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Introduction: Obesity results from an interplay between genetic predisposition
and environmental factors such as diet, physical activity, culture, and
socioeconomic status. Personalized treatments for obesity would be optimal,
thus necessitating the identification of individual characteristics to improve the
effectiveness of therapies. For example, genetic impairment of the leptin-
melanocortin pathway can result in rare cases of severe early-onset obesity.
Metabolomics has the potential to distinguish between a healthy and obese status;
however, differentiating subsets of individuals within the obesity spectrum
remains challenging. Factor analysis can integrate patient features from diverse
sources, allowing an accurate subclassification of individuals.

Methods: This study presents a workflow to identify metabotypes, particularly
when routine clinical studies fail in patient categorization. 110 children with
obesity (BMI > +2 SDS) genotyped for nine genes involved in the leptin-
melanocortin pathway (CPE, MC3R, MC4R, MRAP2, NCOA1, PCSK1, POMC,
SH2B1, and SIM1) and two glutamate receptor genes (GRM7 and GRIK1) were
studied; 55 harboring heterozygous rare sequence variants and 55 with no
variants. Anthropometric and routine clinical laboratory data were collected,
and serum samples processed for untargeted metabolomic analysis using GC-
q-MS and CE-TOF-MS and reversed-phase U(H)PLC-QTOF-MS/MS in positive
and negative ionization modes. Following signal processing and multialignment,
multivariate and univariate statistical analyses were applied to evaluate the genetic
trait association with metabolomics data and clinical and routine laboratory
features.

Results and Discussion: Neither the presence of a heterozygous rare sequence
variant nor clinical/routine laboratory features determined subgroups in the
metabolomics data. To identify metabolomic subtypes, we applied Factor
Analysis, by constructing a composite matrix from the five analytical platforms.
Six factors were discovered and three different metabotypes. Subtle but neat
differences in the circulating lipids, as well as in insulin sensitivity could be
established, which opens the possibility to personalize the treatment according
to the patients categorization into such obesity subtypes. Metabotyping in clinical
contexts poses challenges due to the influence of various uncontrolled variables
on metabolic phenotypes. However, this strategy reveals the potential to identify
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subsets of patients with similar clinical diagnoses but different metabolic
conditions. This approach underscores the broader applicability of Factor
Analysis in metabotyping across diverse clinical scenarios.

KEYWORDS

multiplatform metabolomics, factor analysis, data integration, obesity, childhood, leptin-
melanocortin pathway

Introduction

Childhood obesity prevalence has increased worldwide in the
last decades, including a higher incidence of severe and early onset
cases, particularly after the COVID-19 outbreak lockdown (Choi
et al., 2023), enhancing the known risk for long-term consequences
in these patients (Rupérez et al., 2020; Handakas et al., 2022).
Children with obesity are more susceptible to maintain their
adiposity in adult life, increasing the risk of multiple
comorbidities at an early age, including type 2 diabetes mellitus
(T2DM), dyslipidemia, cardiovascular disease (CVD), hypertension,
obstructive sleep apnea, cancer and steatohepatitis (da Fonseca et al.,
2017; Cote et al., 2013; Butte et al., 2015; Carde et al., 2020; Berger,
2018; Wahl et al., 2012). Obesity has a multifactorial etiology, with
lifestyle, including nutritional and physical activity habits, as well as
other environmental factors, interacting with an individual’s unique
genetic background to determine a person’s risk to develop obesity
(Trang and Grant, 2023). Among the large set of genes influencing
obesity, those in the leptin-melanocortin satiety signaling pathway
are the most determinant known to date, with homozygous
mutations in some causing early onset severe obesity with
hyperphagia (Jackson et al., 1997; Chiurazzi et al., 2020; Trang
and Grant, 2023). The role of heterozygous variants is under
investigation (Trang and Grant, 2023), particularly those with
confirmed pathogenicity or high Combined Annotation
Dependent Depletion (CADD) scores of “deleteriousness” with
low population prevalence [heterozygous rare sequence variants
(HetRSVs)]. Additionally, variants in glutamate receptors, pivotal
in neuron signaling have also been described in patients with severe
obesity (Bell et al., 2005; Fuente-Martín et al., 2016; Serra-Juhé et al.,
2017; Fairbrother et al., 2018; Chiurazzi et al., 2020).

Whereas some obesity-associated comorbidities commonly
identified in adults can also be observed in children with obesity,
others such as T2DM are far less common, with insulin resistance
(IR) usually found as the first step in carbohydrate metabolism
impairment in childhood obesity (Martos-Moreno et al., 2019).
Additionally, not every patient with obesity shows the same risk
to develop comorbidities, with the “metabolically healthy obesity”
designation proposed for those patients with obesity, even severe
obesity, but with no metabolic comorbidities (Wan Mohd Zin et al.,
2022). However, this term is under discussion and this condition is
known to evolve throughout life in relationship to weight control
(Martos-Moreno et al., 2021). The term “metabotype” was defined
by Gavaghan et al. (Gavaghan et al., 2000) as “a probabilistic
multiparametric description of an organism in a given
physiological state based on analysis of its cell types, biofluids, or
tissues.” Subsequently, this definition has been repeatedly used
(Waldram et al., 2009; Sullivan et al., 2011; Palmnäs et al., 2020),
establishing itself as the characterization of the metabolic phenotype

of an individual. Recent advances in high-throughput sequencing
technologies and computational methods have enabled the
generation of large and complex -omics datasets, providing an
unprecedented opportunity to integrate simultaneous information
from multiple molecular levels to investigate the complexity of
biological systems (T et al., 2019; Park et al., 2022; Argelaguet
et al., 2020; Tanabe et al., 2021; Clark et al., 2021). The
integration of various -omics data, including genomics,
transcriptomics, proteomics, metabolomics, and epigenomics, can
help to understand the intricate interplay between different
biological molecules and pathways, enabling the identification of
key regulators and mechanisms of disease (Hoadley et al., 2014;
Meng et al., 2016; Marabita et al., 2022). In metabolomics, a
multiplatform strategy combines many analytical tools to study
the entire metabolic phenotype. Combining data from multiple
sources could result in a better comprehension of the underlying
biological mechanisms driving complex diseases including cancer,
obesity, and cardiovascular disease (Hoadley et al., 2014; Meng et al.,
2016; Marabita et al., 2022; Park et al., 2022). Although much effort
has been made in recent years to integrate information from
different -omics technologies into a single analysis, it is still usual
to use a multiplatform strategy individually (T et al., 2019;
Argelaguet et al., 2020; Tanabe et al., 2021; Zhang et al., 2022).

Factor Analysis is a multivariate statistical technique that can
identify underlying patterns in a large dataset by reducing the
number of variables into a smaller number of factors (Lee et al.,
2019; Acal et al., 2020). In the context of metabolomics, Factor
Analysis can identify metabolite modules, which are groups of
metabolites that are highly correlated and potentially involved in
a common biological process. This approach provides a more
comprehensive understanding of the underlying molecular
mechanisms of disease and can identify potential biomarkers and
therapeutic targets that may not be identifiable using individual
metabolites. Recent studies have demonstrated the potential of
Factor Analysis in metabolomics for identifying metabolite
modules in various fields of research including cancer biology,
metabolic disorders, and neurodegenerative diseases (Shen et al.,
2009; Zhao et al., 2013; Argelaguet et al., 2018; Kamleh et al., 2018;
Clark et al., 2021). However, there are several challenges associated
with the application of Factor Analysis in metabolomics. One of the
key challenges is the selection of an appropriate Factor Analysis
method (principal component analysis, common Factor Analysis,
maximum likelihood method, etc.) which depends on the specific
research questions and the characteristics of the metabolomics
dataset. Also, multicollinearity is a serious problem that must be
solved before performing a Factor Analysis (Chan et al., 2022).
Another challenge is the interpretation of the identified metabolite
modules, as it may be difficult to determine the biological relevance
of the modules. This challenge can be addressed by integrating the
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results of Factor Analysis with other omics data types, such as
genomics, transcriptomics, and proteomics, to provide a more
comprehensive understanding of the underlying biological
processes. Combining Factor Analysis with a hierarchical

clustering analysis enables one to classify patients considering all
metabolic features detected by a multi-platform approach; to
identify patient subgroups based on their metabotype and to
provide the optimal treatment for each patient rather than based

FIGURE 1
Schematic representation of the experimental design.
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upon the usual anthropometric and routine laboratory parameters
used in the clinical setting and even over the presence or absence of
HetRSVs in relevant genes in the studied pathology. Such strategy
becomes even more powerful when there is no classification
available, or the main goal of the research is to unveil the
minimum set of parameters which allow for classification/
stratification.

Patients, materials and methods

We tested a multi-platform strategy in combination with Factor
Analysis and hierarchical clustering for personalized approaches in
the treatment of obesity (Figure 1).

Patients

One hundred and ten children and adolescents (57 females/
53 males) affected with severe obesity referred to a specialized clinic
in a third level monographic pediatric hospital and genotyped for
nine genes in the leptin-melanocortin pathway downstream of the
leptin receptor, and two glutamate receptor genes (Table 1) were
studied: 55 of them harboring one heterozygous rare sequence
variant [HetRSV, defined as populational frequency <0.01 and
with a Combined Annotation Dependent Depletion (CADD)
score of “deleteriousness” > 20] and/or confirmed pathogenicity
according to ACMG criteria in the studied genes [CPE (n = 5),
MC3R (n = 5), MC4R (n = 5), MRAP2 (n = 5), NCOA1 (n = 7),
PCSK1 (n = 5), POMC (n = 5), SH2B1 (n = 5), SIM1 (n = 5), GRM7
(n = 4) or GRIK1 (n = 4)] and 55 with no detected variants.

The whole cohort mean age and standardized body mass index
(BMI) were 11.01 ± 3.36 years and 4.20 ± 2.20 SDS, respectively with
no differences between groups (with vs. without variants) in age,
BMI-SDS, routine laboratory metabolic and hormonal features nor
in sex, ethnicity, or pubertal status distribution. Their main
anthropometric and metabolic features are summarized and
compared in Table 2.

All patients and their parents or guardians gave informed
written consent as required by the ethics committee at the
University Hospital Niño Jesús, which had previously approved
the study in accordance with the “Ethical Principles for Medical
Research Involving Human Subjects” adopted in the Declaration of
Helsinki by the World Medical Association (64th WMA General
Assembly, Fortaleza, Brazil, October 2013).

Methods

Weight, height, BMI, waist circumference, and systolic and diastolic
blood pressure (BP, mean of three measurements) were recorded and
standardized (Cole et al., 2000; Ferná et al., 2004) in all patients. A 12-
hour fasting serum sample (drawn, immediately processed, aliquoted
and stored at −80°C until assayed) was used to determine glucose,
insulin, HbA1c, lipid profile, uric acid, GOT, GPT, GGT, free thyroxin,
thyroid stimulating hormone, IGF-I, IGFBP-3, 25-OH-vitamin D and
intact parathyroid hormone (iPTH) levels by standardized assays as
previously reported (Martos-Moreno et al., 2019). An oral glucose
tolerance test (OGTT, 1.75 g/kg, maximum 75 g) for glucose and
insulin determination at 30, 60 and 120 min was performed,
HOMA (homeostatic model for insulin resistance) and WBISI
(whole body insulin sensitivity) indexes were calculated as previously
reported (Martos-Moreno et al., 2019).

Multiplatform untargeted metabolomics
analysis

Sample treatment
Serum metabolite extraction was carried out according to

previously reported standard protocols (Garcia and Barbas, 2011;
Pellegrino et al., 2014; Naz et al., 2015). Briefly, for LC-MS analysis,
40 µL of serum was mixed with 800 µL of a cold mixture (−20°C) of
methanol:MTBE:Chloroform (1.33:1:1, v/v/v) with Sphinganine
(D17:0) and palmitic acid-d31 as internal standards. Samples
were vortexed for 30 s and shaken for 20 min at maximum speed
at room temperature. Next, samples were centrifuged (13,200 rpm,
room temperature, 5 min). After centrifugation, supernatant was
directly injected into the system. For GC-MS analysis, protein
precipitation was achieved by mixing one volume of serum with
three volumes of cold (−20°C) acetonitrile with 25 ppm of palmitic
acid-d31 as internal standard, followed by methoximation with
O-methoxyamine hydrochloride (15 mg/mL) in pyridine, and
sylation with BSTFA: TMCS (99:1). Finally, 20 ppm of tricosane
in heptane was added as second internal standard. For CE-MS
analysis, 100 µL of serum was mixed with 100 µL of 0.2 M formic
acid containing 5% acetonitrile and 0.4 mM methionine sulfone,
2 mM paracetamol and 0.5 mM 4-Morpholineethanesulfonic acid,
2-(N-Morpholino) ethanesulfonic acid (MES) as internal standards.
The sample was transferred to an ultracentrifugation device
(Millipore Ireland Ltd., Carrigtohill, Ireland) with a 30 kDa
protein cutoff for deproteinization through centrifugation
(2000 × g, 4°C, 90 min). Detailed version of the sample treatment
protocols, the reagents, solvents, standards used for the sample
treatment and subsequent analyses, and the analytical setup for
the LC–MS, GC–MS, and CE–MS analysis are described in

TABLE 1 Gene list.

CPE (MIM* 114855. Carboxypeptidase E)

GRIK1 (MIM* 138245. GLUTAMATE RECEPTOR, IONOTROPIC, KAINATE 1)

GRM7 (MIM* 604101. GLUTAMATE RECEPTOR, METABOTROPIC, 7)

MC3R (MIM* 155540. MELANOCORTIN 3 RECEPTOR)

MC4R (MIM* 155541. MELANOCORTIN 4 RECEPTOR)

MRAP2 (MIM* 615410. MELANOCORTIN 2 RECEPTOR ACCESSORY
PROTEIN 2)

NCOA1 (MIM* 602691. NUCLEAR RECEPTOR COACTIVATOR 1) (Alternative
nomenclature: SRC1)

PCSK1 (MIM* 162150. PROPROTEIN CONVERTASE, SUBTILISIN/KEXIN-
TYPE, 1)

POMC (MIM* 176830. PROOPIOMELANOCORTIN)

SH2B1 (MIM* 608937. SH2B ADAPTOR PROTEIN 1)

SIM1 (MIM* 603128. SIM bHLH TRANSCRIPTION FACTOR 1)
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Supplementary Material. Quality control samples (QC) were
prepared by pooling and mixing equal volumes of each serum
sample and treated as independent samples to check the
performance of the systems and the reproducibility of the sample
treatment. Then, samples were randomized, and QCs were injected
at the beginning, along the sequence, and at the end of the batch.
Finally, two blank solutions were prepared along with the rest of the
samples and analyzed at the beginning and at the end of the
analytical sequence (Dudzik et al., 2018).

LC-MS and CE-MS data pre-processing

The raw data obtained after the LC-MS and CE-MS analysis
were processed using Agilent Technologies MassHunter Profinder
B.10.0.2.162 (Santa Clara, United States) to clean the background
noise and unrelated ions. This algorithm aligns all ions across the
samples using mass and retention time (RT) to create a single
spectrum for each group of compounds, and finally obtaining a
structured data matrix and appropriate format. Missing values were

imputed using the k-nearest neighbors (kNN) algorithm (Armitage
et al., 2015) in Matlab R2022a software (Mathwoks, Inc., Natick,
United States). Then, the data matrix was filtered by coefficient of
variation (CV), maintaining those signals that, in the QCs, presented
a CV below 30%. The filtered data matrix was imported into SIMCA
17 Sartorius (Goettingen, Germany) to generate a PCA and thus
observe the trend of the QCs, detect possible outliers, and look for
natural and analytical trends of the samples. To reduce the impact of
instrumental and experimental variations that can interfere with the
ability to detect biological variations, a correction method called
“quality control samples and support vector regression (QC-SVRC)”
was used to adjust the data (Kuligowski et al., 2015) implemented in
MATLAB R2022a and then normalized by internal standard (IS).

Data pre-processing and compound
identification GC–MS analysis

The chromatograms obtained from each of the serum samples,
the QCs, and the IS signal were visually examined to ensure the

TABLE 2 Anthropometric and metabolic features.

Clinical parameters Whole cohort Variant carriers NO variant Variant carriers vs. NO

Age (years) 11.01 ± 3.36 11.12 ± 3.47 10.91 ± 3.28 N.S.

Height (SDS) 0.84 ± 1.12 0.70 ± 1.05 0.99 ± 1.19 N.S.

BMI-SDS 4.20 ± 2.20 4.29 ± 2.42 4.11 ± 1.99 N.S.

Fasting glucose (mg/dL) 91.10 ± 6.81 90.99 ± 5.98 91.91 ± 7.51 N.S.

Glucose at 120′in OGTT (mg/dL) 120.82 ± 18.87 118.11 ± 13.31 123.31 ± 18.29 N.S.

Fasting insulin (µU/mL) 15.13 ± 7.28 14.83 ± 7.56 15.42 ± 7.05 N.S.

HOMA index 3.45 ± 1.75 3.34 ± 1.78 3.56 ± 1.72 N.S.

WBISI index 3.23 ± 1.67 3.35 ± 1.63 3.13 ± 1.71 N.S.

HbA1c (%) 5.43 ± 0.30 5.44 ± 0.24 5.41 ± 0.35 N.S.

Uric acid (mg/dL) 5.18 ± 1.16 5.04 ± 1.21 5.32 ± 1.11 N.S.

GOT (U/L) 27.72 ± 7.35 26.80 ± 6.73 28.68 ± 7.89 N.S.

GPT (U/L) 22.22 ± 9.27 21.38 ± 8.48 23.19 ± 10.03 N.S.

GGT (U/L) 14.16 ± 4.72 13.91 ± 4.31 14.42 ± 5.13 N.S.

HDL-c (mg/dL) 46.72 ± 14.02 46.63 ± 15.93 46.82 ± 11.90 N.S.

LDL-c (mg/dL) 96.21 ± 27.23 96.82 ± 30.57 97.62 ± 23.55 N.S.

Triglycerides (mg/dL) 78.69 ± 48.61 75.58 ± 42.40 81.85 ± 54.43 N.S.

Free thyroxine (T4) (ng/dL) 0.94 ± 0.13 0.95 ± 1.09 0.92 ± 01.54 N.S.

TSH (µU/mL) 2.78 ± 1.57 2.91 ± 1.64 2.65 ± 1.51 N.S.

IGF-I (ng/mL) 310.8 ± 171.7 324.67 ± 191.76 297.77 ± 151.24 N.S.

IGFBP-3 (µg/mL) 4.90 ± 0.99 4.93 ± 0.97 4.86 ± 1.02 N.S.

25-OH-Vitamin D (ng/mL) 23.36 ± 9.22 23.55 ± 8.69 23.21 ± 9.74 N.S.

Intact PTH (pg/mL) 57.13 ± 21.92 57.03 ± 22.04 57.21 ± 22.13 N.S.

Abbreviations: BMI-SDS, Standardized body mass index (Z-score); OGTT, oral glucose tolerance test; HOMA, homeostatic model assessment; WBISI, Whole-body insulin sensitivity index;

HDL-c, High density lipoprotein cholesterol; LDL-c, Low density lipoprotein cholesterol; GGT, Gamma-glutamyltransferase; GOT, Glutamic-oxalacetic transaminase; GPT, glutamic-pyruvic

transaminase Alanine aminotransferase; IGF-1, Insulin-like growth factor 1; IGFBP3, Insulin-like Growth Factor-binding Protein 3; HbA1c, hemoglobin A1c; TSH, thyroid-stimulating

hormone; PTH, parathyroid hormone.
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quality of the obtained profiles and the reproducibility of the IS
signal using Agilent MassHunter Qualitative
B.10.0.010305.0 software (Santa Clara, United States).
Deconvolution and metabolite identification was achieved using
the Agilent MassHunter Unknowns Analysis Tool 10.0 (Santa Clara,
United States). The software assigned a chemical identity to each of
the signals obtained after the search in two commercial libraries: the
Fiehn library version 2013, and the NIST library version 2017 and
“in-house” libraries. The identities were assigned according to the
retention time (RT) and spectra extracted during deconvolution
when the software compared them with each compound included in
the libraries. Next, the obtained data were aligned using the
MassProfiler Professional B.15.1 software (Agilent Technologies)
(Santa Clara, United States) and exported to Agilent MassHunter
Quantitative Analysis version B10.0.707.0 (Santa Clara,
United States) to assign the main ions and the integration of
each of the signals. As in the LC-MS and CE-MS analysis, the
missing values were estimated using the kNN (k-nearest neighbors)
algorithm (Armitage et al., 2015). Experimental and analytical
variations were excluded by performing normalization. As in the
LC-MS and CE-MS analysis the data matrix was normalized by
applying the QC-SRVC correction, normalized by internal standard,
and filtered by CV in the QCs (Kuligowski et al., 2015).

Compound identification LC-MS and CE-MS
analysis

For the metabolite tentative annotation initially the m/z was
searched against multiple databases available online, including
METLIN (http://metlin.scripps.edu), LipidsMAPS (http://
lipidMAPS.org) and KEGG (http://www.genome.jp/kegg/), all of
which have been joined into an “in-house” developed search
engine, CEU MassMediator (http://ceumass.eps.uspceu.es/) (Gil-
de-la-Fuente et al., 2019). Aiming to obtain additional
information for some identities, HMDB (http://hmdb.ca) was
also consulted. In parallel, three complementary software, MS-
DIAL (http://prime.psc.riken.jp/), LipidAnnotator (Agilent
Technologies) and LipidHunter (Ni et al., 2017; Koelmel et al.,
2020; Tsugawa et al., 2020) by fragmentation mass/mass spectra
were used for LC-MS identification. Features that were tentatively
assigned to metabolites from the databases were based on (1): mass
accuracy (maximum error mass 20 ppm) (2), isotopic pattern
distribution (3), possibility of cation and anion formation (4),
adduct formation (5), elution order of the compounds based on
the chromatographic conditions, and (6) MS/MS spectra.
Additionally, an “in-house” CE-MS library built with authentic
standards was used to compare the relative migration time (RMT)
to increase the confidence of the annotations. The confidence
levels established by the Compound Identification group of the
Metabolomics Society at the 2017 annual meeting of the
Metabolomics Society (Brisbane, Australia) have been used.
The new identification levels (Blaženović et al., 2018) range
from level 0 with full identification based on knowledge of its
3D structure, level 1 2D confidence using comparison with
reference standards, level 2 probable structure when compared
with database, level 3 possible structure or class and level 4 as
unidentified compound.

Statistical analysis

Statistical analysis was carried out by univariate (UVA, Matlab
R2022a) andmultivariate analysis [MVA, SIMCA 17, R v4.1.2 and IBM
SPSS v27 (Armonk, NY, United States)]. For the UVA, parametric
(unpaired t-test) with a Benjamini–Hochberg False Discovery Rate post
hoc correction (q < 0.05) was applied. ForMVA, the PCA plot, PLS-DA
plot and OPLS-DA plot was built. The data matrix was analyzed using
unsupervised machine learning using R environment (https://www.r-
project.org/), applying clustering technique to obtain pattern in our data
independently of the initial groups.

The raw data from the various analytical platforms were merged
using Factor Analysis and hierarchical clustering to generate a broad
perspective of the results and to assign metabotypes based on the
metabolic phenotypes of each patient with obesity. The whole process
of Factor Analysis and hierarchical clustering was carried out by using
IBM SPSS software and Microsoft Excel. First, the Pearson
correlations between the variables in each of the matrices were
analyzed to eliminate multicollinearity. Correlations between the
various matrices (inter-matrix correlations) were examined after
filtering by the specific correlations of each matrix (intra-matrix
correlations). The individual matrices with the resulting variables
were subjected to principal component analysis with varimax rotation
(Acal et al., 2020) to reduce dimensionality. Three rules were applied
to select the number of principal components in each of the individual
matrices, the “Scree plot elbow,” the Kaiser-Guttman test (Eigenvalue
greater than unity) and a total explained variance greater than 60%
(Cattell, 1966). The principal component scores have been analyzed.
The variables that present a principal component score higher than
0.5 in any of the selected components and that do not present double
saturation are kept for the subsequent Factor Analysis. We consider
double saturation to be when the smallest difference in the principal
component score of a variable between two components is less than
0.1. The resulting variables have been subjected to a Factor Analysis by
maximum likelihood (Babakus et al., 1987) with varimax rotation of
each of the matrices separately to further reduce dimensionality. The
same three rules were applied as in the PCA. For the final Factor
Analysis, variables that displayed double saturation or had factor
scores lower than 0.5 in any of the chosen factors were excluded.
Finally, all the resulting variables were pooled into a singlematrix after
applying all these filters and a Factor Analysis was performed using a
maximum likelihood extraction method and a varimax rotation
method. All variables that entered the combined Factor Analysis of
the different platforms were identified using internal databases and
mass/mass fragmentation spectra software (LipidAnnotator, MSDial,
LipidHunter). Following the criteria applied above, the appropriate
number of factors was selected for our data and by regression new
variables were created for each of the factors. A hierarchical clustering
analysis with squared Euclidean distance and Ward method was
applied on the created factors. To select the appropriate number of
metabotypes, a discriminant analysis (DA) was performed (Lee et al.,
2019).

Results

1) The presence of heterozygous rare sequence variant in the
studied genes, associated to human obesity and energy
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homeostasis, does not determine different metabolomic
phenotypes.

After following the procedure described in the patients and
methods section, we obtained 345 and 170 metabolic features in LC-
MS performed in positive and negative ionization modes, 63 signals
in GC-MS, and finally in CE-MS we obtained 242 signals in positive

ionization and 91 in negative ionization mode. The visual inspection
of the PCA plots built for all techniques revealed a tight cluster of the
QCs assessing the analytical stability and reproducibility (Figure 2).
A homogeneous distribution of patients with and without
heterozygous variant was seen in PCA plots.

The identified HetRSVs did not allow for the construction of
multivariate supervised model from the results of only one of the

FIGURE 2
PCA-X score plots (blue dots, patients with heterozygous rare sequence variants (HetRSVs); orange square, patients without variants; red diamonds,
QC samples) for the five analytical platforms. (A) R2 = 0.82, Q2 = 0.78 with log10 transformation and Ctr scale (LC-MS (+)). (B) R2 = 0.937, Q2 = 0.594 with
Ctr scale (LC-MS (−)). (C) R2 = 0.516, Q2 = 0.458 with log10 transformation and Ctr scale. Four samples were eliminated due to the presence of analytical
outliers located outside the hoteling’s ellipse (CE-MS (+)). (D) R2 = 0.536, Q2 = 0.308 with log10 transformation and Ctr scale. Eight samples were
eliminated due to the presence of analytical outliers located outside the Hoteling’s ellipse (CE-MS (−)). (E) R2 = 0.616, Q2 = 0.428 with
log10 transformation and Ctr scale. Eight samples were removed due to problems during sample preparation (GC-MS).
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analytical techniques. Only LC-MS (+), enabled the creation of an
OPLS-DA model (R2X = 0.72, R2Y = 0.82; Q2 = 0.64; p CV-
ANOVAOPLS-DA = 3.1 · 10−19; as illustrated in Supplementary
Figure S1). Correspondingly, the results of three metabolites
derived from LC-MS (+) displayed statistically significant
differences in means between the variant carrier/no variant
groups, whereas no discernible differences between both groups
were observed in the means of all the variables from LC-MS (−), GC-
MS, CE-MS (+), or CE-MS (−). Furthermore, despite the limited
number of samples for each individual gene, the presence of singular
metabolic patterns was not observed for any of the studied genes in
any of the employed platforms (data not shown).

2) Factor Analysis groups the variability into six factors

Imprecise information is obtained from the examination of the
metabolic phenotype using a single analytical platform, which might
result in the description of erroneous metabotypes in patients,
generating different classifications depending on the analytical
platform used (Supplementary Figure S2). Furthermore, the use
of a classification based on anthropometric and routine laboratory
metabolic and hormonal parameters available in daily clinical
practice does not appear to be sufficient to establish distinct
metabotype among patients. We also performed a hierarchical
clustering analysis, with anthropological and clinical parameters
(data not shown).We observed dissimilar outcomes when compared
to the classifications produced by individual analytical platforms.
Additionally, no statistically significant differences were observed in
any of the analytical platforms with the clusters (possible groups)
generated after analyzing these parameters.

The multiplatform strategy provided five matrices with 345, 170,
53, 242 and 91 variables analyzed by LC-MS (+), LC-MS (−), GC-
MS, CE-MS (+) and CE-MS (−), respectively, from 100 of the
studied samples. Due to the presence of analytical outliers caused
by errors during sample preparation in GC-MS and analytical error
in CE-MS (+), 10 samples had to be eliminated from the analysis of
the total of 110 patients enrolled (three patients without genetic
variants, and 7 with genetic variants, with a maximum of two
individuals per gene studied). As described in detail above (see
materials andmethods) a Factor Analysis of each of the matrices was
performed to subsequently combine the variables present in each
Factor Analysis into a single combined Factor Analysis. To eliminate
multicollinearity, Pearson correlations were used to analyze the
relationships between variables in each matrix (intra-matrix
correlations) and between matrices (inter-matrix correlations). In
the final Factor Analysis by maximum likelihood and varimax
rotation performed on the LC-MS matrix (+), three factors were
chosen that explained 75% of the variability accumulated in the
matrix, saturating 57 variables that were kept for the final combined
Factor Analysis. The Kaiser-Meyer-Olkin (KMO) test was used to
determine whether the Factor Analysis was effective, and a result of
0.85 was obtained. In LC-MS (−), two factors were chosen to explain
74.68% of the variability accumulated in the matrix, obtaining a
KMO of 0.85 and saturating 17 variables. In GC-MS, three factors
were chosen that explain 73.54% of the accumulated variability,
obtaining a KMO of 0.89 with 18 variables independently saturated
in these factors. In CE-MS (+) 1 factor was chosen that explained
64.09% of the accumulated variation, obtaining a KMO of 0.77 with

five saturated variables. In CE-MS (−) no satisfactory factor
extraction was achieved, so no variable was retained for the final
Factor Analysis. Using in-house databases and mass/mass
fragmentation spectra software (LipidAnnotator, MSDial,
LipidHunter) all variables that remained after all of these pre-
filtering stages for the combined Factor Analysis of the various
platforms were identified. The removal of non-annotated variables
from the combined Factor Analysis (23 out of 97 variables were
removed due to unsuccessful identification) is performed to
determine the biological interpretation of the obtained factors.
Therefore, variables 43, 11, 14 and 5 analyzed by LC-MS (+),
LC-MS (−), GC-MS and CE-MS (+), respectively, were pooled
together and the Factor Analysis was performed. The adequacy
of the Factor Analysis was tested using the KMO test, obtaining a
value of 0.76. Finally, six factors that explained 75% of the
accumulated variability were selected. The results show a
clustering of the variables into factors depending on the
analytical technique. Table 3 shows the variables corresponding
to each of the factors (see identification details in Supplementary
Table S2). As the resulting factors can be employed to predict
discrete clusters of samples, we used all the inferred factors to
cluster the patients in the latent factor space, collectively
implementing collectively all information from the different
analytical platforms.

3) Hierarchical clustering of factors permits to classify patients into
metabotypes

A hierarchical clustering analysis with Ward method and
squared Euclidean distance was applied in SPSS statistical
software (Figure 3A). To determine the optimal number of
metabotypes, a discriminant was applied to 2, 3 and
4 metabotypes. It appears that grouping the samples into three
distinct metabotypes provides the most robust explanation for the
observed relationships, where 94% accuracy was observed after
cross-validation, demonstrating the existence of 3 clearly
differentiated metabotypes [metabotype 1 (G1) (n = 74),
metabotype 2 (G2) (n = 10), metabotype 3 (G3) (n = 16)]
(Figure 3B).

The identified factors enabled metabotypes to be characterized.
The components of the first two factors, F1 (10 sphingolipids,
4 ether-linked phosphatidylcholines, 2 phosphatidylcholines and
3 cholesterol esters, named “Lipids1”) and F2 (1 di- and
12 tryacylglycerols, named “Lipids2”), accounted for 44% of the
variability and were increased in metabotype 3 and decreased in
metabotype 1. F3 components (named “nutritional amino acids,”
including eight amino acids) showed increased levels in metabotype
2. F4 elements (including nine circulating free fatty acids, named
“Lipids3”) showed increased levels in metabotype 1. F5 elements
(including 10 phosphatidylcholines, named “Lipids4”) and the
components in F6 (glutamic acid, choline, aspartic acid,
glutamine, and arginine, named “signaling amino acids”) showed
an accumulated variation of 75% and were increased in
metabotype 3.

Univariate statistics were performed on each of the matrices.
Each variable was analyzed by ANOVA or its corresponding non-
parametric method (Kruskal–Wallis). The overall results show the
greatest differences between metabotype 1 and metabotype 3
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TABLE 3 Metabolites included in each of the six final factors obtained with their factor scores associated with the factors. Saturations above 0.5 are indicated in
dark red. Confidence level in annotation based on Metabolomics Society (Blaženović et al., 2018).

Factor Identification Confidence level Factor score

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

1 SM (d41:2) 2 0.83 −0.08 −0.06 0.03 0.19 −0.09

1 SM (d42:3) 2 0.85 0 −0.09 0.05 0.03 −0.08

1 SM (d40:1) 2 0.83 0.09 −0.07 0.11 0.1 0.07

1 SM (d39:1) 2 0.72 0 −0.04 0.13 0.24 −0.04

1 SM (d32:1) 2 0.77 0.07 −0.07 0.02 0.3 0.04

1 SM (d36:2) 2 0.82 0.22 −0.1 0.15 0 −0.04

1 SM (d34:2) 2 0.86 0.1 −0.06 −0.03 0.17 0.03

1 SM (d34:0) 2 0.9 0.09 −0.02 0.11 0.1 −0.03

1 SM (d40:2) 2 0.87 0.03 −0.08 −0.02 0.24 −0.01

1 SM (d38:1) 3 0.88 0.16 −0.12 0.1 0.16 −0.01

1 PC (16:0/16:0) 3 0.78 0.26 −0.03 0.04 0.44 −0.06

1 PC (O-34:1) 3 0.82 −0.08 0.01 0.03 0.2 −0.06

1 PC (O-40:4) 3 0.82 −0.03 −0.13 0.2 0.06 −0.06

1 PC (O-32:0) 3 0.8 0.04 −0.01 0.01 0.17 −0.03

1 PC (O-38:4) 3 0.81 −0.02 −0.04 0.04 0.17 0.01

1 PC (O-36:5) 3 0.75 −0.06 0.01 0.01 0.26 0.01

1 PC (16:0/18:2) 3 0.7 0.28 0.11 −0.14 0.28 0

1 CE (18:2) 2 0.86 0.11 0.05 −0.1 0.18 0.06

1 CE (20:4) 2 0.83 0.05 −0.12 0.06 0.15 0.03

1 CE (18:1) 2 0.83 0.23 −0.03 0.01 0.3 0.02

2 DG (36:4) 3 0.13 0.81 0.11 0.06 0.23 0.25

2 TG (16:0_18:0_18:1) 3 0.11 0.77 0.05 −0.1 0.44 0.09

2 TG (56:6) 3 0.36 0.85 −0.07 0.02 0.14 −0.08

2 TG (18:1_18:2_20:4) 3 −0.16 0.74 0.07 0.03 0 −0.07

2 TG (56:3) 3 −0.08 0.83 0.05 −0.04 0.28 0.06

2 TG (58:5) 3 0.05 0.83 0.02 −0.11 0.29 −0.06

2 TG (56:2) 3 0.11 0.76 0.02 −0.12 0.3 0.06

2 TG (54:3) 3 0.21 0.87 0.01 −0.07 0.08 0.05

2 TG (18:1_18:2_18:2) 3 0.05 0.8 −0.02 −0.15 0.01 −0.04

2 TG (57:2) 3 0.08 0.85 0.03 −0.09 0.31 −0.02

2 TG (53:3) 3 −0.06 0.84 0.08 −0.02 0.38 0

2 TG (54:4) 3 0.09 0.89 0.01 −0.11 −0.03 0

2 TG (16:0_18:1_18:2) 3 0.19 0.94 −0.02 −0.07 0.13 0

3 Phenylalanine 2 −0.08 0.02 0.84 0.03 0.05 0.33

3 Oxalic acid 2 −0.17 −0.08 0.64 −0.1 −0.05 −0.24

3 Myo-Inositol 2 0.03 0.02 0.65 0.25 0 0.19

3 Cholesterol 2 0.14 0.15 0.72 0.04 0.06 −0.19

(Continued on following page)
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(208 metabolites with p-Bonferroni< 0.05 out of a total of
964 variables) mainly in triglyceride, diglyceride and
phosphatidylcholine levels. In addition, there are also

differences (125 metabolites) between metabotype 2 and
metabotype 3. Only one of these 125 significant metabolites is
different from the comparison between metabotype 1 and

TABLE 3 (Continued) Metabolites included in each of the six final factors obtained with their factor scores associated with the factors. Saturations above 0.5 are
indicated in dark red. Confidence level in annotation based on Metabolomics Society (Blaženović et al., 2018).

Factor Identification Confidence level Factor score

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

3 Proline 2 −0.05 0.18 0.78 −0.12 0.14 0.17

3 Serine 2 −0.02 −0.09 0.93 −0.03 −0.13 0.16

3 Glycine 2 0 −0.14 0.77 0.05 −0.02 0.15

3 Alanine 2 −0.06 0.14 0.84 −0.13 0.13 0.11

3 Methionine 2 −0.09 0.01 0.84 −0.14 0.03 0.11

3 5-Oxoproline/Pyroglutamic acid 2 −0.12 −0.03 0.81 −0.06 −0.02 −0.08

3 Valine 2 0 0.15 0.81 −0.01 −0.02 0.05

3 Threonine 2 −0.03 −0.03 0.85 −0.21 −0.05 −0.01

4 FA (20:4) 2 0.09 −0.1 −0.03 0.73 −0.08 0.45

4 FA (20:3) 2 −0.04 0.01 −0.06 0.89 0.04 0.2

4 FA (17:0) 2 0.04 −0.14 0.05 0.86 −0.05 0.1

4 FA (22:4) 2 0.07 0 −0.15 0.86 −0.08 0.06

4 FA (18:3) 2 0.04 0.02 0 0.88 0.11 0.03

4 FA (18:0;O6) 4 0.04 −0.03 −0.04 0.92 −0.21 0.03

4 FA (14:0) 2 0.07 −0.03 0 0.87 0.07 0.02

4 FA (22:5) 2 0.16 −0.08 −0.08 0.91 0.01 −0.01

4 FA (22:6) 2 0.2 −0.09 0.04 0.64 −0.05 0

4 FA (14:1) 2 0.04 −0.11 −0.03 0.88 0.01 0

4 FAHFA (2:0_20:4) 4 −0.06 −0.04 0.02 0.88 −0.22 0.05

5 LPC (20:3/0:0) 2 0.21 0.18 0.04 −0.02 0.67 0.16

5 PC (18:0_20:3) 3 0.37 0.33 0.03 −0.06 0.73 0.1

5 PC (30:0) 3 0.32 0.21 0.05 −0.06 0.76 −0.09

5 PC (16:0_16:1) 3 0.36 0.3 0.01 0.02 0.78 −0.07

5 PC (34:3) 3 0.39 0.27 0.03 −0.15 0.79 −0.06

5 PC (40:5) 3 0.51 0.28 0.1 −0.02 0.69 −0.06

5 PC (33:1) 3 0.42 0.22 0.03 −0.04 0.68 −0.06

5 PC (18:0_18:1) 3 0.44 0.21 0.04 −0.07 0.71 0.06

5 PC (18:0_22:4) 3 0.3 0.28 −0.01 −0.02 0.72 0.03

5 PC (38:1) 3 0.52 0.18 −0.04 −0.11 0.65 0.01

6 Glutamic acid 2 −0.04 0.12 0.14 0.18 −0.09 0.85

6 Choline 2 0.01 0.13 0.17 0.03 0.07 0.74

6 Aspartic acid 2 0.02 −0.03 −0.01 0.19 0.04 0.72

6 Glutamine 2 −0.16 −0.1 0.18 0.07 −0.12 0.67

6 Arginine 2 0.01 0.02 0.12 0.02 0.14 0.66

Bold values means the factor score of each variable in its factor.
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metabotype 3, this was lactic acid. However, differences between
metabotype 1 and metabotype 2 are minimal (7 metabolites). It is
important to note that the levels of different triglycerides in

metabotype 3 are found to be increased over two-fold over
those in metabotypes 1 and 2. In addition, we observed a
significant reduction of proline in metabotype 1. Intergroup

FIGURE 3
(A) Hierarchical clustering performed on the factors obtained after Factor Analysis. Ward’s method and Euclidean distance squared. (B) Graph of
individuals on the discriminant dimensions. Shows the relative location of the different groups.
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FIGURE 4
(A) Violin plot of total triglyceride levels in the three identified metabotypes. (B) Progression plot of insulin levels throughout the oral glucose
tolerance test (OGTT). (C) Progression plot of glucose levels throughout the oral glucose tolerance test (OGTT). (D) Violin plot of HOMA-IR (Homeostatic
Model Assessment for Insulin Resistance) levels in the three identified metabotypes. (E) Violin plot of WBISI (whole-body insulin sensitivity index) levels in
the three identified metabotypes.
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comparison of routine clinical laboratory data revealed significant
differences in total triglyceride levels, along with fasting and
glucose-stimulated serum insulin but not glucose level among
these metabotypes (Figure 4; Table 4), with individuals in
metabotype 3 showing lower insulin sensitivity and
hypertriglyceridemia, in a higher risk metabolic profile than
patients in metabotypes 1 and 2.

Discussion

In this study, we have highlighted the significance of conducting
an in-depth analysis of individuals’metabolic phenotypes, yielding a
classification that cannot be attained through anthropometric
features or routine clinical laboratory analyses. Furthermore, we
have observed an absence of pathognomonic metabolic or

TABLE 4 Clinical/biochemical parameters in the studied metabotypes. Values are average ± SEM. p-value was computed according to the parametric or non-
parametric tests applied (ANOVA/Kruskal–Wallis), selected accordingly. Groups homogeneity (Bonferroni) is indicated with superscript letters. Shared letter
involves homogeneous groups.

Clinical features G1 G2 G3 p-value

Age (years) 10.8 ± 0.4 12 ± 0.9 11.8 ± 1 0.34

BMI (kg/m2) 28.4 ± 0.5 28 ± 0.9 29.8 ± 1.5 0.65

BMI-SDS 4.2 ± 2.4 3.6 + 1.0 3.9 + 1.6 0.87

HOMA 3.2 ± 0.2 2.9 ± 0.3 4.2 ± 0.5 0.08

Insulin levels 0 min (µU/mL) 14.2 ± 0.8a 12.6 ± 1.2ab 18.4 ± 1.9b 0.03

Insulin levels 30 min (µU/mL) 116.9 ± 8a 128.7 ± 24.5ab 160.7 ± 17.8b 0.03

Insulin levels 60 min (µU/mL) 105.8 ± 9.3 86.9 ± 24.7 119.6 ± 14.7 0.17

Insulin levels 120 min (µU/mL) 98.4 ± 8.6 91.1 ± 17.9 120.6 ± 18.1 0.36

WBISI 3.5 ± 0.2 3.7 ± 0.6 2.6 ± 0.3 0.05

Glucose levels 0 min (mg/dL) 91.1 ± 0.8 93.7 ± 1.9 89.6 ± 1.9 0.32

Glucose levels 30 min (mg/dL) 147.2 ± 2.9 145.2 ± 7.7 152.5 ± 5.9 0.68

Glucose levels 60 min (mg/dL) 133.1 ± 3.3 120 ± 5.9 132.4 ± 5.7 0.35

Glucose levels 120 min (mg/dL) 119.8 ± 2 122.5 ± 5.1 128.1 ± 5 0.24

Total Cholesterol (mg/dL) 154.2 ± 3.7a 160.9 ± 8.9ab 178.9 ± 9.9b 0.03

TG (mg/dL) 64.2 ± 2.9a 85.5 ± 8.9ab 135.3 ± 22b 0.00

HDL-c (mg/dL) 48 ± 1.8 45.3 ± 3.4 41.4 ± 2.2 0.19

LDL-c (mg/dL) 92.7 ± 3.2 99.5 ± 7 110.5 ± 7.6 0.19

GGT (U/L) 14 ± 0.5 15 ± 1.6 15.9 ± 1.3 0.35

GOT (U/L) 27.4 ± 0.8 26.9 ± 1.4 30.1 ± 2.7 0.87

GPT (U/L) 21.2 ± 0.9 23 ± 3.7 26.9 ± 3.4 0.13

IGF-1 (ng/mL) 320.3 ± 19.9 289.4 ± 41.3 293 ± 49.5 0.64

IGFBP3 (µg/mL) 4.9 ± 0.1 4.6 ± 0.3 5.1 ± 0.3 0.52

HbA1c (%) 5.4 ± 0 5.5 ± 0.1 5.3 ± 0.1 0.58

Free T4 (ng/dL) 0.9 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 0.61

TSH (µU/mL) 2.7 ± 0.2ab 1.8 ± 0.3a 3.3 ± 0.5b 0.03

DBP mmHg 61.7 ± 0.9 62.2 ± 2.1 64.7 ± 1.9 0.22

SBP mmHg 116.3 ± 1.5 115.6 ± 3.7 123.1 ± 3.5 0.17

Uric Acid mg/dL 5.2 ± 0.1 5.0 ± 0.4 5.3 ± 0.3 0.76

Vitamin D (ng/mL) 24.4 ± 1.3 23.1 ± 3.8 20.6 ± 2.8 0.28

Abbreviations: BMI-SDS, Standardized body mass index (Z-score); HOMA, homeostatic model assessment; WBISI, Whole-body insulin sensitivity index; TG, triglycerides; HDL-c, High

density lipoprotein cholesterol; LDL-c, Low density lipoprotein cholesterol; GGT, Gamma-glutamyltransferase; GOT, aspartate transaminase; GPT, glutamic-pyruvic transaminase Alanine

aminotransferase; IGF-1, Insulin-like growth factor 1; IGFBP3, Insulin-like Growth Factor-binding Protein 3; HbA1c: hemoglobin A1c; TSH, thyroid-stimulating hormone; DBP, diastolic

blood pressure; SBP, diastolic blood pressure.
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metabolomics signatures due to the presence of specific HetRSVs. In
this context, Factor Analysis assumes particular importance in the
integration of data from various analytical platforms, bringing us
closer to personalized medicine.

The term “personalized medicine” stands for the most suitable
specific therapeutic interventions for an individual patient,
underscoring the relevance of developing management strategies
on specific individuals and not average group response to
treatments. This concept has also expanded to nutrition
(i.e., personalized nutrition) and current research focuses on the
intricate interaction between diet, (epi)genome, and the
microbiome, which can determine the effects of bioactive
compounds (González-Sarrías et al., 2017).

Using a multiplatform untargeted metabolomics-based
approach, we determined the metabolic fingerprint of children
with obesity, and by integrating all the data generated by using
Factor Analysis to stratify individuals with obesity according to their
metabolic phenotype, we defined three different “metabotypes.”
Bioinformatics tools are currently available to combine
information from different omics technologies or from different
analytical platforms. Some of these tools allow the performance of
supervised multivariate analysis (Westerhuis et al., 1998; Löfstedt
and Trygg, 2011; Boccard and Rutledge, 2013) to determine the
existing differences between different groups combining the
obtained data. Other integrative multi-omics clustering tools are
specific unsupervised integrative methods to find coherent groups
between samples or features using the information obtained in a
multi-omics analysis (Multiblock PCA, iClusterPlus, iClusterBayes,
moCluster, LRAcluster, PINSplus, SNF, etc.) (Mo et al., 2013; Wu
et al., 2015; Meng et al., 2016; Nguyen et al., 2017; Wang et al., 2017;
Mo et al., 2018; Rappoport and Shamir, 2018; Nguyen et al., 2019;
Tanabe et al., 2021; Zhang et al., 2022). However, most of these
algorithms require knowledge about the parameters to be applied,
and some exhibit complex interpretability. The advantage of Factor
Analysis is that it allows us to reduce dimensionality (without losing
statistically relevant information), which facilitates the discovery of
potential biomarkers, as well as simplifies the biological
interpretation of differences between individuals’ metabolic
phenotypes. Data integration based on dimensionality reduction
approaches seems to be a powerful tool to combine all metabolomic
information obtained from different platforms (Zhang et al., 2022).
This study proposes the use of Factor Analysis to combine and
summarize the information from the different data matrices. The
use of Factor Analysis combined with a hierarchical clustering
analysis has made it possible to identify three clearly
differentiated metabotypes between children with obesity. It is
known that cluster analysis has the potential to yield clusters that
are either arbitrary or devoid of biological significance. One strength
of the results obtained relies on the fact that the acquisition of a
notably elevated score in a supervised analysis (discriminant
analysis) employing the metabotypes derived from the cluster
analysis, serves to not only validate the efficacy of the Factor
Analysis but also to enhance the concrete manifestation of the
three identified metabotypes.

In routine clinical laboratories, serum levels of triglycerides,
lipoproteins, and transaminases are frequently increased in patients
with obesity, revealing underlying dyslipidemia and liver dysfunction
(Rauschert et al., 2016). Several studies indicate that some amino acids,

such as the branched chain amino acids (BCAA), tyrosine, valine,
leucine, or isoleucine, can be used as indicators in early stages of
carbohydrate metabolism impairment (Wang et al., 2011; Michaliszyn
et al., 2012; Mccormack et al., 2013; Butte et al., 2015; Mastrangelo
et al., 2016; Suzuki et al., 2019). Moreover, Suzuki et al. reported a
correlation between insulin resistance and free amino acid levels in a
cohort of patients with moderate to severe obesity (Suzuki et al., 2019).
Our results suggest the existence of large metabolic differences between
the identified metabotypes, with a singularly differentiated fingerprint
in metabotype 3. Factor Analysis indicates that metabotype 3 is
characterized by increased levels of “Lipids1,” “Lipids2,” “Lipids4,”
and amino acids related to cell signaling. In addition, univariate
analysis showed mainly significant differences in triglycerides,
diglycerides, and phosphatidylcholines between metabotype 3 and
the rest of the metabotypes, with increased levels of these lipid
species in metabotype 3. These results suggest the presence of
combined hyperlipidemia (cholesterol + triglyceride) in individuals
integrated within metabotype 3. Routine clinical laboratory analyses
are partially in agreement with these results as individuals in
metabotype 3 had increased total triglyceride levels, as well as
impairment of insulin, including increased fasting and glucose
stimulated insulin secretion and lower WBISI, along with
significantly increased levels of isoleucine and proline (UVA, data
not shown), in concordance with Suzuki et al. (Suzuki et al., 2019).
However, routine clinical analysis of cholesterol species did not detect
the higher cholesterol ester levels in metabotype 3 observed by using
metabolomics, even when other studies have associated increased
cholesterol and triglyceride levels with a decrease in HDL-c levels
(Brown et al., 2000) and higher BMI (Huynh et al., 2019). It is pertinent
to emphasize that the more pronounced metabolic perturbation of
individuals in metabotype 3 is not correlated with a higher BMI-SDS
among these individuals compared to those in other metabotypes.
Nevertheless, a higher representation of Hispanic ethnicity was
observed in metabotype 3 (25%) compared to metabotypes 1 (12%)
or 2 (0%). This is consistent with the lower insulin sensitivity and
higher triglyceride levels reported in Hispanic children with obesity
compared to Caucasians (Martos-Moreno et al., 2020), thus suggesting
an eventual ethnic driven influence in obesity associated metabolomic
profiles (Butte et al., 2015), although this does not extend to all
difference observed (i.e., higher cholesterol ester levels in
metabotype 3, not endorsed in inter-ethnic comparisons) (Martos-
Moreno et al., 2019; Martos-Moreno et al., 2020). In contrast, proven
the role of pubertal status on the development of obesity associated
metabolic comorbidities (particularly insulin resistance), we compared
the relative frequence within each defined metabotype of patient
Tanner stage and, additionally, of prepubertal vs. pubertal patients
(pooling TII to T-V in the latter). No significant differences between
metabotypes were observed regarding the distribution of Tanner stages
within each metabotype (χ2 0.491; p = 0.782) nor in the relative
proportion of prepubertal vs. pubertal patients (χ2 8.596; p =
0.378). Despite these results not being supportive, the possibility
of pubertal influence on the patient metabotype cannot be
completely ruled out and this should be further explored in
larger patient cohorts.

Interestingly, Factor Analysis splits the relevant amino acids into
two subsets. Phenylalanine, proline, serine, glycine, alanine,
methionine, valine, and threonine were part of Factor 3, and
were higher in Metabotype 2. Glutamic acid, glutamine, and
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arginine, together with choline were higher in Metabotype 3. Even
though these amino acids have all been shown to correlate with
insulin resistance in childhood obesity (Suzuki et al., 2019), such
grouping points towards a non-homogeneous involvement of the
different amino acids in the complications of obesity. Besides their
role in protein synthesis, each amino acid can be involved in
different functions and processes, and it is beyond the
possibilities of this observational study to determine the exact
relationships between the differences found and the therapeutic
approach to treat obesity. Those amino acids grouped in Factor
3 include 4 essential (phenylalanine, threonine, valine, methionine)
and 3 of the most abundant amino acids (glycine, serine, alanine),
and therefore this factor could be strongly related to the nutritional
status of the patients, as it would represent protein intake and
turnover in the body. In Factor 6, increased in Metabotype 3,
glutamic acid, aspartic acid and glutamine, were grouped with
choline and arginine. In addition to also reflecting the nutritional
status, this group of factors is of particular relevance as they can be
related to neurotransmission (Dalangin et al., 2020), and their
circulating levels have been proposed as biomarkers of visceral
obesity and metabolic alterations (Maltais-Payette et al., 2018)
and have been associated with metabolic stress (Yan et al., 2012).

As stated above, childhood obesity is the result of the action of
multiple environmental factors on eating and activity habits and
lifestyle, in combination with an individual’s unique genetic
fingerprint. GWAS studies yielded a large list of genes with
SNPs, or variants associated to human obesity, but in the vast
majority of cases, a single determinant of childhood obesity cannot
be identified, thus classifying these cases as “polygenic” or
“idiopathic” obesity. In contrast, the rare cases of monogenic
forms of obesity, are mainly caused by biallelic mutations in a
single gene, usually in the leptin-melanocortin satiety pathway, and
are characterized by vary severe, early-onset obesity, usually with
evident hyperphagia, and in some cases associated to other
metabolic comorbidities and influencing growth pattern even in
the first years of life (Handakas et al., 2022). Several metabolomic
studies have been performed in childhood obesity,
comprehensively characterizing the metabolic alterations in
these conditions, as well as in animal models of leptin
resistance thus exploring the effect of the impairment of the
leptin-POMC satiety pathway (Pietiläinen et al., 2007;
Mastrangelo et al., 2016; Martos-Moreno et al., 2017; Rauschert
et al., 2017; Kim et al., 2019; Lawler et al., 2020; Rupérez et al., 2020;
Sanz-Fernandez et al., 2020). However, the pathogenic role of
heterozygous rare sequence variants in the genes of the leptin-
melanocortin pathway (Le Collen et al., 2023), as in other genes
relevant for central energy and glucose homeostasis is under
discussion (Trang and Grant, 2023). Following previous
observations by us and other groups (Serra-Juhé et al., 2017;
Gerl et al., 2019; Gonzalez-Riano et al., 2021), the hypothesis
that they are eventual pathogenicity was proposed. However,
the results of this study, showing no anthropometric, metabolic
nor metabolomic differences between patients with or without
HetRSVs in the studied genes, and the lack of differences in the
prevalence of the different metabotypes between these groups does
not verify their pathogenic role (Supplementary Tables), at least
from a metabolic and metabolomic point of view. To our
knowledge, this study is the first metabolomic study attempting

to identify a specific metabolic phenotype associated with the
presence of HetRSVs in the leptin-POMC pathway, as well as in
glutamate receptors, and demonstrates the absence of a clear
differential metabolic phenotype due to the presence of these
variants.

The association of obesity with lipidomes and the use of
technologies to stratify obesity based on lipidomic data has been
previously investigated by means of machine learning algorithms
(Gerl et al., 2019). However, this is the first study, to combine
metabolomic data from different analytical platforms and genetic
data to stratify obesity. Moreover, Factor Analysis has not been
previously employed for the subclassification of patients with
obesity by using the adequate combination of multiplatform MS
metabolomics data. We distinguished two antagonic
metabotypes (1 and 2 vs. 3) that can be deduced from the
examination of the contributing factors. Such subclassification
was not possible from the information derived from the routine
clinical examination and laboratory analyses. With our approach,
subtle but clear differences arose between the three metabotypes:
Six groups of metabolites can be combined to evaluate the
metabolic phenotype, and promising associations between this
metabolic phenotype and insulin sensitivity, circulating
triglycerides and TSH levels and ethnicity have been
uncovered. Metabotypes 1 and 2 have lower levels of the
factors corresponding to “Lipids1” (F1), “Lipids2” (F2),
“Lipids4” (F5) and “Signaling amino acids” (F6), as compared
to Metabotype 3, suggesting a higher metabolic risk phenotype in
patients with childhood obesity in Metabotype 3 (Table 5).
Among the most promising results, the separation of amino
acids into two different factors, and the differential association
of these factors with different phenotypes opens the possibility of
treating the obese subjects in these two metabotypes with
different approaches. Metabotype 2 was associated with higher
levels of F2, or Nutritional amino acids, than in the other two
metabotypes, suggesting a healthier metabolic phenotype of these
patients, that could speculatively be associated to higher protein
intake in their diet, whereas F6, higher in metabotype 3, could
speculatively be associated to a behavioral component of the
children in this group. However, the lack of precise control of
feeding behavior in these patients, feeding due to the ambulatory
modality of management is a limitation to test this hypothesis.
Apart from this, the limited number of patients studied, along
with the potential confounding factors (such as sex, race or

TABLE 5 Mean values of the factor scores of the new factors obtained after
Factor Analysis.

Factor name G1 G2 G3

Mean Mean Mean

Factor 1 “Lipids1” (SM/CE) −0.06 −0.03 0.32

Factor 2 “Lipids2” (DAG/TAG) −0.30 0.01 1.38

Factor 3 “Nutritional amino acids” −0.33 2.10 0.20

Factor 4 “Lipids3” (FFA) 0.05 −0.13 −0.16

Factor 5 “Lipids4” (PC) −0.15 −0.29 0.88

Factor 6 “Signaling amino acids” −0.08 −0.59 0.75
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pubertal status) potentially influencing the described
metabotypes raise the need of validating the presented results
in larger and independent cohorts, to enhance the reliability and
generalizability of the results, i.e., to support the metabotypes
here identified and to explore an eventual role of these factors.

The challenge for the near future will be to use new technological
advances such as that used here to accurately stratify the state/stage
of different diseases, in order to precisely predict disease progression
and to provide appropriate treatment for each patient, as well as to
monitor their evolution.
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