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Contrasting catastrophic eruptions 
predicted by different intrusion and 
collapse scenarios
M. Rincón   1, A. Márquez   1, R. Herrera1, A. Alonso-Torres2, J. L. Granja-Bruña3 &  
B. van Wyk de Vries4

Catastrophic volcanic eruptions triggered by landslide collapses can jet upwards or blast sideways. 
Magma intrusion is related to both landslide-triggered eruptive scenarios (lateral or vertical), but it is 
not clear how such different responses are produced, nor if any precursor can be used for forecasting 
them. We approach this problem with physical analogue modelling enhanced with X-ray Multiple 
Detector Computed Tomography scanning, used to track evolution of internal intrusion, and its related 
faulting and surface deformation. We find that intrusions produce three different volcano deformation 
patterns, one of them involving asymmetric intrusion and deformation, with the early development of a 
listric slump fault producing pronounced slippage of one sector. This previously undescribed early deep 
potential slip surface provides a unified explanation for the two different eruptive scenarios (lateral vs. 
vertical). Lateral blast only occurs in flank collapse when the intrusion has risen into the sliding block. 
Otherwise, vertical rather than lateral expansion of magma is promoted by summit dilatation and flank 
buttressing. The distinctive surface deformation evolution detected opens the possibility to forecast the 
possible eruptive scenarios: laterally directed blast should only be expected when surface deformation 
begins to develop oblique to the first major fault.

Large stratovolcanoes are unstable structures liable to massive, catastrophic flank failures, with more than 20 
historical well-documented cases since 1500 AD1,2 and about 200 in the last 10,000 years3. Historical volcanic 
landslides such as Bezymianny, Mount St Helens, Soufriere Hills and Tutupaca all generated large eruptions2,4, 
showing that when magma is involved, hazards multiply. Importantly, intruded magma creates strong deforma-
tion prior to landsliding5,6 and this can potentially be used to predict the type of eruption that follows7. The rela-
tionship between lateral collapse and magmatic eruption is known in deposits from a close association of debris 
avalanche deposits and pyroclastic products8. This shows that some intrusion-related landslides have triggered 
magmatic directed lateral blasts: the eruptive scenario known as a “Bezymianny-type” collapse3 (lateral collapse 
- lateral blast – vertical plinian eruption). However, in other cases collapse was followed only by a vertical plinian 
eruption8 (i.e. no lateral blast between the collapse and the plinian vertical jet).

The possibility of a landslide-related lateral blast has strong implications for hazards. Lateral blast absence has 
been attributed to failure occurring before magma intruded into the upper part of the edifice8. However, it is not 
clear what controls why in some cases, a volcanic edifice can collapse when the magma body is still located at the 
volcano base, nor is the relationship of magma-induced deformation to the collapse structure (e.g., the location 
and geometry of the slip surface) clear. Therefore, the motivation here is to understand the mechanisms that can 
explain why the two different eruptive scenarios (i.e., the existence/absence of a landslide-triggered lateral blast) 
can occur when a volcano collapses laterally during an intrusive episode.

In order to achieve that objective we model the structural evolution of a stratovolcano at the first stages of 
viscous magma intrusion in the edifice to find out what controls landsliding. We then use this information to find 
the conditions that determine the likelihood of blast or only vertical eruption on collapse.

We used physical analogue models as they can simulate the temporal evolution of discontinuous processes 
(i.e., faulting). We designed an experimental setup, based on previous work9, for scaled experiments of the 
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intrusion of a viscous magma analogue (Golden syrup) at the base of an analogue stratovolcano made of a granu-
lar elasto-plastic material (sand-plaster mixture: see Methods). This kind of granular material deforms with both 
tension and shear fractures/faults and therefore is the most suitable for reproducing the mechanical behaviour 
of natural rocks10. Our experimental setup consists of a box where an 11 cm-high cone is made by pouring the 
sand-plaster mixture on the box floor above a sand-plaster layer 1 cm-thick. A tube with a tap inserted vertically 
at the box base allows introducing the magma analogue (Golden Syrup), which flows by gravity due to the height 
difference between the box bottom and a syrup reservoir attached to the tube. These experiments are designed to 
model the effect of viscous magma intrusion into a stratovolcano (see Methods), so they do not reproduce nor can 
be used to analyse other processes of deformation and volcano instability such as those related to the intrusion of 
fluid basaltic dykes in ocean island volcanoes11.

We made 44 similar experiments varying only the syrup flow rate and monitored 10 of them (Table 1) at 
Hospital Rey Juan Carlos using a Multiple Detector Computed Tomography (MDCT) scanner, an X-ray based 
technology (see Methods), to image the temporal evolution of intrusion-induced deformation, both at the surface 
and inside the volcano (Fig. 1). MDCT has been successfully used to monitor tectonic structures in analogue 
models12 but has not been used before to image such dynamic volcano intrusion experiments. We put our exper-
imental setup on the mobile platform of the scanner, and before beginning the experiment we scanned our vol-
cano in order to compare later images with the initial state (t0). During the experiment we scan the box again each 
2 or 5 minutes, with the syrup flowing during the scanning procedure. We finished each experiment when syrup 
erupted at the volcano surface, obtaining experiment times between 12 and 50 minutes, although we focused in 
the results from the first 10–15 minutes, corresponding to the initial tens of days of the intrusion (see Methods). 
Developing our experiments over the scanner mobile platform, we have been able to obtain 3D data of the sim-
ulated volcano (Fig. 1), at several experiment temporal stages during intrusion. The data show a much more 
fine-scale detail of internal structures (Fig. 1) that obtained in previous experiments studied by means of sliced 
cross-sections9. By comparing results from different times, we can make 4D reconstructions of volcano internal 
faulting and intrusion together with surface deformation (Fig. 1). Additionally, volcano surface deformation has 
been quantified by extracting Digital Elevation Models of the cones from the MDCT data (see Methods) allowing 
us to detected and quantify temporal changes at volcano surface morphology (precision = 1 mm) which can be 
compared with volcano deformation data in natural cases.

Results
Deformation patterns.  Deformation produced in all of our experiments can be classified into three dif-
ferent patterns based on the similarity of intrusion shapes and fault development (Figs 2, 3 and 4; Table 1). The 
first pattern (Fig. 2) is marked by a near-symmetric system of inward-dipping planar conjugate normal faults 
developed in the volcano summit zone. The summit sector, delimited by a set of faults (f1 and f2; Fig. 2b), sub-
sides, together with a slight outward lateral displacement of one flank (Fig. 2b and c). In the transition from t1 to 
t2, the conjugate set fault f1 does not show any evidence of movement, but a new conjugate set fault f2 appears 
in the internal region of the summit sector. The main characteristic of the final deformation stage is the subsided 
summit sector (i.e. forming a graben like-structure; Fig. 2b). The intrusion has vertical near-cylindrical geometry 
and faulting begins when it reaches around one third of the volcano height (t1 at Fig. 2a and b). Three of the ten of 
our monitored experiments at MDCT x-ray scanner developed this deformation pattern (Table 1).

The second pattern is strongly different in both intrusion shape and faulting pattern (Fig. 3). Faulting initially 
develops an asymmetric nature: its main feature is the early listric (convex upwards) fault (f1 at Fig. 3b) which 
nucleates at the first stage close to the intrusive body and developed from bottom-to-top reaching the volcano 
surface at the middle-cone flank (Fig. 3b). A bulge is formed at the lower volcano flank, limited upwards by this 
f1 fault, because of clockwise tilting and outward lateral displacement of the lower flank (Fig. 3b). At a second 
stage, the fault f1 does not move and a new inward-dipping planar fault (f2) develops from near the summit on 
the opposite flank to the bulge (t2 at Fig. 3). The summit sector subsides as flank bulging progresses, whereas the 
flank sector down from the second fault (opposite to the bulge) remains undeformed (Fig. 3). The intrusion shape 
is different to cylindrical bodies of pattern 1: intrusion initially develops an irregular cup-shaped geometry13, with 
a later preferential growth into the bulging flank (Fig. 3a and b). This deformation pattern has been found in five 
of our x-ray scanned experiments (Table 1).

Experiment 
Number

Flow rate 
(cm3/min)

Distance tube 
center (cm)

Deformation 
pattern

9 2.0 1.8 1

13 3.1 0.8 1

14 1.3 1.0 1

5 1.3 3.5 2

6 1.5 2.6 2

7 1.0 2.5 2

10 1.1 2.7 2

16 3.1 3.6 2

4 2.5 2.7 3

15 1.6 2.3 3

Table 1.  Experimental parameters and deformation patterns of the 10 experiments monitored by X-ray MDCT.
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The third pattern (Fig. 4) is also asymmetrical, but it shows the early development from top-to-bottom of a 
large listric (concave upwards) fault (f1 at Fig. 4a and b) from near the summit to the base, and involving a sub-
stantial edifice volume. This fault shows a well-defined curved trend in the summit sector of the edifice and pro-
gressively fades towards deeper zones where connects with a diffuse basal shear zone (Fig. 4b). In some examples, 
this entire sector over the fault (i.e. the hanging-wall block) forms a rotational landslide, while the rest of edifice 
remains stable (Fig. 4c). The intrusion also shows an initial cup-shaped geometry and is located within the listric 
fault foot-wall block. At a second stage (t2 at Fig. 4), deformation changes and a new asymmetric conjugate fault 
system develops inside the unstable sector and oblique to the first fault (f1). Two listric (concave upwards) normal 
inward-dipping faults (f2) form from near the summit together with an opposite-dipping normal fault (f3) at the 
middle-cone flank (Fig. 4b, t2). The upper part of the intrusion is now located inside the sliding block delimited 
by f1 (i.e. in the hanging-block) and reaches the base of the conjugate fault system (f2 and f3). The surface sector 
affected by these new faults shows two different deformation zones delimited by the convex-upward fault f3: a sub-
sided summit sector (between by faults f2 and f3) and a bulged lower zone (Fig. 4b, t2). In this deformation pattern, 
the volume of the edifice deformed and the magnitude of the deformation are significantly larger than in the 1st and 
2nd cases (cf. Figs 2c, 3c and 4c). Two of our x-ray experiments have developed this deformation pattern (Table 1).

Factors influencing deformation patterns.  The three different deformation patterns detected in our 
results are not related to the parameter that we varied systematically in our experimental set: the magma (syrup) 
flow rate. Experiments showing deformation patterns 1, 2 and 3 appear both at low flow rates (1–1.5 cm3/min) and 
at high flow rates (2.5–3 cm3/min; Table 1). However, after the analysis of the MDCT images of our experiments, 
we observed that during the construction processes of the cone by pouring the sand-plaster mixture, sometimes 
there was a small lateral offset between the centre of the cone and the tube (see for example Fig. 3a). This asym-
metry (produced accidentally during the experiment construction) seems to be a key parameter controlling the 

Figure 1.  Examples of images of our experiments obtained by volumetric reconstruction from the MDCT 
data. (a) Lateral view of the cone surface showing the deformed topography of the left flank and the surface 
fracturing. (b) Cross section view showing the cone internal structure with the irregular syrup intrusion and 
faulting. Faults appear as darker bands as they are zones where density decreases by dilation. The Golden syrup 
intrusion is imaged as a homogeneous blue area. (c) 3D oblique view of the volcano surface showing fracturing. 
(d) Integrated surface and internal view (cross section) of the previous image 1c showing how the internal 
fracturing and surface volcano deformation can be correlated.



www.nature.com/scientificreports/

4SCiEntiFiC REPOrTS |  (2018) 8:6178  | DOI:10.1038/s41598-018-24623-5

occurrence of the different deformation patterns detected (Fig. 5): when the cone and the tube are vertically 
aligned (i.e., the distances between their centres are less than 2 cm) the cones deformation follows the symmetric 
pattern 1; whereas, when the cone and tubes centres are displaced (between 2 and 3.5 cm: Fig. 5), then the cones 
deformation follows the asymmetric patterns 2 or 3. Therefore, the initial asymmetry in the experimental setup 
induced the asymmetric deformation of the cone in response to the stresses induced by the fluid pressure. This 
role of asymmetry in influencing the deformation patterns at modelled volcanoes agrees with results from previ-
ous experiments of both intrusion and volcano spreading14–16.

With our experimental set we have not found any parameter (or combination of parameters; see Fig. 5) which 
apparently could be controlling the occurrence of deformation pattern 2 vs. 3 in an asymmetric experiment; 
i.e., why in some cases faulting developed first bottom-to-top from the intrusion (pattern 2) and in other cases 
the first fault developed top-to-bottom from the volcano near-summit surface (pattern 3). Other studies have 
shown that the construction of individual cones created very small heterogeneities and that intrusion experi-
ments always have a wide range of outcomes13,17. For example, the role of bedding planes or layers with different 

Figure 2.  Structural evolution of deformation pattern 1. t0: stage before beginning the experiment; t1 and t2: 
stages at minutes 5 and 10 respectively. (a) X-ray cross-sections of the volcano (see b for sections location) of 
a representative experiment (Experiment 14: see Table 1). Faults are imaged as darker linear trends and syrup 
intrusion as a homogeneous dark grey area. Note the near-symmetric system of inward-dipping conjugate 
normal faults developed in the summit zone (fault dipping towards B being the most developed). (b) Sketched 
structural interpretation in cross-sections and map-view of the main deformation features common at 
experiments showing this deformation pattern (see text for an explanation). f1, f2: faults, in chronological 
order. Dashed lines: diffuse shear zones. Grey areas: changes at volcano topography (dark grey: subsidence; light 
grey: bulging). Black zones: magma bodies. Large arrows: movement of the volcano blocks (i.e., subsidence, 
lateral displacement or tilting). Thin arrows: relative movement along fault planes and basal shear zones. Circle: 
tube location. Dots: volcano centre. (c) Map-views showing the variation of the cone topography detected by 
MDCT between times t1 and t0 (t1-t0), and between t2 and t1 (t2-t1), over a shaded relief image of the cone. 
Contour interval: 1 mm. Colour scale at right. Note the subsidence of the summit area and the slight outward 
displacement of the flank opposite to the main summit fault.
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strength for the development of large-scale sliding planes in the volcano has been noted in previous experiments14 
and proposed for natural volcanoes where there is great heterogeneity18. The capability of X-ray MDCT scanning 
technique for a successful 4-D monitoring of volcano intrusion experiments shown in this work, clearly opens 
a very promising approach to decipher the early deformation stages, testing systematically the possible role of 
those asymmetries, and therefore may possibly finds the mechanism controlling the development of different 
asymmetrical deformation patterns.

Discussion
The structural setting detected in pattern 3 experiments (Fig. 4) can explain the two different eruptive scenarios 
related to lateral volcano collapse (Fig. 6). The early development of the large listric fault (Fig. 4: t1) provides the 
main instability factor: a deep potential slip surface, which explains the deep-seated nature of volcano lateral 
collapses19. This large fault, forming a potential slip surface crossing the volcano, has not been previously noted, 

Figure 3.  Structural evolution of deformation pattern 2. t0: stage before beginning the experiment; t1 and 
t2: stages at minutes 5 and 10 respectively. (a) X-ray cross-sections of the volcano (see b for sections location) 
of a representative experiment (Experiment 16: see Table 1). Faults are imaged as darker linear trends and 
syrup intrusion as a homogeneous dark grey area. Note at t1 image the development of a curved (i.e. listric) 
convex upward fault from the intrusive body towards the cone middle flank surface. At t2 image that fault has 
reached the cone surface and a new inward-dipping planar fault is developed from near the summit zone. (b) 
Sketched structural interpretation in cross-sections and map-view of the main deformation features common at 
experiments showing this deformation pattern (see text for an explanation). f1, f2: faults, in chronological order. 
Dashed lines: diffuse shear zones. Grey areas: changes at volcano topography (dark grey: subsidence; light grey: 
bulging). Black zones: magma bodies. Large arrows: movement of the volcano blocks (i.e., subsidence, lateral 
displacement or tilting). Thin arrows: relative movement along fault planes and basal shear zones. Circle: tube 
location. Dots: volcano centre. (c) Map-views showing the variation of the cone topography detected by MDCT 
between times t1 and t0 (t1-t0), and between t2 and t1 (t2-t1), over a shaded relief image of the cone. Contour 
interval: 1 mm. Colour scale at right. Note the slight subsidence of the summit zone together with the outward 
displacement of the lower flank downwards the first fault.
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and explains why in some cases the volcanic edifice can collapse when the magma body is still located at the vol-
cano base. In some experiments we observed how the entire flank slides on the fault as a large rotational landslide 
(Fig. 4c: surface deformation produced at t1-t0).

When a type-3 deformation pattern is developed, the temporal relationship between the collapse time and 
magma body position in relation to the fault explains the eruptive response: a blast only occurs if the magma has 
intruded into the sliding block. If any trigger induces the unstable sector failure at an earlier first stage, then the 
magmatic body would still be located below the collapse surface (Fig. 4: t1), and no juvenile material could be 
involved in the collapse. The unloading produced by such a large removal of volcano mass induces rapid shallow 
magma decompression and triggers its explosive eruption, producing a vertical plinian eruptive column (Fig. 6: 
Early Collapse). In the models, the area above the intrusion is more dilated, so would be more easily pierced by 
ascending, expanding magma.

Figure 4.  Structural evolution of deformation pattern 3. t0: stage before beginning the experiment; t1 and t2: 
stages at minutes 5 and 10 respectively. (a) X-ray cross-sections of the volcano (see b for sections location) of 
a representative experiment (Experiment 4: see Table 1). Faults are imaged as darker linear trends and syrup 
intrusion as a homogeneous dark grey area. Note at t1 image the development of an inward-dipping fault from 
near the cone summit. At t2 image a conjugate system of faults has developed near summit zone inside the 
displaced block. (b) Sketched structural interpretation in cross-sections and map-view of the main deformation 
features common at experiments showing this deformation pattern (see text for an explanation). f1, f2, f3: faults, 
in chronological order. Dashed lines: diffuse shear zones. Grey areas: changes at volcano topography (dark 
grey: subsidence; light grey: bulging). Black zones: magma bodies. Large arrows: movement of the volcano 
blocks (i.e., subsidence, lateral displacement or tilting). Thin arrows: relative movement along fault planes and 
basal shear zones. Circle: tube location. Dots: volcano centre. (c) Map-views showing the variation of the cone 
topography detected by MDCT between times t1 and t0 (t1-t0), and between t2 and t1 (t2-t1), over a shaded 
relief image of the cone. Contour interval: 1 mm. Colour scale at right. Note how at t1 the entire flank delimited 
by the first fault has been displaced, subsiding at the summit area and bulging at the lower flank. At t2 two 
complementary deformation zones have developed inside the displaced block, and oblique to the first trend: a 
summit subsidence zone and a lower bulge delimited by the inward-dipping fault visible at t2.
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Figure 5.  Influence of experimental parameters (Distance conduit/volcano centre vs. Flow intrusion rate) on 
the occurrence of the different deformation patterns. Experiments showing symmetrical deformation pattern 
1 occur only when the volcano centre is aligned with the experimental conduit, whereas when the volcano 
construction is asymmetrical regarding the location of the syrup conduit, then deformation patterns at the 
volcanoes are also of asymmetrical nature (patterns 2 and 3). Intrusion flow rate does exert any influence on the 
deformation style.

Figure 6.  Event tree of the different volcano deformation patterns produce by the intrusion of a viscous 
magma body and the possible catastrophic eruptive scenarios in case of edifice lateral collapse. Map views 
show the deformation features (lines: faults; dark grey areas: subsidence; light grey areas: uplift) produced with 
each deformation pattern, together with the qualitative temporal behaviour of two hypothetical GPS stations 
located at the summit (S) and the flank (F) of the volcano continuously recording vertical (z) and horizontal 
(x) displacements. Sketched cross-sections show the development of deformation patterns 1 and 2 that do 
not produce deformation structures which induce the volcano instability, whereas deformation 3 produces a 
clear unstable situation. If deformation pattern 3 is detected, then two different eruptive scenarios can evolve 
in relation to the time of the volcano collapse. The “lateral collapse – plinian eruption” scenario is produced 
when the intrusive body is still located below the slip surface and therefore is not involved in the collapse (Early 
Collapse). “Bezymianny-type” (lateral collapse - lateral blast - plinian eruption) scenario is produced when part 
of the magmatic body has intruded inside the sliding block (Late Collapse). In late collapse there is dilation, 
then exposure of the magma body, producing a magmatic lateral directed blast.
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If the catastrophic lateral collapse of the volcano flank occurs later, when magma has intruded into the sliding 
block (Fig. 4: t2), then as the landslide began magma would be rapidly decompressed. The magma would then 
be exposed in the first moments of sliding. Both decompression and exposure produce the lateral blast involving 
juvenile magmatic material (Fig. 6: Late Collapse).

The deformation observed at Mount St Helens at 1980 before its collapse5 strongly resembles to that observed 
in the time 2 of pattern 3 (Fig. 4: t2), with an elongated subsidence area at summit zone and a bulge at middle 
flank with similar shapes and extents. There was around 50 m of subsidence and bulging at St Helens5 and 5–6 mm 
at our model 4 (Fig. 4c: t2-t1) which scaled up is also about 50 m. This similar deformation at the stage 2 of our 
models fits with a scenario where the magma body has entered the sliding block. This concurs with the protracted 
strong surface deformation monitored (more than 45 days5) at Mount St Helens and the precursory vertical 
eruptions.

The detected deformation pattern thus provides a unified framework for the two different eruptive scenarios 
(lateral vs. vertical) with flank collapse. Early collapses when the magma body is still located at the base the vol-
cano likely produce only a vertical eruption, whereas late collapses (i.e., when the magma body has penetrate in 
the sliding block) leads to lateral blast (Fig. 6).

Although our results do not allow a full understanding of the volcano/intrusion parameters that control the 
development of the different deformation patterns detected, the different surface deformation features of each 
pattern (Figs 2, 3 and 4) are distinctive enough to allow use them for the forecasting of possible eruption scenarios 
(Fig. 6). So in practical, although the likelihood of the intrusion being located in the landslide, or under it, cannot 
be predicted, our results show that once one such case develops, the characteristic structural pattern gives a strong 
indication of the probable scenario that may follow. This opens the possibility that there may be early signs to help 
distinguish the two possible outcomes (blast vs. no-blast eruptive scenarios) earlier.

Firstly, our results show that the comparison of model surface deformation features with actual observations 
of the surface faulting and flank deformation during the unrest start by volcano deformation monitoring systems 
(GPS or InSAR) could be used to identify the volcano deformation pattern produced by the intrusive episode 
(Fig. 6). Specifically, the monitoring data could thus allow an early detection of the development of a type-3 
deformation pattern, indicating the hazard zone for a possible lateral collapse and the likelihood of an associated 
lateral blast. This potential for predicting the instability and the possible eruptive scenario of a volcano based 
on its external deformation features has been possible due to the capacity of our novel MDCT methodology for 
observing simultaneously both the experiment surface and the internal deformation structures in 4D.

Specifically, volcano deformation pattern 3 that can induce the edifice lateral collapse, is characterized initially 
by the development of a large inward-dipping normal fault near the summit area that can be accompanied by 
opposite flank deformation (Fig. 6) measurable by volcano monitoring systems (GPS or InSAR). If this situation 
is detected, the zone potentially affected by a lateral collapse can be determined, and early on, a vertical eruption 
can be expected if there is volcano collapse (Fig. 6: Early Collapse). However if volcano faulting and surface defor-
mation (subsidence and bulging) begin to develop oblique to the first major fault (Fig: 4: t2), then magma has 
probably risen over the listric fault (the potential main slip surface; Fig. 4: t2). This changes the hazard assessment, 
because then on collapse, a laterally directed blast should be expected (Fig. 6: Late Collapse). Our results therefore 
highlight the role that a deformation monitoring system can play in evaluating a possible lateral collapse and the 
related eruptive scenarios, taking into account the structural patterns detected by our modelling.

Methods
Scaling.  The model has been geometrically, kinematically and dynamically scaled10,20. To ensure that our 
models are similar to nature, we define the model scale factors: the ratio between characteristic parameters in the 
both the model and the nature. For example, length ratio is L* = LM/LN, where the subscripts M and N refer to 
model and nature. We made a purely mechanical model so the three basic dimensions to define their scale ratios 
are length [L], time [T] and mass [M] (refs10,20). All the other parameters involved (density, stress, cohesion, vis-
cosity, flow rate) are derived from those three. All the parameters with the same units must have the same scaling 
ratio, and the ratio of derived parameters must observe the ratio of the involved basic parameters.

We simulated the volcano using an elasto-plastic granular material: a mixture (1–4) of gypsum plaster and 
quartz sand (grain size of 50% of 125 µm and 50% of 250 µm). Shear-ring tests21 provide material mechanical 
properties: cohesion of around 50–100 Pa and a friction angle of 36–37°. Magma was simulated using a common 
well-characterized Newtonian fluid (Lyle’s Golden Syrup22).

Due to space constraints in the X-ray scanner (see Experimental Setup and Monitoring System), we selected a 
geometric scale ratio of 1:10,000: [L]* = 1 × 10−4. Our analogue volcano is 11 cm-high so we are simulating vol-
canoes 1100 m-high, typical of a mature simple stratovolcano23. Our 1 cm in diameter tube simulates a cylindrical 
volcanic conduit similar to some natural examples of viscous intrusions into stratovolcanoes24, with a diameter 
100 m-wide in agreement with conduit diameters of natural viscous magma intrusions (e.g., St Helens 1980; 
ref.25). The produced surface deformations of several millimetres correspond to tens of meters of natural deforma-
tion similar to those measured in several volcanoes5. The resulting syrup intrusions develop cylindrical, massive 
and cup-shaped geometries a few millimetres of thickness and width, which agree with the size and shapes of 
described intermediate-felsic magmatic plugs and intrusive bodies at eroded stratovolcanoes26,27 or the modelled 
laccolith intruded at the base of Cordón Caulle volcano at 2011 (ref.28).

The second basic parameter [M] has been derived from the density [M L−3] of the used materials. Our 
sand-plaster mixture has a density of 1320 kg m−3. Considering a mean density value for the volcano of 
2500 kg m−3 (ref.29), we obtained a density ratio ρ* = 5.3 × 10−1. We combine the parameters L* and ρ* to deduce 
our mass ratio (M*):
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5 3 10 ; M L 5 3 10 ; M 5 3 10 (1)1 3 1 13ρ = . × ⋅ = . × = . ×− − − −⁎ ⁎ ⁎ ⁎

As the density of natural volcano edifices is not well constrained, we checked the influence of the plausible 
variations of that value in our scaling. If we introduce a range of ± 100 kg m−3 in volcano density value29 then the 
mass ratio range M* = 5.5 × 10−13 – 5.1 × 10−13. For that range of values of ρ*, and a density for Golden Syrup at 
our working temperatures (23–24 °C) of 1440 kg m−3 (ref.22), our scaling results in a density for the simulated 
magma between 2600–2800 kg m−3, consistent with published values for the density of intermediate magmas30.

Time is usually the most challenging parameter to properly scale in these models. Previous authors9,13 have 
derived it from comparison between the time (or velocity) of their models and that of the modelled processes, 
or by using the ratio viscosity*/stress*. In this work we propose a different approach for time scaling using the 
principle of relationship between variables. Since we do our experiments with natural gravity, g* = 1, and g units 
are [L T−2], we can deduce the time ratio for our experiments combining h* and g*:

⁎ ⁎ ⁎ ⁎ ⁎= ⋅ = = × = ×− − −g 1; L T 1; L 1 10 ; T 1 10 (2)2 4 2

Using L*, T* and M* we can deduce the ratios for all the other involved parameters.
The ratios for the parameters which units are Pa (Pa = kg m−1 s−2), as the stress σ, are:

⁎ ⁎ ⁎ ⁎ ⁎σ = ⋅ ⋅ σ = . × × × × × = . ×− − − − − − − −M L T ; 5 3 10 (1 10 ) (1 10 ) 5 3 10 (3)1 2 13 4 1 2 2 5

and taken into account the possible range for ρ*, then σ* = 5.5 × 10−5 – 5.1 × 10−5. This ratio must be also 
observed by the cohesion (C) of the elasto-plastic materials (CM = 50–100 Pa). Considering the range of cohesion 
ratio deduced we are simulating a volcano edifice with a cohesion of CN ≈ 0.9–2 MPa, similar to those proposed 
for fractured volcanic rock masses29.

As our experiments are rate-dependent, viscosity is interrelated to the other parameters involving time (e.g. 
flow rate). In order to verify that our experiments are properly scaled for representative intrusion processes of 
viscous magma bodies in stratovolcanoes, we check if we are simulating magma intrusions with flow rates (QN) 
and viscosities (µN) values consistent with real examples, fixing h*, σ* and µM:

= σ(Q )/(L Q ) (4)N M M
3

Nµ · µ · ·⁎ ⁎

Golden Syrup at our working temperatures has a viscosity of µM = 23–37 Pa s (ref.22). Natural examples of 
viscous magma intrusions in stratovolcanoes usually have flow rates between 1 and <100 m3 s−1 (refs31,32). Using 
the above equation we can observe that for our range of QM (1–3 cm3 min−1) for QN = 1 m3 s−1 we are simulating 
magmas with a viscosity of 1–1.5 × 1010 Pa s, and for QN = 100 m3 s−1 magmas with a viscosity of 1–1.5 × 108 Pa s, 
similar to those deduced for viscous intrusions deforming stratovolcanoes33,34. For example, for an experiment 
with a QM = 3 cm3 min−1 we can simulate the intrusion of a magma with a viscosity of 1 × 109 Pa s at a flow rate of 
30 m3 s−1, the same values proposed for the 1980 cryptodome intruded at Mount St Helens34,35.

The desired range of flow rates between ≈ 1 and 3 cm3 min−1 are produced when the syrup container is located 
at heights between 0.85 and 1.65 m above the top of the surface of the table. The resulting pressures produced by 
the syrup at the base of the volcano for those heights in our device (i.e., the hydrostatic pressure minus the viscous 
drag) are about 5–15 × 103 Pa. These values correspond to natural magma pressures of about 100–250 MPa, higher 
than those usually supposed occurring at the base of stratovolcanoes (around 10 MPa due to the tensile strength 
of volcanic rock masses; e.g., ref.36) or for example those calculated at the volcano conduit during the intrusion in 
Soufrière Hills volcano at 1997 (40–100 MPa; ref.36). However, since brittle behaviour is not strain-rate dependant 
and the angles of the faults produced in our experiments agree with the predictions of a Mohr-Coulomb failure 
criterion for the sand-plaster mixture, we consider that the high-scaled pressure made by the syrup is not nega-
tively influencing the brittle faulting patterns produced during the experiments.

Finally, we also check if the intrusion time of our experiments is properly scaled, obtaining that for magma 
viscosities of 1 × 108 − 1 × 1010 Pa s we are simulating intrusions several days long, consistent with natural exam-
ples: e.g., the cryptodome intrusion at St Helens at 1980 (58 days35) is properly scaled in one experiment of around 
45 minutes long.

Experimental setup and monitoring system.  The device employed to monitor our experiments was 
a 64-detector row MDCT Scanner Siemens Definition AS 64 (Siemens Healthcare, Erlangen, Germany) at the 
Hospital Rey Juan Carlos (Móstoles, Madrid). The scan parameters were: Detector configuration 64 × 0.6 mm, 
slice thickness 1 mm, pitch 0.35, FOV 31 × 31 cm. All images were reconstructed applying a filtered backprojec-
tion with two Kernels, a standard one B20, and a sharp one B75.

We tested the feasibility of scanning the experiments with a continuous syrup flow, checking if scanner plat-
form displacement introduced any undesirable influence, by comparing results (syrup flow rates and volcano 
surface morphologies) between experiments performed statically (34 similar experiments made at University Rey 
Juan Carlos laboratory) and at different platform velocities. We observed that a scanning period of 26 seconds (a 
slower table velocity than the typical for medical applications) did not disturb the experiments.

During each scan of the experiment, sequential slices were obtained perpendicular to the mobile platform. 
Each slice is represented as an image of 512 × 512 pixels (0.6 mm/pixel) giving quantitative information (at 256 
grey values) on density distribution of the scanned volume. Each slice is 1 mm thick, so our final volume is formed 
by around 300 slices.

Image processing software OsiriX37 (open-source software: www.osirixviewer.com) was used to process 
DICOM images (www.dicom.nema.org) in order to generate multiplanar reconstruction (MPR) and volumetric 

http://www.osirixviewer.com
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reconstruction (Volume Rendering). The two different Kernel filters allowed us to better assess different attenua-
tions inside the volcano and detection of small fractures. We have produced Digital Elevation Models (DEM) of 
the volcanoes, by extracting the volcano surface at obj format at Osirix and then process it with MOVE (Midland 
Valley) software (https://www.mve.com/software/move) to produce a volcano DEM in ASCII format.

Additionally, we have made 34 experiments at the University Rey Juan Carlos laboratory for comparison and 
control, where the experiments have been monitored using a Kinect v2 device, obtaining both surface images and 
distance data38 which have been used to produce faulting maps and DEMs of the volcano.
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