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a b s t r a c t

Community detection in social networks is becoming one of the key tasks in social network analysis,
since it helps analyzing groups of users with similar interests. This task is also useful in different areas,
such as biology (interactions of genes and proteins), psychology (diagnostic criteria), or criminology
(fraud detection). This paper presents a metaheuristic approach based on Variable Neighborhood
Search (VNS) which leverages the combination of quality and diversity of a constructive procedure
inspired in Greedy Randomized Adaptative Search Procedure (GRASP) for detecting communities
in social networks. In this work, the community detection problem is modeled as a bi-objective
optimization problem, where the two objective functions to be optimized are the Negative Ratio
Association (NRA) and Ratio Cut (RC), two objectives that have already been proven to be in conflict.
To evaluate the quality of the obtained solutions, we use the Normalized Mutual Information (NMI)
metric for the instances under evaluation whose optimal solution is known, and modularity for
those in which the optimal solution is unknown. Furthermore, we use metrics widely used in multi-
objective optimization community to evaluate solutions, such as coverage, ϵ-indicator, hypervolume,
and inverted generational distance. The obtained results outperform the state-of-the-art method for
community detection over a set of real-life instances in both, quality and computing time.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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. Introduction

In recent years, the growth and development of social net-
orks has caused scientists from different areas of knowledge to
e interested in the study of their structure and its implications.
sers of social networks are increasing every day, which has
ade them a very common source of data. Analyzing how the
sers are related between them, or how the information that they
re sharing is intertwined, we can potentially obtain additional
nformation that can be useful for other interests. For example,
e can estimate the potential impact of a marketing campaign,
hat the general opinion about a certain topic is, what the users
hink about a company, a person or a service, etc.

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.
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ttps://doi.org/10.1016/j.asoc.2021.107838
568-4946/© 2021 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
In addition, the growth of big data techniques and concepts
such as smart cities have led to the need for real-time analysis
of large amounts of information quickly and efficiently. However,
most of the traditional techniques are not adapted to deal with
vast amounts of data, becoming unsuitable for most of the current
challenges in social network analysis [1]. An efficient and effective
analysis of social networks can report a high amount of benefits,
so it is interesting to have a set of powerful algorithms that allow
us to perform that analysis.

Most of the networks represent complex models with a large
amount of data and interactions. The analysis of social networks
are able to evaluate properties such as small world [2] or scale
free [3], easing the understanding of those real-world networks.
There is a special property that attracts the gaze of the scientific
community, which is the community structure [4]. This property
is able to shed light over several problems of different research
areas: from social science to biological science, among others.
See [5] for a thorough survey on community detection.

This work proposes a Variable Neighborhood Search (VNS)
algorithm [6] for solving the Community Detection Problem (CDP)
from a multi-objective perspective, resulting in the Multi-
Objective Community Detection Problem (MOCDP). Every tradi-
tional objective function considered for the single-objective CDP
presents one or more drawbacks for modeling the community
structure of a given solution. In order to deal with this problem,
the model of CDP as a multi-objective optimization problem is
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ecoming more relevant for the scientific community. Notice that
onsidering more than one objective at the same time, which may
omplement among them, allows us to model the community
tructure of a network more precisely.
Although VNS has been traditionally considered for single-

bjective optimization, recent works have adapted the original
NS framework for tackling multi-objective optimization prob-
ems, resulting in robust algorithms which are competitive with
he best methods in the literature [7,8].

The main contributions of this work are the following:

• An adaptation of the well-known VNS metaheuristic is pro-
posed for dealing with multi-objective optimization prob-
lems. It considers that a solution in the VNS framework is
the complete set of non-dominated solutions.
• The initial set of non-dominated solutions for the VNS is

generated using the constructive phase of Greedy Random-
ized Adaptive Search Procedure (GRASP). This feature allows
VNS to start the search from a set of diverse and high-quality
solutions.
• A new greedy function that can be efficiently computed

is proposed for the constructive procedure and for the lo-
cal search method, with the aim of guiding the search for
promising regions of the search space without requiring
large computing times.
• Two local search methods are presented: the first one,

Combined Search Procedure, follows the traditional multi-
objective local optimization methods. However, the Inde-
pendent Search Procedure is a new proposal which tries
to further improve the set of non-dominated solutions by
independently improving each considered objective.
• The quality of the proposal is analyzed through multi-

objective optimization perspective. As far as we know, pre-
vious works only consider the metrics related with so-
cial network analysis, but it is interesting to evaluate the
set of non-dominated solutions under multi-objective op-
timization metrics which are specifically designed to that
end.

The paper is structured as follows: Section 2 formally defines
he considered problem, as well as the metrics proposed for
he evaluation of solutions; Section 3 briefly reviews the most
elevant papers related with our research; Section 4 presents the
ew Variable Neighborhood Search-based procedure proposed
or detecting communities and exposes how the initial solution
et is generated with a constructive procedure, as well as the
eighborhood structures considered within Variable Neighbor-
ood Search; Section 5 introduces the computational experiments
erformed to test the quality of the proposal; and finally Section 6
raws some conclusions on the research.

. Problem definition

A social network, conformed with a set of users and a set of
elations among them, can be modeled as a graph G = (V , E).
Users are represented by the set of nodes V , with |V | = n,
hile relations among users are represented by the set of edges
, with |E| = m. Notice that an edge (u, v) ∈ E indicates that
sers u, v ∈ V are related in the social network. The kind of
elation between the users strictly depends on the purpose of
he social network (friendship, work, etc.). This paper considers
idirectional relationships. Thus, if there is a relation (u, v), then
he relation (v, u) is also contemplated (i.e., G is an undirected
raph).
The aim of this work is to deal with the Community De-

ection Problem (CDP) following a multi-objective approach. A
ommunity C ⊆ V inside a network G is defined as a set of
i

2

sers and the relations that connect those users. In other words,
he community Ci is represented by the induced subgraph Gi =

Ci, Ei), where Ei = {(u, v) ∈ E : u, v ∈ Ci}. The CDP then consists
n separating the complete social network into communities or
roups. Although there is not a formal definition for community
n the literature, the most widely accepted definition considers
hat a community is a group of users that are closely related
o each other (i.e., share some properties/interests in the social
etwork).
In terms of graphs, a well-detected community is the one

hose nodes are densely connected among them and sparsely
onnected to nodes which do not belong to the community.
iven a community Ci, the edges that connect nodes in the
ame community are usually known as intra-community edges,
◀(Ci), while those connecting nodes in different communities are
amed as inter-community edges, E▶(Ci). In mathematical terms,

◀(Ci) = {(u, v) ∈ E : u, v ∈ Ci}

▶(Ci) = {(u, v) ∈ E : u ∈ Ci ∧ v /∈ Ci}

Following this definition, a community Ci in a social net-
ork is well defined if it presents a large number of intra-
ommunity edges E◀(Ci) and, at the same time, a small number
f inter-community ones E▶(Ci).
Given a social network, the CDP consists in assigning each user

o a single community. Each community is labeled with an integer
umber i, with 1 ≤ i ≤ c ≤ n, being c the number of communities
etected. Depending on the problem under consideration, the
umber of communities may be fixed or not [9]. In the CDP
ariant tackled in this paper the number of communities is not
ixed a priori.

A solution C for the CDP is modeled as the set of communities
= {C1, C2, . . . , Cc} of the network. Then, a solution for the CDP

s feasible when all the nodes have been assigned to a single
ommunity, i.e.,

∑c
i=1 |Ci| = n and Ci ∩ Cj = ∅ for 1 ≤ i, j ≤ j

ith i ̸= j.
Fig. 1(a) shows an example of a network with 12 nodes and

7 edges. Figs. 1(b) and 1(c) shows two feasible solutions C and
′, respectively, for the CDP, where each node is colored with a
ifferent color that corresponds to its community (1-green, 2-
ed, 3-yellow, 4-blue). The first solution is represented as C =
C1, C2, C3, C4}, where C1 = {A, B, D, F, G, K, L}, C2 = {J, I}, C3 =

H}, C4 = {C, E}. Similarly, the second solution is defined as
′
= {C ′1, C

′

2, C
′

3}, where C ′1 = {A, B, C, D, E}, C
′

2 = {J, K, L}, C
′

3 =

F, G, H, I}.
Although solution depicted in Fig. 1(c) is clearly more visually

ppearing than the one presented in Fig. 1(b), there is not a
ommon criterion to decide whether a solution presents a good
ommunity detection or not. There are several widely accepted
etrics to evaluate the community structure of a solution. In
articular, modularity [10] is one of the most extended metrics,
nd it has been used by several bioinspired algorithms [5,11] to
ind high quality solutions. However, it has some disadvantages.
n the one hand, maximizing modularity is an NP-hard prob-
em [12]. On the other hand, a large value of modularity does
ot necessarily indicates that the communities detected are real-
stic since, in some cases, random networks without community
tructure can present large modularity values [13]. Last but not
east, modularity has the well-known problem of resolution limi-
ation [14]. This problem refers to the fact that the maximization
f modularity is not able to reveal communities which are smaller
han a certain scale, depending on the network size and on the
egree of connections among real communities.
Most of the previous works are focused on the single-objective

ariant of the CDP (see for instance [15,16]). However, it may be
nteresting to consider more than one objective at the same time
ince it could lead us to find new and more reliable communities
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Fig. 1. Example of two different solutions for the CDP over an example network.
n the networks. In a multi-objective optimization problem, two
r more objectives are in conflict with each other, which means
hat improving one of the objectives usually leads to deteriorate
he other objectives. Therefore, there is not a single solution with
he optimal value in all the considered objectives. The main goal
n multi-objective programming is to find a set of non-dominated
olutions.
This work tackles the CDP from a multi-objective perspective,

esulting in the Multi-Objective Community Detection Problem
MOCDP). In particular, two conflicting objectives are considered:
egative Ratio Association (NRA) and Ratio Cut (RC). The former
easures the percentage of intra-community edges that exists
ith respect to the size of the community, while the latter eval-
ates the percentage of inter-community edges in a community
ith respect to its size. In mathematical terms, NRA and RC of a
luster i are defined as:

RA(Ci) = −
E◀(Ci)
|Ci|

RC(Ci) =
E▶(Ci)
|Ci|

Similarly, the NRA and RC of a complete solution C are defined
s:

RA(C) =
∑
Ci∈C

NRA(Ci) RC(C) =
∑
Ci∈C

RC(Ci)

being c the number of communities in the corresponding solu-
tion.

Following these definitions, a solution with small NRA and RC
values presents a good community structure. These two metrics
were proven to be in conflict in [17]. Analyzing the objective
functions independently, optimizing only NRA usually results in
solutions with small communities which are densely connected,
while focusing only in RC leads us to obtain solutions with large
communities. Notice that, dealing with both metrics simultane-
ously, allows us to overcome the drawbacks of each metric when
considered independently. The MOCDP is focused on minimizing
both objectives, NRA and RC.

Let us illustrate how we can evaluate these two metrics by
considering the example introduced in Fig. 1. Specifically, for
solution C, we have:

NRA(C) = −
4
−

0
−

0
−

1
= −1.07
7 2 1 2
3

RC(C) =
11
7
+

6
2
+

2
1
+

5
2
= 9.07

Similarly, for solution C′:

NRA(C′) = −
7
5
−

3
3
−

4
4
= −3.4

RC(C′) =
2
5
+

2
3
+

2
4
= 1.57

As it can be derived from the equations, the best solution
with respect to both NRA and RC is C′, since it presents the
minimum values in both objective functions. Therefore, we can
also conclude that C′ dominates C.

3. Literature review

Community detection problems (CDP) have attracted the in-
terest of the scientific community in the last years, mainly due to
the relevance of the results derived from this research. It is possi-
ble to find relevant research works in the literature that describe
how community detection can be applied in real-world environ-
ments, thus finding an interesting utility for this area of research.
For example, some works use Community Detection techniques in
the area of cybersecurity, where the goal is to reduce the threats
over a certain cluster of actives using these techniques. As an
example, in [18] authors propose a modularity-based adaptive
algorithm applied to social-aware message forwarding strategy
in MANETs (Mobile Ad Hoc Networks) and worm propagation
containment in Online Social Networks. A different field in which
these algorithms could be useful is Business Intelligence and
Business Science, where certain topics can be modeled as a net-
work. For instance, in [19], we can find an application in business
science in terms of topological features and nodal attributes.

Other research field that focus the attention of the research
community is politics. In the last years there has been a huge
increase in the use of social networks for political purposes. In
this domain, there are two main problems that can be solved:
topic opinion and political polarization. The former refers to those
works whose goal is to understand what users think about a spe-
cific topic. The latter contains the works that try to align SN users
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ith the different political parties. An example of topic opinion
s [20] where authors tried to classify citizen’s voting intention
ased on the tweets published during the Scottish Independence
eferendum in 2014.
An example about political polarization, is the work published

y Borge-Holthoefer et al. [21]. In this work, authors analyzed the
ocial structure and the content of the tweets published by the
sers to understand the opinion evolution in Egypt during the
ummer of 2013. In this summer, there was a military takeover
hat resulted in an increase of polarized tweets but authors did
ot observe an ideological shift in the users.
In addition to the application domains, it is necessary to know

hich algorithms, or techniques, are the most popular for detect-
ng the communities. In this sense, it is important to highlight
hat community detection it is a complex problem that it is
ifficult to solve by using classical algorithms. For this reason, it is
eally common to find researchers that use heuristics algorithms,
nd more precisely, bioinspired techniques [22].
In the literature, exact methods devoted to solve the com-

unity detection problem can be found, although they are not
ery efficient in solving the problem when the networks to be
nalyzed are too large. However, recent works have been fo-
used on proposing new exact algorithms for dealing with large
etworks. Srinivas and Rajendran [23] propose a mathematical
odel for finding community structure on influential nodes, test-

ng it in large scale networks. Although the performance is close
o the state of the art, it is not able to reach a solution for
etworks with 115 nodes in a time limit of six hours, high-
ighting the relevance of using heuristic approaches. In the same
ay, Alinezhad et al. [24] propose a mathematical formulation

or solving the community detection problem in attributed net-
orks, considering both topological and node attributes. They

imit the computing time to 7200 s for the exact procedure, since
t is not able to converge in a reasonable computing time. The
omputational requirements of the exact procedures confirms the
ecessity of considering heuristic approaches for obtaining high
uality solutions in small computing times.
In the area of bioinspired computation, evolutionary

pproaches are the most popular. It is important to highlight the
eview performed by Pizzuti in [25] about Evolutionary Com-
utation (EC) techniques to detect communities in networks.
n interesting work about EC is the work published by Said
t al. [26], where authors designed a clustering coefficient-based
enetic algorithm able to detect cohesive groups from dense
raphs and also, communities in sparse networks. Other rele-
ant work is [27] that presents a genetic algorithm that uses a
ulti-individual ensemble learning-based crossover function. The
lgorithm is improved with a local search strategy to speed up the
onvergence.
Other well-known bioinspired algorithms are the ones belong-

ng to swarm intelligence. In this new group, the most popular
lgorithms are Particle Swarm Optimization (PSO) and Ant Colony
ptimization (ACO). These two algorithms are inspired by the
ocial behavior of birds within a flock, and the behavior of ants
eeking a path from the nest to the source of food, respectively.
SO has been successfully used for CDP in [28], where a discrete
SO algorithm is used to extract the communities in large-scale
ocial networks by optimizing the modularity. Regarding ACO
lgorithm, this algorithm has been used to extract high-quality
ommunities in Ego Networks [16].
All these works face the CDP from a single-objective per-

pective, usually considering modularity as optimization criterion
see [29] for a recent and complete survey on CDP). As far as we
now, the most recent approach for solving the single objective
DP considering a metaheuristic framework is presented in [15].

n particular, the authors propose a Greedy Randomized Adaptive

4

Search Procedure devoted to maximize the modularity of the
communities detected.

Nevertheless, there are other works that try to solve the
CDP by optimizing a multi-objective function (MOCDP). Multi-
objective optimization has evolved in the last years with novel
approaches for generating robust approximations of the Pareto
front. For instance, [30] proposes a novel interactive preference-
based multi-objective evolutionary algorithm for designing a
bolt supporting network, while [31] presents a dynamic ro-
bust multi-objective optimization method for solving problems
where the time is a key factor. The rationale behind following a
multi-objective approach in CDP is that the optimization metrics,
traditionally considered isolatedly, always have one or more
handicaps, resulting in the loss of information related to the
community structure. The MOCDP emerges as a possible solution
for this problem, considering two or more metrics simultaneously
for improving the community detection in a social network.
The goal in this case is to find the different communities of
a network by considering different conflicting objectives to be
optimized [32]. Most of the works are focused on adapting well-
known evolutionary algorithms such as NSGA-II to solve different
multi-objective community detection problems. An evolutionary
algorithm based on decomposition [33] is designed for maximiz-
ing the density of internal degrees while minimizing the density
of external degrees. Another evolutionary algorithm for solving
MOCDP is presented in [34], considering as objective functions
the maximization of the intra-link strength of the communities
and the minimization of the inter-link strength, which are very
similar to those considered in [33]. Finally, another bioinspired
algorithm, based on enhanced firefly methodology is presented
in [35], which maximizes the in-degree of the nodes in each com-
munity while minimizing their out-degree. Notice that, although
each previous work considers different objective functions, they
are very similar among them, focusing on locating in the same
community the most connected nodes. As far as we know, [17]
presents the most recent multi-objective approach for solving the
MOCDP, considering the NRA and RC metrics previously defined.

4. Algorithmic approach

Heuristic algorithms are designed for reaching a local opti-
mum in short computing times. However, they usually stagnate
in those local optima, reducing the portion of the search space
explored. Metaheuristic algorithms emerge as a solution to over-
come this situation by guiding the search of the heuristic method,
thus reaching further regions of the search space [36].

This paper presents a metaheuristic algorithm based on the
Variable Neighborhood Search (VNS) [6] framework. VNS
methodology was originally designed to escape from local optima
by performing systematic changes of neighborhood. It is worth
mentioning that, as a metaheuristic approach, it cannot guarantee
the optimality of the obtained solutions.

The effectiveness of VNS methodology has lead the scientific
community to develop several variants, which can be classified
according to the balance between diversification and intensifica-
tion. On the one hand, Reduced VNS (RVNS) [37,38] is focused in
diversification, considering stochastic changes of neighborhoods.
On the other hand, Variable Neighborhood Descent (VND) [39,40]
is devoted to intensification by performing deterministic changes
of neighborhoods. Finally, Basic VNS (BVNS) [41] arises as a com-
promise between intensification and diversification by combining
stochastic and deterministic changes of neighborhoods. As a re-
sult of the success of the methodology, several new variants have
been proposed: General VNS (GVNS) [42], Variable Neighborhood
Decomposition Search (VNDS) [43], Skewed VNS (SVNS) [44], or
Variable Formulation Search (VFS) [45], among others.
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VNS methodology was originally designed for tackling sin-
gle objective optimization problems. Recently, the VNS frame-
work has been also adapted for dealing with multiobjective prob-
lems [7]. Multi-objective VNS has lead to several recent successful
research, emerging as one of the most robust methodologies in
the area [8,46]. In this work, we adapt the multi-objective VNS
presented in [7] for solving the multi-objective community detec-
tion problem, focusing in the BVNS variant (MOBVNS). Algorithm
1 presents the general framework of MOBVNS.

Algorithm 1 MOBVNS (S, kmax)
1: k← 1
2: while k ≤ kmax do
3: S ′ ← Shake(S, k)
4: S ′′ ← Improve(S ′)
5: k← NeighborhoodChange(S, S ′′, k)
6: end while
7: return S

The algorithm starts from an initial set of non-dominated
olutions denoted with S. In the context of VNS, the initial front
an be generated either at random, or using a more elaborated
onstructive procedure. In our case, this initial set is generated
ith the Greedy Randomized Adaptive Search Procedure (GRASP)
escribed in Section 4.1. The second input parameter of the
OBVNS algorithm is the maximum neighborhood to be explored
uring the search, kmax. As stated in previous works [47], the
aximum neighborhood to be considered in the VNS algorithm

s usually small, to avoid exploring completely different solutions
n each iteration, which will eventually lead to a multi-start
pproach.
The algorithm starts by considering the neighborhood k = 1

(step 1). Then, MOBVNS iterates until reaching the maximum
neighborhood kmax (steps 2–6). In each iteration, a perturbed set
of solutions S ′ is generated with the shake method presented in
Section 4.2. Then, S ′′ is created as the set of non-dominated solu-
tions derived from applying the local search method introduced
in Section 4.3 to each solution contained in S ′ to reach a local
optimum of each perturbed solution. Finally, the neighborhood
change procedure (Section 4.4) is responsible for selecting the
next neighborhood to be explored.

The traditional neighborhood change method inside single-
objective VNS restarts the search from the first neighborhood
(k = 1) every time an improvement is found. Otherwise, the
search continues in the next neighborhood (k = k + 1). In
the context of multi-objective optimization, the definition of im-
provement is slightly modified. Specifically, neighborhood change
method considers that an improvement is found if a solution has
been able to enter in the set of non-dominated ones.

The algorithm ends when no improvement for the set of
non-dominated solutions is found in any of the neighborhoods
(i.e., the algorithm has not been able to insert a new solution in
it), returning the resulting set of non-dominated solutions.

4.1. Generation of the initial set of non-dominated solutions

The main objective of a good constructive method in a multi-
objective problem is to generate a front with high quality solu-
tions (i.e, those that are non-dominated) while maintaining the
diversity among them. With this aim, we propose a constructive
procedure based on the Greedy Randomized Adaptive Search Pro-
cedure (GRASP). This metaheuristic is originally presented in [48]
and formally defined in [49] which consists of two different
phases: construction and local search. We refer the reader to [50]
5

for a recent survey on this methodology and some extensions
recently studied.

In this paper, we only consider the first stage (i.e., the con-
struction phase) of the GRASP to populate an initial set of non-
dominated solutions. Algorithm 2 shows the associated pseudo-
code. This procedure starts by creating one community for each
node in the network (step 1) and initializing the set of non-
dominated solutions S with it (step 2). The next step corresponds
to compute all the possible new communities that can be created
by merging two of the existing ones, creating a Candidate List (CL)
with them (step 3).

Algorithm 2 Construction (G = (V , E), α).
1: C← {C1, C2, . . . , Cn : Ci = {vi}, vi ∈ V ∧ 1 ≤ i ≤ n}
2: S← {C}
3: CL← {

⟨
Ci, Cj

⟩
,∀Ci, Cj ∈ C, 1 ≤ i < j ≤ n}

4: while |CL |> 1 do
5: gmin ← min⟨Ci,Cj⟩∈CL g(Ci, Cj)
6: gmax ← max⟨Ci,Cj⟩∈CL g(Ci, Cj)
7: µ← gmax − α · (gmax − gmin)
8: RCL← {

⟨
Ci, Cj

⟩
∈ CL : g(⟨Ci, Cj⟩) ≥ µ}

9: ⟨Ci, Cj⟩ ← Random(RCL)
0: C←

(
C \ {Ci, Cj}

)
∪ (Ci ∪ Cj)

1: CL← {
⟨
Ci, Cj

⟩
,∀Ci, Cj ∈ S, 1 ≤ i < j ≤ n}

2: updateNDS(S, C)
3: end while
4: return S

Next steps are repeated until the CL contains a single candidate
(i.e., there are only two communities in the solution). In each
iteration, all the candidates are evaluated under a certain greedy
criterion g (steps 5 and 6). Then, these two values are used to
define the threshold µ (Line 7) that depends on the parameter
α ∈ [0, 1], which controls the randomness/greediness of the
method. On the one hand, when α = 0, µ = gmax and only
those communities with maximum value of the greedy function
are included in the Restricted Candidate List (RCL). On the other
hand, if α = 1, µ = gmin, all the communities are included in the
RCL and then the algorithm becomes totally random. Therefore,
the threshold defines the size of the RCL because only the most
promising candidates of CL will belong to RCL (step 8). Once
the RCL is constructed, an entry is randomly selected (step 9),
specifying the two communities that will be merged (step 10).

Then, the algorithm updates the CL (step 11), by removing all
the pairs in which the two communities that have been merged,
Ci and Cj, were involved, and including a new candidate to merge
the new community created Ci ∪ Cj with every other community
in the solution (step 11). Finally, the resulting community is
evaluated to be considered in the set of non-dominated solutions
(step 12).

In order to define whether two given communities (i.e. Ci
and Cj) should be merged, the algorithm uses a greedy function
denoted as g(Ci, Cj). This function takes into account the number
of edges that starts and ends in nodes belonging to Ci and Cj, and
the size of the resulting community (Eq. (1)).

g(Ci, Cj) =
|{(u, v) ∈ E ∀u, v ∈ Ci ∪ Cj}|

|Ci ∪ Cj|
(1)

Although the construction phase is based on the greedy algo-
rithm, the multi-objective optimization is used when the built
solution has to be included in the reference front. Not all con-
structed solutions are finally included in the approximation of
the pareto front but only those that are non-dominated solutions
according to Negative Ratio Association (NRA) and Ratio Cut (RC).
It is worth mentioning that a solution is non-dominated if it is
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etter than other solution already in the front in any of the two
bjectives. When a non-dominated solution is included in the
ront, all those solutions that are dominated by the new one are
emoved.

.2. Perturbing solutions for the CDP

The Shake procedure is responsible for escaping from local
optima within the VNS framework. In order to do so, the method
resorts to a random solution in the neighborhood of the solution
under exploration. In order to properly adapt this method to the
context of multi-objective optimization, it is needed to previously
define a basic movement of MOCDP, which consists in removing
a vertex v from its current community, say for instance Cj, and
inserting it in a different community, for example Ci, with i ̸= j.
More formally, given a solution C = {C1, C2, . . . , Cc}, a vertex
v ∈ Cj ⊂ V , and a community Ci, with i ̸= j:

Move(C, v, Ci) =
{
Ci ← Ci ∪ {v}

Cj ← Cj \ {v}

The neighborhood of a solution is defined as the set of so-
lutions that can be reached by performing the aforementioned
move. Specifically,

N(C) = {C← Move(C, v, Ci) : ∀v ∈ V \ Ci ∧ 1 ≤ i ≤ c}

We rely on this definition to introduce the neighborhood
Nk(C). In particular, Nk(C) is conformed with the set of solutions
that can be obtained when performing exactly k consecutive basic
moves to C.

Notice that solution C′ obtained in the neighborhood Nk of
solution C is usually worse than C (in terms of objective functions
value). However, the main objective of the Shake method is to es-
cape from local optima, continuing the search from a completely
different region of the search space. Additionally, all the solutions
explored in the Shake methods are guaranteed to be feasible,
being unnecessary to check the constraint of the problem, which
is one of the most time consuming parts of the algorithm.

The output solution obtained in a Shake procedure is not
necessarily a local optimum with respect to the defined neighbor-
hood and, therefore, the local search method is applied to locally
optimize the newly generated solution.

4.3. Local optimization

Population-based metaheuristics (i.e., Genetic Algorithms, Par-
ticle Swarm Optimization, Differential Evolution, etc.), are ex-
tended in the multi-objective context since they consider a set
of solutions, which can be easily identified with the efficient
set. Symmetrically, trajectory-based metaheuristics (VNS, Tabu
Search, Simulated Annealing, etc.), use only one solution. It is
possible to overcome this situation by considering the whole
set of non-dominated solutions as the incumbent solution to a
multi-objective problem [7].

We propose in this paper an improvement procedure (see step
4 in Algorithm 1) that receives the perturbed set of solutions,
obtained with the Shake method, and returns a locally optimal
set. Specifically, this method randomly scans each solution and
then improves it with a local search algorithm. We consider two
different strategies that follow the first improvement approach,
which means that the search will restart when an improvement
in the current solution under evaluation has been found.

Both strategies try to optimize NRA and RC of each solution,
but they differ in the way that these two objectives are con-
sidered. The first strategy, named Independent Search Procedure
(ISP), independently improves each objective starting from the

very same solution (in the reference front). The second strategy is

6

called Combined Search Procedure (CSP) since both metrics (NRA
and RC) are alternatively considered in the procedure.

Algorithm 3 shows a general scheme of the improvement
method that needs to be particularized for each strategy. Specifi-
cally, this method considers a generic objective function denoted
with f . On the one hand, the first local search strategy takes into
account f (C) = NRA(C) and then f (C) = RC(C). On the other hand,
the second strategy alternatively takes in each iteration of the
while-loop either f (C) = NRA(C) or f (C) = RC(C). After finishing
ny of the two local search strategies, non-dominated solutions
ound are tested to be admitted (or not) in the reference set.

Algorithm 3 Improve (C = {C1, C2, . . . , Cc}, S)
1: Improve← True
2: while Improve do
3: Improve← False
4: for Ci ∈ C do
5: for v ∈ V \ Ci do
6: S ′ ← Move(C, v, Ci)
7: updateNDS(S, C′)
8: if f (C′) < f (C) then
9: C← C′

10: Improve← True
11: Restart the search at step 3
12: end if
13: end for
14: end for
15: end while

Algorithm 3 receives as input parameter a solution. For the
sake of brevity, we omit the inclusion of either NRA and RC as
input parameter since they are generalized by the function f . The
ethod iterates over all the communities and vertices (steps 4–
4). In each iteration, we evaluate the impact of moving v from
ts current community to a different one in the solution under
valuation. In order to do so, we use the defined Move(C, v, Ci),

see step 6. The procedure tries to include the neighbor solution in
the reference front by using the procedure updateNDS (step 7). It
basically tests whether C′ is dominated by other solution belong-
ing to S. If so, the efficient front remains unaltered; otherwise,
C′ is included in S, removing those solutions in S that become
dominated.

After that, if an improvement is found with respect to the
criteria under evaluation (either NRA and RC), the incumbent
solution is updated and the search restarts again. The method
ends when no improvement is found. It is worth mentioning
that no return is needed since step 7 already includes all the
non-dominated solutions found during the search.

The local optimization process in a multi-objective optimiza-
tion problem is usually designed to simultaneously optimize all
the considered objectives. In the context of MOCDP, we pro-
pose two different local optimization strategies: Combined Search
Procedure (CSP) and Independent Search Procedure (ISP).

The first one, CSP, follows the traditional approach, where
the two considered objectives are optimized at the same time.
Specifically, each iteration of the local search method, presented
in Algorithm 3, is focused on optimizing either NRA or RC. In par-
ticular, the even iterations finds a local optimum with respect to
NRA, while the odd iterations focuses on finding a local optimum
with respect to RC.

The second method, ISP, follows a different criterion with the
aim of finding better solutions for each objective. In particu-
lar, each solution is optimized with each considered objective,
i.e., NRA and RC, as in a single-objective optimization problem.
In other words, given a certain solution, the ISP finds a local
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ptimum with respect to NRA and then with respect to RC,
tarting from the same initial solution. All the solutions found
uring the optimization process are evaluated to be included in
he set of non-dominated solutions.

The termination criterion for both, ISP and CSP, is the same:
he search stops when no new non-dominated solutions have
een found after a complete execution of the local optimization
ethod.

.4. Neighborhood change

The main objective of the Neighborhood Change method
ithin VNS is the selection of the next neighborhood to be
xplored. In the context of single objective optimization, the
eighborhood Change method usually receives three input pa-
ameters: the best solution found so far, the candidate solution
o be evaluated, and the current neighborhood being explored (k).
hen, it verifies whether the incumbent solution outperforms the
est one. If so, the search is restarted from the first neighborhood,
pdating the best solution found so far. Otherwise, the search
ontinues in the next neighborhood.
The Neighborhood Change method has been adapted to the

ulti-objective nature of the problem considered in this work.
he most significant modification affects to the concept of im-
rovement. In particular, we introduce the method isNotDomi-
ated in charge of comparing two non-dominated set of solutions.
lgorithm 4 illustrates the pseudo-code of this procedure. It tests
hether points in S ′ are dominated, or not, by any point in S. If

there is at least one non-dominated point in S, then the method
returns True; otherwise (i.e., all points in S are dominated), it
returns False.

Algorithm 4 isNotDominated (S ′, S)

1: for all C ∈ S ′ do
2: if (C /∈ S ∧ ¬Dominated(C, S ′) then
3: return True
4: end if
5: end for
6: return False

The pseudo-code of the Neighborhood Change method is
hown in Algorithm 5. The input parameters are now the current
est non-dominated set S ′, the reference front under evalua-

tion S, and the neighborhood under exploration (k). As it was
aforementioned, the most significant modification affects to step
1. The second relevant modification consists in updating the
non-dominated set of solutions by merging S ′ and S with the pro-
cedure updateNDS (step 2). See Section 4.3 for further details. As
it is customary in this method, if we do not find an improvement,
the search continues in the next neighborhood (step 5).

Algorithm 5 NeighborhoodChange (E⋆, E, k)

1: if isNotDominated(E⋆, E) then
2: updateNDS(E⋆, E)
3: k← 1
4: else
5: k← k+ 1
6: end if
7: return k
7

4.5. Computational complexity

In this section, the computational complexity of each com-
ponent is analyzed and, then, the complete complexity of the
proposed algorithm is computed. First of all, it is necessary to
evaluate the cost of generating the initial non-dominated set of
solutions with the constructive procedure. Analyzing the pseu-
docode presented in Algorithm 2, the complexity of constructing
the candidate list CL is O(n2), since it requires to traverse the
omplete set of communities (initially one community per node)
nd, then, to create a candidate community to be merged with ev-
ry other community. Notice that when the construction evolves,
he number of available communities is reduced since it merges
wo communities in each iteration. Also, as this construction is
ncluded in a while loop until the CL contains a single community,
he computational complexity is bounded O(n3).

We now compute the complexity of the local optimization
ethod presented in Algorithm 3. In each iteration of the local
earch procedure, the method needs to traverse all the nodes,
esulting in a complexity of O(n). Each node is evaluated to enter
n every other community, resulting in a complexity of O(n) (in
the worst case, there is a community for each node). A naive
implementation of the move operator would result in a com-
plexity of O(m), since updating the inter and intra-community
edges requires to evaluate every edge after performing the move.
However, the proposed algorithm leverages the data structure
called UnionFind, which basically assigns a representative node
for each community in such a way that the evaluation of the mod-
ifications in inter and intra-community edges can be performed
in O(1). Therefore, the computational complexity of each iteration
of local search procedure is bounded by O(n2) instead of O(n2

·m)
which would be obtained by the naive implementation. Since the
local search is executed while an improvement is found, it is not
possible to determine the complexity of the complete method
since it highly depends on how close to a local optimum is the
input solution.

The perturbation method presented in Section 4.2 again lever-
ages the UnionFind structure to reduce complexity, which is
bounded by O(k), since k moves are performed, being the com-
lexity of each move O(1).
Finally, the complexity of the complete VNS algorithm is com-

uted. As it was aforementioned, the complexity of generating the
nitial front is bounded by the maximum between the construc-
ive, O(n3), and the local search procedure, O(n2) in each iteration.
his results in a complexity O(n3) for generating the initial front.
hen, k iterations are performed, where it is executed a shake
rocedure, with a complexity of O(k), a local improvement, with
complexity of O(n2) in each iteration, and the neighborhood

hange method which presents a complexity of O(1) since it
nly requires to select the next neighborhood to be explored.
herefore, the complexity of the complete algorithm is O(k) ·
ax{O(n3),O(n2),O(1)} = O(k · n3).

. Experiments and results

In this section we will expose the experiments performed
o test the effectiveness and efficiency of the proposed algo-
ithm and to compare it with the best method found in the re-
ated literature [17]. All algorithms are executed over two differ-
nt datasets: synthetic and real-world networks. For the former,
e have used the network generator developed by Lancichinetti
t al. [51] to construct synthetic instances,1 where the node
egree distribution and the community size follow a power-law
ighly configurable. The main advantage of these instances is

1 Lancichinetti, Fortunato, and Radicchi (LFR) networks.
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hat the optimal ground truth for the community structure is
nown by construction. We have considered different configura-
ions for the network generator and we have generated different
etwork instances for each configuration (totalizing 52 different
etworks). In particular, we have considered networks with a
ange from 500 to 7500 nodes, and the edge probability p is
efined as p ∈ [0.1, 0.8] with an interval of 0.1 for instances with
00, 1000 and 5000 nodes, and as p ∈ [0.1, 0.3] with an interval
f 0.1 for instances with 5500 to 7500 nodes.
To complement these instances, we additionally consider 12

eal-world networks: Zacharys karate club [52] (32 nodes and 78
dges), dolphin social network [53] (64 nodes and 159 edges),
merican college football [54] (115 nodes and 613 edges), jazz
55] (with 198 nodes and 2742 edges), and netscience [56,57]
1589 nodes and 2742 edges), facebook large page-page net-
ork [58] (22570 nodes and 171002 edges), and the set of Twitch
ocial Networks [58] (with number of nodes in range from 1912
o 9498 and edges in range from 31299 to 153138). Notice that
he ground truth for karate, dolphin, and football networks are
nown beforehand.
The computational experiment is divided into two different

hases: on the one hand, we carry out a set of preliminary
xperiments to tune the parameters of our algorithms. In these
xperiments a subset of all instances will be used (18 out of
2), with the aim to avoid the overfitting of the algorithm. On
he other hand, we run the final experiments over the whole
enchmark to compare our best identified method with those
resented in the state of the art. We additionally compare the
roposed MOBVNS with the most extended algorithms for solving
he CDP following a single-objective approach, with the aim of
valuating the relevance of modeling the CDP as a multi-objective
ptimization problem.
For sake of fairness, we have executed both algorithms with

time limit of 1800 s. Both algorithms have been executed in a
omputer with an AMD Ryzen 5 3600 AM4 core (3.6 GHz) with
6GB RAM. All algorithms were implemented using Java 9. With
he aim of facilitating further comparisons, the dataset and the
ource code of the proposed algorithm are publicly available at
ttp://grafo.etsii.urjc.es/mocdp.

.1. Multi-objective metrics

In this paper, we deal with the variant of the Community
etection Problem, where the Negative Ratio Association (NRA)
nd Ratio Cut (RC) are optimized simultaneously. Notice that
hese two objectives have been already proven that are in conflict.
hen, in order to compare the performance of the proposed
lgorithms we use metrics that evaluate the quality of an approx-
mation of the Pareto front. Specifically, we have considered four
f the most extended multi-objective metrics [59]: coverage, hy-
ervolume, ϵ-indicator, and inverted generational distance. Given
wo non-dominated set of solutions (S and S ′), the coverage
etric, CV (S, S ′), evaluates the number of solutions within the ap-
roximation front S that are dominated by solutions in S ′. In our
xperiments, we evaluate the quality of S derived from an specific
lgorithm with respect to a reference set constructed with all
on-dominated solutions found with all algorithms tested in the
orresponding experiment. Given this definition, the smaller the
alue, the better. For the sake of brevity, we denote CV (S, S ′) as
V , being S the set of non-dominated solutions under evaluation
nd S ′ the reference set (as indicated above).
The hypervolume metric, HV , measures the size of the space

overed by the set of non-dominated solutions. In other words, it
omputes the hypervolume of the portion of the objective space
hat is weakly dominated by an approximation front. Then, large
alues of HV implies that the set of non-dominated solutions
btained with the algorithm is better.
8

The ϵ-indicator, EPS(S, S ′), evaluates the smallest distance
needed to transform every point of the approximation front under
evaluation (S) in the closest point of the reference set S ′ (equiv-
alent to the coverage metric). Therefore, if we obtain low values
of ϵ-indicator, it indicates that the reference front generated by
the algorithm under evaluation is better than others. As indicated
above, we denote EPS(S, S ′) as EPS.

Finally, the inverted generational distance, IGD+(S, S ′), is an
nversion of the well-known generational distance metric with
he aim of measuring the distance from the incumbent set of
on-dominated solutions (S) to the reference set obtained during
he experiment (S ′). Therefore, small values of IGD+ indicate a
igh proximity to the reference front, which is better. Finally,
he computing time of all the algorithms is also presented, with
he aim of evaluating the efficiency of the procedures. As it was
forementioned, we simplify the notation of IGD+(S, S ′) as IGD+.

.2. Context-based metrics

In social network analysis, there exists two popular perfor-
ance metrics usually referred to as normalized mutual infor-
ation (NMI) [60] and the modularity (Q) [10]. NMI requires

or a ground truth since it evaluates the difference between the
ommunity structure detected for the incumbent algorithm and
he true one. It is worth mentioning that the ground truth is
nown by construction for all LFR instances. Additionally, it is also
vailable for karate, dolphin, and football instances.
The modularity can be evaluated in any network since it does

ot depend on the ground truth. This metric compares the struc-
ure of the communities against a random graph. More precisely,
his metric measures how likely the communities are created at
andom. For this reason, modularity metric is particularly useful
or real-world instances such as jazz or netscience, where the
round truth is unknown.
Notice that we are dealing with a multi-objective optimiza-

ion problem. Therefore, instead of having a single solution, we
ave a set of non-dominated solutions. In order to provide a
alue of either NMI or Q, we follow the methodology proposed
n [17]; i.e., to traverse the complete front finding the solution
hat presents the largest value in each metric. It implies that
he solution that reaches the best Q value is not necessarily the
ne that provides the best result in terms of Normalized Mutual
nformation (NMI).

.3. Preliminary experimentation

The first experiment is oriented to determine the best value
f the α parameter (see Section 4.1). In particular, we test α =

0.25, 0.50, 0.75, RND}, where RND indicates that the value is
elected randomly in the range [0, 1] for each construction. These
alues cover from an almost greedy constructive method to a
emi-random one. For each instance used in this experiment,
e execute the constructive algorithm for 100 independent it-
rations, returning the best solution found. Table 1 shows the
ssociated results, where we report average values across the
ubset of preliminary instances for the CV , HV , EPS, and IGD+.
e additionally include the average computing time required by

he algorithms (column T (s)).
In view of these results, the best configuration of the con-

tructive method is the one that uses α = 0.25. In particular,
ased on the results obtained for the coverage metric, we can
ffirm that most of the points in the reference front also belong
o the constructive method executed with a α = 0.25. Also,
he hypervolume metric (HV ) is larger than the one attained
ith the other approaches, though it is closely followed by the
onstructive method configured with RND. The same occurs with

http://grafo.etsii.urjc.es/mocdp
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able 1
omparison of the reference front built by the constructive procedure with
ifferent values for the α parameter. Best results are highlighted with bold
ont.
α CV HV EPS IGD+ T (s)

0.25 0.38 0.73 0.05 0.01 119.04
0.50 0.81 0.68 0.09 0.04 123.04
0.75 0.81 0.59 0.18 0.13 170.30
RND 0.65 0.71 0.05 0.02 117.06

Table 2
Comparison of the reference front obtained with the local search procedures
designed in this work. Best results are highlighted with bold font.
Algorithm CV HV EPS IGD+ T (s)

C(0.25)+ISP 0.14 0.70 0.03 0.00 117.99
C(0.25)+CSP 0.81 0.45 0.43 0.23 116.86

Table 3
Comparison of the reference front obtained with different values of k for the
MOBVNS method. Best results are highlighted with bold font.
kmax CV HV EPS IGD+ T (s)

0.1 0.71 0.71 0.07 0.03 118.76
0.2 0.67 0.72 0.06 0.02 118.43
0.3 0.66 0.72 0.05 0.02 119.14
0.4 0.67 0.72 0.07 0.02 122.75
0.5 0.68 0.72 0.06 0.01 123.80

the ϵ-indicator, with α = 0.25 the solutions provides the smallest
alue in the comparison, and the RND value is the second best
pproach. Regarding the inverted generational distance, α = 0.25
gain obtains the best results, closely followed by RND. Analyz-
ng the computing time, we can clearly see that there are no
ifferences among all considered variants, as expected.
Once we know what the best configuration for our construc-

ive method is, we conduct an additional experiment to deter-
ine the performance of the proposed local search algorithms.
rom now one, we will refer to constructive algorithm with α =

.25 simply as C(0.25). The results of the metrics obtained with
oth local search approaches (described in Section 4.3) are shown
n Table 2.

As we can clearly see, the ISP performs better in this problem.
pecifically, with respect to IGD+, coupling the ISP with the best
ersion of our constructive method lead the algorithm to find
n efficient set of solutions which is much closer to the refer-
nce front than CSP. Attending to hypervolume, we can see that
SP obtains a considerably larger value than the second variant.
nalogously, the ϵ-indicator is also the smallest one in the com-
arison, being heavily smaller than its competitor. Although the
omputational time required by CSP is smaller than ISP, there
s not significant differences between these two procedures, and
he great results obtained by ISP with the other metrics clearly
ustifies the choice of ISP.

In the next experiment, we test the best k value for the
OBVNS algorithm. Table 3 shows the obtained results for each
onfiguration of the algorithm.
Analyzing these results, we can see that all of them are quite

imilar, becoming difficult to choose the best value for kmax pa-
ameter. In particular, the hypervolume metric is not determinis-
ic since almost all the variants report the same value. However,
he coverage and ϵ-indicator metrics suggest that the best value
s kmax = 0.3. Additionally, we can clearly see that the larger the
alue of kmax, the more computationally demanding. Therefore,
e select kmax = 0.3 as the best value for the MOBVNS algorithm.
For the sake of brevity, we refer with MOBVNS as the multi-
bjective VNS variant that uses C(0.25), ISP, and kmax = 0.3.

9

able 4
omparison of the reference fronts obtained when applying the constructive
ethod and when coupling it with the local search procedure ISP. Best results
re highlighted with bold font.
Algorithm CV HV EPS IGD+

C(0.25)+ISP 0.03 0.67 0.00 0.00
C(0.25) 0.89 0.31 0.61 0.39

Table 5
Comparison of the reference front obtained with full MOBVNS framework and
MOBVNS framework without Local Search Procedure. Best results are highlighted
with bold font.
Algorithm CV HV EPS IGD+

MOBVNS 0.28 0.63 0.17 0.10
MOBVNS (without ISP) 0.29 0.48 0.42 0.11

5.4. Analysis of the effect of each component of the proposed algo-
rithm

This section is devoted to clarify the contribution of each
component of the algorithm in the final configuration. The algo-
rithm is conformed with three main components: constructive
procedure, local improvement method, and the combination of
both of them in the VNS framework.

The first experiment is designed to evaluate the effect of the
local search procedure over the results obtained by the construc-
tive procedure isolatedly. Table 4 shows the results obtained in
this experiment.

As it can be seen, the use of a local search procedure af-
ter constructing an initial non-dominated front with construc-
tive method significantly improves the quality of the final non-
dominated front obtained. In particular, the coverage of 0.03
obtained when coupling the constructive procedure with the local
search method indicates that almost all the initial solutions are
improved, while the value of 0.89 obtained by the constructive
procedure indicates that almost all the initial solutions are dom-
inated by the ones obtained with the local search procedure.
The hypervolume, ϵ-indicator, and inverted generational distance
values supports these results.

The second experiment is intended to study the influence of
the local search procedure within the VNS framework. Table 5
shows the obtained results in this comparison.

In this case, the coverage metric is not determinant since both
algorithms present similar values, although considering the local
search obtains better results, as well as when considering the
inverted generational distance. However, analyzing the hypervol-
ume and the ϵ-indicator metrics, the relevance of the local search
inside the VNS framework is confirmed, being the variant with
local search twice better than the one without local improvement
phase. Therefore, adding an improvement method result in more
robust non-dominated sets of solutions.

Finally, having shown the relevance of the constructive and
local search procedure, it is interesting to evaluate the effect of
the initial front generated by GRASP algorithm in the final MOB-
VNS. In order to do so, the algorithm with GRASP for generating
the initial front is compared with the same VNS algorithm but
considering an initial random population of the reference front.
Table 6 show the results obtained in this comparison.

The results clearly show that the contribution of starting from
a good initial front to the final algorithm is justified. In particular,
the coverage is reduced to 0.00 when considering a GRASP gen-
eration of the initial front, and the hypervolume of the random
initial front is close to 0.00. Additionally, the ϵ-indicator also
onfirms the superiority of the GRASP initialization. If we analyze
he inverted generational distance, we can see that considering a
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able 6
omparison of the reference front obtained by the final proposed algorithm
hen considering an initial population generated with GRASP and Random
onstructions. Best results are highlighted with bold font.
Algorithm CV HV EPS IGD+

GRASP initial front 0.00 0.32 0.58 0.39
Random initial front 0.11 0.01 0.99 0.32

Table 7
Comparison of the reference front obtained with the best configuration for
MOBVNS and the LMOEA proposed by [17]. Best results are highlighted with
bold font.
Algorithm CV HV EPS IGD+ T (s)

MOBVNS 0.07 0.14 0.86 0.22 214.64
LMOEA 0.36 0.02 0.27 0.21 1800.00

random initial front provides more diversity, resulting in slightly
better results when considering this metric.

Therefore, the contribution of each component of the main
lgorithm (constructive procedure, local search method, and com-
lete VNS framework) is confirmed.

.5. Final experiments

Having made the necessary adjustment in the proposed algo-
ithm and having chosen the best parameters for each config-
ration of the procedure, we proceed to make the comparison
ith the best previous method found in the literature, denoted
s LMOEA [17]. To do this, we will execute both algorithms over
he full set of 62 instances. We first compare the obtained results
ith those metrics employed in preliminary experiments.
The parameter setting of LMOEA considers a population of 100

ndividuals, 100 generations, a crossover probability of 0.9, a mu-
ation probability of 0.1 and a neighborhood size of 40 (see [17]
or further details). Considering that we are comparing heuristics
lgorithms, we include an additional termination criterion based
n the maximum allowed computing time. Specifically, we fix
800 s as the maximum time spent in a single instance. If this
dditional termination condition is met, we halt the correspond-
ng algorithm, returning the best solution found during that time
orizon.
Table 7 shows the results obtained for the considered multi-

bjective metrics CV , HV , EPS, and IGD+ as well as the average
computational time required for each algorithm under evalua-
tion. Notice that the results of each metric is the average value
obtained across the complete set of 62 instances. Due to the
different sizes of the considered instances, all the metrics are
normalized in the range [0, 1] in the comparison.

As we can see, the proposed MOBVNS provides the best re-
sults in all four measures but IGD+, where the results are rather
similar. Analyzing the computational time, there is a significant
difference between the performance of both algorithms. Whereas
LMOEA spends the budget time of 1800 s for every instance under
evaluation, MOBVNS needs, in average, only 214.64 s, obtaining
higher quality solutions in considerably smaller computing times.

Once we have compared both methods using the classical
multi-objective metrics, we further analyze the quality of their
solution by considering the experimental framework described
in [17]. In particular, we first graphically depict the NMI for each
LFR instance.

In order to have more robust conclusions, both algorithms
were executed for 20 independent executions, reporting the aver-
age results. Fig. 2 shows these results for n = 500 and n = 1000,
where p varies from 0.1 to 0.8 in steps of 0.1. As we can observe in
this figure, MOBVNS presents high quality solutions for p < 0.5
 m

10
with values of NMI close to 1.0. As expected, for larger values
of p the behavior gets worse since these networks are harder to
be solved. LMOEA seems to be more stable in these instances,
ranging the NMI values from 0.55 to 0.7. Indeed, LMOEA is able
to outperform MOBVNS in p = 0.8 and n = 1000.

The value of p in the LFR generator indicates the average ratio
between inter-community edges and the total edges in the op-
timal community detection provided by construction. Therefore,
a large value of p results in communities with several edges to
nodes in other communities when comparing it with the total
number of edges of the considered community. This value leads
to networks which do not accurately represent real-world net-
works since, in them, the number of edges to nodes in other
communities is usually small.

For that reason, in the instances in which p ≥ 0.5, the number
f edges to other communities is considerably larger than the
umber of edges in the same community, resulting in networks
here the community structure is not necessarily preserved.
ince the MOBVNS is designed for detecting communities in
etworks that present community structure, the main ideas of
ts design are not useful for these special instances, presenting
imilar or even worse performance than LMOEA.
Notice that there exists a considerable performance difference

etween the results of LMOEA that we present in these figures
nd those reported in [17]. This discrepancy might come from the
act that we have considered an additional termination condition
i.e., 1800 s of CPU time), not allowing the algorithm to reach
he maximum number of generations. Indeed, in our computer,
MOEA is able to evolve the population for less than 50 gen-
rations (on average) in 1800 s, which is half of number used
n [17].

In the next experiment, we compare both algorithms over the
et of real-world instances. As it was aforementioned, the results
btained in this benchmark must be separated into two groups.
n the one hand, those where the ground truth is known and,
n the other hand, those where the ground truth is unknown.
herefore, for karate, dolphin, and football, we report NMI and Q.
hereas for jazz and netscience, we only show the Modularity.
We report in Table 8 the average NMI of 20 independent exe-

utions (and the associated standard deviation) for both, MOBVNS
nd LMOEA, over each instance. We additionally include the CPU
ime (notice that both algorithms were executed in the same
omputer). To facilitate the comparison, we additionally include
he NMI values published in [17], where the LMOEA is executed
or 100 generations (without time limit). As we can see in this
xperiment, MOBVNS obtains competitive results in all networks
y spending few seconds of computing time. It consistently finds
etter results than LMOEA (executed for 1800 s) and it is rela-
ively close to LMOEA executed without time limit. The standard
eviation smaller than 0.01 on average reached by MOBVNS
onfirms the robustness of the method, reaching the best values
r close to best in most of the executions.
We now show in Table 9 the modularity obtained with MOB-

NS and LMOEA when considering the whole set of real-world
etworks. As was aforementioned, the maximum CPU time is
imited to 1800 s. As before, we also include the results of LMOEA
eported in [17] where the authors did not consider any time
imit. We report for each network the average Q value of 20
xecutions. Notice that, in the case of LMOEA, no solutions are
enerated after 1800 s for two instances, which is indicated with
n asterisk in the corresponding cell of the table. The dashes in
he LMOEA [17] indicates that these are new instances which
ere not tested in the original work and, therefore, there are
ot results for them. This experiment again confirms the good
erformance of the proposed algorithm. As can be observed, our

ethod consistently produces better outcomes. The proposed
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Fig. 2. NMI for n = 500 and n = 1000 instances.
Table 8
Summary of the results of NMI metric obtained by the proposed MOBVNS and LMOEA when solving the real world
instances.
Instance LMOEA MOBVNS

Avg. NMI Avg. Time (s) Best NMI Best Time (s) Avg. NMI Avg. Time (s) Best NMI Best Time (s)

dolphin 0.050 1800.00 0.069 1800.00 0.751 0.41 0.770 0.11
football 0.020 1800.00 0.033 1800.00 0.864 1.80 0.877 0.27
karate 0.100 1800.00 0.100 1800.00 0.439 0.07 0.439 0.03
Table 9
Summary of the results of modularity metric obtained by the proposed MOBVNS and LMOEA when solving the real world
instances.
Instance LMOEA MOBVNS

Avg. Q Avg. Time (s) Best Q Best Time (s) Avg. Q Avg. Time (s) Best Q Best Time (s)

dolphin 0.059 1800.00 0.067 1800.00 0.728 0.41 0.736 0.11
football 0.029 1800.00 0.067 1800.00 0.789 1.80 0.827 0.27
karate 0.061 1800.00 0.069 1800.00 0.500 0.07 0.508 0.03
jazz 0.027 1800.00 0.027 1800.00 0.899 11.99 0.899 10.87
netscience 0.058 1800.00 0.058 1800.00 0.972 1800.00 0.972 1800.00
musae_DE 0.001 1800.00 0.012 1800.00 0.032 1800.00 0.043 1800.00
musae_ENGB – 1800.00 – 1800.00 0.095 1800.00 0.108 1800.00
musae_ES 0.001 1800.00 0.003 1800.00 0.067 1800.00 0.069 1800.00
musae_FR 0.001 1800.00 0.001 1800.00 0.030 1800.00 0.030 1800.00
musae_RU – 1800.00 – 1800.00 0.201 1800.00 0.201 1800.00
Table 10
Summary of the results obtained by the proposed MOBVNS and LMOEA when
solving the 62 instances considered in this work.
Algorithm #Best Q #Best NMI #Avg. Q Avg. NMI

MOBVNS 62 41 0.27 0.77
LMOEA 0 14 0.01 0.66

MOBVNS method reaches the best values of Modularity in the
5 considered networks. Indeed, only in netscience network, our
method spends the whole budget of CPU time. Again, the stan-
dard deviation is smaller than 0.01, confirming the robustness
of the proposal, which is able to reach the best value in most
executions and stay close to it in those cases in which the best
value is not found.

We summarize the results over the whole set of instances
n Table 10. Specifically, we report in this table, the number of
nstances in which each algorithm shows the best results using
he metrics just mentioned, as well as the average value of these
wo metrics.
11
As it can be seen in this table, taking into account Modularity
the proposed algorithm (MOBVNS) provides the best solution in
all the instances compared with LMOEA executed with a time
limit of 1800 s. Regarding the NMI, MOBVNS obtains the best
results in 41 out of 62 networks (66% of the instances). Analyzing
the average modularity and average NMI, MOBVNS provides again
better results as these mean values are higher.

In order to validate these results, we have conducted the
well-known non-parametric Wilcoxon statistical test for pairwise
comparisons, which answers the question: do the solutions gen-
erated by both algorithms represent two different populations?
We consider a typical level of significance of 1%. The result-
ing value is smaller than 0.0005 when comparing MOVNS with
LMOEA, confirming the superiority of the proposed algorithm.
Therefore, MOVNS emerges as one of the most competitive algo-
rithms for the MOCDP, being able to reach high quality solutions
in reduced computing times.

Finally, we have performed an additional experiment to val-
idate the results obtained by MOBVNS. In particular, we have
included in the comparison the most extended algorithms for
community detection in social networks, which are focused in
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Table 11
Comparative of MOBVNS Algorithm against other classical heuristic methods found in literature.

EB FG LP LE ML WT IM CL MOBVNS

1000_0.1_prev 0.011 0.014 0.011 0.021 0.012 0.011 0.011 0.012 0.450
1000_0.1network 0.433 0.428 0.433 0.273 0.433 0.433 0.433 0.433 0.454
1000_0.2_prev 0.009 0.018 0.009 0.025 0.009 0.009 0.009 0.009 0.435
1000_0.2network 0.385 0.367 0.385 0.221 0.386 0.385 0.385 0.386 0.428
1000_0.3_prev 0.007 0.024 0.007 0.054 0.008 0.007 0.007 0.008 0.396
1000_0.3network 0.339 0.319 0.339 0.220 0.340 0.339 0.339 0.340 0.414
1000_0.4_prev 0.008 0.035 0.008 0.019 0.009 0.008 0.008 0.009 0.369
1000_0.4network 0.285 0.277 0.290 0.186 0.293 0.290 0.290 0.293 0.407
1000_0.5_prev 0.006 0.041 0.009 0.038 0.009 0.006 0.006 0.009 0.391
1000_0.5network 0.176 0.230 0.241 0.141 0.246 0.240 0.241 0.246 0.411
1000_0.6_prev 0.004 0.048 0.019 0.027 0.011 0.010 0.007 0.011 0.357
1000_0.6network 0.086 0.203 0.197 0.154 0.204 0.188 0.193 0.204 0.386
1000_0.7_prev 0.004 0.054 0.249 0.068 0.017 0.032 0.249 0.017 0.311
1000_0.7network 0.040 0.169 0.249 0.144 0.150 0.126 0.249 0.150 0.317
1000_0.8_prev 0.047 0.054 0.249 0.065 0.023 0.039 0.249 0.023 0.275
1000_0.8network 0.057 0.158 0.249 0.142 0.125 0.089 0.249 0.125 0.272
500_0.1_prev 0.023 0.023 0.023 0.020 0.023 0.023 0.023 0.023 0.446
500_0.1network 0.419 0.414 0.419 0.325 0.419 0.419 0.419 0.419 0.424
500_0.2_prev 0.020 0.026 0.020 0.039 0.020 0.020 0.020 0.020 0.411
500_0.2network 0.376 0.367 0.376 0.235 0.376 0.376 0.376 0.376 0.432
500_0.3_prev 0.017 0.028 0.020 0.061 0.017 0.017 0.017 0.017 0.378
500_0.3network 0.330 0.323 0.329 0.219 0.330 0.330 0.330 0.330 0.382
500_0.4_prev 0.015 0.032 0.015 0.053 0.016 0.015 0.015 0.016 0.390
500_0.4network 0.264 0.265 0.279 0.206 0.280 0.279 0.279 0.280 0.362
500_0.5_prev 0.013 0.041 0.025 0.027 0.017 0.015 0.015 0.017 0.383
500_0.5network 0.162 0.222 0.239 0.168 0.239 0.232 0.233 0.239 0.374
500_0.6_prev 0.008 0.054 0.249 0.036 0.016 0.015 0.015 0.016 0.365
500_0.6network 0.044 0.180 0.248 0.135 0.187 0.174 0.248 0.187 0.342
500_0.7_prev 0.056 0.051 0.249 0.068 0.022 0.019 0.249 0.022 0.317
500_0.7network 0.066 0.175 0.249 0.133 0.145 0.127 0.249 0.145 0.329
500_0.8_prev 0.004 0.047 0.249 0.043 0.026 0.049 0.249 0.026 0.323
500_0.8network 0.066 0.151 0.249 0.116 0.124 0.151 0.249 0.124 0.310
dolphins 0.513 0.484 0.471 0.487 0.507 0.477 0.512 0.507 0.727
football 0.587 0.540 0.591 0.481 0.592 0.591 0.588 0.592 0.788
karate 0.318 0.286 0.307 0.306 0.342 0.289 0.307 0.342 0.500
single-objective optimization. Specifically, we have tested: Edge-
Betweenness (EB) [61], Fast-Greedy (FG) [62], Label Propagation
(LP) [63], Leading Eigenvector (LE) [57], MultiLevel (ML) [64],
Walktrap (WT) [65], InfoMap (IM) [66], Cluster Louvain (CL) [64].
These algorithms are included in every community detection
framework due to their popularity. This comparison allows us
to evaluate the relevance of dealing with the CDP following a
multi-objective approach. Table 11 shows the individual results
obtained for each considered instance in terms of modularity.

It is worth mentioning that most of the algorithms included
n the comparison are directly focused on optimizing modu-
arity, although some of them such as the Label Propagation
ses a different criterion as optimization metric. As it can be
een in the table, MOBVNS consistently obtains the best re-
ults in terms of modularity. Although in some instances, such
s 1000_0.1network, the improvement obtained is negligible,
n most of the instances the multi-objective modeling of the
roblem allows the algorithm to reach considerably better mod-
larity values. These results support the interest of tackling the
ommunity detection as a multi-objective optimization problem.

. Conclusions and future work

In this paper, we have proposed a new metaheuristic method
or community detection in social network based on Variable
eighborhood Search (VNS), where the set of initial set of non-
ominated solutions is generated with a constructive proce-
ure based on Greedy Randomized Adaptive Search Procedure
ethodologies (GRASP). The use of GRASP for the initial set of
on-dominated solutions allows VNS to start the search from
promising region of the search space. The problem is ad-
ressed by optimizing the Radio Cut (RC) and the Negative Ratio

12
Table A.12
Information about the number of nodes, edges, and density of the instances
derived from the LFR dataset.
Instances Nodes Edges Density

500_0.1 500 10674 0.08
500_0.1_prev 500 10 386 0.08
500_0.2 500 9940 0.07
500_0.2_prev 500 9444 0.07
500_0.3 500 9684 0.07
500_0.3_prev 500 9870 0.07
500_0.4 500 10 338 0.08
500_0.4_prev 500 10 326 0.08
500_0.5 500 10 310 0.08
500_0.5_prev 500 9894 0.07
500_0.6 500 10312 0.08
500_0.6_prev 500 10258 0.08
500_0.7 500 10232 0.08
500_0.7_prev 500 9442 0.07
500_0.8 500 10194 0.08
500_0.8_prev 500 9798 0.07
1000_0.1 1000 20868 0.04
1000_0.1_prev 1000 19330 0.03
1000_0.2 1000 20142 0.04
1000_0.2_prev 1000 20032 0.04
1000_0.3 1000 19432 0.03
1000_0.3_prev 1000 19218 0.03
1000_0.4 1000 20014 0.04
1000_0.4_prev 1000 19668 0.03
1000_0.5 1000 20770 0.04
1000_0.5_prev 1000 19122 0.03
1000_0.6 1000 20084 0.04
1000_0.6_prev 1000 19940 0.03
1000_0.7 1000 20150 0.04
1000_0.7_prev 1000 19900 0.03
1000_0.8 1000 20640 0.04
1000_0.8_prev 1000 19072 0.03
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able A.13
nformation about the number of nodes, edges, and density of the instances
erived from the LFR dataset.
Instances Nodes Edges Density

5000_0.1 5000 100430 0.01
5000_0.2 5000 1011070 0.08
5000_0.3 5000 103662 0.01
5000_0.4 5000 101732 0.01
5000_0.5 5000 99770 0.01
5500_0.1 5500 112858 0.01
5500_0.2 5500 111868 0.01
5500_0.3 5500 111592 0.01
6000_0.1 6000 121486 0.01
6000_0.2 6000 121692 0.01
6000_0.3 6000 119742 0.01
6500_0.1 6500 134384 0.01
6500_0.2 6500 132336 0.01
6500_0.3 6500 133520 0.01
7000_0.1 7000 142156 0.01
7000_0.2 7000 141552 0.01
7000_0.3 7000 142424 0.01
7500_0.1 7500 151060 0.01
7500_0.2 7500 152778 0.01
7500_0.3 7500 152972 0.01

Table A.14
Information about the number of nodes, edges, and density of the instances
derived from the real-world instances dataset.
Instances Nodes Edges Density

dolphins 62 159 0.08
football 115 613 0.09
karate 34 78 0.13
netscience 1589 2742 0.01
jazz 198 2742 0.14
musae_DE_edgesnetwork 9498 153138 0.01
musae_ENGB_edgesnetwork 7126 35324 0.01
musae_ES_edgesnetwork 4648 59382 0.01
musae_FR_edgesnetwork 6549 112666 0.01
musae_RU_edgesnetwork 4385 37304 0.01

Association (NRA) metrics simultaneously as a bi-objective opti-
mization problem. The quality of the solutions are evaluated by
considering classic multi-objective metrics (Coverage, Hypervol-
ume, ϵ-indicator, and Inverted Generational Distance) and two
well-known metrics in the context of social network analysis
(Normalized Mutual Information and Modularity).

The performed experiments show that the combination of
RASP with VNS in a multiobjective optimization framework is
ble to produce high quality solutions for the Multi-Objective
ommunity Detection Problem (MOCDP), outperforming the best
ethod found in the literature, which is based on a multiobjective
volutionary algorithm (LMOEA, Local Multi-Objective Evolution-
ry Algorithm). Additionally, the efficient implementation of the
roposed algorithm is almost ten times faster than the original
MOEA, becoming more suitable for large scale networks.
In future works, it would be interesting to analyze the per-

ormance of a multi-objective variant when compared with the
est single-objective methods found in the state of the art, even
ncluding different conflicting objectives to be compared. Addi-
ionally, the VNS approach presented in this work will be tested
n new variants of the Community Detection Problem, such as
ynamic Community Detection or Overlapping Community De-
ection, to validate the potential of this framework for dealing

ith Community Detection Problems.
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