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Abstract

Several prototypical distributions of finite-time Lyapunov exponents have been computed in the

two-dimensional Hénon-Heiles Hamiltonian flow. Different shapes are obtained for each dynamical

state. Even when an evolution is observed in the morphology of the distributions for the smallest

integration intervals, they can still serve for characterizing the dynamical state of the system.

PACS numbers: 05.45.-a
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I. INTRODUCTION

Lyapunov exponents are a well known diagnostic tool for analyzing chaotic motion. In

the past few years major attention has been paid in the distribution of the so called finite-

time Lyapunov exponents. As the shapes of these distributions can serve as indicators of

the overall degree of instability of a system, its evolution or stationarity is a key question.

Our work focus in the study of the distributions calculated with the smallest time interval

available, in order to see if they are still valid indicators, with such local information. The

paper structure is as follows. First, we will review the different definitions found in the

literature, in order to clarify many different but related concepts. Then, a set of protypical

distributions for several orbit types in the Hénon-Heiles Hamiltonian will be shown. This

conservative system has been selected, because in spite of its simplicity, it shows a large

richness concerning the behavior of its orbits. Finally, we will end with some concluding

remarks.

A. Lyapunov Exponents

The ordinary (or global) Lyapunov exponent describes the evolution in time of the dis-

tance z(t) between two nearly initial conditions, and it is defined in the following manner

χ = lim
t→∞ lim

δz(0)→0

1

t
log

δz(t)

δz(0)
. (1)

The global Lyapunov exponents have been proven to be a quite useful tool for analyzing

chaotic motion, and their utility comes in part from the fact that their values do not depend

upon the metric. However, since in practice the calculation is performed numerically, only

a finite integration time is used instead of the infinite time defined above. This leads to

an approximated value instead of the real one, producing the so-called local (or finite-time)

Lyapunov exponent. This is of course more important when working with experimental

data, because of the very small number of measurements.

It should be noted that neither the notation nor the definitions are standard in the

literature. Since this can produce some confusion, it would be worthy to summarize some

of them. Some authors as [1] and [2] use the widely found terms short-time Lyapunov

characteristic numbers or local Lyapunov exponents as follows
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χ(∆t) = lim
δz(0)→0

1

∆t
log

δz(∆t)

δz(0)
(2)

This quantity also appears later referred by these authors as (maximal) short-time Lya-

punov exponent or finite-time Lyapunov exponent. Obviously the relation between them

is

χ = lim
∆t→∞

χ(∆t). (3)

Another widely used term is the Lyapunov characteristic number defined for instance in

[3, 4] as

χ = lim
t→∞

1

t
log

δz(t)

δz(0)
. (4)

Note that this is not “short” in the sense that the deviation δz(0) is not taken as an

infinitesimal. The concept of local Lyapunov exponent or effective Lyapunov exponent

appears defined in Ref. [5] as

Λ(t) =
1

t
ln

δz(t)

δz(0)
, (5)

and the notion of stretching number, or generalized Lyapunov indicator appears as a

particular case from it when t = 1. Consequently the short-time Lyapunov exponent is then

defined as just the stretching number divided by ∆t. These definitions are strongly related

to the way in which the exponents are obtained. For the computation of the exponents,

we examine the length evolution of the axes of an ellipsoid defined by a set of orthonormal

D-dimensional vectors centered in an initial condition. The so-called stretch exponents,

following Refs. [6, 7], are the logarithms of the average growth rate per iteration (also called

Lyapunov number) by which the vectors expand along the D directions. The sum of the

stretch exponents after N steps divided by N is the finite-time or local Lyapunov exponent

and the limit of such sum when N goes to ∞ is the global Lyapunov exponent. Details

concerning the computation of the Lyapunov exponents may be found in Ref. [8]. The

initial orientation of the axes leads to different effective growth rates and, in consequence,

following Ref.[9], the Local Lyapunov exponents can be divided in two types: the finite-

time Lyapunov exponents and the finite-sample Lyapunov exponents. The set of orthogonal

vectors undergoes a few transient steps as their initial directions were chosen at random.
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After a few steps of integration and orthonormalization, they might be considered already

locally characteristic (that means specific of a certain local flow). So the first type refers to

the case when the directions coincide with the right singular vectors of the matrix resulting

from the jacobian product, and the second one, to the case when they correspond to the

vectors resulting from the evolution of those singular vectors some steps before starting the

computations.

B. Lyapunov Exponents distributions

If we make a partition of the whole integration time along one orbit into a series of

time intervals of size ∆t, then it is possible to compute the finite-time Lyapunov exponents

χ(∆t) for each interval, and to plot the resulting distribution of values. By examining such

spectrum, we can get information about the overall degree of instability of the orbit. Such an

approach has proved to be useful in several fields such as galactic dynamics [10, 11], analyzing

chaotic fluid flows in the context of fast dynamos [12] or chaotic packet mixing and transport

in wave systems [13]. The mean of the distribution correlates with the maximal Lyapunov

characteristic number, and the shape of such distribution can serve as a valid chaoticity

indicator, as it shows the range of values for χ. In principle, the shape depends on the

initial condition (so on the invariant measure towards it evolves), and also on the sampling

interval size ∆t. The distribution of finite-time Lyapunov exponents can be normalized

dividing it by the total number of intervals thus obtaining a probability density function

P (χ), that gives the probability of getting a given value χ between [χ, χ + dχ]. Hence, the

probability of getting a positive χ(∆t) or F+ (and analogously F−) can be defined as

F+ =
∫ ∞

0
P (χ)dχ. (6)

Two ways for calculating such distributions are possible. The first one is starting from

a given initial condition and integrating during the interval ∆t, thus leading to a χ(∆t),

and starting again the cycle from that point. The second way is taking an ensemble of

initial conditions on the available phase space. For each initial point, χ(∆t) is calculated

as before, without later progression in that orbit (see for instance Refs. [1, 2, 14]). When

the phase space is largely stochastic and the regular regions small, both distributions coin-

cide, in agreement with the ergodic theorem. When regular orbits appear, they can differ
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substantially.

C. Distribution behavior at very short-times.

We are carrying out a search on how to characterize the most chaotic orbits in a given

flow. As the shapes of these distributions can serve as a valid indicator, its evolution or

stationarity is a key question. This paper follows some of the ideas started in [1, 2], where

the dependency on the sampling time and the evolution towards an invariant measure in the

distributions from orbits in chaotic domains have been analyzed. A clear description of how

these spectra characterize the dynamical state in a set of hamiltonian prototypical cases

was a motivation for our work. Many distributions belonging to typical maps have been

studied, as, for instance, in [7, 15, 16], but less consideration has been given to conservative

systems, where no attractors are found. Indeed, we are interested in the distributions for

characterizing not only the possible final invariant measure, if so, but also the orbit stability

itself, including the unstable and the open orbits (those that will escape towards the infinite).

The main goal will be then to generate a set of protypical distributions for those different

orbit behaviors.

Several criteria for choosing a small ∆t are found in the literature. The shortest interval

that can be used in the case of maps is one iteration of the map. However for flows, as this

time interval is a continuous quantity, several approaches are possible. It can be taken very

small, although obviously not smaller than the integration step. It has not been completely

established yet whether these finite-time Lyapunov exponents distributions are typical or

stationary when computed with short intervals ∆t ([6]).

We are interested in analyzing how the distributions calculated with the smallest avail-

able ∆t interval characterize the system. Even when some variability is expected when taken

such intervals, they can still serve for tracing the system. In fact, a way to determining the

structure of a Lyapunov spectrum locally, that is, within some small (in principle infinites-

imal) time interval is showed in Ref. [17]. Taking the interval size as small as possible, the

correlation of each value to the following one will depend only on the local orbit behavior.

We will try to find out if the local information is enough for obtaining valid results or we

should increase such interval. Alternatively, the size can be equal to any time interval with

physical meaning, such as the characteristic time of the system or the crossing time of the
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orbit with a given Poincaré section. Finally, instead of a fixed ∆t, it is possible to choose

a variable sampling interval, as in [4], where it is taken to be equal to the interval where

the χ(∆t) reaches a temporary limit. On the other hand, when the size of ∆t is increased,

the local details are washed out. In the limit, χ(∆t → ∞) tends to the global Lyapunov

exponent, and the distribution tends to be a Dirac-δ centered at this global value.

II. BEHAVIOR IN A TWO-DIMENSIONAL HAMILTONIAN: THE HÉNON-

HEILES SYSTEM

In order to analyze distributions of finite-time Lyapunov exponents with such an ap-

proach, we have chosen the Hénon-Heiles Hamiltonian, which is a two-dimensional time

independent Hamiltonian system which was originated as a model in galactic dynamics [18].

The equation of this Hamiltonian is given by

H =
1

2
(p2

x + p2
y) +

1

2
(x2 + y2 + 2x2y +

2

3
y3). (7)

We are interested in this model because it is connected to a physical problem and also

because in spite of its simplicity it presents a rather rich complex dynamics. According to

the energy of the orbit, which is related to the initial condition, different dynamic behaviors

may appear and paradigmatic examples of the so-called pseudodeterministic models can

be found. These models only yield to relevant information over trajectories of reasonable

length due to the unstable dimension variability (see [19, 20]). The oscillating behavior

of the finite-time Lyapunov exponents about zero has been found to be associated to these

models [16]. As we are dealing with a two-dimensional system, four Lyapunov exponents will

exist. However, since it is a conservative Hamiltonian system, λi = −λ5−i for (i = 1, ..., 4)

and only two different values of λ are independent. One of them will be tangent to the

trajectory, parallel to the velocity field, and the other one, transverse to it. The tangent one

is non-relevant as it tends to zero in the limit case.

The distribution of the finite-time Lyapunov exponents was carried out by using standard

methods, and the initial ellipse axes were chosen at random. We have used a sixth-order

Runge-Kutta integrator with a fixed time step equal to 10−2, because it provides enough

accuracy for our purposes. And also we have carefully checked that λi = −λ5−i as the

integration was evolving in time to assure the goodness of the numerical computations. The
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Poincaré cross section with the plane x = 0 has been plotted for each state, in order to

compare the distribution with the dynamical state. We have selected this plane because of

the symmetry of the system with respect to it, so each orbit must repeatedly intersect it.

Then, the crossing time is defined as the time between successive section crosses. We have

started the analysis computing periodic and quasiperiodic cases. In a fully stable periodic

motion, as the harmonic oscillator, when calculating the finite-time Lyapunov exponents we

get a single peaked distribution centered in a given positive value, as we get the same χ(∆)

for every interval. If the interval size increases, χ(∆t >>) → 0, and the peak shifts towards

zero. We can compare the former case with an orbit near an Unstable Periodic Orbit (UPO).

This can be observed when the energy E takes the value 1/4, in the Lyapunov Orbit. This

orbit defines a frontier. Every orbit with an initial energy larger than the escape energy

and moving outwards, if it crosses the Lyapunov Orbit, will escape from the system and

will never come back (see [21]). The phase space of an example of such orbit is plotted

in Fig. 1(a). In an UPO, each point must avoid all regions χ(∆) < 0. The distribution

of finite-time Lyapunov exponents is formed by two peaks, both centered around positive

values. When the initial condition is slightly different from the one leading to the unstable

periodic orbit, the distribution is similar to the solid line of Fig. 1(b), where we observe two

broadened peaks centered around positive values, and a tail associated to the orbit once it

has escaped. For orbits with smaller escape times, the spectrum is different due to this tail,

but while the orbit is confined, the shape is quite similar. If the interval size ∆t is increased,

but smaller than the escaping time, it is observed that the main peaks shift towards larger

positive values and begin to merge, as shown by the dashed and dotted points of Fig. 1(b).

The following case analyzed is a quasi-periodic orbit, found in the Hénon-Heiles system

for the energy E = 1/8. Its Poincaré surface cross section is depicted in Fig. 2(a), and it

shows a set of ten islands, which is associated to a period-5 orbit. The five islands on the

left are plotted when the x = 0 plane is crossed from the x < 0 subspace towards x > 0,

and the other five on the right when returning to the x < 0 subspace. The distribution

of finite-time Lyapunov exponents for an interval ∆t of 0.02 and total integration time of

104 is the solid line in Fig. 2(b). It shows ten peaks, five centered around negative values

and the other five centered around positive values. This means that there are arbitrarily

finite intervals for which the orbit, on the average, is repelling in one of the dimensions and

other intervals for which is attracting in the same dimension. The shape of the distribution
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is independent of the initial condition along the orbit, and longer integrations do not lead

to different shapes. When the initial condition is moved far away from the periodic orbit,

the distribution broadens but remains with a similar morphology. When the interval size

increases, the range of values around which the peaks are centered is reduced and it is

shifted towards positive values, as shown in Fig. 2(b) as dotted lines. When ∆t = 10, a

multipeaked distribution is still observed, since this value is larger than the crossing time

but smaller than the total circuit time, which is roughly 32 time units. For larger size of time

intervals the peaks begin to merge, as ∆t begins to be equal to that time. This behavior is

different for orbits with stronger chaoticity. One example appears in Fig. 3(a), with initial

energy E = 1/12. The solid line in Figure 3(b) shows the corresponding distribution with

an integration time of 20000 units, and ∆t = 0.02. The whole available phase space is traced

and longer integrations lead basically to the same shape. This shape does not correspond to

a“typical” chaotic state, where the central limit theorem holds and the distributions can be

fitted by a gaussian, since the correlations die out. Neither does it to an intermittent system,

where the shape might be a combination of a normal density and a stretched exponential

tail, due to the long correlation persistence.

As we are analyzing the evolution or stationarity of the distributions, it is important to

keep in mind the difference between stationarity, due to the dynamics at certain time, and

ergodicity, time-averaged property of the trajectories. In a non-ergodic orbit, the trajectory

does not cover the whole hypersurface of constant energy, so two different initial conditions

cover different parts of the energy surface leading to different temporal averages even for

times tending to infinite. In such systems there is not a unique equilibrium state, but

different ones depending on the starting point. Reversely, in an ergodic system it can be

reached a unique equilibrium state. And generic ensembles of initial conditions will evolve

towards a given distribution, time-independent or with little variability on long time-scales.

One key point is the time involved in such evolution towards the final state. If the physical

time scales are relevant and that time is too long for being realistic, those ensembles will not

be able to be used as valid skeleton for the observed system behavior. So when computing

distributions from a set of initial conditions, we need to be sure they are in the same domain

of the Poincaré section. In that is the case, we get again the solid histogram of Fig. 3(b). By

other hand, the stationarity of a distribution can be defined when the statistical parameters

does not change with time, and this depends on the (variable) dynamics along the given

8



orbit. When computed the distribution from a single orbit, the morphology may depend on

the initial point, when the total integration time is not large enough, as several transients

of different behavior are found (see Ref. [9]).

In order to catch the behavior of the transient periods, we have computed distributions

formed integrating just 103 time units (150-times the crossing time), which are described

in Table I. Three of them appear in Fig. 3(b). The characteristic time on which the orbit

forgets its previous degree of instability is small (low correlation time), as they are quite

different. The standard deviation of the distributions σ gives a measure of the degree in

which χ deviates from the mean, being a measure of the stability or variability of the values

of χ along the orbit. The probability of getting a positive value for a finite-time Lyapunov

exponent F+ takes different values ranging from 0.4 up to 0.7 quite randomly, what indicates

different behaviors, ordered at some stages, chaotic in others, as reflected in the shape of the

distributions. For instance, the first transient shows two well separated peaks, like a period-2

orbit, while the third transient shows a multi-peaked distribution. When the time evolution

of the finite-time Lyapunov distributions is compared with the way the consequents of the

Poincaré section fill the available phase space, we see how each distribution corresponds

to a different way of tracing the Poincaré section. If we change the interval size ∆t by

a small integer factor, our result is only a re-scaling of the spectrum, as was shown in

Ref.[11]. However when it is increased up to, say, ∆t = 1, which is still smaller than the

averaged crossing time, a different multi-peaked shape is obtained, as shows the solid line

in Fig. 4. The local details are washed up as the interval size is larger than the crossing

time, so with a ∆t = 10 (dotted line), the shape is again different. Now two main peaks

well fitted by gaussians centered around positive values are observed. For even larger values

of ∆t = 100, a single peak gaussian distribution is found, since the central limit theorem

begins to hold. Finally, for much larger values of ∆t = 100, the distributions collapse to δ-

functions centered around the global Lyapunov value. In addition, the chaoticity indicators

vary with the interval size. The values in Table III are calculated as in Table I, but with

∆t = 1. The mean value calculated with the larger interval on each transient is different

to the calculated with the smallest interval. Moreover, the values of F+ are larger, and for

even larger interval sizes, the transients may vanish. Nevertheless it is remarkable that the

evolution of F+, which is an indicator of the local chaoticity, is similar in both cases. The

Table II shows how the total integration time for a given interval size is correlated with
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these indicators, showing that for the smallest interval we obtain similar results.

Finally, the characterization of the distributions corresponding to chaotic orbits is dis-

cussed. We take an orbit with an initial energy E = 1/8, that almost fills completely the

available phase space, as shown by the Poincaré cross section in Fig. 5(a). The correspond-

ing distribution is plotted in Fig. 5(b). The same distribution is obtained by integrating

along a single initial condition or an ensemble of initial conditions, due to the ergodicity of

the system. The shape reminds the one described for attractors in [20] and [15], although

the tail of the peak centered around positive values extends through negative values quite

smoothly, instead of showing an exponential tail. Two different transients of 103 time units

are plotted as dotted and dashed lines in Fig. 5(b). We also see that the sticky orbits,

those that remain near a regular island for a long time, tend to have smaller exponents than

the non-sticky orbits. During the sticky periods, when the orbit appears next to a quasi-

periodic orbit torus, the distribution is clearly similar to a quasi-periodic case. However, in

the chaotic regime the peaks are broadened. With larger intervals (∆t = 10) and integration

times (106 time units), an almost gaussian shaped distribution is obtained, centered around

a positive value. This shows a morphology different from the E = 1/12 case, meaning a

different dynamics, which is also manifested by the time the distribution takes to its final

state.

III. CONCLUSIONS

The results presented here are of general interest in describing how the distributions

of finite-time Lyapunov exponents are valid indicators when computed with the smallest

time interval. Several prototypical distribution morphologies have been plotted for different

energy values of the Hénon-Heiles Hamiltonian. These calculations can be carried out in

three ways. First, calculating a huge number N of short-time exponents of size ∆t along

the same orbit. Second, taking a smaller number of larger ∆t (to allow the values to

saturate). Third, selecting carefully an ensemble of N initial conditions in the same domain.

Our calculations have focused in the use of the smallest interval size, searching for the

stationarity or evolution of the distributions. It has been observed that they characterize

the motion in the different possible cases. Shapes well differentiated from the ones described

in the literature have been found. In the quasi-periodic case, the final shape is independent
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of the initial point along the orbit and is reached after a small integration time (a few

times the crossing time). For larger intervals, the shape is still well differentiated from

the other cases, even when a short integration time is used. In the chaotic motions of

energy values E = 1/12 and E = 1/8, the shape depends strongly on the initial point for

short total integration times, since the distribution evolves through several transients and

consequently several cycles are required before reaching the final shape. According to Ref.

[5], the spectrum of chaotic orbits is invariant with respect to the initial conditions along

the same invariant curve, but this only is applicable for large integrations or large intervals.

However, tracing the distributions with the smallest intervals gives information on the local

evolution of the chaoticity for short time scales. The morphology of the distributions traces

the dynamics and the evolution of the value F+ is the same independently of the interval

size.

One interesting point is to analyze the sources of the components of the distribution

morphology. The overall shape depends on the local orbit behavior, but this can be un-

derstood in terms of simplier periodic orbits, as possible basic blocks for shadowing the

observed complicated behavior. This is a quite interesting reseach topic that can extend the

current results, by studying the role of such periodic orbits in the building of the described

structures.

As different parts of the same chaotic orbit may show different local exponents values in

the different transients, this would indicate that the chaotic phase mixing [22] could be larger

than the regular phase mixing at certain physical relevant time scales. We may conclude

from here that different rates might exist in the evolution of the system towards its final

state.

Our analysis has focused in a Hamiltonian system, where the stochastic orbits are ergodic.

In this case, the results from generating the distributions from an adequate ensemble or from

a single orbit are equivalent. But by taking the later approach, we were also able to manage

with the distributions of non-ergodic orbits. The results obtained with this approach should

be valid for orbits both in conservative or non-conservative systems, and in the case of

dissipative systems, the distributions of the attractors described in the literature can be

found. But as an evolution towards a final distribution is not guaranteed in a given time,

the results on the stationarity or evolution during that period hold.

In addition, for bi-dimensional Hamiltonians as this one, the existence of KAM tori
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produces the existence of sticky and non-sticky orbits, so the described phenomenology on

the sticky transients is specific of this type of systems. It should be remarked that for tri-

dimensional Hamiltonians, the cantori appear and this is no longer applicable as, in the end,

the Arnold diffusion merge the orbits.

The previous discussion shows some implications from the physical meaning of the system.

As the long integrations required for computing the global Lyapunov exponents have no

meaning in a galactic system, since the universe evolves in a shorter time, it is reasonable

to use smaller integrations. Furthermore, the smallest interval sizes can be used since they

characterize the local behavior.
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FIG. 1: (a) Orbit near an UPO, when E = 1/4. The period T is roughly 3.6 time units. (b) The

solid line shows the distribution formed with an integration of 40 time-units when ∆t = 0.02. The

rightmost two peaks are traced when the orbit is confined, before escaping after 8T time-units.

Dashed distribution is when ∆t = 0.1 and dotted one when ∆t = 0.3
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FIG. 2: (a) Poincaré cross-section of a quasi-periodic orbit of energy E = 1/8, associated to a

period-5 orbit. The crossing time is aproximately 6.2 time units. Each time a point crosses the

section, a different island is crossed and the total time before repeating an island is roughly 31.5

time units. (b) Distribution of finite-time Lyapunov exponents, showing 10 peaks both in positive

and negative values, when ∆t = 0.02 and total integration time 104 time units. The dashed

distribution is when ∆t = 10 and integration time 106. The dotted one is with ∆t = 100 and

integration time 106.
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(JCV) The Henon Heiles system x’ = p  y’ = q p’ = -x-2xy q’ = -y-x*x+y*y

 0.5 
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 -0.5 
 0.8  y  -0.5 

FIG. 3: (a) Poincaré cross-section of an orbit of energy E = 1/12. The crossing time is aproximately

6.75 time-units. (b) The solid line shows the distribution of finite-time Lyapunov exponents formed

with an integration of 20000 time-units when ∆t = 0.02. The dotted and dashed distributions

corresponds to partial 1000 time-units integrations started at arbitrary points of the same orbit.

Fig. 3 VALLEJO, AGUIRRE & SANJUÁN
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FIG. 4: The distribution of finite-time Lyapunov exponents in the case E = 1/12 formed with an

integration of 106 time units when ∆t = 1 is plotted as solid trace. The same when ∆t = 10 in

dashed trace.

Fig. 4 VALLEJO, AGUIRRE & SANJUÁN
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 0.9  y  -0.6 

FIG. 5: (a) Poincaré cross-section of an orbit of energy E = 1/8. The crossing time is aproximately

6.80 time-units. (b) Distribution of finite-time Lyapunov exponents. The solid line corresponds

to an integration of 20000 time-units when ∆t = 0.02. The dotted and dashed ones to partial

integrations of 103 time units. The double peaked one corresponds to a sticky period.

Fig. 5 VALLEJO, AGUIRRE & SANJUÁN
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TABLE I: Several distribution behaviors in the case E = 1/12 for the smallest interval size ∆t =

0.02. The statistics are for integrations of 103 time units starting at t0.

t0 Mean Std. Dev. Median F+(t0)

0 -0.04402 0.18489 -0.44017 0.43455

103 -0.01337 0.16457 -0.01337 0.67674

2 · 103 -0.01318 0.16437 -0.01318 0.66708

3 · 103 -0.01318 0.16438 -0.01318 0.67882

12 · 103 -0.04406 0.18492 -0.04406 0.47806

14 · 103 -0.016346 0.152195 -0.016346 0.700080

Table I VALLEJO, AGUIRRE & SANJUÁN
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TABLE II: Sensitivity of statistics of the finite-time Lypunov distributions in the case E = 1/12

for several integration time and interval sizes.

t(total time) ∆t(time) ∆t(steps) Mean Std. Dev. Median F+(t0)

2 · 104 0.02 2 -0.04403 0.18490 -0.04403 0.64226

2 · 105 0.02 2 -0.44069 0.18492 -0.04407 0.65772

2 · 104 1 100 0.08553 0.17873 0.08553 0.69000

2 · 105 1 100 0.08454 0.18004 0.08454 0.71060

2 · 104 10 1000 0.032154 0.06258 0.32154 0.90400

2 · 105 10 1000 0.02509 0.06671 0.02511 0.89565

Table II VALLEJO, AGUIRRE & SANJUÁN
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TABLE III: Several distribution behaviors in the case E = 1/12 for interval size ∆t = 1. The

statistics are for integrations of 103 time units starting at t0.

t0 Mean Std. Dev. Median F+(t0)

0 0.07362 0.17391 0.07362 0.46000

103 0.09552 0.17119 0.09552 0.74000

2 · 103 0.09293 0.17478 0.09293 0.72000

3 · 103 0.09117 0.17415 0.09117 0.73000

12 · 103 0.06484 0.16613 0.06484 0.51000

14 · 103 0.08573 0.14284 0.08573 0.75000

Table III VALLEJO, AGUIRRE & SANJUÁN
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