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Abstract

In the present paper we report the optical response of an ordered array of
silver (Ag) nanoparticles (NPs) using the uniaxial LiNbO3 as a model case.
We investigate the anisotropic effects on the effective dielectric tensor tak-
ing into account the charges interaction of particles. The Ag NPs dielectric
function is described through a modified Drude model whereas the LiNbO3

dielectric functions are deduced from their experimentally established Sell-
meier equations. The effective dielectric tensor components of the ensemble
aggregates of Ag NPs and uniaxial LiNbO3 crystal are treated through the
extended Maxwell–Garnett approximation. Following the asymmetric be-
haviour of uniaxial crystals, Ag NPs are sited in the ordinary plane of the
crystal, giving rise to different responses in the x, y and z directions of ap-
plied electric field. Real and imaginary parts of the effective dielectric tensor
components of the aggregate ensemble are investigated in terms of different
structural parameters, such as the interparticle spacings, the NPs filling fac-
tor and sizes of spherically embedded nanoparticles. We demonstrate that
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an adequate choice of structural parameters such as NPs sizes, interparti-
cle separation gaps or the filling factor can determine the optical properties
of layered Ag–embedded uniaxial crystals such as LiNbO3. We show that
the negative epsilon (NE) condition is satisfied from a critical size of Ag
NPs when the filling factor and the interparticles distances (a and b) have
particular values. This condition defines an interval of energies, called NE
range, which clearly depend on values of structural parameters defined in
the model. This NE range shows some type of bandwidth anisotropy when
it is compared among the x-, y-, z- and xy-components of the effective di-
electric tensor. We analyze some anisotropic features such as the bandwidth
and shift resonance energies in the real and imaginary parts of the dielectric
tensor when structural parameters change.

Keywords:
Array of Ag NPs, Lithium Niobate, Extended Maxwell–Garnett theory,
Dielectric properties
PACS: 77.22-d, 78.20.Ci

1. Introduction

The manipulation of light–matter interaction phenomena at the nanoscale
by means of plasmonic nanostructures is currently a subject of an intense
activity from both fundamental and technological points of view [1, 2, 3].
Noble metal nanostructures exhibit the capability to couple light with the
collective oscillations of their conduction–band electrons, known as surface
plasmon resonances (SPR), which can result into a strong confinement of the
electromagnetic field in the vicinity of the metallic physical boundaries. This
can be used to enhance the interactions between far–field light and optical
emitters placed in close proximity with the metallic nanostructures [1, 4]. In
fact, plasmonic nanostructures can be exploited to improve the performances
of existing optical and optoelectronic devices, such as light–emitting systems
[4, 5, 6, 7], biosensors [8], solar cells [9, 10], or high–resolution fluorescence
microscopes [11]. Additionally, the association of metallic nanostructures
with different laser gain media has given rise to successful configurations
such as nanolasers or lasing–spasers [12, 13].

Recently, some authors have shown the interest in combining the optical
response of metallic nanostructures with the optically active ferroelectric ma-
terials. Indeed, Yannopapas and Paspalakis [14] have designed a multilayered
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metamaterial consisting of alternating planes of the ferroelectric LiTaO3 and
n–type germanium (Ge) in air. This metamaterial has a negative refractive
index and, at the same time, the electromagnetic radiation propagates with
a group velocity that is of the order of 105 slower than the vacuum one. Fur-
thermore, Yraola et al. [15] and Molina et al. [16] have demonstrated that
Nd3+–doped periodically poled LiNbO3 shows a spontaneous emission and
nonlinear response enhancement by Ag nanoparticles inclusion. Also, these
authors claim that this composite could be a plausible metamaterial with a
plenty of applications in non–linear optics among others. In addition, Javid
et al. [17] have exhaustively investigated the structural, electronic and op-
tical properties of LiNbO3. Wiesendanger and Guntherodt [18] have shown
that LiNbO3 exhibits a significant anisotropy in the spectral region below
from 7 eV . In the search of negative index metamaterials (NIM’s) having
both negative ε and µ values, specific physical and geometrical conditions
play a key–role in controlling the values of permittivity and permeability
[19]. For many plasmonic applications, among the metamaterials made-up
with nanoscale noble-metals particles, the silver is preferred to gold due to its
sharper LSPR resonances and its ability to span the entire visible spectrum.
In a previous work, we show that a random three–dimensional (3D) distri-
bution of Ag NPs embedded in LiNbO3 matrix can exhibit negative epsilon
(NE) condition in the visible range of electromagnetic spectrum, after a good
control of both the Ag-metallic nanoparticles densities and sizes [20].

In the present paper, the effective dielectric tensor of the rectangular array
of Ag NPs on LiNbO3 matrix is evaluated by using an extended Maxwell–
Garnett (M–G) theory. Such model is appropriate to consider the plausible
anisotropy of the system’s dielectric tensor in the ordinary and extraordi-
nary directions of the crystal. From the array´s effective dielectric function,
we study the compositional and geometrical parameters which could satisfy
the negative epsilon condition. In addition, the M–G theory is extensively
applied in different types of systems [21, 22, 23].

In fact, we investigate an ordered rectangular array of Ag NPs on LiNbO3

as a model case, because this system is quite similar to the experimentally
grown periodical poled LiNbO3 with Ag NPs inclusions. We show that the ar-
ray of Ag NPs on LiNbO3 matrix can exhibit NE characteristics in the visible
range of electromagnetic spectrum, when a good control of the Ag-metallic
nanoparticles densities and sizes along with the appropriate interparticle dis-
tances in the rectangular array is done. On the other hand, Kinnan et al.
[24] investigated the effect of the particle size and interparticle distance in a
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disordered two–dimensional arrays of Ag NPs.
The rest of paper is organized as follows. In section 2, an extended M–G

model to take into account the anisotropy of the rectangular array of Ag
NPs on LiNbO3 matrix is described. The implementation of the model in
our system along with a discussion of the results are given in section 3. The
main remarks and conclusion of this work will be given in section 4.

2. Modeling optical response of rectangular arrays of nanoparticles

We investigate a rectangular lattice of spherical ordered Ag-nanoparticles
as plasmonic inclusions embedded on an uniaxial LiNbO3 crystal. These Ag
nanoparticles are located at lattice sites of a two-dimensional (2D) rectangu-
lar array and separated by well-defined interparticle distances a and b, along
the x and y axes.

The scheme of the investigated system is shown in figure 1, with R rep-
resenting the NPs radius while a and b describe the interparticle spacings of
adjacent particles.

To mimic the experiments of Yraola et al. [15] we assume that in-plane
particles are located in the ordinary plane of LiNbO3 crystal. This converts
that new scheme as an extension of a square-lattice arrays simulated by
Menegotto et al. [25] and Persson et al. [26] in their theoretical models of
interacting particles.

As it is well known, the Maxwell–Garnett (M–G) effective medium theory
(EMT) can be used to describe the effective dielectric response of an aggre-
gate composite made-up of metallic nanoparticles embedded in a dielectric
medium [27]. That macroscopic model represents a good approximation of
the interaction between the electromagnetic wave and the nanostructure in
the quasi–static regime. When the particles are randomly distributed in a
three–dimensional (3D) system, the sum of dipoles contributing to the local
field cancels out on average such that the MG–EMT dielectric function can
be calculated using the Clausius–Mossotti equation for the polarization of a
single particle [25]; i.e.,

εeff = εe

[
1 +

3f(εNP − εe)
(εNP + 2εe)− f(εNP − εe)

]
. (1)

Here εNP and εe are the dielectric functions of the inclusion particle and
embedding medium, and f is the filling factor of particles in LiNbO3 matrix.
Then, the above equation represents the dielectric response of the composite
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Figure 1: Scheme of the ordered rectangular array of Ag NPs on a uniaxial LiNbO3 matrix.
The parameters a and b represent the interparticle distances along the x and y directions,
respectively, where R is the NPs radius.

for spherical NPs when the depolarization factor is equal to 1/3 [21]. For
small f and using the Drude model to describe the dielectric function of the
metallic particle, the surface plasmon resonance (SPR) condition is fulfilled
at

ωSPR =
ωp√

1 + 2εe
(2)

where ωp is the plasma frequency of free electrons in the bulk metal.
In contrast to the 3D random distributions, when metallic nanoparticles

are distributed in open systems such as two–dimensional (2D) arrays or lin-
ear chains, similar to thin films containing NPs layers, and accounting on
interparticles interaction in dipolar approximation; the sum of dipolar elec-
tric fields does not cancel out anymore [25]. Accordingly, one may expect
dissimilar contributions to the local electric field when the electric field is
applied along the x, y or z directions. That dissimilar responses could result
in anisotropic responses that can be reflected in different effective dielectric
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functions’ components for the investigated system.
The anisotropic features in optical responses have been reported elsewhere

[28, 29]. At experimental points of view, structural anisotropy such as shape’s
asymmetry or disorder have been seen to introduce the optical dependence
on the orientation of the applied electric field. Also, the anisotropic response
can manifest itself through the red-shift or SPR resonances splitting on the
spectral positions if the electric field is perpendicular or parallel to particles
lines or planes. Another feature commonly ascribed to anisotropic response
is the spectral shape asymmetry of the optical bandwidth when we compare
the in-plane and out-of plane plasmonic resonances.

Due to the uniaxial symmetry of the crystal, we analyze the diagonal and
off–diagonal xy components of the effective dielectric tensor in 2D rectangu-
lar system. Such anisotropic dielectric function requires an extended M–G
model which accounts for both the plasmon resonance in each particle and
the interaction of charges in adjacent particles. That modification will de-
pend on either the nanoparticles are located on a square, an hexagonal or a
rectangular array. The geometrical shape of the lattice may introduce new
components in the effective dielectric function.

In the following subsection, we describe the diagonal and off-diagonal
xy components of the symmetric dielectric tensor when the lattice-NPs are
sited in a rectangular array. Most of our calculations will follow and extend
the previous works to analyze how such configuration affects or modifies the
criteria in simulating negative epsilon conditions.

In our case, εe is the dielectric function of embedding medium which
value has been estimated as the square root of both the ordinary or the
extraordinary refractive index (obtained from the Sellmeier expresions of the
host medium [30]) depending on the used direction. We use the same notation
εe for both the ordinary and extraordinary directions. In our scheme, see
fig. 1, the ordinary directions correspond to the x and y axes, while the
extraordinary direction corresponds to z axis. A wavelength of 450 nm is
arbitrarily considered to evaluate the Sellmeiller eqs. in this study. For the
value of 450 nm (2.76 eV ), we have estimated a birefringence (∆n = ne−no)
of 0.11 by considering the data of Javid et al. [17]. For the energy value
of 3.5 eV , we have estimated the same birefringence value (0.11) also using
the experimental data of the above paper [17]. This result supports the
hypothesis that LiNbO3 is anisotropic at the wavelength of λ = 450 nm.
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2.1. Electric fields in a rectangular configuration

Let us define the position vector of each nanoparticle of the 2D-lattice
located at the plane z = 0 and inside the Lorentz sphere [31]; i.e.,

~r = ia~ux + jb~uy + 0~uz (3)

where a and b are the interparticle distances along the x and y axes, respec-
tively; while i and j are integers. We consider that each particle inside this
sphere feel the embedding medium as homogeneous. The local field in the
system is written as

~Eloc = ~E0 + ∆ ~E + ∆ ~Ei (4)

where ~E0 is the applied electric field; ∆ ~E is the electric field due to induced
charges in the surface of the sphere and ∆ ~Ei is the electric field due to ith

particle inside the Lorentz sphere on the particle located in the sphere center.
The electric field ∆ ~E inside an uniformly polarized cell is given by

∆ ~E =
~P

3ε0εe
. (5)

On the other hand, the polarization of a system of NPs is a function of the
NPs density, N , the local field, ~Eloc and the polarizability of a nanoparticle,
α; then

~P = Nε0εeα~Eloc. (6)

Besides, the displacement vector, ~D = ε0εeff ~E0 allows to relate the dielectric
function of the effective medium with the polarization and the applied field;
so the above equation can be written as

~P = ε0(εeff − εe) ~E0. (7)

If the applied electric field is orthogonal to the NPs 2D lattice, then ~E0 =
E0~uz, the polarization of each particle is ~p = pz~uz and the dipolar field is
written as

~E =
1

4πε0εe

3(~p.~r)~r − ~pr2
r5

(8)

where the contribution of the dipolar field of all particles inside the Lorentz
sphere has only z component; i.e., ∆ ~Ei is

∆ ~Eiz =
−pz~uz
4πε0εe

∑

i,j

1

(a2i2 + b2j2)3/2
. (9)
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Analogously, using the equation (8) with the applied electric field along the
x or y directions, the dipolar fields inside the Lorentz sphere are given by

∆ ~Eix =
px~ux

4πε0εe

∑

i,j

2a2i2 − b2j2
(a2i2 + b2j2)5/2

. (10)

and

∆ ~Eiy =
py~uy

4πε0εe

∑

i,j

2b2j2 − a2i2
(a2i2 + b2j2)5/2

. (11)

2.2. Modified effective dielectric functions

Then, using eqs. (4), (5), (6), (7), (8) and (9), we deduce the z-component
of the effective dielectric tensor

εeff,z = εe

[
1 +

3f(εNPz − εe)
(εNPz + 2εe)− f(εNPz − εe) +OR3(εNPz − εe)

]
. (12)

Following similar treatment and considering that the applied electric field is
~E0 = E0~ux or ~E0 = E0~uy, the contribution of the dipolar field of all particles
inside the Lorentz sphere has only x or y components. Then, we deduce the
x- and y-components of the effective dielectric tensor,i.e.,

εeff,x = εe

[
1 +

3f(εNPx − εe)
(εNPx + 2εe)− f(εNPx − εe)−MR3(εNPx − εe)

]
, (13)

and

εeff,y = εe

[
1 +

3f(εNPy − εe)
(εNPy + 2εe)− f(εNPy − εe)−NR3(εNPy − εe)

]
, (14)

where εe is evaluated by means of the Sellmeier eqs. [30] which entails dif-
ferent values for the extraordinary (z axis) and ordinary directions (x and y
axes) in LiNbO3. In a similar manner, we deduce the off-diagonal xy and yx
components of the effective symmetric dielectric tensor; i.e.,

εeff,xy = εeff,yx = εe

[
1 +

3f(εNPxy − εe)
(εNPxy + 2εe)− f(εNPxy − εe)− 3abPR3(εNPxy − εe)

]
.

(15)
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On the other hand, the respective terms M , N , O, P and εNPxy are defined in
the Appendix.
In the above eqs. (12), (13) and (14), we define the nanoparticle dielectric
function along the x, y and z directions as

εNPx (ω) = 1 +
fcω

2
p

(−ω2
c,x − ω2)− iΓ(R)ω

(16)

εNPy (ω) = 1 +
fcω

2
p

(−ω2
c,y − ω2)− iΓ(R)ω

(17)

and

εNPz (ω) = 1 +
fcω

2
p

(2ω2
c,z − ω2)− iΓ(R)ω

(18)

where we have assumed a spring–mass coupling between charges in neighbor
particles, in a similar way to that used in ref. [25]. In fact, we have neglected
the interband transition of Ag NPs in its dielectric function because we are
mainly interested in the SPR along with the charge interactions between NPs.
In the above eqs. the size–dependent damping term is Γ(R) = γ + AvF/R,
being γ the bulk damping term, A = 1 and vF the Ag Fermi velocity [32];
fc accounts for the oscillator strength, where we propose for the coupling
frequencies the ansatz

ω2
c,x ≈ B2ω2

SPR

(
R

a

)3

(19)

ω2
c,y ≈ B2ω2

SPR

(
R

b

)3

(20)

and

ω2
c,z ≈ B2ω2

SPR

(
R

(a+ b)/2

)3

, (21)

respectively. In above eqs. (19), (20) and (21), B is a dimensionless constant.
Both constants B = 3.7 and fc = 0.94 are taken from reference [25]. Fur-
thermore, the above coupling frequencies are an approach for a rectangular
lattice in comparison with a square lattice. We have considered for similarity
to the square case that for axis y the interdistance b would be in the definition
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of the coupling frequency ωc,y and for axis z would be the avarage (a+ b)/2
in the definition of ωc,z.
Finally, using the diagonal and off-diagonal xy components of the symmet-
ric dielectric tensor, we analyze the low loss and negative epsilon conditions
ε′′eff ≈ 0 and ε′eff < 0 in the investigated arrays to characterize the band-
domain of energies for the composite. From mathematical standpoint, impos-
ing low loss or negative epsilon conditions is equivalent to finding structural
parameters for which the above criteria are fulfilled. Indeed, to determine
how losses and negative epsilon conditions can affect the dielectric response,
we discuss the features of resonant energies of ε′eff and ε′′eff for different sets
of structural parameters such as f , R, a and b and different directions.

2.3. Extinction cross section

Within the framework of the M–G effective theory, the extinction cross
section of the composite is given by [33]

α
(
cm−1

)
=

8.88× 107

λ (nm)

√
−ε′eff +

√
(ε′eff )

2 + (ε′′eff )
2 (22)

where λ, the wavelength of the incident light, is given in nanometers, while
ε′eff and ε′′eff represent the real and imaginary parts of of the effective sym-
metric dielectric tensor of the system. We analyze the diagonal and off–
diagonal components of this tensor. As it is well known, the extinction cross
section is the sum of the absorption and scattering cross sections, being the
absorption the greatest contribution to this sum for low–dimensional systems
[34], such as observed in our composite.

3. Results and discussion

The simulated plasmonic NPs inclusions and its structural parameters
have been schematically described in figure 1. It consists of Ag NPs ordered
on a rectangular array and deposited on the uniaxial LiNbO3 crystal. This
modeled structure is discussed under an extended Maxwell–Garnett theory,
where the interparticles interactions are taken into account. Due to dissimilar
responses at applied electric fields along the x, y or z directions, we have
different diagonal components of the effective dielectric tensor. In fact, we
investigate the diagonal and the off–diagonal xy components of the symmetric
dielectric tensor. For our simulations, we choose 2R < a; i.e., no contacting
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nanoparticles and b = 2a for the rectangular arrangement. We evaluate the

filling factor as f = 4πR3/3
abc

, where the thickness c is 0.5 µm. So, a change
of the NP radius or the gap distances a or b entail a different filling factor.
Also, to clarify the presentation of our results, we divide our discussion in
different subsections, each one accounting on the effect of selected structural
and compositional parameters that determine the dielectric features and the
extinction cross section.

3.1. Effects of NPs radius on the dielectric tensor components

Figures 2 and 3 depict the real and imaginary parts of εeff,x, εeff,y and
εeff,z for a rectangular array of Ag NPs with radii ranging between 10 nm and
100 nm. These values are smaller than the wavelength in the range investi-
gated, validating the use of the quasi–static approximation. Throughout this
study, we use following geometrical parameters: R/a = 0.25, R/b = 0.125
for all investigated cases and f ranging between 0.0026 and 0.026. These
values of f are typical within the framework of M–G theory [22]. As shown
in figures 2 and 3, we observe several effects of anisotropic characteristics of
our system on ε′eff and ε′′eff . Those effects are reflected through the profiles
of ε′eff and ε′′eff with distinct resonance energies in the three directions. For a
fixed R value, the different resonance energies along the x, y and z directions
can be ascribed to the different coupling frequencies along the three direc-
tions in the assumed framework of spring–mass coupling between charges in
neighbor particles [see eqs. 19 – 21]. As R decreases, for the x direction (i.e.,
when interparticle distance is a), the resonant peaks in the real part of εeff
appear between 2.17 eV and 2.21 eV ; while for the y direction (i.e., with
the interparticle distance equal to b), the resonant peaks appear between
2.43 eV and 2.47 eV . For the perpendicular direction to the ordinary plane
(i.e., z direction) the resonant peaks appear between 2.73 eV and 2.81 eV .
Therefore, in all directions the resonances are red-shifted for increasing radii.
The bandwidth of this red–shift is around 40–80 meV along the x-, y- and
z-directions, showing consequently, some type of anisotropy. Furthermore,
this red–shift is analogous to that observed in the optical properties of other
low–dimensional systems [35].

For the real part of the effective dielectric tensor components, the negative
epsilon (NE) conditions; i.e., ε′eff,x < 0, ε′eff,y < 0 or ε′eff,z < 0 are reached
at critical value for radii as large as 80 nm for the three components.

This 2D system presents three specific windows where the positive and
negative ε′eff,x, ε

′
eff,y and ε′eff,z may coexist (see figure 2). In fact, Podoloskiy
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and Narimanov [36] have demonstrated that for an uniaxial dielectric con-
stant, the negative index material is feasible, when ε′eff,z < 0 and ε′eff,|| > 0
even if the material which is placed in a waveguide shows no magnetic re-
sponse (µ = 1). However from our findings, we observe that both ε′eff,z < 0
and ε′eff,x > 0, ε′eff,y > 0 or ε′eff,z > 0 and ε′eff,x < 0, ε′eff,y < 0 may coexist
at different wavelengths (see fig.2). Some authors have reported that hyber-
bolic metamaterials can present opposite signs in ε′eff,z > 0 and ε′eff,|| < 0

[38], giving rise to type-I or type-II hyperbolic metamaterials. So, depend-
ing on the region under investigation, ordered arrays of Ag NPs grown on
an uniaxial crystal such as LiNbO3 can behave either as a type-I or type-II
hyberbolic metamaterial.

On the other hand, the NE range (energy interval where NE condition is
observed) is approximately between 2.18 eV and 2.31 eV for ε′eff,x, between
2.45 eV and 2.57 eV for ε′eff,y and between 2.74 eV and 3.0 eV for ε′eff,z for R
= 100 nm (see Fig. 2). Then, the NE range is 130 meV for the x direction,
120 meV for the y direction and 260 meV for the z direction; consequently
this feature shows some type of bandwidth anisotropy. For smaller radii, the
NE range is narrower in all investigated directions (see Fig.2).

For the imaginary part (see Fig. 3), as R decreases the resonance of ε′′eff,x
is centered between 2.17 eV to 2.21 eV , while that of ε′′eff,y is located between
2.44 eV to 2.47 eV and finally the resonance of ε′′eff,z is centered between 2.73
eV and 2.81 eV . In fact, for the three investigated directions, the resonances
are red–shifted for increasing radii. The bandwidth of this red–shift is around
30–80 meV for the three directions, showing some anisotropic feature. Also,
for the resonant peaks, their FWHM become more and more narrower with
increasing radii, while the energy range bandwidth characterized by ε′′eff ≈ 0
becomes wider in the same range.

Figure 4 shows the real and imaginary parts of the off–diagonal compo-
nents εeff,xy = εeff,yx with radii ranging between 10 nm and 100 nm and f
ranging between 0.0026 and 0.026. We choose the same values than those
investigated for the diagonal components in order to compare both of them.
For a fixed R value, the resonant energy of the off–diagonal components is
around 1.56 eV , which is smaller than the resonance energies of the diagonal
components. This trend show some anisotropic feature due to the assumed
framework of spring–mass coupling in neighbor particles [see eqs. 19 – 21
and appendix]. As R decreases, the resonant peaks in the real and imag-
inary parts of εeff,xy = εeff,yx appear between 1.55 eV and 1.58 eV . This
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Figure 2: Real parts of εeff,x, εeff,y and εeff,z of the 2D array for different radii and
filling factor. The zero-reference line mark out the NE range and the regions between
arrows indicate the flip–flop sign.
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Figure 3: Imaginary parts of εeff,x, εeff,y and εeff,z of the 2D array for different radii
and filling factor.
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red–shift for increasing radii is similar to those obtained in the diagonal com-
ponents. The trend of red–shift for resonance energies when the radii increase
is analogous to that reported in other low–dimensional systems [35]. The NE
condition; i.e., ε′eff,xy < 0 is reached at the same critical value of 80 nm as
for diagonal components, while the NE range at R = 100 nm is 90 meV ,
which is smaller than those obtained in the diagonal components. For the
imaginary part of εeff,xy = εeff,yx, the FWHM of the resonant peaks become
more and more narrower with increasing radii, trend which is similar to the
FWHM of the diagonal components.

Although we fix the value λ = 450 nm to evaluate the dielectric constant
of LiNbO3, we have evaluated it for other wavelengths. As an example, for
λ = 532 nm (2.33 eV ), which entails a smaller refractive index, we obtain
that the resonance peaks are blue–shifted respect to our case of λ = 450 nm;
while for λ = 350 nm (3.54 eV ), which entails a higher refractive index, the
resonance peaks are red–shifted. This is the expected trend, because for an
embedding smaller dielectric constant the resonant peaks are blue–shifted,
while for greater values the peaks are red–shifted [37].

3.2. Effects of the interparticle distances on the dielectric tensor components

We show in figures 5 and 6 the real and imaginary parts of εeff,x, εeff,y
and εeff,z for Ag NPs rectangular arrays with R = 100 nm and f ranging
between 0.026 and 0.012. In this simulation, the interparticle distance a
ranges between 400 nm to 600 nm while the gap distance b lies between
800 nm and 1200 nm. The anisotropy effects on εeff,x, εeff,y and εeff,z are
clearly noticeable. For fixed a and b values, the different resonance energies
along the x, y and z directions can be interpreted in terms of the different
coupling frequencies along the three directions as we have discussed in the
above subsection. As a and b increase, the resonant peaks in the real part of
εeff appear between 2.13 eV and 2.47 eV for the x direction; it lie between
2.40 eV and 2.60 eV for y direction and it ranges between 2.66 eV and 2.78 eV
for perpendicular direction. Then, the bandwidth due to the interdistances
change is 340 meV in the x direction, 200 meV in the y direction and 120
meV in the z direction; consequently we can infer some type of bandwidth
anisotropy. Indeed, the spectral resonant bandwidths together with the peaks
position separation are seen to be largely affected by the lateral arrangement
of nanoparticles along the x-direction than in y and z ones. To confirm
this behaviour (not shown here), we interchange the particles arrangement
such that the extraordinary direction of LiNbO3 coincides with x-direction
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while y and z directions are in ordinary directions of LiNbO3. We also
observe that peaks separations and bandwidths along the x-direction are
still more resolved that they are in the y and z directions. That confirms
that the spectral anisotropy reported in our simulations are not related with
the environment dielectric medium.

On the other hand, the resonance energies are blue–shifted for the x and y
directions, while for the z direction the resonance energies are red-shift when
the interdistances a and b increase. As the resonance energies shift is more
noticeable for εeff,x than for the other directions, we can explain this feature
as follows. The NPs interdistance a is smaller than b and the interaction
between neighbor nanoparticles is stronger; consequently, the width shift
could be greater for the x direction.

Looking at the fig. 5, we observe that for ε′eff,x, ε
′
eff,y and ε′eff,z the NE

condition is fulfilled for the values R/a between 0.25 and 0.2 and the values
of R/b between 0.125 and 0.1. Then, to get NE condition it is necessary
a critical value of the filling factor f or that the ratios R/a and R/b have
particular values. For ε′eff,x, ε

′
eff,y and ε′eff,z, the NE range is narrower for

increasing distances a and b. In addition, the NE bandwidth is blue–shifted
for ε′eff,x and ε′eff,y while for ε′eff,z the NE range is red–shifted. Then, this
feature is similar to that obtained for the energy resonances.

As we have previously discussed in section 3.1, we obtain three specific
windows where the positive and negative ε′eff,x, ε

′
eff,y and ε′eff,z may coexist

(see figure 5). Therefore, depending on the region under investigation and the
a and b values, ordered arrays of Ag NPs grown on an uniaxial crystal such
as LiNbO3 can behave either as a type-I or type-II hyberbolic metamaterial.

For the imaginary part (see Fig. 6), the resonance peak of ε′′eff,x is centered
between 2.17 eV and 2.42 eV for increasing interparticle distances, while the
resonance of ε′′eff,y is observed between 2.43 eV and 2.48 eV and finally
the resonance for ε′′eff,z lie between 2.66 eV and 2.73 eV . The bandwidth
is 250 meV for the x direction, 50 meV for the y direction and 70 meV
for z direction. We claim that there is some type of bandwidth anisotropy
by investigating the interdistances change. Then, the resonance energies are
blue–shifted for the x and y directions, while for the z direction the resonance
energies are red-shift when the interdistances a and b increase. This feature is
similar to that obtained for the real part. Again, we have that the resonance
energies blue–shift is more noticeable for the imaginary part of εeff,x than for
the other directions. It can be explained as the same origin that previously
discussed for the real part of the effective dielectric function. On the other
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hand, for the three peaks, their FWHM are mainly independent of a or b
distances. The range where the low loss condition is fulfilled describes a
wide bandwidth.

Although it is not shown here, we have also investigated the effects of the
interparticle distances on the off–diagonal components εeff,xy = εeff,yx. For
the real and imaginary parts of the off–diagonal components, the resonance
energies are blue–shifted as the interparticle distances a and b increase. For
example, when a = 400 nm and b = 800 nm (f = 0.026, R = 100 nm), the
resonance peak is around 1.55 eV , when a = 500 nm and b = 1000 nm (f
= 0.017, R = 100 nm), the resonance is peaked around 1.70 eV and finally
when a = 600 nm and b = 1200 nm (f = 0.012, R = 100 nm) the resonance
peak is around 1.76 eV . This blue–shift is also obtained in the x- and y-
diagonal components as it was previously discussed. On the other hand, the
NE condition is only fulfilled for R/a = 0.25 and R/b = 0.125. Then, to
get NE condition it is necessary a critical value of filling factor f [20]. This
characteristic is analogous to that observed in the diagonal components of
the effective symmetric dielectric tensor.

3.3. Effects of structural parameters on the extinction

Firstly, we analyze the extinction dependence on the electric field polar-
ization for a rectangular array of Ag NPs with R = 100 nm and f = 0.026,
values for which the NE condition is fulfilled. We define extinction as the
extinction cross section multiplied by the NP size as in reference [20]. Figure
7 shows the composite extinction when the applied electric fields are in the
x-, y- and z-axes. The resonances are peaked at 2.19 eV (axis x), 2.45 eV
(axis y) and 2.75 eV (axis z); i.e., at the same energies that the resonances
of εeff,x, εeff,y, εeff,z for the same R and f values, as it could be expected.
On the other hand, althougth it is not shown here, the extinction intensity
decreases a factor around 500 when R = 10 nm and f = 0.0026, being the
energy resonances slightly blue–shifted respect to higher values of R and f .
This behavior with the radius and filling factor is also reported in a 3D dis-
tribution of Ag NPs embedded in LiNbO3 [20]. As an example, we show
in figure 8 the extinction for the z direction with R = 100 nm, f ranging
between 0.026 and 0.012, the interparticle distance a ranges between 400 nm
and 600 nm, while the gap distance b lies between 800 nm and 1200 nm.
The resonance energies are peaked around 2.79 eV and 2.68 eV , showing a
red–shift as a and b increase. This dependence is similar to that discussed
for εeff,z on the interparticle distances. Finally, as the extinction behavior is
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Figure 7: Extinction dependence on the electric field polarization for a rectangular array
of Ag NPs.

similar to that obtained in the imaginary parts of the symmetric dielectric
tensor components, we can conclude that the extinction in the investigated
system is mainly due to the absorption process.

4. Conclusions

We have evaluated the diagonal and the off–diagonal components of the
effective symmetric dielectric tensor of an ordered rectangular array of Ag
NPs on LiNbO3 matrix. Using an extended Maxwell–Garnett effective the-
ory and taking into account the dipolar interaction of neighboring particles,
three specific cases of polarized electric field were considered to account on
the anisotropic effect on the dielectric response. To describe the Ag NPs and
LiNbO3 dielectric functions, we used, respectively, a modified Drude model
and the Sellmeier equations. The x- and y-components of the effective di-
electric tensor are associated with the ”ordinary plane” of LiNbO3 while the
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z-component is coupled to extraordinary dielectric constant of LiNbO3.
To account of the role of structural parameters, we investigated the effects

of NPs radius, rectangular array interparticles distances and filling factor on
the dielectric response in the ordinary and extraordinary directions. We
showed that the negative epsilon condition is satisfied from a critical size of
Ag NPs when the filling factor and the interparticles distances (a and b) have
particular values. This condition defines an interval of energies, called NE
range, which clearly depend on values of structural parameters defined in the
model. This NE range shows some type of bandwidth anisotropy when it is
compared among the x-, y-, z- and xy-components. Indeed, we have analyzed
some anisotropic features such as the bandwidth and shift resonance energies
in the real and imaginary parts of the effective symmetric dielectric tensor
when structural parameters change. Finally, we have evaluated the extinction
when the applied electric fields are in the x-, y- and z-axes for different R, a,
b and f values. We have obtained that varying structural parameters of 2D
arrays of Ag NPs, the plasmon resonance can be tuned across the near-UV
and visible spectral range, such as it is experimentally observed.
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Appendix

The terms M , N , O and P in eqs. (12), (13), (14) and (15) are written as

M =
∑

i,j

2i2a2 − j2b2
(a2i2 + b2j2)5/2

(A.1)

N =
∑

i,j

2j2b2 − i2a2
(a2i2 + b2j2)5/2

(A.2)

O =
∑

i,j

1

(a2i2 + b2j2)3/2
. (A.3)

and

P =
∑

i,j

ij

(a2i2 + b2j2)5/2
. (A.4)
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The above expressions come from the development of the dipolar electric
field of all studied particles inside the Lorentz sphere for different polariza-
tions of the applied electric field. The numerical value of M , N , O and P
has been evaluated using the Mathematica package. On the other hand, the
NP dielectric function εNPxy = εNPyx is defined as

εNPx εNPy
εNPx + εNPy

(A.5)

which corresponds to the inverse law of dielectric functions [40].
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Highlights: 

-We report the optical response of a rectangular array of Ag NPs in uniaxial LiNbO3. 

-We investigate the anisotropic effects on the effective dielectric tensor taking into account 

the charges interaction of NPs. 

-The effective dielectric tensor components of the ensemble are treated by an extended 

Maxwell-Garnett approximation. 

-We show that the negative epsilon condition is satisfied for critical values of the structural 

parameters of the array. 

-We show some anisotropic features on bandwidth and shift of resonance energies in the 

effective dielectric tensor components. 
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