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Abstract: This paper presents a control system for indoor safety measures using a Faster R-CNN
(Region-based Convolutional Neural Network) architecture. The proposed system aims to ensure the
safety of occupants in indoor environments by detecting and recognizing potential safety hazards in
real time, such as capacity control, social distancing, or mask use. Using deep learning techniques,
the system detects these situations to be controlled, notifying the person in charge of the company
if any of these are violated. The proposed system was tested in a real teaching environment at
Rey Juan Carlos University, using Raspberry Pi 4 as a hardware platform together with an Intel
Neural Stick board and a pair of PiCamera RGB (Red Green Blue) cameras to capture images of the
environment and a Faster R-CNN architecture to detect and classify objects within the images. To
evaluate the performance of the system, a dataset of indoor images was collected and annotated for
object detection and classification. The system was trained using this dataset, and its performance
was evaluated based on precision, recall, and F1 score. The results show that the proposed system
achieved a high level of accuracy in detecting and classifying potential safety hazards in indoor
environments. The proposed system includes an efficiently implemented software infrastructure
to be launched on a low-cost hardware platform, which is affordable for any company, regardless
of size or revenue, and it has the potential to be integrated into existing safety systems in indoor
environments such as hospitals, warehouses, and factories, to provide real-time monitoring and alerts
for safety hazards. Future work will focus on enhancing the system’s robustness and scalability to
larger indoor environments with more complex safety hazards.

Keywords: global pandemic; COVID-19; safety distance; low-cost system; Raspberry Pi; Intel Neural
Stick; deep learning

1. Introduction

Since 2020, humanity has been in the mire of a global pandemic caused by a coro-
navirus named SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus 2). The
first cases of humans infected with coronavirus were officially reported in Wuhan, China,
in December 2019. Since then, numerous investigations have been published regarding
this pandemic [1]. One of scientists’ biggest concerns is how this virus is transmitted
between humans; as progress is made on this front, it seems clearer that the transmission of
SARS-CoV-2 between humans is through the respiratory tract, either by close contact with
an infected person, or through aerosols [2].

That is why the measures adopted by most countries at this time are aimed at mitigat-
ing this means of transmission, such as wearing masks or social distancing [3,4]. In addition
to the means of transmission, another determining factor of this virus is that it presents
symptoms in the majority of infected people (up to 80%), which facilitates the spread of the
virus, given that asymptomatic individuals can infect others with SARS-CoV-2. Further-
more, people with ordinary symptoms can progress to more serious symptoms, leading
even to death [5].
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Even though several vaccines have been produced, controlling the spread of this virus
appears impossible, as daily confirmed COVID-19 (novel COronaVirus Disease-2019) cases
and deaths show [6]. Governments around the world are seeking to find new and better
vaccines [7], while the virus continues to expand and mutate into different variants [8].
How effective vaccines are against the different mutations of the virus has also been a
subject of study [9].

After being closed for a long period, schools are reopening, just as companies are
asking their workers to return to work in person. In some companies, in-person work is
essential, while in others it is dispensable, but it is more complex for schools to carry out
their work remotely [10]. Children need to be supervised by adults [11], younger students
need a follow-up from teachers [12], and adolescents require face-to-face attention and
assessment [13]. Furthermore, university students require sophisticated training, which
can only be achieved in person [14].

This article aims to monitor the safety measures indicated to avoid the transmission of
the virus in closed environments, using low-cost hardware resources so that the system can
be acquired by any company (store, bar, cultural center, hypermarket, etc.), university, or
school. A deep-learning-based solution, which is a continuation of a previous work of the
author [15], is proposed for the detection of people, as well as for monitoring their social
distancing. It is also essential to detect possible crowds. For this purpose, a basic interior
furniture (e.g., tables) detection system was implemented, since people seated around the
same table, for example, in a bar, would not be considered a crowd up to a certain limit, as
established by the health authorities.

In any of the above-described situations, the alert system is in charge of sending a
notification to the owner of the site via SMS and e-mail. To test the behavior of the system,
numerous experiments were conducted in a real environment, specifically at the entrance
and exit of classes at Rey Juan Carlos University. The hardware platform used for this
was based on the Raspberry Pi 4 board as the central processing unit, to which a pair
of RGB cameras—model PiCamera—were incorporated to capture the color images of
the environment, and an Intel Neural Stick to lighten the execution of the deep learning
algorithms. The results (described in Section 5) show that the system performs plausibly,
with a very fast response in real-time detection of the situations described.

2. Related Works

Previous works conducted with the same purpose of maintaining social distancing
using a control system are presented in this section. All of these were motivated by
the pandemic generated by the SARS-CoV-2 virus. In [16], an effective social distance
monitoring solution in low-light environments is described. Low-light environments can
be a problem in the spread of disease because of people gathering together at night. This is
especially critical in summer when temperatures reach a peak and people go out of their
homes with their families at night to enjoy the cooler air. A deep-learning-based solution is
proposed for the above-stated problem. It uses YOLO (You Only Look Once) v4 model for
real-time object detection and the social distance measuring approach is introduced with a
single motionless ToF (Time of Flight) camera.

In [17], the YOLO v3 object recognition paradigm to identify humans in video se-
quences is also used, but the authors add a transfer learning methodology to increase the
accuracy of the model. In this way, the detection algorithm uses a pre-trained algorithm
that is connected to an extra-trained layer using an overhead human data set. The detection
model identifies people by means of detected bounding box information. The pairwise
distances between the centroids of the detected bounding boxes are determined using the
Euclidean distance. To estimate social distance violations between individuals, an approxi-
mation of the physical distance in pixels is used. A violation threshold is established to
evaluate whether or not the distance value breaches the minimum social distance threshold.

In [18], an improvement was introduced: the use of Faster R-CNN (instead of Fast
R-CNN) for human detection in the images. The Fast R-CNN model consists of a single-
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stage, compared to the three stages in R-CNN. It was developed to improve the speed
and accuracy of object detection in images. However, the architecture of Faster R-CNN—
shown in Figure 1—consists of two modules: the Region Proposal Network (RPN) and the
algorithm of Fast R-CNN, for detecting objects in the proposed regions. The Fast R-CNN
algorithm consists of the following key steps:

1. Region Proposal: Initially, a set of potential object regions, known as region proposals,
are generated using the selective search or another similar method. These region
proposals are areas in the image that are likely to contain objects.

2. CNN Feature Extraction: A convolutional neural network (CNN) is employed to
extract features from the entire input image. This CNN is typically pre-trained on a
large dataset (such as ImageNet) and can capture useful visual representations.

3. Region of Interest (RoI) Pooling: The extracted CNN features and the region proposals
are used to create fixed-size feature maps for each region proposal. RoI pooling is
applied to warp these feature maps into a fixed spatial extent, allowing subsequent
layers to process them.

4. Classification and Localization: The RoI-pooled features are fed into fully connected
layers that perform both object classification and bounding box regression. The
classification network predicts the probability of each region proposal belonging to
different object classes, while the regression network estimates the refined coordinates
of the object’s bounding box.

5. Non-Maximum Suppression: After classification and regression, the algorithm applies
non-maximum suppression to remove redundant and overlapping bounding box
predictions. This step ensures that each object is represented by a single bounding
box with the highest confidence score.

Figure 1. The architecture of Faster R-CNN.

Fast R-CNN combines region proposal generation, feature extraction, and object
classification/regression into a single end-to-end network, which makes it faster and more
efficient compared to its predecessors. By sharing the computation of the CNN features
among different region proposals, it significantly speeds up the detection process. In
addition, Faster R-CNN typically outperforms Mask R-CNN, which was proposed in [19],
in terms of bounding box detection because it has a simpler architecture and focuses solely
on object localization. Mask R-CNN, on the other hand, extends Faster R-CNN by adding a
branch for pixel-level segmentation. This additional complexity in Mask R-CNN can lead
to decreased performance in bounding box detection compared to Faster R-CNN.

In [20], an active surveillance system to slow the spread of COVID-19 by warning
individuals in a region of interest is proposed. These authors’ contribution is twofold. First,
they present a vision-based real-time system that can detect social distance violations and
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send non-intrusive audio-visual cues using state-of-the-art deep-learning models. Second,
they define a novel critical social density value and show that the risk of social distance
violation occurrence can be held near zero if the pedestrian density is kept under this value.

In [21], a two-component model is proposed. The first component was designed for
the feature extraction process based on the ResNet-50 deep transfer learning model, while
the second component was designed for the detection of medical face masks based on
YOLO v2. Two medical face mask datasets were combined into one for investigation in this
research. To improve the object detection process, Intersection over Unit (IoU) was used to
estimate the best number of anchor boxes. The results obtained concluded that the Adam
optimizer presented in [22] achieved the highest average precision percentage of 81% as a
detector, compared to the Stochastic Gradient Descent with Momentum (SGDM) optimizer
technique, which was presented in [23].

Several research studies have been conducted to provide a solution to maintaining
an effective social distance as discussed above. However, none of the studies focused
on providing a real low-cost solution accessible to everyone; that is, using a hardware
platform that is computationally adequate to support the complex detection algorithms
used, but sufficiently economical to be affordable for any company, small or large, and
which can be acquired anywhere in the world. The present article addresses this deficiency.
A sophisticated and robust detection software system based on deep learning techniques
was developed, focusing the implementation on its efficiency so that it can be run under
the demands of a system that operates in real-time on a low-cost hardware platform.

3. Method

The method proposed in this work consists of using two RGB cameras (Figure 2(left)),
specifically, two PiCamera model cameras, to detect people within the frame of the image,
and with this, calculate the interpersonal distance. One camera focuses on the entrance
door (Figure 2(middle)), and the other on the area of the room where the people entering
sit (Figure 2(right)). If the system detects that at any time the established social distance is
not being respected, it notifies the person in charge of the room via SMS/e-mail.

Figure 2. (Left): system with two RGB cameras; (middle): a snapshot of the camera that focuses on
the entrance door; (right): a snapshot of the camera that focuses on the desktops.

3.1. Object Detection

First, a Faster R-CNN object detection network was used, which was adapted to detect
a new set of objects, with their orientation and dimension. To achieve this goal, the last
layers of the architecture were modified, because they determine the number of classes to
work with and how to do them.

The result of a Faster R-CNN is a bounding box that locates the object detected in the
image, but lacks information about its absolute position in the real world; new layers are
needed to estimate such a position. The implementation used in this work is based on the
development presented in [24]. These authors extended the Faster R-CNN architecture with
new layers to support the bounding cube concept. The bounding cube could be defined as
the smallest rectangular parallelepiped that contains the object. It includes the orientation
and dimensions of the object.

The bounding cube is determined by its center c = [cx, cy, cz]T , dimensions
d = [dx, dy, dz], and orientation R ∈ SO(3), where SO(3) represents the special orthog-
onal group in three dimensions. The special orthogonal group SO(3) consists of all
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3× 3 matrices that are both orthogonal (their transpose is equal to their inverse) and
have a determinant of 1. In other words, the elements of SO(3) are rotation matrices that
preserve the orientation of a three-dimensional object.

Given the pose of the object in the camera coordinate frame (R, c) ∈ SE(3) and the in-
trinsic matrix K, the projection of a 3D point in homogeneous coordinates, ẋ0 = [X, Y, Z, 1]T

in the coordinate frame of the object in the image ẋ = [x, y, 1]T is ẋ = K[Rt]ẋ0.
Assuming that the origin of the object’s coordinate system coincides with the center of

the bounding cube and dimensions D are known, the vertices of the bounding cube are as
described in Equations (1)–(8).
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The restriction that the bounding cube is enclosed by the bounding box means that
each side of the 2D detection has to coincide with the projection of—at least—one of the
vertices of the bounding cube. If the bounding box is given by the lower left vertices
(xmin, ymin) and upper right (xmax, ymax), and it is also known that, for example, the 3D
point v4 projected falls on the left side of the detection, Equation (9) can then be posed.

xmin = K[Rt][−dx

2
,−

dy

2
,

dz

2
, 1]T (9)

Equation (9) indicates the xmin component of the perspective projection. It is a for-
mulation to calculate the x-coordinate of the lower-left vertex (xmin) of the bounding box
based on the projection of a 3D point (v4) onto the image plane. The equation incorporates
the camera intrinsic matrix K, the rotation matrix R, the translation vector t, and the 3D
coordinates of the point (dx, dy, dz). The homogeneous coordinate mechanism was already
addressed profusely in previous works by the author [25,26].

Analogous Equations (10)–(12) can be set for xmax, ymin, ymax if we know the correspon-
dence of which vertex of the bounding cube is projected to which side of the bounding box.

xmax = K[Rt][va, 1]T (10)

ymin = K[Rt][vb, 1]T (11)

ymax = K[Rt][vc, 1]T (12)

Each of Equations (10)–(12) indicates each component of the perspective projection and
a, b, c ∈ v1, . . . , v8 according to which vertex corresponds. In total, these four restrictions
are sufficient to determine t, if K, R and d are known. K is a constant that is known to
be the intrinsic calibration matrix of the camera [25,26], while R and d will be parameters
estimated by the neuronal network as explained below in Section 3.2.
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3.2. Calculating R and d

A Faster R-CNN architecture applies the RoI (Region of Interest) pooling layer to prop-
agate forward the feature maps of each object region. This means that, for any regression
or classification layer, the data obtained from the subregion image being processed at that
time will be applied. In other words, the Faster R-CNN output for a sub-region is invariant
with respect to its translation in the image. For this reason, it was decided not to directly
estimate orientation R ∈ SO(3) of the object with respect to the camera, since—in the upper
layers—the Faster R-CNN loses the information about where the object is in the image.
Instead, the network estimates a local angle that is invariant to the translation of the object
in the image.

Rotation matrix R(θ) is only parameterized by a rotation with respect to the vertical
axis with angle θ. This angle can be decomposed as shown in Equation (13), where θl is
the local angle of rotation that the object forms with the ray that goes from the camera
towards the center of the bounding box and θr the angle that this ray forms with the
camera (Figure 3).

Figure 3. θ represents the rotation of the bounding box decomposed into θl and θl .

θ = θr + θl (13)

Instead of predicting angle θ directly, the network regresses on the local angle of rota-
tion θl , and angle θ is obtained by combining the angles θl and θr according to Equation (13);
namely, the angle θr can be calculated from the location of the bounding box in.

To estimate the parameter θl with the network, the same approach as Faster R-CNN is
used to conduct regression on the bounding boxes, which means discretizing the solution
space in m classes, each associated with an angular interval. For each of these classes, the
network estimates its probability that θl belongs to it and the residual angle that remains to
be applied to the central angle of that class to obtain the local rotation. In practice, the value
estimated is that of the sine and cosine of this residual angle, with the network having
three outputs for each angular class i: (ci, cos(∆θi), sin(∆θi)).

The cost function is defined as shown in Equation (14), where the confidence Lc is
the softmax cost of the trusts of each angular class, Ll is the cost function that attempts
to minimize the difference between the estimated angle and the ground-truth for each of
the intervals to which the angle of the ground-truth belongs, and w represents a weight or
coefficient that determines the relative importance of the two terms in the cost function.

Lθ = Lc + w× Ll (14)



Electronics 2023, 12, 2378 7 of 16

Minimizing this difference is equivalent to maximizing its cosine, so that Equation (15) can
be posed, where θgt is the angle of the ground-truth, mθ is the number of intervals that
contain θgt, ci is the central angle to the interval i, and ∆θi is the residual angle to be applied
to the center of the interval i.

Ll = −
1

mθ
∑ cos(θgt − ci − ∆θi) (15)

To estimate d = [dx, dy, dz], a continuous approach is used to do a regression without
discretizing the space of solutions. In most classes, the distribution of their possible
dimensions has low variance, so we proceeded with the traditional technique of regression
on the residual with respect to the average of the training values for each parameter, with a
cost function as shown in Equation (16), where dgt is the ground-truth of the dimensions, d̄
is the average of dimensions for objects of a certain category, and δ is the residual value
with respect to the average predicted by the network. The total cost function is defined
in Equation (17), where w′ represents (as its analog w in Equation (15)) the weight of the
cost function.

Ld =
1
n ∑(dgt − d̄− δ)2 (16)

L = Lθ + w′ × Ld (17)

3.3. Vertex to Side Correspondence

Using the network estimated of the rotation R ∈ SO(3) and dimensions d ∈ R3, the
translation t ∈ R3 can be estimated from Equations (9)–(12), and be calculated for each
side assignment from bounding box to a vertex of the bounding cube. After trying all the
combinations, the t that minimizes the reprojection error of the bounding box is the t to
be chosen.

In the beginning, each side can correspond to a vertex, resulting in 84 = 4096 configurations.
To reduce the computation time, the camera is assumed to be parallel to the ground, and
the object is assumed to be always stationary, rotated on its vertical axis, but without other
inclinations, such as most everyday objects (e.g., furniture).

As the object is only rotated about the Z axis, ymin is determined by some of the lower
vertices and ymax by one of the superiors. Furthermore, it can be assumed that both xmin
and xmax are determined by two of the lower vertices because all the points on one side
vertical are projected at the same x image coordinate). Therefore, it is only necessary to
evaluate 44 = 256 combinations to obtain the one that minimizes the reprojection error of
the bounding box.

4. Architecture

The general architecture of the proposed system follows the model of a Faster R-CNN,
which is an improved version of a Convolutional Neural Network (CNN). The traditional
CNN structure is shown in Figure 4 [27], and the improved Faster R-CNN architecture is
shown in Figure 5 [28].

Figure 4. Traditional architecture of a Convolutional Neural Network (CNN).
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Figure 5. Faster R-CNN architecture on which this work is based.

4.1. Trained Neural Network

The first requirement for the proposed system to work is to have a trained neural net-
work. To accomplish this, different photographs were taken of real scenarios corresponding
to classrooms and laboratories at Rey Juan Carlos University (Figure 6). These images
include bounding boxes of the objects present, such as students’ desks, along with their
positions relative to the origin of coordinates in the classroom.

Figure 6. Students entering a classroom.

The origin of the coordinates is in the center of the classroom, which was previously
measured manually. A mark is made on the ground at the center, and the camera is
calibrated accordingly to ensure its orientation is precisely towards that point. The camera
is always located in the same position: next to the entrance door, on the left, checking that
the different points of view of the objects are as uniform as possible.

In this way, the necessary ground-truth is obtained for each object in the image, its
class, bounding box, orientation, and dimensions. Since the camera position is always at
the front of the classroom, the desk models are consistently aligned; that is, the Y axis of all
the desks always points towards the backrest.

4.2. Software Platform

The modified Faster R-CNN architecture was implemented in Pycaffe, and so the
Stochastic Gradient Descent (SGD) optimizer implemented in Caffe [29] was used, with
the initial weights of the Faster R-CNN network already trained in the COCO (Common
Objects in Context) dataset [30].
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The training scheme consisted of a first preliminary training with COCO real images
(https://cocodataset.org/#download (accessed on 13 February 2023)) in the classes in
common with those used in this work, followed by training with images of real classrooms
at Rey Juan Carlos University, to finish with a longer training of the layers dedicated to the
prediction of the pose with the system’s dataset.

For each image sent to the object detector, the only objects considered are those that
should be observed, projecting their bounding cubes onto the image. Of these objects,
those that were detected in the image are called inliers, and those that were not, outliers.
Throughout the execution for each object on the map, its positive detections (pd(o), in
which it was an inlier) and its non-detections (nd(o), in which it was an outlier) are counted
separately. Based on the difference of these metrics, a level of confidence is established
in the objects (o) on which three thresholds are defined as described in Equation (18)
(T_L is TRUST_LEVEL):

level o f con f idence(o) =


t1 if (pd(o)− nd(o)) > TL
t2 if 0 < (pd(o)− nd(o)) < TL
t3 if (pd(o)− nd(o)) ≤ 0

(18)

The precursor to this level of trust idea was already described in the author’s work in [31]
under the concept of life dynamics.

For the objects finally considered as trusted, their rotation matrix R and translation t
are obtained with respect to the camera, starting from the network output. Rotation matrix
R is determined from the orientation angle with respect to the camera, obtained from the
sum of the ray angle of the bounding box and the local angle. If Equation (9) is developed,
it is obtained that, for a given point p = [p1, p2, p3], the projection onto the image plane in
homogeneous coordinates is obtained according to Equation (20).

K× [Rt]× [p 1]T =

 f 0 0
0 f 0
0 0 1

×
r1 |t1

r2 |t2
r3 |t3

× [p
1

]
(19)

=

 f (r1 p + t1)
f (r2 p + t2)
r3 p + t3)

 (20)

Thus, if xmin, xmax, ymin, ymax determine the vertices wmin, wmax, hmin, hmax, their pro-
jections onto the image plane in homogeneous coordinates are obtained in Equations (21)–(24).

xmin =
f (r1wmin + t1)

r3wmin + t3
, (21)

xmax =
f (r1wmax + t1)

r3wmax + t3
, (22)

ymin =
f (r2hmin + t2)

r3hmin + t3
, (23)

ymax =
f (r2hmax + t2)

r3hmax + t3
(24)

Finally, t3 can be obtained, based on the width (w) (Equation (25)) or height (h) of the
bounding box, and then, t1 and t2 are obtained.

t3 =
f r1(wmax − wmin)− r3(wmaxxmax − wminxmin)

xmax − xmin
(25)

5. Experiments

This section describes the experiments conducted. The parameters used in each Faster
R-CNN test and the results obtained in each case are detailed. Subsequently, an optimal

https://cocodataset.org/#download


Electronics 2023, 12, 2378 10 of 16

model was chosen for each method. The model with the most favorable results will be used
in the candidate generation stage to obtain the prediction of a person in the picture. Finally,
a general discussion is presented based on the results obtained during experimentation.

All experiments were carried out over a Raspberry Pi 4 as a main board, which
incorporates the chipset Broadcom BCM2711 with a quad-core ARM (v8) Cortex-A72 64-bit
processor at 1.5 GHz, and 8GB LPDDR4-3200 SDRAM. An Intel Neural Stick (Figure 7(left))
was added to the main board (Figure 7(right)) to accelerate the deep learning inference.

Figure 7. (Left): Intel Neural Stick; (right): the two processing units attached.

As described in Section , a pair of RGB PiCameras were used (Figure 2): one to obtain
images of the entrance door and another to capture images of the room. The reason for
using this type of camera on this hardware platform is that they are directly connected
through the CSI port of the board, providing better performance compared to a USB camera,
as was described in [26].

5.1. Neural Network Parameters

The parameters studied to obtain the different Faster R-CNN models and implement
them on the network algorithm are as follows:

• im_w = 128: width of the trained image.
• im_h = 96: height of the trained image.
• n_ch = 3: number of channels (RGB).
• pixel_d = 255: color depth; number of bits that are needed to represent a color.
• n_ f eat_mp_c1: number of feature maps of the first convolution layer. The values 8, 16

and 32 were tested, in concordance with the second layer.
• n_ f eat_mp_c2: number of feature maps of the second convolution layer. The values

16, 32, and 64 were tested, in concordance with the first layer. Therefore, the pairs are
as follows: 8–16, 16–32, and 32–64.

• hidden_u: number of hidden fully connected units. The values 128, 256, 512, and 1024
were tested.

• n_lab = 2: Number of labels or classes. Since it is a question of classifying between
person or non-person, its value is 2.

• batch_e = 128: number of training examples in a single batch (batch).
• n_epochs = 60: an epoch occurs when an integer dataset is passed back and forth

through the neural network only once. Since the training of the network is an iterative
process, this process must occur repeatedly.

• n_conv_l: number of convolution layers. It starts with two and a model with four
layers is trained.

• stride = 2: the filter pass in the convolution operation.
• padd: padding to be added after convolution, which allows the output image to be the

same size as the input image.
• optimizer = SGD: as was described in Section 4.2, the Stochastic Gradient Descent

(SGD) optimizer, implemented in Caffe [29], is used.
• regularization = early: the early stopping regularization technique is used to reduce

overfitting.
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Table 1 shows the various training models and their associated parameters. For the
first 10 models, the feature maps are modified while keeping the convolution filters fixed.
Starting from the 11th model, the best-valued parameters are fixed, and the combination of
convolution filter and max-pooling filter is varied, which remains consistent across both
layers. Lastly, the 16th model incorporates the two optimal parameters from the previous
groups and includes two additional convolution layers.

Table 1. Different training models and their parameters.

Model n_ f eat_mp_c1 n_ f eat_mp_c2 hidden_u Conv. Filter Max-Pool

n_conv_l = 2

1 8 16 128 (4,4) (2,2)
2 16 32 128 (4,4) (2,2)
3 32 64 128 (4,4) (2,2)
4 8 16 256 (4,4) (2,2)
5 16 32 256 (4,4) (2,2)
6 32 64 256 (4,4) (2,2)
7 16 32 512 (4,4) (2,2)
8 32 64 512 (4,4) (2,2)
9 16 32 1024 (4,4) (2,2)
10 32 64 1024 (4,4) (2,2)

11 16 32 256 (3,3) (2,2)
12 16 32 256 (7,7) (2,2)
13 16 32 256 (3,3) (4,4)
14 16 32 256 (4,4) (4,4)
15 16 32 256 (7,7) (4,4)

n_conv_l = 4

16 16 32 512 (4,4) (2,2)

5.2. Results of Training and Testing Person Detection

The ML metrics used in this work are the following:

• Precision: it quantifies the proportion of true positives (correctly predicted positive
instances) out of the total instances predicted as positive. It focuses on the correctness
of positive predictions and is useful when the cost of false positives is high.

• Recall (Sensitivity or True Positive Rate): it measures the proportion of true posi-
tives identified correctly out of the total actual positive instances. It emphasizes the
completeness of positive predictions and is valuable when the cost of false negatives
is high.

• F1 Score: it combines precision and recall into a single metric by taking their harmonic
mean. It provides a balanced evaluation of a model’s performance, considering both
precision and recall.

• Accuracy: it measures the proportion of correctly classified instances out of the total
number of instances. It is a widely used metric, especially for balanced datasets.
However, it can be misleading when dealing with imbalanced datasets.

precision =
TP

TP + FP
(26)

where:

TP: True Positives
FP: False Positives

recall =
TP

TP + FN
(27)
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where:

FN: False Negatives

f 1 score = 2 · precision · recall
precision + recall

(28)

The evaluation metrics used are defined as described in Equations (28) and (29). It
can be observed that the f 1 score could be considered a more precise measure than the
accuracy since it incorporates false negatives in its value, which can distort the actual result.
Additionally, the f 1 score is considered a reliable measure when dealing with uneven
class distribution.

accuracy =
TP + TN

TP + TN + FP + FN
(29)

where:

TN: True Negatives

Below are the comparative tables with the person detection results obtained when
training the different models explained in Section 5.1, both in the train (Table 2) and test
(Table 3) sets.

Table 2. Results obtained by Faster-RCNs on the train set.

Model f1 Score Accuracy

1 0.97 0.9724
2 0.97 0.9755
3 0.97 0.9813
4 0.98 0.9844
5 1.00 0.9941
6 0.99 0.9724
7 0.97 0.9813
8 0.99 0.9944
9 1.00 0.9919
10 0.99 0.9936

11 0.97 0.9767
12 0.98 0.9843
13 0.96 0.9645
14 0.97 0.9735
15 0.97 0.9712

16 1.00 0.9948

Analyzing the training results of Faster R-CNN models 1 to 10, it can be observed that
generally higher accuracy is obtained with a higher number of hidden units. The models
with hidden_u = 1024 demonstrate better results in the training set; however, they also
consume more resources. On the other hand, lower and medium hidden_u values yield
similar but lower results.

On the other hand, the training results from Faster R-CNN models 11 to 15, in which
the number of feature maps (n_ f eat_mp) of the first and second convolution layers is
a constant value, show that increasing the value of the convolution filters increases the
accuracy value. Increasing the value of max-pool from 2 to 4 decreases the result.

It can be concluded that in the training set, increasing the number of features generally
leads to a decrease in error. Precision improves with an increase in the number of feature
maps and hidden units. However, increasing these parameters also results in longer
training times and a higher demand for computational resources.



Electronics 2023, 12, 2378 13 of 16

Table 3. Results obtained by Faster R-CNNs on the test set.

Model f1 Score Accuracy

1 0.97 0.9733
2 0.98 0.9824
3 0.98 0.9873
4 0.99 0.9909
5 0.99 0.9929
6 0.98 0.9844
7 0.98 0.9831
8 0.99 0.9900
9 1.00 0.9922
10 0.99 0.9910

11 0.97 0.9799
12 0.99 0.9925
13 0.97 0.9715
14 0.98 0.9823
15 0.98 0.9874

16 0.99 0.9911

Table 2 shows the results of the training in the test set. These results are those that
were considered when choosing the optimal Faster R-CNN for the system detection process.
It can be observed that the best results are yielded by adding two more convolution layers
(model 16) and combining mid-term values of the rest of the parameters (model 7).

It can also be observed that the results in the test set are slightly lower than those
in the training set. Once again, in most cases, higher numbers of features lead to better
results. Additionally, it can be seen that increasing the max-pooling value from model 11 to
15 results in lower performance.

5.3. Results of Training and Testing Object Orientation

To evaluate the orientation predictions, the real image datasets were also used, as well
as the synthetic image dataset. The 3D object detection and orientation estimation was
evaluated using the Average Orientation Similarity (AOS) measure, a concept introduced
in [32] and which is defined as shown in Equation (30).

AOS =
1

11 ∑
r∈0,0.1,...,1

max
r̃:r̃≥r

s(r̃) (30)

where:

r: recall (described in Equation (28))
s: orientation similarity (s ∈ [0 . . . 1])

In addition, s at recall r is a normalized ([0 . . . 1]) variant of the cosine similarity defined
as shown in Equation (31). In other words, the AOS measure considers the precision of the
detections weighted by the similarity of the cosine of the angles.

s(r) =
1

|D(r)| ∑
i∈D(r)

1 + cos∆(i)
θ

2
δi (31)

where:

D(r): set of all object detections at recall rate r
∆(i)

θ : difference in angle between estimated and ground truth orientation of detection i
δi: used to penalize multiple detections which explain a single object (Equation (32))
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δi =

{
1 if detection i assigned to gnd. truth
0 if detection i was not assigned

(32)

Table 4 shows a comparison of the maximum values of Average Precision (AP), Av-
erage Orientation Similarity (AOS), and Orientation Score (OS) obtained for the different
training iterations of the RPN detection layer with synthetic data. In all these cases, the
orientation layers were trained for 200 k iterations.

Table 4. Object orientation score.

RPN Layer Iter. AP AOS OS

10 k 0.30 0.22 0.73
20 k 0.38 0.27 0.71
30 k 0.43 0.31 0.72
40 k 0.48 0.35 0.73

6. Conclusions

This work presents a visual system that enables users to control safety measures
aimed at preventing the transmission of viruses in enclosed environments, utilizing cost-
effective hardware. The solution relies on deep learning for the detection of people, as
well as basic furniture such as tables, and for monitoring the social distancing maintained
between individuals.

To implement the system, a feature-based stereo vision was integrated with a modified
and extended Faster R-CNN network, specifically tailored for detecting a new set of objects
along with their orientation and dimensions. To accomplish this, the final layers of the
architecture were modified to determine the number of classes and their handling.

Additionally, new layers were incorporated into the Faster R-CNN to estimate the
absolute position of the detected objects in the image. This addition was necessary as
the original Faster R-CNN output only provided bounding boxes without information
about their real-world position. The proposed architecture includes these new layers to
support the concept of a bounding cube, encompassing the object along with its orientation
and dimensions.

The performance of the object detector was evaluated on both real and synthetic image
datasets, employing various training schemes. Furthermore, a dataset consisting of six
sequences captured in office environments was developed to comprehensively test the
entire system.

7. Discussion

The results of this study highlight the effectiveness of the control system for indoor
safety measures based on the Faster R-CNN architecture. The system successfully detects
and recognizes potential safety hazards in real-time, including capacity control, social
distancing, and mask use. By utilizing deep learning techniques, the system promptly iden-
tifies these situations that require control and promptly notifies the responsible personnel if
any violations occur.

The evaluation of the proposed system was conducted in a real teaching environment
at Rey Juan Carlos University, utilizing Raspberry Pi 4 as the hardware platform, along
with the Intel Neural Stick board and a pair of PiCamera RGB cameras for image capture.
The Faster R-CNN architecture was employed to detect and classify objects within the
images. To assess its performance, a dataset of indoor images was collected and annotated
for object detection and classification. Precision, recall, and F1 score were utilized as
evaluation metrics.

The results demonstrate that the proposed system achieves a high level of accuracy in
detecting and classifying potential safety hazards in indoor environments. This indicates
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its reliability and effectiveness in identifying safety violations in real-time. Moreover, the
system’s software infrastructure is efficiently implemented and designed to be compatible
with low-cost hardware platforms, making it affordable for companies of any size or
revenue. Furthermore, the potential for integration into existing safety systems in various
indoor environments, such as hospitals, warehouses, and factories, provides real-time
monitoring and alerts for safety hazards.

As for future work, the focus will be on improving the system’s robustness and
scalability to larger indoor environments with more complex safety hazards. This would
enhance its applicability and allow for its seamless integration into a wider range of settings.
Overall, the results of this study demonstrate the efficacy of the proposed control system,
highlighting its potential to contribute to safer indoor environments and facilitate proactive
safety management.
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Abbreviations
The following abbreviations are used in this manuscript:

R-CNN Region-based Convolutional Neural Network
RGB Red Green Blue
SARS-CoV-2 Severe Acute Respiratory Syndrome CoronaVirus 2
COVID-19 novel COronaVirus Disease 2019
YOLO You Only Look Once
ToF Time of Flight
SGDM Stochastic Gradient Descent with Momentum
IoU Intersection over Unit
RoI Region of Interest
COCO Common Objects in Context
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