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Abstract

In recent years, the relevance of cybersecurity has been increasingly evident to companies

and institutions, as well as to final users. Because of that, it is important to ensure the

robustness of a network. With the aim of improving the security of the network, it is desir-

able to find out which are the most critical nodes in order to protect them from external

attackers. This work tackles this problem, named α-separator problem, from a heuristic

perspective, proposing an algorithm based on the Greedy Randomized Adaptive Search

Procedure (GRASP). In particular, a novel approach for the constructive procedure is pro-

posed, where centrality metrics derived from Social Network Analysis are used as a greedy

criterion. Furthermore, the quality of the provided solutions is improved by means of a

combination method based in Path Relinking (PR). This work explores different variants

of PR, also adapting the most recent one, Exterior PR, for the problem under considera-

tion. The combination of GRASP+PR allows the algorithm to obtain high-quality solutions

within a reasonable computing time. The proposal is supported by a set of intensive com-

putational experiments that show the quality of the proposal, comparing it with the most

competitive algorithm found in the state of art.
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1 INTRODUCTION

In recent years, the words cyber-attack, information leakage, invasion of privacy, etc. have become increasingly common in the media. The increase
in the number of attacks on networks, as well as concerns about privacy on the Internet, have created the need for more secure, reliable and
robust networks. A cyber-attack on a company involving the leakage of personal information from its customers can cause significant economic
and social damage (Andersson et al. 2005). Moreover, Denial of Service (DoS) and Distributed Denial of Service (DDoS) have become two of the
most widespread attacks, as a successful attack can result in the deactivation of an Internet provider’s service, for example. On the other hand, if
other services depend in some way on the service under attack, a cascade down may occur, affecting a considerably high number of customers.
(Crucitti, Latora, & Marchiori 2004).

It is important to identify which are the most important nodes in a network. This is a matter of concern to both actors: the attacker and the
defender. On the one hand, the former is interested in disabling these important nodes to make the network more vulnerable. On the other
hand, the second one will be interested in reinforcing the protection over these nodes, applying more robust security measures. Therefore, the
identification of the most critical / weakest nodes in the network is a key part of the network security system.

We define a network as a graphG = (V,E), whereV is the set of vertices (|V| = n) and E is the set of edges (|E| = m). A vertex v ∈ V represents
a network node, while an edge (u, v) ∈ E, with u, v ∈ V indicates a connection or link in the network between nodes u and v. We define a network
separator as the set of vertices S ⊆ V whose removal divides the network into p connected components, C1,C2, . . . ,Cp, with p ≥ 2. It can be
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trivially demonstrated that V \ S =
⋃p

i=1 and Ci ∩ Cj = ∅ with 1 ≤ i, j ≤ p and i ̸= j. Therefore, each subset Ci induces a subgraph Gi = {Vi,Ei}
with Vi = Ci and Ei = {(u, v) ∈ E : u, v ∈ Ci}, which is disconnected from the rest of induced subgraphs.

This work focuses on the α-separator problem (α-SP), which consists in finding the minimum set of vertices S⋆, whose elimination separates
the network G into different connected components with less than ⌈α · n⌉ vertices in each component. It is worth mentioning that the number
of resultant connected components is not relevant to this problem. The actual constraint forces the number of vertices in each component to be
less or equal than α · n, being α an input network parameter. This problem is NP-hard for general topology networks when α ≤ 2/3 values are
considered (Feige & Mahdian 2006).

In Figure 1(a), we show an example of a network with 9 nodes and 10 links. Let us assume that α = 2/3. Then, the size of each resulting
connected component must not exceed ⌈α · n⌉ = 2/3 · 9 = 6 nodes. Figure 1(b) depicts a feasible solution S1 for the α-SP, with a separator
conformed with nodes B, C, E, I. If we remove the separator and the corresponding links, the network is divided into two connected components,
C1 = {A, D} and C2 = {F, G, H}, with sizes 2 and 3, respectively. Then, the objective function value for this solution is equal to 4 (i.e., the size of the
separator). In Figure 1(c), we represent a different solution S2 = {A, B}. The removal of this separator (and the associated edges) produces three
connected components C1 = {E}, C2 = {D}, and C3 = {C, G, H, I, F} that satisfy the size constraint (i.e., the size of each connected component is
lower than 6). Notice that S2 is better than the S1 since |S2| < |S1|.
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FIGURE 1 1(a) Example graph derived from a network with 9 nodes and 10 connections between nodes, 1(b) a feasible solution with 4 nodes in
the separator (B,C,E, and I), and 1(c) a better solution with 2 nodes in the separator (A and B)

Special types of networks, such as those whose topology is a tree or a cycle, can be solved in polynomial time (Mohamed-Sidi 2014). In that
work, an approximation algorithm is also presented, based on a greedy criterion, which provides an approach ratio of α · n+ 1. Nevertheless, these
algorithms need to have a priori knowledge about the network topology, which is not usual in real-life problems. A different approach is described
in Wachs, Grothoff, and Thurimella (2012), where the authors present a heuristic algorithm to study the separators in Autonomous Systems1 of
Internet.

The α-SP is related with other well-known optimization problems. Particularly, if α = 1/n, then, it is equivalent to the minimum vertex cover
problem Li, Hu, Zhang, and Yin (2016). Additionally, if α = 2/3, then, it is analogous to the minimum dissociation set problem (see Yannakakis (1981)
for more node-deleting problems). The α-SP can be considered as a generalization of these problems, that were also provenNP-hard in Garey and
Johnson (1979). A deep study on the complexity and some approximation results are presented in Ben-Ameur, Mohamed-Sidi, and Neto (2015).

This problem has beenmainly ignored from a heuristic point of view. In particular, themost competitive algorithm for solving theα-SP is based on
a Markov Chain Monte Carlo method hybridized with RandomWalksLee, Kwak, Lee, and Shroff (2017). Authors in that work shows the superiority
of their proposal comparing it with simple heuristics such as highest-degree-first and greedy procedures.

1An Autonomous System is conformed by one or more networks managed and supervised by a single entity or organization
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This paper is structured as follows. Section 2 proposes an algorithmic approach to solve this problem. Section 3 presents a post-processing
method based in the Path Relinking methodology. Section 4 tests the quality of the proposed algorithm and, finally, Section 5 exposes the
conclusions obtained from this research.

2 GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE

Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start strategy that was originally proposed in Feo and Resende (1989), but it
was not formally defined until Feo, Resende, and Smith (1994). As a multi-start method, GRASP tries to avoid getting trapped in local optima by
restarting the search from a different starting point in the search space. This behavior allows the algorithm to increase the diversification of the
search. This metaheuristic has been recently used with success in several optimization problems (Duarte, Sánchez-Oro, Resende, Glover, & Martí
2015; Quintana, Sánchez-Oro, & Duarte 2016; Sánchez-Oro, Laguna, Martí, & Duarte 2016).

Each GRASP iteration has two distinct phases: construction and improvement. The former is designed for constructing an initial high quality
solution, while the objective of the latter is to improve the initial solution by means of a local optimization method (F. W. Glover & Kochenberger
2006). On the one hand, constructive methods start from an empty solution iteratively adding elements to it. On the other hand, the local optimizer
considered for the second phase is a local search method, but GRASP is commonly hybridized with more complex search methods, such as Tabu
Search (F. Glover & Laguna 2013) or Variable Neighbourhood Search (Hansen & Mladenović 2014), among others, which highlights the versatility
of GRASP methodology.

2.1 Construction phase

The constructive procedure, named GreedyRandom, starts from an empty solution and, iteratively, it adds nodes to the solution under construction
until it becomes feasible. With the aim of diversifying the search, the first node to be inserted into the separator (i.e., the solution in the context of
the α-SP) is randomly selected fromV. Then, it is necessary to add vertices to it until the problem constraint is satisfied: the size of every connected
component in the network should be smaller than ⌈α · n⌉. Algorithm 1 presents the pseudocode of the proposed method.

Algorithm 1GreedyRandom(G, β)

1: v← Random(V)

2: S← {v}
3: CL← V \ {v}
4: while not isFeasible(S) do
5: gmin ← minv∈CL g(v)

6: gmax ← maxv∈CL g(v)

7: µ← gmax − β · (gmax − gmin)

8: RCL← {v ∈ CL : g(v) ≥ µ}
9: v← Random(RCL)

10: S← S ∪ {v}
11: CL← CL \ {v}
12: end while
13: return S

The procedure starts by randomly choosing the first node that will be included in the solution (steps 1-2). The random selection of this first
node allows the procedure to increase the diversity of the solutions generated at the construction phase. Next, the candidate list CL is created with
all the nodes of the network except the initially chosen one (step 3). Then, the constructive method iteratively adds a new node to the solution
until it satisfies the aforementioned problem constraints (steps 4-12). The isFeasible function is intended to check that the size of all the connected
components of the network is smaller than ⌈α · n⌉.

The selection of the next element to be incorporated in the solution under construction is a key aspect in the design of effective GRASP
constructive methods. Considering the complexity of the proposed greedy function (based on the closeness centrality metric, Newman (2008)), it
will be thoroughly described in Section 2.2. For the sake of clarity, we now refer to this function as g. Steps 5 and 6 evaluates the minimum and
maximum value of the greedy function among all the candidates, respectively. These two values are used to calculate the µ threshold (step 7) that
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is responsible for limiting the nodes that will be part of the restricted candidate list RCL (step 8). The threshold value depends on a β parameter
(with 0 ≤ β ≤ 1) that controls the randomness / greediness of the method. On the one hand, if β = 0, then µ = gmax and, therefore, only those
vertices with maximum value of the greedy function will be considered in the RCL, resulting in a totally greedy method. On the other hand, if β = 1,
then µ = gmin, allowing the selection of every node in the CL, becoming a totally random method. By this way, the higher value of β parameter,
the more random the method is, and viceversa. Section 4 will discuss how this parameter affects to the quality of the obtained solutions.

This work additionally proposes an alternative constructive procedure, named RandomGreedy, where the greedy and random phases are
swapped. In the GreedyRandom variant, the RCL is created with the most promising elements of the CL (i.e., those whose greedy function value
exceeds a certain threshold) and, then, it randomly selects the next element from the RCL. On the contrary, the RandomGreedy variant first con-
structs the RCL with a set of β · |CL| elements randomly selected from the CL and, then, it chooses the element with the largest greedy function
value among those included in the RCL. The main difference between GreedyRandom and RandomGreedy constructive procedure is the interchange
between greedy and random phases of the constructive procedure. Additionally, it is worth mentioning that RandomGreedy is presumably faster
than GreedyRandom since it does not require from the evaluation of the complete CL, but from the elements included in the RCL (this hypothesis
will be confirmed in Section 4).

2.2 Greedy Criterion

The selection of the next element to be incorporated in a partial solution in GRASP methodology depends on a greedy criterion. Specifically, for
each node v ∈ V, it is necessary to define a greedy function g(v), which evaluates the relevance of inserting it into the partial solution. In the
context of the α-SP problem, the greedy criterion should indicate how likely a node is to be critical.

This work presents a novel approach to identify whether a node is critical or not. In particular, it consists of using criteria derived from social
network analysis (SNA). Following this idea, the greedy criterion will consider the network as a social network, identifying which nodes are relevant
in the network as if it were a SNA problem. In SNA, a node is considered relevant if it is responsible of maintaining a large number of users
connected among them (Scott 2000). Therefore, the analogy with the α-SP problem is straightforward: a node is important in the network if its
removal disconnects several devices from the network.

The literature of SNA offers a vast amount of metrics to evaluate the relevance of a user in a social network. However, it must be born in mind
that the evaluation of most of them is rather computationally demanding. This is mainly because most of them, like betweenness (Brandes 2001)
or pagerank (Page, Brin, Motwani, and Winograd (1999)) need to know all the shortest paths between each pair of users in the network. It is worth
mentioning that the construction of all shortest paths between each pair of vertices is unapproachable for real problems. Then, it is usually tackled
by considering a fix number of shortest paths (Yen (1971)).

In this work, we will use the metric known as closeness (Newman (2008)), which considers that a vertex is important if it is close to several
nodes in the network. More formally, given a connected network G, the closeness value for a vertex is calculated as the inverse of the sum of the
lengths of the shortest paths between the analyzed node and the rest of nodes in the graph. It should be noted that the evaluation of this metric
only requires the evaluation of the shortest path between each pair of vertices, so it is enough to make a breadth-first search (if the network is not
weighted) or to apply the Dijkstra algorithm (if the network is weighted). The idea that underlies this metric is that the more central a node is, the
closer to all the other nodes it is. Indeed, the larger the closeness value, the more relevant a node is.

We need to adapt the general definition of closeness to the α-SP, since this optimization problem deals with different connected components.
It becomes a problem because the distance between nodes in different connected components is evaluated as infinite. Then, we only evaluate
distances from each node v in a specific connected component Ci (with 1 ≤ i ≤ p, being p the number of connected components) to the remaining
nodes in Ci. Specifically, the closeness of a node v ∈ Ci, defined as C(v), is then evaluated as the inverse of the sum of the distances from that node
v to the other nodes in the same connected component. In mathematical terms,

C (v) =
1∑

u∈Ci
d(v, u)

where d(v, u) is the distance between nodes v and u and Ci is the connected component to which both nodes belong. The distance between nodes
v and u considered in this work is evaluated as the length of the shortest path that connects u with v in the network.

2.3 Improvement phase

Solutions generated in the construction phase described in Section 2.1 are constructed by a randomized procedure that controls its greediness
through a parameter β. For this reason, the solution constructed may not be a local optimum and, therefore, it can be further improved through
any local optimization method. This work proposes a local search procedure to improve those solutions.
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Local search procedures are designed with the objective of finding the local optimum of a solution with respect to a predefined neighborhood.
A neighborhood can be defined as all the solutions that can be obtained from a single one by means of a single movement. Then, prior to define
the neighborhood, we must define the considered movement. We define the movementMove2x1 (S, v, u,w) as the removal of nodes v and u from
the current solution (i.e., separator) and the insertion of node w into it. More formally,

Move2x1 (S, v, u,w) = (S \ {u, v}) ∪ {w}

Notice that thismovementmay lead to unfeasible solutions, since the resulting onemight not be a separator for the problem under consideration.
The proposed local search method will only consider those moves that result in a feasible solution, discarding those moves that produce unfeasible
solutions. Additionally, it is worth mentioning that any feasible movement will result in an improvement, since the size of the separator would have
been decreased in one unit.

Then, given a feasible solution S, its associated neighborhood N2×1(S) is defined as all the solutions that can be generated by applying the
Move2x1 operator to solution S, with any of the available nodes. More formally,

N2×1(S)← {S′ ← Move2x1 (S, v, u,w) ∀v, u ∈ S ∧ ∀w ∈ V \ S}

The last step for defining a local search method consists in establishing the order in which the neighborhood will be explored. Traditionally, two
methods for exploring the neighborhood are considered: First Improvement and Best Improvement. The former performs the first improving move
found during the scanning the neighborhood, while the latter requires to analyze the complete neighborhood, performing the movement that leads
to the best solution. This work only considers the First Improvement approach, mainly due to the following reasons. First of all, the First Improvement
strategy is usually less computationally demanding than Best Improvement, because it does not explore the complete set of reachable solutions in
each step, but performs the first improving move found. Furthermore, note that, given the defined neighborhood, any movement that leads to a
feasible solution will produce a better solution in terms of the objective function value. Specifically, the new solution will outperform the original
one in one unit, since the new separator will contain one node less than the original solution. Then, the Best Improvement approach is discarded
for this local search.

Finally, it is needed to indicate in which order will the neighbor solutions be explored since, in the context of First Improvement, the order of
exploration may affect to the quality of the resulting solutions. The local search proposed in this work randomly explores the neighborhood, to
increase the diversification of the search.

The local search method stops when no improvement is found after exploring the complete neighborhood, returning the best solution found
during the search.

3 PATH RELINKING

Path Relinking (PR) is a solution combination method originally proposed as a methodology to integrate intensification and diversification strategies
in the tabu search context (F. Glover 1996). The PR behavior is based on exploring the trajectories that connect high quality solutions, with the
objective of generating intermediate solutions that can eventually be better than the original solutions used to build the trajectory. Laguna and
Martí (1999) adapted Path Relinking to the GRASP context with the aim of increasing the intensification of the search. The Path Relinking algorithm
operates over a set of solutions, called Elite Set (ES), that is usually ordered following a predefined descendent quality criterion of each solution.
In this work, we consider the value of the objective function of the solution as quality criterion. In particular, the Elite Set consists of the highest
quality solutions generated by GRASP algorithm. This design is generally denominated static (F. Glover, Laguna, &Martí 2000), because first GRASP
is applied to build the Elite Set and then Path Relinking is applied to explore the trajectories between all pairs of solutions in the ES. On the contrary,
the dynamic design considers updating the Elite Set each time that a trajectory is explored.

A trajectory between an initial solution Si and a guiding one Sg is generated by iteratively including attributes or properties of the guiding solution
into the initial one. In the context of α-SP, we will include in the separator of the initial solution those nodes that are present in the separator of
the guiding one, by interchanging them with those nodes that are in the initial solution but not in the guiding one. For this purpose, we first need
to define a new movement that removes from a separator S the node v and inserts node u into it, producing a new solution (S′ ← S \ {v}) ∪ {u}.
For the sake of clarity, we named this move as S′ ← Swap(S, v, u).

Then, a trajectory between two solutions is created by iteratively performing Swap(Si, v, u) moves, where v ∈ Si \ Sg and u ∈ Sg \ Si, until Si
becomes Sg . In each iteration, Path Relinking performs a swap movement that generates a new intermediate solution in the trajectory. It should be
noted that this movement produce, with high probability, an unfeasible solution (i.e., the intermediate solution is not a valid separator), so a repair
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operator must be applied to the intermediate solution to make it feasible. The proposed repair operator consists in adding random nodes to the
separator until the solution becomes feasible, thus increasing the diversification of the search.

B F G H A

B C HA G

B I G H B F G H B C F H A B C F

Path

Repair

Clean

FIGURE 2 Example of a trajectory created between solutions Si = {B, I, G, H} and Sg = {A, B, C, F},
considering α = 1/3.

Figure 2 shows a trajectory created between two solutions, Si = {B, I, G, H} and Sg = {A, B, C, F}, for the graph depicted in Figure 1(a), but this
time considering α = 1/3. Then, the network must be disconnected in components of ⌈α · n⌉ = 1/3 · 9 = 3 nodes at most. The illustration is
divided into three parts: path, which represents the actual path created between both solutions; repair, which considers those solutions of the path
that have been repaired in order to make them feasible; and clean, which includes solutions of the path that originally contained redundant nodes
(i.e., those that are not needed any more in the separator) where these redundant nodes have been removed. In this example, the initial solution
is Si while the guiding one is Sg , so the trajectory consist of creating a path of solutions from Si to Sg . In each step of the path, a new element
belonging to the separator of Sg will be included in Si, swapping it with an element included in Si which does not belong to Sg . Figure 2 shows the
nodes included in the separators of each solution, and the nodes in common with Sg have been highlighted in grey.

The first solution in the path, S1, is generated by performing the move Swap(Si, I, G), thus removing node I from the separator and replacing it
with G. Notice that the resulting solution S1 is not feasible, since the graph is divided into components C1

1 = {E} and C1
2 = {A, D, C, I}, so |C1

2| > 3,
violating the problem constraint. Then, S1 must be repaired by inserting new nodes into the solution until it becomes feasible. Inserting node A

into the separator generates solution S2, which is a feasible solution. After repairing a solution, we may have introduced redundant nodes in the
separator which are not required anymore. Therefore, we scan the separator in order to remove those nodes that are not required to maintain the
feasibility of the solution. In this case, nodes B, F, G, and H are removed from the solution, generating solution S3 which is feasible. Additionally, the
number of nodes in S3 is 2, being the best solution found in the path so far.

Once reaching a feasible solution, the path continues with the original unfeasible one, which is S1. The next solution, S4, is generated from the
move Swap(S1, G, C), which is already a feasible solution, disconnecting the network into C4

1 = {E}, C4
2 = {G}, and C4

3 = {A, D, I}, all of them with
a number of nodes smaller or equal than 3. This move may produce a solution with redundant nodes again. In this case, node F is not necessary
any more in the solution, so we remove it to generate S5, obtaining a better solution than S4.

The last movement, Swap(S4, H, A) lead us to reach Sg , concluding the trajectory between Si and Sg . At this point, the algorithm returns the
best solution found in the trajectory, which is S3, since it only contains two nodes in the separator. This new solution achieves an improvement of
two nodes with respect to the solutions considered as endpoints of the trajectory.

The choice of the next Swap movement to be performed in each iteration results in two different Path Relinking strategies. On the one hand,
Greedy Path Relinking (GPR) selects, in each iteration, the best Swapmovement available. In particular, it generates all the possible solutions that can
be generated in the current trajectory, also applying the repair operator. Then, the trajectory continues through the best intermediate solution. On
the other hand, Random Path Relinking (RPR) generates the next solution of the trajectory by randomly selecting one of the available Swap moves
in the path. Notice that GPR is focused on intensification, sacrificing computational time, while RPR aims for diversification, resulting in the fastest
strategy, since it does not require to perform a complete analysis of the available Swap moves.
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In this work, we propose a third variant that mixes the GPR and RPR, named Greedy Randomized Path Relinking (GRPR). This new strategy
generates all the possible intermediate solutions as in GPR, but instead of selecting the best one, it selects one of the most promising ones,
following the same strategy than the GRASP constructive stage. We consider a parameter σ ∈ [0, 1] (equivalent to β in GRASP), which is able to
establish a trade-off between greediness and randomness of the strategy. This strategy allows us to create the path focused on intensification but
escaping from local optima derived from choosing a totally greedy variant, balancing the diversification and intensification of the search. Notice
that evaluating all possible paths between solutions can eventually lead to evaluate a large number of intermediate solutions. The number of
intermediate solutions is limited by the number of different critical nodes in the solutions considered for constructing the path. However, high-
quality solutions share a reasonable percentage of critical nodes, so the number of different critical nodes in two high-quality solutions is small,
thus leading to a small number of intermediate solutions in the path between them. This behavior allows the algorithm to evaluate all possible
paths between two solutions.

The intermediate solutions generated during trajectory exploration are not necessarily local optimal with respect to any neighborhood, even
more considering the repair operator. Therefore, the local search method described in Section 2.3 is applied to the best solution found in the path,
for further improving its quality.

This work considers that all the constructed solutions are included in the Elite Set (avoiding repeated solutions). Hence, Path Relinking is applied
to every pair of different solutions generated in the constructive and improvement phases of the algorithm.

Finally, a new Path Relinking strategy, named Exterior Path Relinking is presented. The aforementioned variants (GPR, RPR, and GRPR) are focused
on constructing a path that connects two solutions. However, if the solutions considered for the path are very similar, then the trajectory will be
short, which is not interesting in the Path Relinking methodology. The Exterior Path Relinking (EPR) variant was originally proposed by Duarte et al.
(2015) with the aim of exploring trajectories that go beyond the considered solutions. In particular, starting from the initial (Si) and guiding (Sg)
solutions, EPR tries to generate, in each iteration, a solution obtained by removing from the initial solution those elements that are already present
in the guiding one. Therefore, the main idea of EPR is not getting closer to the guiding solution, but getting further from it. Hence, this strategy is
totally focused on the diversification of the search, trying to generate intermediate solutions that are rather different from the two endpoints of
the path. EPR ends when the initial solution becomes completely different to the guiding one (i.e., Si ∩ Sg = ∅), returning the best solution found
in the path. Again, the local search method is applied to the best intermediate solution in order to obtain a local optimum.

4 COMPUTATIONAL RESULTS

This section has two main objectives: 1) find the best values for the parameters of the proposed algorithm and 2) compare the selected variant
with the best previous method found in the state of the art. All the algorithms have been developed in Java 9 and the experiments have been
conducted in an Intel Core 2 Duo 2.66 GHz with 4GB of RAM computer.

It is important to remark that the instance set used in the best previous method is not publicly available, and we have not received response
from the previous authors regarding this issue. Notwithstanding, the instance set used in this experimentation has been generated using the same
graph generator proposed by the best previous work (Lee et al. 2017). Specifically, graphs are generated using the Erdös Rényi model (Erdös &
Rényi 1959), in which each new inserted node has the same probability of being connected to any existent node in the graph. A set of 50 instances
(25 with 100 vertices and 25 with 200 vertices) with different density (from 200 to 500 edges) has been generated. Each instance has been tested
considering α = {0.2, 0.4, 0.6}. In order to facilitate future comparisons, the instances can be requested by email to the authors.

Experimentation is divided into two different parts: preliminary experimentation and final experimentation. The former is designed to adjust
the parameters for the algorithms and select the best version of them, while the latter has the aim of confirming the quality of the proposal by
comparing it with the best previous method found in the state of the art. It is worth mentioning that the preliminary experimentation will consider
a representative subset of 20 out 50 instances to avoid overfitting.

All the experiments report the following metrics: Avg., the average objective function value; Time (s), the average computing time measured in
seconds; Dev. (%), the average deviation with respect to the best solution found in the experiment; and #Best, the number of times the algorithm
reaches that best solution.

The first preliminary experiment is designed for analyzing the performance of the proposed constructive procedures and selecting the best
variant. In particular, this experiment analyzes the effect of the β parameter in both constructive procedures presented in Section 2.1. The behavior
of the constructive procedure isolated is not a faithful representation of its adequacy to the problem. This is mainly because certain variant may
produce worse quality solutions which are a better starting point for the local improvement method. Therefore, the experiments designed to
select the best constructive procedure consists of generating 10 different solutions, improving them with the local search presented in Section 2.3.
Considering the value for the β parameter, we have tested β = {0.25, 0.50, 0.75,RND}, where RND indicates that a random value is selected in
each independent construction. Table 1 shows the results obtained by the GreedyRandom constructive procedure.
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Algorithm Avg. Time (s) Dev. (%) #Best
GreedyRandom(0.25) 68.35 16.69 1.16% 11
GreedyRandom(0.50) 68.95 16.92 2.33% 7
GreedyRandom(0.75) 71.35 18.30 6.69% 1
GreedyRandom(RND ) 68.70 17.61 2.10% 10

TABLE 1 Results for the constructive procedure GreedyRandom when coupled with the local search method. The number between parenthesis
indicates the value of β.

As it can be derived from these results, increasing the value of β worsens the quality of the solutions obtained, which is reflected in all the con-
sidered metrics. This result suggests that the best solutions are reached when reducing the randomness in the constructive procedure. Therefore,
we select β = 0.25 for the GreedyRandom procedure. Analyzing the computing time, we can clearly see that the differences among the considered
variants are negligible.

We perform an equivalent experiment for the second proposed constructive method. Specifically, Table 2 shows the corresponding results when
considering the RandomGreedy procedure.

Algorithm Avg. Time (s) Dev. (%) #Best
RandomGreedy(0.25) 67.65 14.75 1.24% 11
RandomGreedy(0.50) 67.90 15.46 2.10% 8
RandomGreedy(0.75) 68.15 14.82 2.54% 3
RandomGreedy(RND ) 67.85 14.84 2.25% 6

TABLE 2 Results for the constructive procedure RandomGreedy when coupled with the local search method. The number between parenthesis
indicates the value of β.

These results confirm the hypothesis, suggesting that the lower the randomness of the constructive procedure, the better the results. Again,
selecting β = 0.25 leads the constructive procedure to obtain the best solutions in all the considered metrics: a larger number of best solutions
found while maintaining the smallest deviation with respect to the best solution when it is not reached. Therefore, we again select β = 0.25 for
the RandomGreedy variant. Once more, the computing time required by each algorithm is rather similar.

To conclude with the constructive procedure selection, we directly compare the results obtained with the best GreedyRandom variant with those
obtained by the best RandomGreedy variant. Table 3 shows the comparison betweenGreedyRandom and RandomGreedywhen consideringα = 0.25.

Algorithm Avg. Time (s) Dev. (%) #Best
GreedyRandom(α = 0 .25 ) 68.35 16.69 3.27% 13
RandomGreedy(α = 0 .25 ) 67.65 14.75 0.77% 15

TABLE 3 Comparison between best GreedyRandom and RandomGreedy constructive procedures.

Analyzing the results obtained, RandomGreedy variant is clearly better than the GreedyRandom procedure. In particular, it is able to reach a
larger number of best solutions (13 versus 15), with a deviation of just 0.77%, while GreedyRandom obtains 3.27%. These results suggest that
RandomGreedy is able to reach most of the best solutions and, in those cases in which it does not reach the best solution, it remains close to the
best solution in terms of quality. In this case, the computing time required by the RandomGreedy variant is also smaller, since it does not precise
the evaluation of all the candidate nodes to be included in the solution under construction.

Furthermore, we can confirm the hypothesis raised in Section 2.1, which indicates that RandomGreedy should be faster thanGreedyRandom since
it does not require the complete evaluation of the CL. Analyzing the results presented in Tables 1, 2 and 3, we can clearly see that RandomGreedy
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is consistently faster than GreedyRandom in all their variants. As a result, we select RandomGreedy with β = 0.25 as the constructive procedure for
the remaining of the paper.

The next experiment aims to analyze the behavior of the local searchwhen varying the portion of the search space explored. It is well-known that
an exhaustive search is rather time-consuming, thus affecting to the efficiency of the complete algorithm. In order to avoid this, we will now analyze
two factors, objective function value and computing time, when considering a reduction of the search space explored by the local search method.
In order to do so, we test the efficacy and efficiency when exploring a percentage δ of the available movements inside local search. Specifically, we
test δ = {0.10, 0.20, . . . , 0.90}, being delta the percentage of nodes considered to be evaluated with theMove2x1 operator, defined in Section 2.3.
It is expected that small values of δ will result in shorter computing times, but it might deteriorate the quality of the solutions found. Figure 3 shows
the comparison between quality and computing time when considering different values for the δ parameter.

FIGURE 3 Analysis of the average deviation and computing time of each variant of the local search procedure.

As it can be derived from the results, the search is consistently improving the results without considerably increasing the computing time until
reaching δ = 0.6. At that point, the deviation decreases rather slow (from approximately 4% until reaching 0.5%), while the computing time is
rather larger (from about 150 seconds to more than 500 seconds). Hence, considering values larger than δ = 0.6 is not recommended for the local
search method. The remaining experiment will then consider δ = 0.6.

Once the best constructive and local search methods have been identified, the next step consists in selecting the best path relinking variant to
be considered. In particular, we propose four different variants: Greedy Path Relinking (GPR), Random Path Relinking (RPR), Greedy Randomized
Path Relinking (GRPR), and Exterior Path Relinking (EPR). Among all the variants, GRPR is the only one having a parameter, σ, that must be adjusted,
controlling the balance between intensification and diversification in the combination. Therefore, the next preliminary experiment is devoted to
select the best value for the σ parameter. In particular, we have tested σ = {0.25, 0.50, 0.75,RND} as in the previous experiments. We have
generated and improved 10 different solutions with the selected constructive and local search methods and then combine each pair of solutions
with the corresponding combination method. Table 4 shows the results derived from this experiment.

Although there are not significant differences in the obtained results, selecting a random value of σ in each iteration reaches slightly better
solutions, and the computing time is not drastically affected. Therefore, we select σ = RND for the remaining experiments. Having selected
the best GRPR variant, we now perform a comparison among all the Path Relinking variants with the aim of selecting the best one for the final
experiment. Table 5 shows the comparison among Random Path Relinking, Greedy Path Relinking, Greedy Randomized Path Relinking, and Exterior
Path Relinking.

As it can be derived from the presented results, the values obtained by the different variants are rather similar. In particular, each variant is able to
obtain 13 out of 20 best solutions in similar computing times.We then select EPR as the best variant since it presents the smallest deviation (0.85%),
although it is closely followed by GRPR (0.89%). The superiority of EPR can be partially justified since it is totally focused on the diversification of
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Algorithm Avg. Time (s) Dev. (%) #Best
GRPR(0.25) 61.40 825.10 0.53% 16
GRPR(0.50) 61.45 837.83 0.59% 15
GRPR(0.75) 61.45 833.52 0.59% 15
GRPR(RND ) 61.25 835.42 0.49% 16

TABLE 4 Adjustment of the σ parameter in the Greedy Randomized Path Relinking algorithm. The number between parenthesis indicates the value
of σ.

Algorithm Avg. Time (s) Dev. (%) #Best
GRPR(RND ) 61.25 835.42 0.89% 13

RPR 61.25 838.58 0.91% 13
GPR 61.25 839.07 0.96% 13
EPR 61.20 845.52 0.85% 13

TABLE 5 Comparison among the proposed Path Relinking variants.

the search. If we analyze the constructive and local search methods, we can clearly see that they are mainly focused on the intensification part
of the search, so the combination with EPR generates an adequate balance between diversification and intensification. Regarding the computing
time, although EPR presents a slightly larger computing time, the quality of the solutions obtained makes up for it. Then, we select Exterior Path
Relinking as the best Path Relinking variant for the α-SP.

The final experiment selects the best variant and compares it with the best previous method found in the state of the art. In particular, the
proposed GRASP with Path Relinking (GRASP+PR) algorithm considers the following components:

• Constructive Procedure: RandomGreedy(0.25)
• Local Search: δ = 0.6

• Path Relinking: Exterior Path Relinking
As far as we know, the best previous algorithm for the α-SP is a Random Walk algorithm (RW) based on a Metropolis chain (Lee et al. 2017).

Unfortunately, neither the original source code nor the original instances are available, so we have carefully re-implemented the original algorithm
following the detailed descriptions given in the original work. It is important to remark that this experiment considers the complete set of 50
instances. In addition to GRASP+PR, we have also included in this final comparison the results obtained by GRASP (without applying the Path
Relinking algorithm), since in some scenarios it is more important to provide a fast solution of average quality than to spend several seconds trying
to refine the best solution found. Table 6 shows the results obtained in the comparison.

Algorithm Avg. Time (s) Dev. (%) #Best
GRASP 63.18 137.41 5.90 14

GRASP+PR 62.00 822.29 3.68 34
RW 71.78 1070.36 18.26 18

TABLE 6 Final comparison between GRASP, GRASP+PR, and the best previous method found in the state of the art.

Regarding these results, the proposed algorithm, GRASP+PR, is able to reach a larger number of best solutions than RW (34 vs 18). Furthermore,
the average deviation with respect to the best solution found is considerably small in GRASP+PR, indicating that in those cases in which it is not
able to reach the best solution, it remains rather close to it. On the contrary, the deviation of RW is 18.26%, which means that it is not close
to the best solution found by GRASP+PR. Analyzing the computing time, we can see that GRASP+PR is 1.30 times faster than RW, being more
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adequate for real scenarios. Finally, RW is able to disconnect the network by removing, on average, 71.78 nodes, while GRASP+PR can disconnect
it removing just 62.00 nodes on average, which also confirms the quality of the proposal.

In order to confirm that there are statistically significant differences between the compared algorithms, thus confirming the superiority of
the proposal, we perform the pairwise Wilcoxon Signed Rank Test. The resulting p-value of 0.001 indicates that there are statistically significant
differences between GRASP+PR and RWwith a significance level of 95%. Therefore, GRASP+PR emerges as the best algorithm in the state of the
art for the α-SP.

As it has been mentioned throughout the manuscript, computing time is a key factor in the context of α-SP. In order to analyze this relevant
issue, we conduct an additional experiment to compare the computing time required by both, the proposed algorithm, GRASP+PR, and the best
method identified in the literature, RW. Figure 4 shows the computing time required by each algorithm in every single instance considered in the
experimentation. As we can see, GRASP+PR is clearly faster than RW. However, an average computing time of approximately 800 seconds may
not be enough in some real-case scenarios.

FIGURE 4 Comparison of computing time for each one of the considered instances.

In view of the results obtained, we can conclude that GRASP+PR and RW require from equivalent computing times when facing large instances
(n ≥ 200), although GRASP+PR is considerably faster in small and medium instances (n < 200). Therefore, if a fast solution is needed in spe-
cial applications, we do recommend to consider GRASP without applying Path Relinking, which is able to obtain a slightly larger deviation than
GRASP+PR (5.90% vs 3.68%), but requiring an eighth of the time (137.41 s) needed by GRASP+PR or RW (822.29 s and 1070.36 s, respectively).
Furthermore, analyzing the graph, we can see that GRASP scales better with the size of the instance.

5 CONCLUSIONS

In this work, an algorithm based onGRASP has been presented for the detection of critical points in networks. In particular, a constructive procedure
that leverages features derived from social network analysis, coupled with an improvement strategy for reaching local optima. Additionally, the
generated solutions are combined by using Path Relinking to improve their quality. We perform a thorough experimentation for adjusting the
parameters of the algorithm and show the merit of each proposed strategy. Finally, the best variant is compared with the best algorithm found
in the state of the art. As it can be derived from the experiments, the proposed algorithm is able to solve the α-SP being 1.30 faster than the
previous method, obtaining clearly better results, which are supported by non-parametric statistical tests. The proposed algorithm emerges as the
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best method in the state of the art, being able to obtain high-quality solutions in short computing times with GRASP and improve them later with
Path Relinking in those situations in which time is not critical.

ACKNOWLEDGEMENTS

This work has been partially funded by “Ministerio de Ciencia, Innovación y Universidades” under grant ref. PGC2018-095322-B-C22, and by
“Comunidad de Madrid” and “Fondos Estructurales” of European Union with the project “Cybersecurity, Network Analysis and Monitoring for the
Next Generation Internet” (CYNAMON), with grant ref. S2018/TCS-4566.

CONFLICT OF INTEREST

Authors confirm that there are not conflict of interest.

References

Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., . . . Vittal, V. (2005). Causes of the 2003 major grid blackouts in
North America and Europe, and recommended means to improve system dynamic performance. IEEE Transactions on Power Systems, 20(4),
1922-1928.

Ben-Ameur, W., Mohamed-Sidi, M.-A., & Neto, J. (2015). The k-separator problem: polyhedra, complexity and approximation results. Journal of
Combinatorial Optimization, 29(1), 276–307.

Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of mathematical sociology, 25(2), 163–177.
Crucitti, P., Latora, V., & Marchiori, M. (2004). Model for cascading failures in complex networks. Phys. Rev. E, 69, 045104.
Duarte, A., Sánchez-Oro, J., Resende, M. G. C., Glover, F., & Martí, R. (2015). Greedy randomized adaptive search procedure with exterior path

relinking for differential dispersion minimization. Inf. Sci., 296, 46-60.
Erdös, P., & Rényi, A. (1959). On random graphs. Publications Mathematicae, 6, 290.
Feige, U., & Mahdian, M. (2006). Finding small balanced separators. In J. M. Kleinberg (Ed.), Stoc (p. 375-384). ACM.
Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters,

8(2), 67 - 71.
Feo, T. A., Resende, M. G. C., & Smith, S. H. (1994). A greedy randomized adaptive search procedure for maximum independent set. Operations

Research, 42(5), 860-878.
Garey, M., & Johnson, D. (1979). Computers and Intractability - A guide to the Theory of NP-Completeness. San Fransisco: Freeman.
Glover, F. (1996). Tabu search and adaptive memory programming – advances, applications, and challenges. Dordrecht, Massachusetts, USA: Kluwer

Academic Publishers.
Glover, F., & Laguna, M. (2013). Tabu search. In Handbook of combinatorial optimization (pp. 3261–3362). Springer.
Glover, F., Laguna, M., & Martí, R. (2000). Fundamentals of scatter search and path relinking. Control and cybernetics, 29(3), 653–684.
Glover, F. W., & Kochenberger, G. A. (2006). Handbook of metaheuristics (Vol. 57). Springer Science & Business Media.
Hansen, P., & Mladenović, N. (2014). Variable neighborhood search. In Search methodologies (pp. 313–337). Springer.
Laguna, M., & Martí, R. (1999). Grasp and path relinking for 2-layer straight line crossing minimization. INFORMS Journal on Computing, 11(1),

44-52.
Lee, J., Kwak, J., Lee, H. W., & Shroff, N. B. (2017, March). Finding minimum node separators: A markov chain monte carlo method. In Drcn 2017 -

design of reliable communication networks; 13th international conference (p. 1-8).
Li, R., Hu, S., Zhang, H., & Yin, M. (2016). An efficient local search framework for the minimumweighted vertex cover problem. Information Sciences,

372, 428–445.
Mohamed-Sidi, M. (2014). K-Separator Problem. (Problème de k-Sèparateur). (Unpublished doctoral dissertation). Telecom &Management SudParis,

Èvry, Essonne, France.
Newman, M. E. (2008). The mathematics of networks. The new palgrave encyclopedia of economics, 2(2008), 1–12.
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The pagerank citation ranking: Bringing order to the web. (Tech. Rep.). Stanford InfoLab.
Quintana, J. D., Sánchez-Oro, J., & Duarte, A. (2016). Efficient greedy randomized adaptive search procedure for the generalized regenerator

location problem. Int. J. Comput. Intell. Syst., 9(6), 1016-1027.



S. PÉREZ-PELÓ et al 13

Sánchez-Oro, J., Laguna, M., Martí, R., & Duarte, A. (2016). Scatter search for the bandpass problem. Journal of Global Optimization, 66(4), 769–790.
Scott, J. (2000). Social network analysis: A handbook. Sage Publications.
Wachs, M., Grothoff, C., & Thurimella, R. (2012). Partitioning the Internet. In F. Martinelli, J.-L. Lanet, W. M. Fitzgerald, & S. N. Foley (Eds.), Crisis

(p. 1-8). IEEE Computer Society.
Yannakakis, M. (1981). Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 10(2), 310–327.
Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. management Science, 17(11), 712–716.

How to cite this article: S. Pérez-Peló, J. Sánchez-Oro, and A. Duarte (2019), Finding weaknesses in networks using GRASP and Path Relinking,
Expert Systems, 2019;00:0–0.


	Finding weaknesses in networks using GRASP and Path Relinking
	Abstract
	Introduction
	Greedy Randomized Adaptive Search Procedure
	Construction phase
	Greedy Criterion
	Improvement phase

	Path Relinking
	Computational Results
	Conclusions
	Acknowledgements
	Conflict of interest
	References


