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Summary 26 

• Roots are assumed to play a major role in structuring soil microbial communities, but 27 

most studies exploring the relationships between microbes and plants at the 28 

community-level have only used aboveground plant distribution as a proxy. However, a 29 

decoupling between below- and aboveground plant components may occur due to 30 

differential spreading of plant canopies and root systems. Thus, soil microbial-plant links 31 

are not completely understood. 32 

• Using a combination of DNA metabarcoding and spatially explicit sampling at the plant 33 

neighbourhood scale, we assessed the influence of plant root community on soil 34 

bacterial and fungal diversity (species richness, composition and β-diversity) in a dry 35 

Mediterranean scrubland. 36 

• We found that root composition and biomass, but not richness, predict unique fractions 37 

of variation in microbial richness and composition. Moreover, bacterial β-diversity was 38 

related to root β-diversity, while fungal β-diversity was related to aboveground plant β-39 

diversity, suggesting that plants differently influence both microbial groups. 40 

• Our study highlights the role of plant distribution both below- and aboveground, soil 41 

properties and other spatially structured factors in explaining the heterogeneity in soil 42 

microbial diversity. These results also show that incorporating data on both plant 43 

community compartments will further our understanding of the relationships between 44 

soil microbial and plant communities. 45 

Keywords: bacterial and fungal diversity, belowground plant community, DNA metabarcoding, 46 

microbial communities, plant-soil interactions, roots, soil biodiversity  47 
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Introduction  48 

Microorganisms living in the soil, such as bacteria and fungi, engage with plants to form 49 

complex biotic interactions, which play key roles in controlling critical ecosystem processes, 50 

including nutrient cycling, plant primary productivity and organic matter decomposition (Van 51 

Der Heijden et al., 2008; Fierer et al., 2013). Given the importance of soil microbial-plant 52 

feedbacks in driving ecosystem multi-functionality and services (Bardgett & Van Der Putten, 53 

2014; Delgado-Baquerizo et al., 2015), a huge research effort has been devoted to better 54 

understand the eco-evolutionary mechanisms controlling the relationships between soil 55 

microbes and plants. Direct plant-microbial links may arise from well-known mechanisms 56 

involving pathogenic or symbiotic associations such as mycorrhizal and nitrogen-fixing bacteria 57 

(Wardle et al., 2004; Wubs & Bezemer, 2016). Plants also modify the soil physicochemical 58 

conditions by the release the products of photosynthesis, the litter contribution, and the uptake 59 

of ions (Wardle et al., 2004; Trinder et al., 2009; Millard & Singh, 2010). Previous studies have 60 

shown that the bacterial diversity in rhizospheres are different from those of bulk soils (Uroz et 61 

al., 2010; Philippot et al., 2013) indicating a strong heterogeneous distribution of microbial 62 

communities at a fine scale. Despite the establishment and maintenance of soil microbial-plant 63 

interactions is strongly mediated through the direct influence of the root, there is a lack of 64 

evidence on how different community attributes of the belowground plant community, 65 

including root α-diversity, β-diversity, composition and species’ abundance, influence soil 66 

bacterial and fungal diversity and community composition. This knowledge gap is due to the 67 

fact that a large body of research in this field has used information from the aboveground 68 

component, such as cover structure, standing biomass or basal area, as a surrogate for plant 69 

community attributes (Prober et al., 2015; Delgado-Baquerizo et al., 2018; Adamczyk et al., 70 

2019; Chen et al., 2019), despite substantial evidence of an aboveground-belowground 71 

decoupling in composition and structure in different plant communities (Jones et al., 2011; 72 

Träger et al., 2019). 73 

A close match between below- and aboveground plant species richness may be 74 

expected at large spatial scales, such as the landscape level. However, this coupling can be 75 

blurred at fine spatial scales (i.e. in the neighbourhood of individual plants) due to differences in 76 

the spreading of plant canopies and plant root systems (Schenk & Jackson, 2002). For instance, 77 

species richness may be higher belowground than aboveground because of the ability of some 78 

herbaceous perennials with dormant meristems to persist in the absence of aboveground 79 

organs (Reintal et al., 2010; Hiiesalu et al., 2012). Furthermore, plants from water-limited 80 

ecosystems often show high root:shoot ratios as a consequence of the higher investment in the 81 
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belowground counterpart (Schenk & Jackson, 2002; Mokany et al., 2006). This potential 82 

decoupling between aboveground and belowground plant communities identifies a clear 83 

limitation to the establishment of causal connections between soil microbial and plant 84 

communities based only on inferences from the aboveground plant component. A usual 85 

constraint hindering the consideration of root community structure into the current framework 86 

to explain soil microbial diversity is the difficulty of characterizing root communities in the field. 87 

However, recent advances in DNA metagenomics provide a powerful tool to quantify plant 88 

species diversity and biomass partition belowground (e.g. Matesanz et al. 2019) and, 89 

consequently, allows testing their effects on soil microbial diversity. 90 

Although empirical evidence on root-microbial soil interactions at the community level 91 

is sparse, several mechanisms by which plants may influence soil microbial communities 92 

through roots have been described. Roots promotes soil loosening and aeration, changing the 93 

water flow in their close vicinity (Angers & Caron, 1998; Philippot et al., 2013). Roots aslo affect 94 

soil microbial diversity by altering nutrient flow rates and the partitioning of soil resources via 95 

rhizodeposits such as phenolic exudates, root cells and mucilage (Vandenkoornhuyse et al., 96 

2007; Broeckling et al., 2008; Haichar et al., 2008; Jones et al., 2009). Therefore, it might be 97 

expected that a higher root biomass (i.e. reflecting the amount of rhizodeposits) would enhance 98 

microbial diversity (Eisenhauer et al. 2017). Furthermore, mounting evidence suggests the 99 

existence of a host specialization, which leads to a particular microbiota associated with specific 100 

plant roots, either through the type of rhizodeposits or other chemical-morpho-physiological 101 

traits (Silver & Miya, 2001; Jones et al., 2004; Haichar et al., 2008; Badri & Vivanco, 2009; 102 

Kernaghan, 2013). Under a niche coexistence framework, greater richness of roots (i.e. higher 103 

rhizodeposits variety) would lead to a higher microbial richness (De Boer et al., 2005; Wardle, 104 

2006; Eisenhauer et al., 2010). In addition, host-specialization would link changes in plant 105 

species composition to changes in microbial composition, that is, belowground plant β-diversity 106 

(compositional dissimilarity of roots between sites) would predict soil microbial β-diversity 107 

(Prober et al., 2015). The few experimental and observational attempts to explicitly evaluate the 108 

role of root communities as microbial drivers of microbial community structure have shown a 109 

weak or even no effect of roots (Barberán et al., 2015; Leff et al., 2018). The difficulties also may 110 

arise due to microbial and the two compartments of plant communities (e.g. roots and 111 

aboveground parts) are structured at different spatial and temporal scales (Bardgett et al., 112 

2005). Experimental studies may be limited by the time lags in soil microbial responses to the 113 

manipulation of plant community attributes (Hedlund et al., 2003);observational evidence may 114 

also be inconclusive. For instance, Barberán et al. (2015), studying a tropical forest, found that 115 
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that soil microbial composition was better predicted by the distribution of plant canopies than 116 

by root distributions. This was probably due to the fact that the spatial grain size used to sample 117 

plant canopies (> 2.5 meters) better represented the variation of the plant community 118 

composition compared to the used for plant root systems (6.25 cm). Consequently, further 119 

observational and experimental studies, performed at the scale of root communities (i.e. the 120 

scale where plants interact more closely) are needed in order to progress on a more 121 

comprehensive understanding of the interactions between the belowground attributes of the 122 

plant community and microbial communities.  123 

The relationships between roots and microbial communities may not always be causal, 124 

as they can emerge as a concomitant effect of the aboveground component of plant 125 

communities or other shared soil-driven processes. The aboveground plant community 126 

attributes have been shown to explain patterns of microbial diversity through the specific litter 127 

inputs (Wardle et al., 2004; Trinder et al., 2009; Millard & Singh, 2010), or microclimate 128 

modifications in temperature and moisture, which may also vary among plant species (Angers & 129 

Caron, 1998; Maestre et al., 2009). Furthermore, it is also known that abiotic soil factors such as 130 

physical structure (Lauber et al., 2009; Rousk et al., 2010; Serna-Chavez et al., 2013), or nutrient 131 

stocks (Serna-Chavez et al., 2013; Leff et al., 2015) may also strongly affect microbial diversity. 132 

Since the drivers of soil microbial diversity can concurrently be important drivers of plant 133 

community structure, soil microbial-plant links can arise (or conversely, be offset) due to the 134 

same (or opposite) responses to environmental conditions. An important challenge is, 135 

therefore, to unravel whether the influence of the root community on microbial diversity 136 

parallels or, alternatively, goes beyond the effect of the aerial canopy and the soil 137 

physicochemical properties. 138 

In this study, we evaluated the role of plant roots as drivers of soil microbial diversity. 139 

We specifically assessed the effects of richness of the root communities, their species 140 

composition and biomass, on both the richness and species composition of soil fungal and 141 

bacterial communities. We also assessed the coupling of root and microbial β-diversity. Because 142 

the associations between root and microbial communities can also be due to shared responses 143 

to other concomitant factors, we examined root-microbial relationships after accounting for the 144 

effects of plant aboveground and soil physicochemical properties. In addition, because both 145 

microbial communities and environmental factors, including non-measured ones, such as 146 

topography or soil moisture content, frequently have a predictable spatial structure (Ettema & 147 

Wardle, 2002), we also considered the role of explicit spatial covariates. For this purpose, we 148 

combined DNA metabarcoding techniques with spatially explicit sampling in a Mediterranean 149 
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scrubland, considering the scale at which plant to plant interactions occur in this community 150 

(Chacón-Labella et al., 2016; Pescador et al., 2020). Specifically, we address the following 151 

questions: (1) Which root community attributes (root richness, biomass, composition and β-152 

diversity) predict the patterns of microbial diversity? (2) Do root community attributes explain 153 

more variation in the microbial community structure than the aboveground component, soil 154 

physicochemical properties, and other spatially structured factors? 155 

Methods 156 

Study area, vegetation and soil sampling 157 

The study was conducted in a species-rich semiarid Mediterranean scrubland near 158 

Orusco de Tajuña (Madrid, Spain) in the central Iberian Peninsula. The climate is semiarid 159 

Mediterranean with a mean annual precipitation of 452 mm, summer drought and a mean 160 

temperature of 12.8°C. The soil is characterized as Xeric Calcigypsids (Soil Survey Staff, 2014) 161 

with low gypsum content (<10%). The plant community is very rich -48 perennial species found 162 

in a 60 m2 plot in Chacón-Labella et al. (2016), including a diverse assemblage of chamaephytes 163 

such as Thymus vulgaris L., Bupleurum fruticescens Loefl. ex L., Helianthemum cinereum (Cav.) 164 

Pers., Fumana ericoides (Cav.) Gand. and Linum suffruticosum L. and perennial grasses such as 165 

Stipa pennata L., Avenula bromoides (Gouan) H. Scholz and Koeleria vallesiana (Honck.) Gaudin. 166 

Sparse sprouting shrubs such as Quercus coccifera L. and, occasionally, Quercus ilex subsp. 167 

ballota (Desf.) Samp. trees are common in the area. 168 

In May 2016, we established an 8 × 8 m plot (40°16'08.5"N 3°08'11.1"W; 781 m a.s.l.) 169 

representative of the dominant vegetation on a northwest-facing slope (<11°) in a 170 

homogeneous area. The mean perennial plant cover in this area was around 40%. The plot size 171 

guaranteed the inclusion of a high number of species (45) and individuals (8551). Within this 172 

plot, each perennial plant, except for seedlings, was mapped with 1 cm absolute precision using 173 

a Leica Real-Time-GPS (Viva GS15, Leica, Wetzlar, Germany). The projection area of the crown 174 

of each individual plant was approximated by a circle with radius r = (L+S)/4, where L is the 175 

longest diameter of the crown and S its perpendicular diameter. Within this plot, we also set 64 176 

sampling points on an 8 × 8 regular grid (i.e. 1 m spacing/distance between contiguous sampling 177 

points). We set 20 additional sampling points in four groups at the corners of the plot to 178 

increase the spatial resolution, resulting in 0.70 m spacing between sampling points in these 179 

areas (see Fig. S1 for more details). We georeferenced the centre of each sampling point using 180 

the Leica Real-Time-GPS.  181 
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Around each sampling point, two contiguous soil samples were collected using steel 182 

cores of 5 cm diameter x 10 cm depth. The sampling depth of the cores was chosen based on 183 

the distribution of root biomass in the soil in this plant community, which is significantly higher 184 

in the first 10 cm than in the deeper 10-30 cm layer (data not shown), therefore allowing 185 

sampling of a large proportion of the belowground plant community in the plot. One sample 186 

was employed to assess the soil microbial community and soil physicochemical variables 187 

(hereafter soil-microbial samples) and the second one to study the belowground plant 188 

community (hereafter root samples). Soils from the soil-microbial samples were thoroughly 189 

sieved through a 2-mm mesh, homogenized and separated into two subsamples: 1 g of 190 

homogenized soil for molecular analyses, and 50 g of air-dried soil for soil physicochemical 191 

analyses. Plant roots from each root sample were thoroughly washed, in the first 48 hours since 192 

field collection. The root material was centrifuged at 3000 rpm for 30 seconds to remove excess 193 

water, weighed to estimate fresh root biomass per core (hereafter root biomass) and 194 

homogenized by cutting roots in small pieces. A portion of 0.1 g of fresh root biomass per 195 

sample was stored at -80 ºC for subsequent DNA metabarcoding analyses.  196 

Soil microbial community  197 

The identification and estimation of the abundances of the fungal and bacterial OTUs 198 

was assessed in each soil-microbial sample through DNA metabarcoding, as explained in 199 

Methods S1. In brief, DNA was isolated in the 84 soil-microbial samples using the DNeasy 200 

PowerSoil isolation kit (Qiagen, CA, USA) from 0.25 g of dry soil. The bacterial 16S rRNA gene 201 

and the fungal ITS2 region were sequenced in the Illumina MiSeq PE300 v3 run at the Unidad de 202 

Genómica (Fundación Parque Científico de Madrid, Spain). After assessment of the quality of 203 

the Illumina raw reads using FastQC (Andrews 2010), and the paired-end assembly of the R1 204 

and R2 reads with FLASH (Magoč & Salzberg 2011), sequences were quality-filtered (minimum 205 

Phred quality score of 20) and labelled using the multiple_split_libraries.py script implemented 206 

in Qiime (Caporaso et al. 2010). Bioinformatic analyses were conducted using the VSEARCH tool 207 

(Rognes et al. 2016). Sequences were dereplicated (-derep fulllength), clustered at a similarity 208 

threshold of 100% (-cluster fast, {centroids option), and sorted (-sortbysize). A quality-filtering 209 

was applied to the OTU tables to remove the OTUs occurring at a frequency below 0.005% in 210 

the whole dataset and the low abundance OTUs of each soil-microbial sample (0.1% threshold).  211 

Before conducting further analyses, bacterial and fungal reads were rarefied to the 212 

minimum number of sequences in a soil-microbial sample for each microbial group (i.e. 2350 213 

and 11872 sequences per sample respectively, Fig. S2), to account for the unequal number of 214 

sequences between samples. Since methodological biases (extraction bias, amplification bias, 215 
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sequencing bias) may hinder an accurate estimation of actual abundances, the microbial 216 

community matrix was Hellinger-transformed (Legendre & Gallagher, 2001). This 217 

transformation, which involves that the abundance values of each OTUs are first divided by the 218 

sample total abundance, and the result is square-root transformed, downweights the 219 

importance of species abundance (Legendre & Gallagher, 2001) and avoids the double-zero 220 

asymmetry (Legendre & Legendre, 2012). 221 

Belowground and aboveground plant community  222 

Belowground plant community was assessed following the DNA metabarcoding 223 

protocol described in Matesanz et al. (2019). In brief, DNA was extracted from 0.1 g of the 224 

homogenized root tissue of each root sample using the DNEasy Plant Minikit (Qiagen, CA, USA). 225 

A fragment of the rbcL chloroplast gene (550 bp) was sequenced in the Illumina MiSeq PE300 226 

run. After assessment of the quality of the Illumina raw reads using FastQC, the R1 and R2 reads 227 

were quality-filtered using Geneious 11.1.2 (www.geneious.com), trimmed according to the 228 

average Phred score (minimum Phred quality score of 20), and concatenated using the fuse.sh 229 

script implemented in the ‘BBmap’ package (Bushnell, 2014). The sequences were labelled 230 

(demultiplexed) using the script multiple split libraries.py implemented in Qiime (Caporaso et 231 

al., 2010). Sequences were dereplicated (-derepfullength), clustered at a similarity threshold of 232 

100% (-cluster fast,-centroids option), and sorted (-sortbysize). Chimera sequences identified by 233 

the UCHIME algorithm implemented in VSEARCH were discarded (Edgar et al., 2011). 234 

Taxonomic assignment of sequences was done using the -usearch global option of VSEARCH and 235 

considering a 99% similarity threshold, from an in-house reference database with the rbcL 236 

sequences of 45 plant species from 18 families found in the study area. rbcL was able to identify 237 

individual species in most cases, except for a few very close relatives such as Thymus vulgaris L., 238 

T. lacaitae Pau, Stipa pennata, S. tenacissima L., Teucrium capitatum L., T. gnaphalodes L'Hér. 239 

Stirp, Quercus coccifera and Q. ilex, which were grouped at the genus level. One root sample 240 

that rendered only one sequence read was excluded from further analyses. The number of 241 

sequences assigned to each plant species was used as an estimate of its abundance in each 242 

sample. 243 

Aboveground plant abundance (i.e., plant cover) was estimated as the sum of all the 244 

intersection areas between the projection of the crown of each individual plant and a circle of 245 

20 cm radius around each sampling point (Fig. S3). This radius was selected as the one that 246 

maximized the similarity between aboveground and belowground samples (A. Illuminati et al., 247 

unpublished).  248 
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Soil physicochemical variables 249 

Soil physicochemical analyses were conducted as described by López-Angulo et al. 250 

(2018). Briefly, we analysed four nutrient stocks: soil organic carbon (SOC), total nitrogen (N), 251 

available phosphorus (P) and potassium (K); two dynamic variables related to the soil microbial 252 

activity such as acid phosphatase and β-glucosidase enzymatic activities; and several variables 253 

such as pH, electrical conductivity, sand, silt and clay contents (Table S1). SOC was determined 254 

by colorimetry, and Total N and available P using a SKALAR San++ Analyser (Skalar, Breda, The 255 

Netherlands) after digestion of the soil samples with H2SO4. K, pH, and electrical conductivity 256 

were measured in water suspension. Phosphatase and β-glucosidase activities were estimated 257 

as described in Tabatabai (1982). Sand (2.0-0.05 mm), silt (0.05-0.002 mm) and clay (<0.002 258 

mm) proportions for each soil sample were determined using the methods described by Kettler 259 

et al. (2001). Prior to statistical analyses, soil organic C, phosphatase activity, conductivity and 260 

clay content were log-transformed, and β-glucosidase activity was square root-transformed to 261 

approximate normal distributions. All soil physicochemical variables were standardized and 262 

submitted to a Principal Component Analysis (PCA) with varimax rotation to reduce the number 263 

and multicollinearity of the soil predictor variables and maximize their correlation with the PCA 264 

components. Four PCA components (accounting for 75% of variance; see Table S2), all of them 265 

with sound ecological meaning, were considered in further analyses as predictors representing 266 

different important soil features. They, respectively, represented variation in texture (negatively 267 

correlated with sand, and positively with silt and clay; 22% of variance), soil organic carbon 268 

(19%), fertility (positively correlated with nitrogen and phosphorus; 18%) and salinity 269 

(negatively correlated with pH and positively with conductivity; 16%). 270 

Spatial variables 271 

To account for any additional variation in the microbial communities not explained by 272 

below- and aboveground plant communities and soil physicochemical properties, we generated 273 

a set of Moran´s eigenvectors from the coordinates of each sampling point using distance-based 274 

Moran’s eigenvectors maps (dbMEM; Legendre & Legendre, 2012). This technique uses 275 

Principal Coordinates Analysis to generate orthogonal eigenvectors of truncated matrices of 276 

geographical distances among sites, allowing us to assess simultaneously multiple spatial 277 

structures (Borcard & Legendre, 2002). The first dbMEM eigenvectors reflect broader spatial 278 

structures, while later dbMEM vectors represent finer spatial structures (Borcard & Legendre, 279 

2002). We selected a parsimonious set of dbMEM eigenvectors related to richness and species 280 

composition (detrended Hellinger-transformed data) of each microbial community (bacteria 281 

and fungi), applying a forward selection with double-stopping criterion (α = 0.05, 9999 282 



10 
 

permutations) (Blanchet et al., 2008). Significant linear trends were removed by univariate 283 

(microbial richness) and multivariate (microbial composition) regressions, and the detrended 284 

residuals were then used as response variables (Borcard & Legendre, 2002). Both the linear 285 

trend (XY coordinates) and dbMEM eigenvectors were considered as spatial variables in the 286 

statistical analyses.  287 

Statistical analyses 288 

Plant community predictors 289 

Several attributes of the plant community were considered as predictors of microbial 290 

diversity: below- and aboveground richness, composition, β-diversity and abundance. Below- 291 

and aboveground plant richness were estimated as the number of plant species in each root 292 

sample and sampling circle, respectively. Below- and aboveground plant composition (two 293 

descriptors for each plant component above- and belowground, hereafter composition.1 and 294 

composition.2; Fig. S4) were estimated as the scores of each sample on the axes of a non-metric 295 

multidimensional scaling ordination (nMDS). To compute these ordinations, we employed the 296 

matrices of pairwise Bray-Curtis dissimilarity based on the sequence reads of each species in the 297 

root sample and the cover of each species occurring in the sampling circle, respectively. When 298 

the response of microbial richness to plant composition was evaluated, we used 299 

presence/absence plant data instead of the abundance data to quantify plant composition. This 300 

ensured consistency with the diversity index assessed (i.e. richness, not abundance-weighted 301 

alpha diversity). 302 

Plant β-diversity (compositional dissimilarity between root samples) was estimated as 303 

the matrix of pairwise Bray-Curtis composition dissimilarity between samples (Jost et al., 2011). 304 

Furthermore, below- and aboveground abundance were considered as the total root biomass 305 

per root sample, and the total plant cover per circle, respectively. Both plant cover and the 306 

number of sequences reads were log10-transformed before analysis. Finally, we examined the 307 

correlation between below- and aboveground plant community attributes prior to statistical 308 

analyses (Fig. S5) corroborating the decoupling between both plant compartments (A. Illuminati 309 

et al., unpublished). 310 

Bacterial and fungal richness 311 

To evaluate the variation in bacterial and fungal richness (i.e. the total number of OTUs) 312 

explained by the below- and aboveground plant community attributes, and their shared 313 

variation with the soil properties and spatial covariates, we used a variance partitioning analysis 314 

(Borcard et al., 1992). We introduced in this analysis only the most “important variables” of 315 
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each of our four sets of predictors (below- and aboveground plant component, soil properties 316 

and space). Important variables were selected using a model selection procedure based on the 317 

sum of Akaike weights. We first fitted Poisson generalized linear models (GLMs), one for each of 318 

the four sets of predictors (Table S3). Then, for each GLM (and each set of predictors), we 319 

selected the subset of models with strongest empirical support on the basis of the corrected 320 

Akaike information criterion (AICc), i.e. we selected the model with the smallest AICc and any 321 

other model which differed from it less than 2 AICc units (Burnham & Anderson, 2002). For all 322 

the selected models, we calculated Akaike weights (w+), i.e. the probability that the model is the 323 

best model from the subset considered (Burnham & Anderson, 2002). Then, for each predictor, 324 

we estimated its relative importance (wi), by summing w+ values of all the selected models in 325 

which the predictor appeared (Burnham & Anderson, 2002). Finally, following Burnham (2015), 326 

from each of the four sets of predictors, we included in the final variance partitioning only those 327 

predictors with wi > 0.4 (i.e., the “important variables”). 328 

Furthermore, we evaluated the effect of belowground and aboveground plant 329 

community attributes (richness, species composition and root biomass) on soil bacterial and 330 

fungal richness. For this, all variables from each set were included in a final Poisson GLM for 331 

bacterial and fungal richness (Table S4). We calculated model-averaged parameter estimates 332 

over the set of models with ∆AICc<2, weighting single-model estimates by their Akaike weights 333 

(Burnham & Anderson, 2002). We estimated 95% confidence intervals (CI) around model-334 

averaged parameter estimates, and we considered a parameter to be significant if the 95% CI 335 

excluded zero (Burnham & Anderson, 2002). We checked model assumptions by examining the 336 

correlation matrix between predictors (Table S5) and assessed the absence of multi-collinearity 337 

in all models (Table 1 and S3) using the variance inflation factor (VIF). In all cases, VIFs values 338 

were smaller than 4, suggesting the absence of collinearity problems (Zuur et al., 2010). To 339 

avoid overparameterization, a maximum of eight predictors were allowed in the candidate 340 

models (argument ‘m.lim‘; function ‘dredge; package ‘MuMIn’).  341 

Bacterial and fungal community composition 342 

We assessed the variation in bacterial and fungal composition (soil-microbial sample × 343 

species abundance data) explained by the below- and aboveground plant community attributes, 344 

and their shared variation with the soil properties and space covariates using, again, the 345 

variance partitioning analysis. We first conducted a forward selection with double-stopping 346 

criteria (p< 0.05 and adjusted R2 < global R2; Blanchet et al., 2008) based on a partial RDA 347 

analysis (pRDA; Legendre et al. 2012), to select which variables from each of the four sets of 348 

predictors to be included in the variance partitioning. Finally, we tested the significance of 349 
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predictors in the pRDAs using the Monte Carlo test based on 999 permutations. RDA was 350 

chosen instead of CCA because it was less sensitive to species with clumped distributions and 351 

low abundance.  352 

Bacterial and fungal β-diversity 353 

To test the effect of belowground plant community β-diversity (i.e. compositional 354 

dissimilarity between soil-microbial samples) on microbial β-diversity, we used two 355 

complementary statistical approaches. We first applied a variance partitioning analysis to 356 

quantify the pure contribution of belowground plant β-diversity to variation in microbial β-357 

diversity using distance-based redundancy analysis (dbRDA: Borcard et al 1992). The total 358 

variation of fungal and bacterial β-diversity was partitioned based on R2 statistics derived from 359 

dbRDAs. We then assessed whether dissimilarity in belowground plant composition correlated 360 

with dissimilarity in microbial composition using partial Mantel tests to control for the potential 361 

confounding effects due to dissimilarity in aboveground plant composition and soil properties 362 

and to spatial distance among samples. Dissimilarities in plant (above- and belowground) and 363 

microbial (bacterial and fungal) composition between samples were estimated as Bray-Curtis 364 

distance after Hellinger-transformation. Dissimilarity in soil properties and spatial distance 365 

between samples were estimated as Euclidean distance using 11 soil variables and X-Y 366 

coordinates, respectively. All analyses were performed in R (R Core Team) and a detailed 367 

description of packages used can be found in Methods S2. 368 

Results 369 

Taxonomic description of the microbial and plant communities  370 

We found 1339 bacterial and 835 fungal OTUs across all samples. Bacterial and fungal 371 

richness per sample ranged from 181 to 246 OTUs (212 ± 13 on average; mean ± SD) and 31 to 372 

133 OTUs (83 ± 17) respectively. The bacterial community was dominated by Actinobacteria, 373 

with Proteobacteria being the second most abundant bacterial phylum (60% and 23% 374 

respectively, Fig. S6). The dominant bacterial classes were Thermoleophilia, 375 

Alphaproteobacteria, Rubrobacteria and Actinobacteria, representing 5.29%, 2.88%, 1.45% and 376 

1.13% of the sequences, respectively (Table S6). Ascomycota was the dominant fungal phylum 377 

followed by Basidiomycota (76% and 22% of the fungal ITS2 sequences respectively, Fig. S4). 378 

The most abundant fungal classes across samples were Pezizomycetes, Eurotiomycetes, 379 

Agaricomycetes and Dothideomycetes, representing 19.2%, 16.9% 14.8% and 8.6% of the total 380 

number of sequences, respectively (Table S7). 381 
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In the case of the plant community, a total of 30 plant taxa, 26 identified at the species 382 

level and 4 at the genus level, were found across all soil samples (estimated from DNA 383 

metabarcoding), while 38 plant species were detected aboveground, in the area that 384 

corresponded to circles with 20 cm radius. Aboveground plant cover in the circles ranged from 385 

0.35 to 17.5% per circle (4.5 ± 3.3%) while root biomass in the root samples ranged from 0.75 to 386 

6.80 g (7 ± 2 g). The taxa more frequently encountered belowground were Thymus sp. (present 387 

in 86% of the root samples), Quercus sp. (81%), Stipa sp. (71%) and Linum suffruticosum (51%). 388 

Aboveground, the most frequent species in the circles were Stipa sp. (93%), Thymus sp. (82%), 389 

Helianthemum cinereum (Cav.) Pers (78%) and Linum suffruticosum L. (71%). 390 

Bacterial and fungal richness 391 

The models explained 16.1% and 13.9% of the total variance of bacterial and fungal 392 

richness, respectively (Fig. 1). Belowground (i.e. roots) plant community composition explained 393 

4.9% of bacterial richness variance (Fig. 1), but belowground community composition and root 394 

biomass together explained only 1.4% of the variance in fungal richness (Fig. 1). Fungal richness 395 

was positively related to root biomass (Fig. 2). Soil fertility (Table S2) affected the richness of 396 

both microbial groups, but the direction of its effects was positive for bacterial, and negative for 397 

fungal richness (Table 1). The spatial structure represented by the dbMEM 29 (fine spatial scale) 398 

exerted significant effects on fungal richness, while dbMEM 9 (broad spatial scale) did so on 399 

bacterial richness (Table 1).  400 

Bacterial and fungal community composition  401 

Variance partitioning analyses showed that the predictors explained 7.8% and 18.8 % of 402 

the total variance of bacterial and fungal composition (Fig. 1), respectively. The unique fractions 403 

of variation in bacterial and fungal composition explained by the forward-selected belowground 404 

plant community attributes (root biomass and root composition.1; Table 2) were respectively 405 

0.5% and 0.3% (Fig. 1). After accounting for the effects of the aboveground composition, soil 406 

variables and spatial covariates (Table 2), the partial RDA revealed that the bacterial 407 

composition was significantly affected by root composition.1 (Table 2). Partial RDAs showed 408 

that fungal but not bacterial composition was associated with variations in aboveground plant 409 

composition and soil properties (soil organic carbon and soil texture: 1st and 2nd PCA axes, Table 410 

S2). We also found that the spatial trend (X-Y coordinates), and other spatial variables related to 411 

fine and broad scales (e.g. dbMEM 2 and 29) were significantly associated with differences in 412 

bacterial and fungal composition (Table 2). 413 

Bacterial and fungal β-diversity 414 
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Variance partitioning showed that the β-diversity of the below- and aboveground plant 415 

communities, the soil properties and the spatial covariates explained 13.6% and 23.8% of the 416 

total variance of bacterial and fungal β-diversity, respectively. Specifically, β-diversity based on 417 

root distributions explained 2.1% and 0.5% of the variation in bacterial and fungal β-diversity 418 

respectively (Fig. 1). Partial Mantel tests also showed that belowground plant β-diversity was 419 

significantly correlated with bacterial β-diversity (Spearman rho = 0.13, p = 0.024, Fig. 3, Table 420 

S8) but not correlated with fungal β-diversity (Spearman rho = 0.09, p = 0.114, Fig. 3). In other 421 

words, the more different the root composition, the more different the bacterial composition 422 

among samples. In contrast, partial Mantel test revealed that the more similar the fungal 423 

communities were between two sites (i.e. the lower their fungal β-diversity), the more similar 424 

their aboveground plant β-diversity was (Spearman rho= 0.12, p = 0.009, Fig. 3). We also found 425 

that bacterial β-diversity was significantly correlated with the dissimilarity in soil properties 426 

between samples (Spearman rho = 0.18, p = 0.004). After controlling for soil properties and β-427 

diversity of both plant components, spatial distance between samples was significantly 428 

correlated with microbial β-diversity (bacteria: Spearman rho = 0. 22, p < 0.001; fungi: rho = 429 

0.37, p < 0.001). 430 

Discussion 431 

Our results from a semiarid Mediterranean scrubland provide empirical evidence that 432 

the diversity of microbial soil communities changes in response to variations in the 433 

belowground plant community. We found that fungal richness increased with greater root 434 

biomass (Fig. 4a), while bacterial richness and composition were affected by the variations in 435 

root composition (Fig. 4b). Importantly, the effects of roots composition and biomass were not 436 

redundant with the effect of the aboveground plant community, the soil physicochemical 437 

properties and the spatial covariates. However, we only found an association between the β-438 

diversity of roots and bacteria, but not fungi (Fig. 4c). Altogether, our study shows that roots 439 

exerted different effects on each microbial group, which are independent from the 440 

aboveground inputs, soil properties or other non-measured factors (estimated as spatial 441 

covariates). This novel finding highlights that information of both below- and aboveground 442 

community attributes should be incorporated for a more complete understanding of complex 443 

soil microbiome-plant interactions at the scale in which semiarid scrubs interact.. 444 

Root community attributes explain patterns in soil microbial communities 445 

Root composition, i.e. the identity of plant roots, was the only plant predictor able to 446 

explain bacterial species richness estimated as the number of bacterial OTUs in the soil. This 447 
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relationship may be explained by changes in the type of the root exudate compounds delivered 448 

to the soil by different plant species (Haichar et al., 2008; Shi et al., 2011). We also found that 449 

the composition of roots contributed to structure the bacterial community composition, which 450 

has also been reported in other studies (Haichar et al., 2008; Van Der Heijden et al., 2008; Berg 451 

& Smalla, 2009). In addition, bacterial β-diversity was positively associated with β-diversity of 452 

root assemblages, suggesting that certain taxa of soil bacteria and plants tended to co-occur in 453 

the soil. A plausible explanation of these results might be based on the differences in their 454 

competitive abilities. Certain root exudates, more efficiently exploited by particular bacteria 455 

taxa, could lead to a reduction in the number of other bacterial species via competitive 456 

exclusion. Accordingly, other rhizodeposits derived from different plant species could sustain 457 

species-rich bacterial communities, reducing the competitive exclusion and promoting bacterial 458 

coexistence (Goberna et al., 2016). In addition to chemical and physiological root traits related 459 

to rhizodeposits, both structural and anatomical root traits may contribute to patterns of 460 

bacterial richness and composition (Legay et al., 2014; Gould et al., 2016), especially considering 461 

their influence on the recognition and adherence of plant-associated bacteria to plant roots 462 

(Berg & Smalla, 2009). Alternatively, other environmental changes caused by roots such as 463 

variations in ion concentration or the synthesis and liberation of some antimicrobial metabolites 464 

might also influence the structure of the bacterial communities (Dakora & Phillips, 1996; Berg & 465 

Smalla, 2009; Philippot et al., 2013; Gould et al., 2016).  466 

Our findings also highlight the potential role played by roots as driver of fungal richness. 467 

Specifically, root biomass was the only belowground attribute able to explain a significant 468 

fraction of variation in fungal richness. This suggests that fungal richness is more related to the 469 

amount of resources than to its variety (i.e. richness) or type (i.e. composition) (Eisenhauer et 470 

al., 2017). Furthermore, the composition of the bacterial and fungal communities responded 471 

differently to belowground plant composition, as has been reported elsewhere (Burns et al., 472 

2015; Leff et al., 2018). This result highlights the importance of intimate interactions between 473 

specific plants and associated fungi and bacteria, and reinforces the role of rhizodeposition as a 474 

mechanism of ongoing coevolutionary processes between plants and microbes (De-la-Peña et 475 

al., 2008; Badri & Vivanco, 2009). In this context, quantifying the functional role of different 476 

roots (and their rhizodeposits) while accounting for their phylogenetic relatedness, could 477 

provide further insights into plant-microbial relationships (Tedersoo et al. 2013; Legay et al. 478 

2014; but see: Barberán et al. 2015; Leff et al. 2018). 479 

Surprisingly, bacterial and fungal richness did not vary according to belowground (or 480 

aboveground) plant richness. Theoretically, it could be expected that a more species-rich plant 481 
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assemblage, which provides a higher diversity of resources would favour niche partitioning, lead 482 

to a richer soil microbial community (De Boer et al., 2005; Wardle, 2006; Eisenhauer et al., 483 

2010). However, this lack of relationship between plant and soil microbial richness has been 484 

previously reported in both experimental and observational studies of bacteria and fungi 485 

conducted at very different ecosystems and spatial scales (Waldrop et al., 2006; Wardle, 2006; 486 

Tedersoo et al., 2014; Prober et al., 2015; Delgado-Baquerizo et al., 2018). This decoupling has 487 

been attributed to different causes, from low variation in plant richness in local-scale studies 488 

(see Delgado-Baquerizo et al. 2018), to the blurring of the local effects of plant richness in 489 

global-scale studies (Prober et al., 2015). In our study, the decoupling between microbial and 490 

plant diversity may also be due to the existence of strong abiotic filters in our plant community 491 

(semiarid climate and gypsum soil) that may reduce trait variability among plant species 492 

(Escudero et al., 2015; Pescador et al., 2018; Peralta et al., 2019), decreasing the range of 493 

variability of resources (Wardle et al., 2004; Orwin et al., 2010).  494 

Relative importance of roots versus aboveground plant community, soil heterogeneity and space 495 

  Although our results show that root community attributes play a role in soil microbial 496 

diversity, other predictors such as soil, space, and the aboveground plant community attributes 497 

consistently explained larger fractions of variation in microbial richness, composition or β-498 

diversity (Fig. 1). For example, we found a clear response of fungal communities to the variation 499 

in the aboveground plant community. More specifically, fungal richness and composition 500 

responded to the aboveground plant composition. This suggests that the number of fungal 501 

species and their identity is more sensitive to changes in the chemistry of the aboveground 502 

litter resulting from differences in plant community composition (Trinder et al., 2009) than to 503 

variation in the chemical rhizodeposition. In addition, aboveground plant β-diversity predicted 504 

the fungal β-diversity even after accounting for the root β-diversity, soil properties and the 505 

spatial variation. The differential responses found for fungal and bacterial communities suggest 506 

that plant communities exert different influences on both microbial groups, mediated by the 507 

above- and belowground counterparts.  Having faster growth strategies, bacteria probably 508 

exploit low-molecular-weight organic compounds derived from exudates, whereas fungi could 509 

be more strongly related to the degradation of highly polymeric compounds like lignin or 510 

cellulose (Tuomela et al., 2000; Lynd et al., 2002; De Boer et al., 2005; Legay et al., 2014).  511 

Soil physicochemical properties had the most prominent role on bacterial diversity (Fig. 512 

1), playing a weaker role on fungal diversity. Soil fertility positively affected bacterial richness, 513 

but negatively affected fungal richness. These results, which support the existence of resource 514 

partitioning, are in line with studies that reported a decrease in the fungal:bacterial biomass 515 
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ratio in soils with high nitrogen and phosphorus content (de Vries et al., 2006, 2012). On the 516 

other hand, spatial covariates explained the largest fraction of the variation in fungal richness, 517 

composition and β-diversity, i.e. a significant fraction of this variance was related to 518 

environmental factors not directly measured in the field or to endogenous processes such as 519 

dispersal. Thus, our results show that the microbial communities in this semiarid Mediterranean 520 

scrubland are spatially structured, in agreement with previous studies conducted in other 521 

systems (Klironomos et al., 1999; Stegen et al., 2015). Furthermore, the effect of dbMEM spatial 522 

eigenfunctions provides evidence that the spatial patterns in bacterial richness vary at broader 523 

spatial scales than fungal richness (scale size sensu Legendre et al. 2012). This again highlights 524 

the occurrence of different additional factors shaping the richness and composition patterns of 525 

both microbial guilds. For instance, the broader spatial patterns of bacterial richness could be 526 

shaped by the variation of key soil micronutrients (e.g. concentration of aluminum or calcium: 527 

Barberán et al. 2015), while the fungal spatial patterns may be caused by processes occurring at 528 

finer spatial scales, including interactions across trophic groups (e.g. fungal-feeding nematodes: 529 

Wardle & Yeates 1993; Wardle 2006). Finally, although dispersal limitation could be expected to 530 

be negligible given the spatial extent of the sampling area (Abu-Ashour et al., 1994), partial 531 

Mantel tests showed that fungal β-diversity was more strongly related to spatial distance than 532 

bacterial β-diversity (Table S8), which suggests that bacteria have higher dispersal abilities than 533 

fungi (Abu-Ashour et al., 1994; Yang & van Elsas, 2018). This result agrees with previous 534 

evidence that bacteria may be transported by water flow (Abu-Ashour et al., 1994; Yang & van 535 

Elsas, 2018), while fungi depend mainly on hyphal extension (Wardle 2006). Finally, it is also 536 

noteworthy that models did not explain large fractions of variance of the microbial richness, 537 

composition and β-diversity (from 76.2 % to 92.2 % unexplained variance, Fig. 1). This could be 538 

related to the effect of other micro-scale factors, including the distribution of micro-aggregates 539 

and micro-pores in the soil (Vos et al., 2013), and/or the demographic stochasticity of microbial 540 

communities (Stegen et al., 2012; Zhou, 2017). 541 

Conclusion  542 

Our study highlights the key and independent role of plant roots for explaining the 543 

variation in soil microbial diversity in a semiarid Mediterranean scrubland. For the first time, we 544 

show that unique fractions of variation in microbial richness, composition and β-diversity can 545 

only be explained by the type (root composition) and amount (root biomass) but not the variety 546 

(root richness) of root assemblages. Furthermore, our results provide new insights into the 547 

effects of the aboveground plant community on the structure of the soil fungal and bacterial 548 

communities. In particular, aboveground plant composition, but not root composition, affected 549 
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fungal composition and richness. Our findings also advance our understanding of how the soil 550 

physicochemical properties, through variations in fertility, carbon and texture, can predict 551 

changes in the composition and richness of the soil microbial communities.  Our study highlights 552 

the role of plant distribution both below- and aboveground in explaining heterogeneity in soil 553 

microbial diversity and suggests that incorporating data on both plant compartments will 554 

further our understanding of the relationships between soil microbial and plant communities. 555 

This is particularly crucial in water-limited ecosystems, where a decoupling between the 556 

aboveground and belowground distribution of plant community attributes often occurs (Schenk 557 

& Jackson, 2002; Mokany et al., 2006). 558 
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Fig. 1. Venn diagrams showing variance partitioning results of microbial richness (number of 829 

OTUs), species composition and β-diversity (based on Bray–Curtis distance) of the bacterial and 830 

fungal communities explained by the four sets of predictors: belowground plant community 831 

attributes (Roots), aboveground plant community attributes (Above-), soil properties (Soil) and 832 

spatial covariates (Space). The variables of each set of predictors which were included in the 833 

variance partitioning analysis were selected using a model selection procedure based on the 834 

sum of Akaike weights (see table S3 for the model selections). The reported values are adjusted 835 

R2, representing the unique and shared variance explained by each predictor. Areas and 836 

intersections without values represent 0% explained and 0% shared variance, respectively. 837 

Fig. 2. Regression lines showing the response of bacterial (taupe) and fungal (blue) richness 838 

(number of OTUs) to the belowground and aboveground plant community attributes. The solid 839 

and dashed lines indicate significant and no significant effects, respectively.  840 

Fig. 3. Relationships between the β-diversity of soil bacterial and fungal communities among 841 

samples and the β-diversity of belowground and aboveground plant communities (based on 842 

Bray-Curtis distance). Residuals from partial multivariate correlograms are represented to 843 

statistically control for the effects of the β-diversity of the opposite component (aboveground 844 

or belowground), the soil physicochemical properties and spatial covariates (based on Euclidean 845 

distance). The solid and dashed lines, respectively, indicate significant and not significant 846 

relationships using partial Mantel tests. rho is the Spearman’s correlation determined via partial 847 

Mantel tests and p is the reached probability level (permutations 999). 848 

Fig. 4. Conceptual diagram summarizing the main results of the study. Responses of species 849 

richness, composition and β-diversity of bacterial and fungal communities to root biomass, 850 

composition, and β-diversity. (a) Root biomass positively affected fungal richness. (b) Root 851 

composition affected both bacterial composition and richness. (c) Bacterial β-diversity was 852 

significantly correlated with root β-diversity. The significance of these relationships was tested 853 

after removing the effect of the aboveground plant component, soil physicochemical properties 854 

and other spatially structured variables.  855 
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Table 1. Results of model selection based on Poisson GLMs testing the response of bacterial and 856 

fungal richness. Standardized coefficient estimates (mean), associated 2.5% and 97.5% 857 

confidence intervals (CI) and variance inflation factor (VIF). Predictors with 95% CI excluding 858 

zero are shown in bold. Abbreviations: Root comp.1, belowground plant composition based on 859 

the axis 1 of an non-metric multidimensional scaling (nMDS; Fig. S4a); Root comp.2, 860 

belowground plant composition based on the axis 2 of an nMDS (Fig. S4a); Aboveground 861 

comp.2, aboveground community composition based on the axis 2 of an nMDS (Fig. S4b); 862 

dbMEM9 and dbMEM29, distance-based Moran’s eigenvectors maps reflecting broad and fine 863 

spatial structures, respectively; X and Y, X and Y coordinates, respectively. 864 

          

Bacteria 

Predictor Estimate 2.5% CI 97.5% CI VIF 

(Intercept) 5.358 5.345 5.37 
Aboveground richness 0 -0.01 0.020 1.97 
Aboveground comp.2 0.002 -0.004 0.023 1.199 
Root comp.2 0.017 0.004 0.030 1.476 
Fertility 0.022 0.009 0.034 1.367 
Salinity 0.003 -0.002 0.023 2.372 
dbMEM9 0.009 0.001 0.027 1.167 

          

Fungi 

Predictor Estimate 2.5% CI 97.5% CI VIF 

(Intercept) 4.418 4.394 4.442 
Root biomass 0.037 0.013 0.061 1.933 
Root comp.1 0 -0.007 0.006 2.381 
Root comp.2 0.015 -0.015 0.046 1.509 
Aboveground richness -0.004 -0.025 0.016 1.973 
Plant cover 0.020 -0.011 0.051 1.513 
Aboveground comp.2 -0.039 -0.064 -0.013 1.194 
Fertility -0.034 -0.060 -0.009 1.274 
Salinity -0.003 -0.018 0.013 1.350 
Soil carbon -0.002 -0.015 0.011 1.847 
dbMEM29 0.051 0.026 0.075 1.180 
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X 0.001 -0.010 0.012 2.743 
Y 0.001 -0.008 0.009 2.956 
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Table 2. ANOVA-like results based on partial RDAs testing the effect of the forward-selected 865 

below- and aboveground plant attributes, soil variables and spatial covariates on the bacterial 866 

and fungal composition. The effect of individual predictors of each set was tested after 867 

controlling for the effects of the remaining three sets of predictors. The F-ratio-like statistic was 868 

tested using the Monte Carlo test based on 999 permutations. ***p < 0.001, ** p < 0.01, * p < 869 

0.05.  870 

 871 

      Bacteria         Fungi       
Predictor set 

Predictor Monte Carlo test Monte Carlo test 
      F-ratio   p     F-ratio   p   
Belowground plant attributes 

Root biomass 1.05 0.356 
Composition 1 1.40 0.019 * 1.26 0.088 

Aboveground plant attributes 
Composition 1 0.92 0.693 1.39 0.040 * 

Soil properties 
Carbon 1.62 0.007 ** 0.93 0.617 
Texture 1.38 0.034 * 1.07 0.314 
Salinity 0.94 0.599 1.24 0.097 

Spatial covariates  
x 2.59 0.001 *** 2.37 0.001 *** 
y 2.32 0.001 *** 3.07 0.001 *** 
MEM2 1.58 0.009 ** 3.07 0.001 *** 
MEM4 1.58 0.013 * 
MEM5 1.37 0.036 * 
MEM6 1.73 0.006 ** 
MEM7 2.03 0.001 *** 
MEM8 1.32 0.049 1.36 0.040 * 
MEM9 1.37 0.052 . 
MEM10 1.58 0.006 ** 
MEM12 1.18 0.117
MEM29 1.94 0.003 ** 1.68 0.009 ** 

                        
 872 
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Methods S1 Bioinformatic analyses to assess microbial diversity 

DNA was isolated using the DNeasy PowerSoil isolation kit (Qiagen, CA, USA) from 0.25 g of dry 

soil from the 83 soil samples, following the manufacturer's instructions, and resuspended in a 

final volume of 100 µL. Extraction blanks were included in every DNA extraction round to check 

for cross-contamination. For library preparation, a fragment of the bacterial 16S rRNA (≈460 bp) 

(PCR conditions: 95 ºC for 5 min; 25 cycles at 95 ºC for 0.5 min, 50 ºC for 0.5 min and 72 ºC for 

0.5 min; and 72 ºC for 10 min), and the complete fungal ITS2 region (≈300 bp) (PCR conditions: 

95 ºC for 5 min; 35 cycles at 95 ºC for 0.5 min, 49 ºC for 0.5 min and 72 ºC for 0.5 min; and 72 ºC 

for 10 min) were amplified. 16S rRNA gene was amplified using the primers Bakt 341F (5′- CCT 

ACG GGN GGC WGC AG-3′) and Bakt 805R (5′- GAC TAC HVG GGT ATC TAA TCC -3′) (Herlemann 

et al. 2011) and the ITS2 gene using the primers ITS86F (5′- GTG AAT CAT CGA ATC TTT GAA -3′) 

(Turenne et al. 1999) and ITS4 (5′- TCC TCC GCT TAT TGA TAT GC -3′) (White et al. 1990) to which 

the Illumina sequencing primer sequences were attached at their 5' ends. PCRs were carried out 

in a final volume of 25 µL, containing 1-2.5 µL of template DNA, 0.5 µM of the primers, 12.5 µL of 

Supreme NZYTaq 2x Green Master Mix (NZYTech, Lisbon, Portugal), and ultrapure water up to 25 

µL. The reaction mixture was incubated with an initial denaturation at 95ºC for 5 min, followed 

by 25-35 cycles of 95ºC for 30’’, 47-50ºC for 30’’, 72ºC for 30’’, and a final extension step at 72ºC 

for 10’. A second PCR per sample and group with 5 cycles and 60ºC as annealing temperature was 

performed to attach the index sequences required for multiplexing different libraries in the same 

sequencing pool. Negative controls with no DNA were included to check for contamination during 

library preparation. Libraries were run on 2% agarose gels stained with GreenSafe (NZYTech, 

Lisbon, Portugal), viewed under UV light to verify library size and purified using the Mag-Bind 

RXNPure Plus magnetic beads (Omega Biotek, Norcross, GA, USA). Libraries were then pooled in 

equimolar amounts according to the quantification data provided by the Qubit dsDNA HS Assay 
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Kit (Thermo Fisher Scientific, Waltham, MA, USA). The pool was sequenced in a MiSeq PE300 run 

(Illumina). 

The quality of the Illumina paired-end raw FASTQ files [consisting of forward (R1) and 

reverse (R2) reads] was checked using FastQC (Andrews 2010). Paired-end assembly of the R1 

and R2 reads was performed with FLASH (Magoč & Salzberg 2011). The mismatch resolution in 

the overlapping region (minimum overlap of 30 base pairs) was accomplished by keeping the base 

with the higher quality score. CUTADAPT 1.3 (Martin 2011) was used to remove sequences that 

did not contain the PCR primers (allowing up to 2 mismatches) and those shorter than 300 or 400 

nucleotides (for bacteria and fungi, respectively). Sequences were quality-filtered (minimum 

Phred quality score of 20) and labelled using the multiple_split_libraries.py script implemented in 

Qiime (Caporaso et al. 2010). A label was added to the headers of the FASTQ file in order to 

identify each sample when sequences are combined to perform downstream analysis. 

The FASTA files were processed using the VSEARCH bioinformatic tool (Rognes et al. 

2016). It has been shown that reference-based clustering methods may greatly overestimate OTU 

diversity (Edgar 2018a) compared to de novo clustering (Westcott & Schloss 2015; Porter & 

Hajibabaei 2018). Furthermore, a recent study has challenged the widely-used 97% threshold for 

16S ribosomal RNA OTUs (Edgar 2018b). Therefore, we used de novo OTU clustering, increasing 

the similarity threshold. Sequences were dereplicated (-derep fulllength), clustered at a similarity 

threshold of 100 % (-cluster fast, {centroids option), and sorted (-sortbysize). Artifacts (such as 

point mutations and chimeras) that may be generated during PCR and sequencing were filtered 

during the bioinformatic pipeline. De novo chimera detection was carried out using the UCHIME 

algorithm (Edgar et al. 2011) implemented in VSEARCH.  

The taxonomic assignment of the bacterial OTUs was performed by querying the 

clustered centroids against the SILVA reference database (Quast et al. 2012; Qiime release 132) 

using the script assign_taxonomy.py implemented in Qiime and the UCLUST algorithm (Edgar 

2010) with a 97 % similarity threshold. For fungi, we used the UNITE reference database (UNITE 

Community 2017: UNITE QIIME release Version 01.12.2017. 

https://doi.org/10.15156/BIO/587481), using the same script as above and the BLAST algorithm 

(Altschul et al. 1990) with a maximum E-value of 1e-9 and a minimum percent identity of 90 %. An 

OTU table with the number of sequences of each OTU in each sample was created for each group.  

A quality-filtering was applied to the OTU tables to remove the OTUs occurring at a 

frequency below 0.005 % in the whole dataset (Bokulich et al. 2013). In DNA metabarcoding 
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studies it has been observed that a low percentage of the reads of a library can be assigned to 

another library. This phenomenon, referred to as mistagging, tag jumping, index hopping, index 

jumping, etc. is the result of the miss-assignment of the indices during library preparation, 

sequencing, and/or demultiplexing steps (Esling, Lejzerowicz & Pawlowski 2015; Bartram et al. 

2016). In order to correct for this phenomenon, the low abundance OTUs of each sample (0.1 % 

threshold) were removed. Finally, only the OTUs that matched sequences in the reference 

databases at the specified of 99 % were maintained in the OTU tables. The unidentified OTUs 

were removed from the OTU table for downstream analysis. For fungi, despite the suitability of 

the primers used to specifically amplify the ITS2 region of Fungi, sequences belonging to Plantae 

and other unidentified Eukaryota were clustered during the OTU picking process. These OTUs 

were also removed from the fungi OTU table for downstream analyses. 
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Methods S2 R packages used for specific applications. 

Bacterial and fungal reads were rarefied using the function ‘Rarefy’ in ‘GUniFrac’ R package 

(Chen et al., 2012). We used several functions from the ‘vegan’ R package (Oksanen et al., 2010):  

the rarefaction curves were estimated using the function ‘rarecurve’; the dissimilarity matrices 

and the non-metric multidimensional scaling (nMDS) ordinations were respectively computed 

with functions ‘vegdist’ and ‘metaMDS’; variance partitioning was computed using function 

‘varpart’; partial redundancy analyses (pRDA) and distance-based redundancy analyses (dbRDAs) 

were respectively computed with functions ‘rda’ and ‘dbrda’. Computation of the dbMEM 

eigenvectors and forward selection were performed using ‘dbmem’ and ‘forward.sel’ functions 

from the ‘adespatial’ R package (Dray et al., 2016). We checked for multi-collinearity between the 

predictors using the variance inflation factor (VIF). In all cases, VIFs values were smaller than 4 

suggesting the absence of collinearity problems (Zuur et al., 2010). VIFs were computed using the 

‘vif’ function in ‘car’ R package (Fox & Weisberg, 2011). GLMs were fitted using the ‘glm’ function 

of the ‘stats’ R package. Model selection procedure and the evaluation of the importance were 

performed using the functions ‘dredge’ and ‘importance’ from the R package ‘MuMIn’ (Bartoń, 

2013). The partial Mantel tests were performed using the ‘mantel’ function in ‘ecodist’ R package 

(Goslee & Urban 2007). 
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Table S1  Summary statistics for soil physicochemical variables from the study area. Mean, 

standard deviation (SD), minimum (min) and maximum (max) values, and coefficient of variation 

(CV) of 11 soil physicochemical variables for the 83 soil samples. Abbreviations: Gluc, β-

glucosidase (µmol/gr dry soil/h); Phos, acid phosphatase activity (µmol/gr dry soil/h); SOC, soil 

organic carbon (%); N, soil total nitrogen (mg/g soil); P, soil available phosphorus (mg/g soil); K, 

potassium content (mg/g soil); Cond, electric conductivity (µS/cm).    

 

Statistic Gluc Phos SOC N P K pH Cond Sand Silt Clay 

 

(µmol/gr/h) (µmol/gr/h) (%) (mg/g) (mg/g) (mg/g) - (µS/cm) (%) (%) (%) 

Mean 0.74 0.52 1.21 0.65 0.11 0.01 8.19 84.26 39.91 49.05 11.04 

SD 0.41 0.24 0.30 0.27 0.04 0.00 0.12 29.80 3.36 2.22 1.96 

Min 0.09 0.16 0.65 0.06 0.00 0.01 7.70 40.60 30.70 44.42 7.82 

Max 2.26 1.40 2.29 1.51 0.21 0.02 8.41 198.30 46.40 55.01 17.49 

CV 0.55 0.45 0.25 0.42 0.39 0.27 0.01 0.35 0.08 0.05 0.18 
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Table S2  Loadings of each soil physicochemical variable on the four PCA axes after a varimax 

rotation. PCA components represent variation in soil organic carbon (PC1), soil texture (PC2), 

fertility (PC3) and salinity (PC4). The proportion of variance of the soil physicochemical variables 

explained by each axis is provided (%). Abbreviations: Gluc and Phos, activity of β-glucosidase and 

phosphatase, SOC, soil organic carbon; N, soil total nitrogen; P, soil total phosphorus; K, available 

potassium; pH, soil pH; Cond, electric conductivity; Sand, Silt and Clay, percentage of sand, silt 

and clay.   

 

Soil variable PC1 PC2 PC3 PC4 

SOC 0.77 -0.05 0.18 0.28 

Gluc 0.78 -0.25 -0.12 0.13 

Phos 0.84 0.09 0.01 0.01 

N 0.3 -0.03 0.06 0.93 

P 0.06 -0.01 -0.09 0.97 

K -0.02 0 0.54 -0.05 

pH -0.16 0.06 -0.86 -0.11 

Cond -0.08 0.31 0.79 -0.06 

Sand 0.08 -0.99 -0.08 0.02 

Silt -0.2 0.78 0 -0.12 

Clay 0.11 0.82 0.1 0.09 

Proportion of variance (%) 19 22 16 18 

Cumulative Proportion of variance (%) 19 53 69 87 
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Table S3  Results of the AICc-based model selection applied to each set of predictors for microbial 

richness based on Poisson generalized linear models. Corrected Akaike Information Criterion 

(AICc) and delta of the best selected models for bacterial (a-d) and fungal (e-h) richness. The 

predictors selected by their importance relative (wi > 0.4) are shown in bold. Poisson generalized 

linear models (GLMs) were fitted one for each of the four sets of predictors: belowground (a and 

e) and aboveground (b and f) plant component, soil properties (c and g) and space (d and h). 

Variance inflation factor (VIF) of the predictors are also shown.   

a) 

glm (bacterial richness  ~  root predictor set, family=Poisson) 

Belowground component models   wi VIF 

(Intercept) 5.357 5.357 5.358 5.357     
Root biomass    0.005  0.20  1.05 

Root richness  -0.006    0.18  1.65 

Root composition1      0.00  1.58 

Root composition2 0.015 0.016   0.014   0.81   1.05 

AICc 664.11 665.63 665.79 665.90     
delta 0.00 1.52 1.68 1.79     
weight 0.43 0.20 0.19 0.18         

   

 b)   

glm bacterial richness  ~  Aboveground predictor set,  family=Poisson 
 

Aboveground component models   wi VIF 

(Intercept) 5.358 5.358 5.358 5.358     
Aboveground biomass      0.00  1.31 

Aboveground richness   0.003   0.20  1.45 

Aboveground composition1  -0.004    0.20  1.13 

Aboveground composition2       0.003   0.00   1.02 

AICc 673.30 675.11 675.22 675.23     
delta 0.00 1.80 1.91 1.93     
weight 0.46 0.19 0.18 0.18         

 

c) 

glm (bacterial richness  ~  soil predictor set, family=Poisson) 

Soil models   wi VIF 

(Intercept) 5.357 5.357 5.357 5.357     
Carbon   -0.007 -0.007  0.33  1.00 

Texture        1.00 

Fertility 0.012  0.012   0.56  1.00 

Salinity 0.020 0.020 0.020 0.020   1.00   1.00 
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AICc 660.44 660.91 661.86 662.29     
delta 0.00 0.47 1.42 1.85     
weight 0.37 0.30 0.18 0.15         

 

 

d)  

glm (bacterial richness  ~  spatial predictor set, family=Poisson) 

Space models   wi VIF 

(Intercept) 5.357 5.358 5.357      
MEM9 -0.014  -0.014   0.71  1.03 

X      0.00  1.03 

Y     0.004     0.20   1.00 

AICc 664.64 665.79 666.56      
delta 0.00 1.15 1.91      
weight 0.51 0.29 0.20           

 

e) 

glm (fungal richness  ~  root predictor set, family=Poisson) 

 Belowground component models   wi   VIF 

(Intercept) 4.421     
Root biomass 0.037  1.00  1.05 

Root richness   0.00  1.65 

Root composition1   0.00  1.57 

Root composition2 0.043   1.00   1.05 

AICc 795.20     
delta 0.00     
weight 1.00         

 

f) 

glm fungal richness  ~  Aboveground predictor set,  family=Poisson 

 Aboveground component models         wi   VIF 

(Intercept) 4.421 4.421 4.421 4.421     
Aboveground biomass 0.038 0.036 0.044 0.044  1.00  1.31 

Aboveground richness   -0.013 -0.019  0.37  1.45 

Aboveground composition1  0.013  0.018  1.00  1.12 

Aboveground composition2 -0.044 -0.043 -0.043 -0.042   0.40   1.02 

AICc 798.48 799.62 799.84 800.23     
delta 0.00 1.14 1.36 1.75     
weight 0.40 0.23 0.20 0.17         
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g) 

glm (fungal richness  ~  soil predictor set, family=Poisson) 

 Soil models             wi   VIF 

(Intercept) 4.422 4.422 4.421 4.422 4.421 4.421     
Carbon    -0.012  -0.0123  0.26  1.00 

Texture   0.013  0.0127   0.27  1.00 

Fertility  -0.017   -0.0165 -0.0166  0.46  1.00 

Salinity -0.036 -0.036 -0.036 -0.036 -0.036 -0.036   1.00   1.00 

AICc 808.20 808.50 809.30 809.40 809.7 809.7     
delta 0.00 0.29 1.05 1.13 1.42 1.46     
weight 0.25 0.22 0.15 0.14 0.123 0.12         

 

 

h) 

glm (fungal richness  ~  spatial predictor set, family=Poisson) 

Space models   wi   VIF 

(Intercept) 4.420     
dbMEM29 0.060  1.00  1.02 

X 0.031  1.00  1.02 

Y     0.00   1.00 

AICc 784.20     
delta 0.00     
weight 1.00         
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Table S4  Results of the AICc-based model selection based on final Poisson generalized linear models testing the response of bacterial (a) and fungal (b) richness 

to all set of predictors. Standardized regression coefficients of the model predictors and its variance inflation factor (VIF). Only models which differed from the 

best model in less than 2 AICc units are shown. Abbreviations: dbMEM9 and dbMEM29, distance-based Moran’s eigenvectors maps reflecting broad and fine 

spatial structures, respectively; X and Y, X and Y coordinates. Corrected Akaike Information Criterion (AICc) and delta of the best selected models (AICc < 2) for 

bacterial (a) and fungal (b)..  

Results of model selection based on Poisson GLMs testing the response of bacterial and fungal richness.  

a) 

 glm (bacterial richness  ~  Aboveground richness + Plant cover +  Aboveground comp.1 + Aboveground 
comp.2 + Root richness + Root biomass + Root   comp.1 + Root comp.2 + Soil carbono + Texture 
+ Fertility + Salinity + dbMEM29 + X + Y, family=Poisson)  

 models        VIF 

(Intercept) 5.358 5.358 5.357 5.358 5.357 5.357 5.358   
Aboveground richness       0.006   
Aboveground composition2    0.008 0.011    1.269 

Root composition2 0.017 0.016 0.017 0.019 0.019 0.016 0.017  1.478 

Fertility  0.010    0.010   1.262 

Texture 0.021 0.021 0.022 0.022 0.023 0.021 0.021  1.352 

dbMEM29 0.014 0.014   0.012     0.015   1.209 

AICc 657.219 657.673 658.238 658.457 658.499 658.529 658.956   
delta 0.000 0.454 1.019 1.238 1.280 1.310 1.737   
weight 0.227 0.181 0.136 0.122 0.120 0.118 0.095     
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b) 

glm (fungal richness  ~  Aboveground richness + Plant cover +  Aboveground comp.1 + Aboveground comp.2 + Root richness + Root biomass + Root   comp.1 + Root 
comp.2 + Soil carbono + Texture + Fertility + Salinity + dbMEM29 + X + Y, family=Poisson) 

    

 models                            VIF 

(Intercept) 4.418 4.418 4.418 4.418 4.418 4.418 4.418 4.418 4.418 4.418 4.418 4.418 4.418 4.418   
Aboveground richness  -0.020    -0.019      -0.021    1.973 

Plant cover 0.021 0.031  0.023 0.026 0.033 0.023 0.021  0.023 0.023 0.030 0.023   1.513 

Aboveground composition1                1.771 

Aboveground composition2 -0.039 -0.037 -0.036 -0.043 -0.042 -0.041 -0.039 -0.037 -0.035 -0.037 -0.039 -0.035 -0.039 -0.041  1.194 

Root richness                1.933 

Root biomass 0.035 0.036 0.037 0.037 0.039 0.037 0.037 0.035 0.037 0.039 0.037 0.036 0.036 0.039  1.459 

Root composition1             -0.010   2.381 

Root composition2 0.022 0.022 0.025     0.025 0.027 0.023 0.019 0.025 0.023   1.509 

Soil carbono     -0.017      -0.012     1.847 

Texture                2.490 

Fertility        -0.014 -0.015   -0.015    1.274 

Salinity -0.033 -0.031 -0.038 -0.035 -0.035 -0.033 -0.030 -0.033 -0.038 -0.034 -0.033 -0.031 -0.034 -0.040  1.350 

dbMEM29 0.049 0.051 0.050 0.052 0.052 0.055 0.051 0.048 0.049 0.049 0.049 0.050 0.049 0.054  1.180 

X       0.017         2.743 

Y                   0.013           2.956 

AICc 765.856 766.370 766.370 766.483 766.976 766.992 767.093 767.141 767.400 767.436 767.501 767.543 767.703 767.748   
delta 0.000 0.513 0.514 0.626 1.120 1.136 1.236 1.285 1.543 1.579 1.644 1.686 1.847 1.891   
weight 0.124 0.096 0.096 0.091 0.071 0.070 0.067 0.065 0.057 0.056 0.055 0.053 0.049 0.048     
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Table S5  Correlations (Pearson coefficient) among the predictors. Red, blue, green and orange 

denote variables related to roots, aboveground, soil physicochemical properties and spatial 

covariables, respectively. Abbreviations are: RR, root richness; RB, root mass; RC1, Root 

composition.1; RC2, Root composition.2; CR, Aboveground richness; CB, Aboveground cover; 

CC1, Aboveground composition.1; CC2, Aboveground composition.2; PCA1, PCA axis 1; PCA2, PCA 

axis 2; PCA3, PCA axis 3; PCA4, PCA axis 4; x, coordinate x; Y, coordinate y; MEM29, MEM9, 

MEM11, spatial eigenvectors representing variables with different spatial scale.  

 

  RR RB RC1 RC2 CR CB CC1 CC2 PCA1 PCA2 PCA3 PCA4 X Y MEM29 MEM9 MEM11 

RR 1 -0.13 0.59 0.20 0.16 0.39 0.27 -0.09 0.13 0.13 -0.18 -0.10 0.15 -0.18 0.02 0.18 0.09 

RB  1 0.05 0.08 0.07 0.11 0.33 0.02 0.14 0.16 -0.01 0.10 -0.03 -0.34 0.11 -0.03 0.19 

RC1  1 0.10 0.22 0.45 0.51 0.01 0.03 0.30 -0.03 -0.11 0.28 -0.42 -0.04 0.15 0.19 

RC2   1 0.11 0.06 0.06 -0.19 -0.28 0.22 0.12 -0.09 0.45 -0.07 0.20 -0.11 -0.04 

CR     1 0.49 0.15 0.10 0.16 0.25 -0.05 -0.23 0.04 -0.23 0.08 -0.06 0.26 

CB      1 0.33 0.11 0.30 0.22 -0.07 -0.03 -0.12 -0.37 0.11 0.12 0.20 

CC1      1 0.00 0.05 0.35 -0.11 -0.16 0.19 -0.46 -0.04 0.19 0.04 

CC2       1 0.10 -0.06 0.10 -0.10 -0.19 -0.20 -0.09 -0.09 0.08 

PCA1        1 0.01 0.00 -0.01 -0.46 -0.04 -0.01 0.17 -0.02 

PCA2         1 -0.01 0.01 0.30 -0.59 -0.11 -0.30 -0.02 

PCA3          1 0.00 0.15 -0.09 -0.07 -0.07 -0.13 

PCA4           1 -0.25 0.08 -0.09 -0.23 0.06 

X             1 0.02 0.10 -0.01 -0.15 

Y              1 0.01 0.17 -0.34 

MEM29              1 0.00 0.00 

MEM9               1 0.00 

MEM11                               1 
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Table S6  Relative abundance (based on sequence reads) of bacterial taxa at taxonomic level of 

family, order, class and phylum, across 83 soil samples 

 

Phylum   Class   Order   Family   

Acidobacteria 0.23 Acidobacteria 0.06 Acidobacteriales 0.01 Acidobacteriacea(Subgrou1) 0.02 

Solibacterales 0.21 Solibacteracea(Subgrou3) 0.41 

Blastocatelli(Subgrou4) 0.54 Blastocatellales 0.13 Blastocatellaceae 0.26 

Pyrinomonadales 1.77 Pyrinomonadaceae 3.47 

Subgrou6 0.04 unculture 
Acidobacteribacterium 

0.08 unculture 
Acidobacteribacterium 

0.17 

Thermoanaerobaculia 0.08 Thermoanaerobaculales 0.29 Thermoanaerobaculaceae 0.56 

Actinobacteria 2.79 0319-7L14 0.04 unculture 
actinobacterium 

0.10 unculture actinobacterium 0.19 

Acidimicrobiia 0.50 IMCC26256 0.46 unculture 
Acidimicrobidabacterium 

0.00 

Microtrichales 1.08 Ilumatobacteraceae 0.58 

Actinobacteria 1.13 Corynebacteriales 0.10 Mycobacteriaceae 0.20 

Frankiales 0.88 Frankiaceae 0.14 

Geodermatophilaceae 1.36 

Nakamurellaceae 0.13 

Sporichthyaceae 0.02 

Micrococcales 0.97 Intrasporangiaceae 0.04 

Microbacteriaceae 0.30 

Micrococcaceae 1.25 

Promicromonosporaceae 0.31 

Micromonosporales 0.53 Micromonosporaceae 1.04 

Propionibacteriales 0.47 Nocardioidaceae 0.74 

Propionibacteriaceae 0.18 

Pseudonocardiales 0.64 Pseudonocardiaceae 1.26 

Streptomycetales 0.40 Streptomycetaceae 0.78 

Streptosporangiales 0.00 Thermomonosporaceae 0.01 

Rubrobacteria 1.45 Rubrobacterales 5.13 Rubrobacteriaceae 10.05 

Thermoleophilia 5.29 Gaiellales 13.04 Gaiellaceae 4.24 

uncultured 25.50 

Solirubrobacterales 5.58 67-14 9.86 

Solirubrobacteraceae 1.04 

Armatimonadetes 0.00 Fimbriimonadia 0.00 Fimbriimonadales 0.00 Fimbriimonadaceae 0.01 

Bacteroidetes 0.02 Bacteroidia 0.06 Chitinophagales 0.16 Chitinophagaceae 0.32 

Cytophagales 0.06 Hymenobacteraceae 0.09 

Microscillaceae 0.03 

Chloroflexi 0.32 Anaerolineae 0.01 Anaerolineales 0.02 Anaerolineaceae 0.04 

SBR1031 0.00 A4b 0.01 

Chloroflexia 0.21 Kallotenuales 0.00 AKIW781 0.00 

Thermomicrobiales 0.75 JG30-KF-CM45 1.48 

Dehalococcoidia 0.01 S085 0.03 metagenome 0.00 
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KD4-96 0.36 unculture bacterium 3.69 unculture bacterium 8.68 

unculture 
Chloroflexbacterium 

0.15 unculture 
Chloroflexbacterium 

0.30 

Ktedonobacteria 0.01 C0119 0.00 unculture soibacterium 0.01 

Ktedonobacterales 0.04 Ktedonobacteraceae 0.09 

Cyanobacteria 0.01 Oxyphotobacteria 0.02 Nostocales 0.07 Phormidiaceae 0.14 

Firmicutes 0.00 Bacilli 0.00 Bacillales 0.01 Bacillaceae 0.02 

Gemmatimonadetes 0.11 Gemmatimonadetes 0.32 Gemmatimonadales 1.14 Gemmatimonadaceae 2.24 

Longimicrobia 0.02 Longimicrobiales 0.06 Longimicrobiaceae 0.12 

Planctomycetes 0.01 Phycisphaerae 0.02 Tepidisphaerales 0.07 WD210soigroup 0.14 

Planctomycetacia 0.00 Gemmatales 0.01 Gemmataceae 0.01 

Isosphaerales 0.00 Isosphaeraceae 0.00 

Proteobacteria 1.08 Alphaproteobacteria 2.88 Acetobacterales 0.01 Acetobacteraceae 0.02 

Azospirillales 0.03 Azospirillaceae 0.03 

Inquilinaceae 0.01 

Caulobacterales 0.21 Caulobacteraceae 0.41 

Dongiales 0.16 Dongiaceae 0.32 

Puniceispirillales 0.08 PuniceispirillaleIncertaSedis 0.16 

Reyranellales 0.02 Reyranellaceae 0.04 

Rhizobiales 3.09 Beijerinckiaceae 1.81 

Devosiaceae 0.01 

Hyphomicrobiaceae 0.01 

Labraceae 0.04 

Rhizobiaceae 0.54 

RhizobialeIncertaSedis 0.14 

Rhodomicrobiaceae 0.01 

Xanthobacteraceae 1.08 

Rhodobacterales 0.05 Rhodobacteraceae 0.10 

Sphingomonadales 6.46 Sphingomonadaceae 12.67 

Tistrellales 0.00 Geminicoccaceae 0.00 

Deltaproteobacteria 0.11 Myxococcales 0.27 Archangiaceae 0.03 

bacteriap25 0.50 

Sandaracinaceae 0.00 

Gammaproteobacteria 0.44 Betaproteobacteriales 1.20 Burkholderiaceae 1.63 

Nitrosomonadaceae 0.64 

TRA3-20 0.09 

Enterobacteriales 0.12 Enterobacteriaceae 0.24 

Nitrosococcales 0.23 Nitrosococcaceae 0.45 

Oceanospirillales 0.00 Pseudohongiellaceae 0.00 

Steroidobacterales 0.01 Steroidobacteraceae 0.01 

Xanthomonadales 0.00 Xanthomonadaceae 0.00 

Verrucomicrobia 0.05 Verrucomicrobiae 0.16 Chthoniobacterales 0.57 Chthoniobacteraceae 1.11 

Opitutales 0.00 Opitutaceae 0.00 

Pedosphaerales 0.00 Pedosphaeraceae 0.01 
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Table S7  Relative abundance (based on sequence reads) of fungal taxa at taxonomic level of 

family, order, class and phylum, across 83 soil samples 

 

Phylum  Class  Order  Family  

Ascomycota 76.47 Archaeorhizomycetes 0.25 Archaeorhizomycetales 0.37 Archaeorhizomycetaceae 0.00 

  Dothideomycetes 8.56 Botryosphaeriales 0.07 Botryosphaeriaceae 0.00 

    Capnodiales 0.03 Cladosporiaceae 0.00 

      Mycosphaerellaceae 0.00 

      Teratosphaeriaceae 0.00 

    Dothideales 0.01 Aureobasidiaceae 0.00 

    Pleosporales 2.61 Cucurbitariaceae 0.00 

      Dictyosporiaceae 0.00 

      Didymellaceae 0.00 

      Didymosphaeriaceae 0.00 

      Lentitheciaceae 0.00 

      Leptosphaeriaceae 0.00 

      Phaeosphaeriaceae 0.00 

      Pleosporaceae 0.00 

      Sporormiaceae 0.00 

    Tubeufiales 0.19 Tubeufiaceae 0.00 

  Eurotiomycetes 16.90 Chaetothyriales 2.09 Herpotrichiellaceae 0.02 

      Trichomeriaceae 0.00 

    Eurotiales 0.24 Aspergillaceae 0.00 

    Onygenales 0.99 Gymnoascaceae 0.00 

      Onygenaceae 0.01 

      OnygenalefaIncertasedis 0.00 

    Phaeomoniellales 0.01 Phaeomoniellaceae 0.00 

    unidentified 36.98 unidentified 0.42 

    Verrucariales 0.30 Verrucariaceae 0.00 

  Geoglossomycetes 0.01 Geoglossales 0.02 Geoglossaceae 0.00 

  Lecanoromycetes 1.85 Caliciales 0.02 Physciaceae 0.00 

    Lecanorales 1.98 Lecanoraceae 0.00 

      Parmeliaceae 0.02 

      Ramalinaceae 0.00 

    Lecideales 0.05 Lecideaceae 0.00 

    Teloschistales 0.04 Teloschistaceae 0.00 

    Umbilicariales 0.01 Umbilicariaceae 0.00 

  Leotiomycetes 1.08 Helotiales 1.52 Dermateaceae 0.00 

      HelotialefaIncertasedis 0.01 

    Thelebolales 0.05 Thelebolaceae 0.00 

  Orbiliomycetes 0.15 Orbiliales 0.21 Orbiliaceae 0.00 

  Pezizomycetes 19.20 Pezizales 27.93 Ascobolaceae 0.00 

  Pezizomycetes 19.20   Helvellaceae 0.01 

      Pezizaceae 0.03 

      Pyronemataceae 0.15 

      Tuberaceae 0.09 

  Sordariomycetes 1.97 Diaporthales 0.01 Valsaceae 0.00 

    Hypocreales 0.84 Cordycipitaceae 0.00 

      HypocrealefaIncertasedis 0.00 

      Nectriaceae 0.00 

      Stachybotryaceae 0.00 
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      Tilachlidiaceae 0.00 

    Sordariales 0.24 Chaetomiaceae 0.00 

      Lasiosphaeriaceae 0.00 

    Xylariales 0.29 Microdochiaceae 0.00 

      Sporocadaceae 0.00 

      Xylariaceae 0.00 

Basidiomycota 22.14 Agaricomycetes 14.79 Agaricales 4.66 Clavariaceae 0.00 

  Agaricomycetes 14.79   Entolomataceae 0.00 

      Hygrophoraceae 0.00 

      Inocybaceae 0.04 

      Psathyrellaceae 0.00 

      Stephanosporaceae 0.00 

      Tricholomataceae 0.00 

    Boletales 0.03 Boletaceae 0.00 

      Melanogastraceae 0.00 

    Cantharellales 0.50 Ceratobasidiaceae 0.01 

    Polyporales 0.01 Meruliaceae 0.00 

    Sebacinales 3.72 Sebacinaceae 0.04 

      Serendipitaceae 0.00 

    Thelephorales 12.17 Thelephoraceae 0.12 

  Geminibasidiomycetes 0.01 Geminibasidiales 0.02 Geminibasidiaceae 0.00 

  Tremellomycetes 0.32 Filobasidiales 0.43 Piskurozymaceae 0.00 

Chytridiomycota 0.11 Rhizophlyctidomycetes 0.00 Rhizophlyctidales 0.00 Rhizophlyctidaceae 0.00 

  Spizellomycetes 0.05 Spizellomycetales 0.08 Spizellomycetaceae 0.00 

Mortierellomycota 1.28 Mortierellomycetes 0.88 Mortierellales 1.28 Mortierellaceae 0.01 
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Table S8  Partial Mantel tests of the relationship between the microbial β-diversity and the 

dissimilarities in below- and aboveground plant composition, soil properties, and spatial 

covariates. rho is the Spearman’s rho statistic. Significant values (<0.05) are shown in bold.  

 

      Bacteria       Fungi       

 Predictors 
 

rho   p  rho   P  

           

 
Belowground plant   0.13   0.024   0.09   0.114   

 
Aboveground plant   0.06   0.124   0.12   0.009   

 
Soil properties   0.18   0.004   0.11   0.053   

 
Spatial covariates   0.22   <0.001   0.37   <0.001   
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Fig. S1 Sampling design. It consisted of 64 sampling units (blue circles) on an 8 × 8 m regular grid 

system. In addition, another 20 sampling units (dark purple triangles) were established to assess 

a finer spatial scale.   
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Fig. S2 Rarefaction curves of bacterial (taupe) and fungal (blue) communities for each soil-

microbial sample. 
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Fig. S3 Diagram showing the sampling of the aboveground plant community. The green circles 

represent the projection of the crown of each individual plant in the 8 m × 8 m plot. The brown 

circles represent the intersection areas between the projection of the crown of each individual 

plant and a sampling circle of 20 cm radius around each sampling point 
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Fig. S4 Non-metric multidimensional scaling (nMDS) ordinations showing patterns of variation in 

(a) belowground and (b) aboveground plant composition based on 83 sample units. 

 

 

 

Abbreviations: Acav, Arenaria cavanillesiana; Apau, Aristolochia paucinervis; Aari, Asperula aristata; Ainc, Astragalus 

incanus; Abro, Avenula bromoides; Bfru, Bupleurum fruticescens; Chys, Centaurea hyssopifolia; Cleu, Cephalaria 

leucantha; Cmon, Coris monspeliensis; Cmin, Coronilla minima; Ecam, Eryngium campestre; Enic, Euphorbia nicaeensis; 

Feri, Fumana ericoides; Fthy, Fumana thymifolia; Hcin, Helianthemum cinereum; Hhir, Helianthemum hirtum; Hsyr, 

Helianthemum syriacum; Hser, Helychrisum serotinum; Hcom, Hippocrepis commutata; Jhum, Jurinea humilis; Kval, 

Koeleria vallesiana; Llat, Lavandula latifolia; Lcon, Leuzea conifera; Lnar, Linum narbonense; Lsuf, Linum suffruticosum; 

Lfru, Lithodora fruticosa; Mfru, Matthiola fruticulosa; Otri, Ononis tridentata; Plyc, Phlomis lychinitis; Qcoc, Quercus 

coccifera; Qrot, Quercus rotundifolia; Slav, Salvia lavandulifolia; Smin, Sanguisorba minor; Scha, Santolina 

chamaecyparissus; Shir, Sideritis hirsuta; Sinc, Sideritis incana; Sdub, Staehelina dubia; Ssp, Stipa sp; Tcap, Teucrium 

capitatum; Tgna, Teucrium gnaphalodes; Tdiv, Thesium divaricatum; Tpub, Thymelaea pubescens; Tsp, Thymus sp. 
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Fig. S5 Relationship between below- and aboveground plant community attributes. (a) Relationship between below- and aboveground plant richness. (b) 

Relationship between root biomass and aboveground plant cover. (c) Non-metric multi-dimensional scaling (nMDS) ordination showing patterns of variation in 

belowground and aboveground plant community composition among 83 soil samples. 
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Fig. S6 Relative abundance (based on sequence reads) of bacteria and fungi at the phyla 

taxonomic level across 83 soil samples 

  

 

 

 

 


