8, 0.20) 0.0317 0.90 0.71
−− p > 0.05 −− −− (9, 0.15) 0.0317 0.70 0.85

ApEn

−− p > 0.05 −− −− (m = 3, r = 0.20) 0.0317 0.85 0.7
−− p > 0.05 −− −− (3, 0.25) 0.0317 0.85 0.7
−− p > 0.05 −− −− (4, 0.20) 0.0404 0.85 0.7
−− p > 0.05 −− −− (4, 0.25) 0.0247 1 0.7

SampEn −− p > 0.05 −− −− −− p > 0.05 −− −−

Finally, the results for N = 1000 and N = 1100 are shown in Table 4. No more lengths
were tested since not enough time series would be available if N > 1100. For both cases,
the number of significant combinations increased significantly, with SlpEn certainly stable
in the same regions as for other N values, and even ApEn and SampEn reaching significance
for N = 1100. Figure 3 shows a plot of results for N = 1100, γ = r = 0.20, m = 3 and for
the three methods tested.

0.1

0.2

0.3

0.4

0.5

0.6
B
NB

(a)

0.6

0.8

1.0

1.2

1.4

1.6

1.8 B
NB

(b)

0.05

0.10

0.15

0.20

0.25

0.30
0.35 B

NB

(c)

Figure 3. Example of graphical results for each method tested with N = 1100. SlpEn results have
been inverted and rescaled for better visualization. (a) Results for ApEn with r = 0.2 and m = 3.
(b) Results for SlpEn with γ = 0.2 and m = 3 (In absolute value and normalized by 100). (c) Results
for SampEn with r = 0.2 and m = 3.
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Table 4. Experiment results for lengths N = 1000, 1100 using SlpEn, ApEn, and SampEn. Parameter
grid search for m, between 3 and 9, and r and γ, between 0.10 and 0.90 in 0.05 steps. The values of
the input parameters are included as (m, r) or (m, γ) for cases when p < 0.05 after the grid search.
Otherwise, no combination provided significant results, represented by −−. Statistical significance
was reached by all methods in some cases.

N = 1000 N = 1100

Parameters p Se Sp Parameters p Se Sp

SlpEn

(m = 3, γ = 0.1) 0.0388 0.83 0.87 (m = 3, γ = 0.1) 0.0222 0.83 0.85
(3, 0.15) 0.0388 0.83 0.87 (3, 0.15) 0.0222 0.83 0.85
(4, 0.10) 0.0388 0.83 0.75 (3, 0.20) 0.0222 0.83 0.85
(4, 0.15) 0.0281 1 0.75 (3, 0.25) 0.0151 0.83 0.85
(8, 0.10) 0.0388 0.75 0.83 (3, 0.30) 0.0222 0.83 0.85
(8, 0.15) 0.0281 0.75 1 (3, 0.35) 0.0101 1 0.85
(9, 0.10) 0.0388 0.75 0.83 (3, 0.40) 0.0321 0.83 0.71
(9, 0.15) 0.0098 0.87 0.83 (4,0.10–0.40) 0.0101 0.83 0.85
(9, 0.20) 0.0388 0.87 0.66 (6, 0.10) 0.0222 0.85 0.83
(9, 0.25) 0.0281 0.75 0.83 (6, 0.15) 0.0222 0.85 1
(9, 0.35) 0.0388 0.87 0.83 (7, 0.10) 0.0151 0.85 1
−− −− −− (7, 0.15) 0.0222 0.85 0.83
−− −− −− (8,0.10–0.35) 0.0321 0.85 0.83
−− −− −− (9,0.15–0.35) 0.0151 0.71 1

ApEn −− −− −− (m = 9, r = 0.1) 0.0151 0.85 0.83
−− −− −− (10, 0.1) 0.0321 0.85 0.83

SampEn −− −− −− (m = 3, r = 0.1–0.6) 0.0455 0.83 0.85

4. Discussion

The experiments explored the capability of SlpEn, ApEn and SampEn to distinguish
between two classes of body temperature records: time series from patients with bacterial
infection and time series from patients also with fever but due to other causes. The experi-
mental set available enabled a study using lengths from 500 up to 1100 samples.

For all these lengths, SlpEn was able to find significant differences when the input
parameters were m = 3 and γ = 0.15–0.25, with additional m values available depending on
N values. This illustrates the fact that SlpEn is fairly stable and robust, as also demonstrated
in other studies based on this recent method [30,31,52].

The results obtained using ApEn were significant only for N = 900 (Table 3) and
N = 1100 (Table 4). This is in accordance with the reported high sensitivity of ApEn to the
length of the input time series [44]. One of the most popular guidelines for this minimum
length using ApEn is N ≥ 10m [53], which translates in this case to N ≥ 1000, in agreement
with the results in this study. In order to illustrate how the ApEn statistics were computed
for the most unfavorable case, N = 500, the percentage of estimated probabilities on at
least 10 matches, weak criterion, was 80.17± 10.37, and on at least 100 matches, strong
criterion, was 6.52± 13.01 [54].

SampEn only achieved significance for N = 1100. Although SampEn is known to be
sensitive to input time series length, it is usually claimed to be more robust in this regard
than ApEn. However, in other cases, we have also found that ApEn performed better than
SampEn in classification tasks such as in [38].

There is also an association between time series length and classification performance
in terms of specificity and sensitivity [47]. For shorter time series, there are some cases
where these metrics achieve values below 0.7. As the length increases, the performance
improves, with more values in the vicinity of 0.85, arguably very high for a biomedical
signal classification application.

Therefore, for lengths shorter than 1000 samples, imposed by the operational difficul-
ties linked to obtaining long-term body temperature records, SlpEn seems a good choice to
find differences between the record classes present in the experimental dataset. If longer
series were available, other methods such as ApEn and SampEn could also be applied,
which remains to be further studied.

From a clinical perspective, the results of this work suggest that patients admitted
to the hospital with a diagnosis of bacterial infection had a misregulation of their body
temperature, measured with entropy statistics. This is in accordance with findings of a
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previous study by our group [55]. The complexity of biosignal time series seems to be
an indicator of the integrity and performance of biological systems, and disease usually
exhibits low levels of entropy metrics [16,20]. Bacterial infection may entail the development
of sepsis, a clinical entity with a very high risk of complications and death, which is unusual
with other infections or other causes of fever. In our opinion, the loss of entropy that we
have observed in the temperature curves of patients with bacterial infections may be
another facet of homeostasis disturbance.

Remarkably, these results were irrespective of the confirmation of fever by the staff
nurse (standard measurements), or the maximum temperature obtained. These results
suggest that body temperature may supply relevant information, over and above attaining
a certain pre-established febrile threshold.

In fact, body temperature may provide clues in many clinical aspects, as long as
enough information is obtained through continuous monitoring. It has already proved to
be useful to assess the prognosis of critically ill patients in the Intensive Care Unit [19,56],
to forecast fever peaks [13], and to classify patients according to the cause of fever [26,29].

We are aware of the many limitations of this work. On the one hand, the monitoring
system has some issues: the tympanic probe is prone to be displaced, wired probes can
be bothersome for the patient, the Holter device needs to be wirelessly connected to a
computer in the range of Bluetooth, etc. For these reasons, over half of the patients in
the study were excluded from this analysis because the recordings were lost or defective.
Several adjustments were carried out during the study to solve or reduce the impact of
these issues, such as real-time monitoring through a wireless network and periodic backups
of data to keep a copy of the recording in case there was a disconnection. In any case, we
acknowledge that the final sample was small and, although significant differences have
been found between the two groups, reliability might be limited for this reason.

On the other hand, as it has already been exposed, entropy metrics need clean time
series and are in general more informative the longer the data. This has been a limitation in
this work and is a common problem for the analysis of biological time series recorded in
real life, as many factors may cause artifacts and make data unsuitable for evaluation.

In our opinion, future research should focus on two issues: Firstly, acquisition of long
and clean time series. For this purpose, wireless and ergonomic probes that fit properly
at the external auditory canal could improve the quality of the recordings and minimize
the loss of information. Secondly, obtaining temperature recordings in a wide range of
clinical settings—including healthy individuals for comparison—may provide details about
physiological processes and may broaden the utility of clinical thermometry to subtler
issues than just the identification of fever peaks.
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