
A special self-similar solution and
existence of global solutions for a

reaction-diffusion equation with Hardy
potential

Razvan Gabriel Iagar *,

Ariel Sánchez,�

Abstract

Existence and uniqueness of a specific self-similar solution is established for the
following reaction-diffusion equation with Hardy singular potential

∂tu = ∆um + |x|−2up, (x, t) ∈ RN × (0,∞),

in the range of exponents 1 ≤ p < m and dimension N ≥ 3. The self-similar solu-
tion is unbounded at x = 0 and has a logarithmic vertical asymptote, but it remains
bounded at any x ̸= 0 and t ∈ (0,∞) and it is a weak solution in L1 sense, which
moreover satisfies u(t) ∈ Lp(RN ) for any t > 0 and p ∈ [1,∞). As an application of
this self-similar solution, it is shown that there exists at least a weak solution to the
Cauchy problem associated to the previous equation for any bounded, nonnegative and
compactly supported initial condition u0, contrasting with previous results in literature
for the critical limit p = m.
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1 Introduction

The goal of this paper is to establish some properties related, first, to self-similar solutions
and second, to general solutions to the Cauchy problem associated to the following reaction-
diffusion equation involving a Hardy potential

∂tu = ∆um + |x|−2up, (x, t) ∈ RN × (0,∞), (1.1)

*Departamento de Matemática Aplicada, Ciencia e Ingenieria de los Materiales y Tecnologia Electrónica,
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posed in the range of exponents 1 ≤ p < m and dimensionN ≥ 3 (as usual when considering
Hardy potentials). In the study of the general Cauchy problem, we consider the class of
bounded, non-negative and compactly supported initial conditions

u(x, 0) = u0(x), u0 ∈ L∞(RN ), suppu0 ⊆ B(0, R), u0 ≥ 0, u0 ̸≡ 0. (1.2)

for some R > 0. The definition of a solution to the Cauchy problem (1.1)-(1.2) will be
made precise in the text.

The study of parabolic reaction-diffusion equations involving a singular potential, that
is, a spatially-dependent coefficient of the form |x|−σ with σ > 0 at the reaction term,
was brought into attention by the classical paper by Baras and Goldstein [4], in which the
problem of existence of solutions to the following linear equation

∂tu = ∆u+K|x|−2u, (1.3)

with K > 0 and posed in a bounded domain and with homogeneous boundary conditions,
is considered. The most striking result of this well-known work is that existence depends
strongly on the constant K > 0, thus for a wide class of non-negative initial conditions,
a weak solution to Eq. (1.3) exists if and only if K ≤ (N − 2)2/4, which is the optimal
constant in Hardy’s inequality. More precisely, for larger constants K > (N − 2)2/4 there
are no solutions except for the trivial one, as it is proved that any solution will present
complete instantaneous blow-up, which means that it becomes infinite at any x ∈ RN and
at any time t > 0. Cabré and Martel [7] considered general potentials a(x) ∈ L1

loc(Ω)
instead of |x|−2 (where Ω ⊂ RN is a bounded domain) and raised the same problem of the
threshold between existence and non-existence of solutions to Eq. (1.3). Their study gives
a sharp condition for the non-existence of solutions in terms of the form of the spectrum of
the (linear) operator −∆ − a(x). The connections between the Hardy inequality and the
properties of solutions to the heat equation with a Hardy potential were later developed in
[37, 38], making use of more refined functional inequalities. Another extension of the study
performed for Eq. (1.3) to more general linear equations is the outcome of the paper by
Goldstein and Zhang [16], where the problem of existence and non-existence of solutions is
addressed for linear parabolic operators with the Laplacian replaced by an operator with
variable coefficients in the leading order.

The development of the theory for parabolic equations with singular potentials saw
recently a great amount of papers dealing with the semilinear version of Eq. (1.1), that is,
letting in the latter m = 1 and any p > 1. More precisely, a number works considered the
question of existence of solutions for the semilinear equation

ut = ∆u+K|x|σup, p > 1, −2 < σ < 0, (1.4)

in suitable functional spaces, with weakly regular initial conditions (see works such as
[6, 5, 9, 10, 35]) or with singular data [18]. The same question of existence of global solutions
is studied with fractional diffusion in [17, 18]. Deeper properties of the dynamics of Eq.
(1.4), such as similarity solutions and behavior near blow-up for general solutions, have
been considered first by Filippas and Tertikas [11]. In this work, the authors proved that
for σ ∈ (−2, 0) there exists a unique, decreasing blow-up self-similar solution to Eq. (1.4)
provided that 1 < p < pS = (N + 2+ 2σ)/(N − 2) and then an infinity of such self-similar
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solutions for pS < p < pJL, where pJL is a larger critical exponent (with a complicated
explicit expression that we omit here) known as the Joseph-Lundgren exponent. Their
analysis has been extended and completed by Mukai and Seki [31] with a study of the
range p > pJL, where the so-called Type II blow-up occurs and in which exact blow-up
rates and asymptotic expansions in suitable regions of the space are obtained. Since Eq.
(1.4) still allows to use techniques of convolution with the heat kernel and representation
formulas for solutions, many techniques employed in all these works are not suitable for
quasilinear equations.

Entering the quasilinear world, we start our description of precedents from papers
such as [33, 34], which consider always p > m and a singular potential |x|σ with σ >
−2 (which could be either negative or positive) and establish the Fujita-type exponent
pF (σ) = m+(2+σ)/N by analogy with to the famous Fujita work [13]. The super-critical
fast diffusion (N − 2)/N < m < 1 is also considered. It is thus proved in [33] that, for
max{1,m} < p ≤ pF (σ) all the non-trivial solutions blow up in finite time, while for
p > pF (σ) global in time solutions in self-similar form are constructed, while [34] studies
finite time blow-up and global existence in dependence on the spatial decay as |x| → ∞
of the initial condition when p > pF (σ). Later on, different quasilinear diffusion operators
were considered together with Hardy-type potentials: fast diffusion 0 < m < 1 in [14, 15],
p-Laplacian diffusion in [1] and doubly nonlinear diffusion in [29].

A remarkable feature of the equations involving Hardy-type potentials (such as the ones
introduced above) is that we do not see only a competition between the diffusion and the
reaction terms for influencing their dynamics, but also a second competition between regions
with |x| small and regions with |x| large, due to the presence of a singular weight strongly
acting close to x = 0 but having a very low influence far-away. An example of the effects of
such a competition has been given recently by the authors for Eq. (1.1) in the borderline
case p = m and with the Hardy potential K|x|−2, 0 < K ≤ (N − 2)2/4, in the short note
[24]. By means of a transformation to the porous medium equation, an interesting case of
continuation after blow-up is found: all the solutions blow up (either instantaneously or in
finite time) only at x = 0, but they keep belonging to the functional spaces allowing for the
development of the weak theory for any t > 0. The optimal Hardy constant K = (N−2)2/4
limits the existence and non-existence ranges in this specific quasilinear case treated in [24]
in the same way as it did for the linear case in [4]. In another recent contribution [22],
a unique self-similar solution presenting grow-up as t → ∞ but not finite time blow-up is
constructed for the equation

∂tu = ∆um + |x|σup, (x, t) ∈ RN × (0,∞), (1.5)

in the range of exponents −2 < σ < 0 and 1 ≤ p < 1− σ(m− 1)/2 < m, but the limiting
case σ = −2 is not considered there.

We may thus say that the current paper completes the theory established in these
previous works, but with a different outcome if compared to them. More specifically,
although the techniques we employ are analogous to the ones in [26] and based on a phase
space analysis, there are significant differences both in the form of the self-similar solution
and in the method for proving the uniqueness part. More precisely, as we shall make
rigorous below, our self-similar solution has a vertical asymptote at x = 0 for any t > 0,
but it belongs to the functional spaces required for the weak theory to hold true. This is
in striking contrast with the grow-up solution identified in [26] for σ ∈ (−2, 0), since in
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the latter case the unique self-similar solution was bounded for any t > 0 and fulfilling
u(0, t) = ∥u(t)∥∞ ∈ (0,∞), ∂xu(0, t) = 0 for any t > 0. The presence of this ”weak vertical
asymptote” at the origin in our case involves a careful analysis in suitable neighborhoods of
the origin in order to prove the uniqueness result (see the final part of Section 5), as x = 0
can no longer be seen as a contact point to follow the same analysis as in [26, Section 5].

Main results. Our first goal is to construct a specific self-similar solution to Eq. (1.1).
Recalling the more general form (1.5) (where σ = −2 in the case of Eq. (1.1)), we have
seen in previous works that an essential number for the expected type and behavior of the
self-similar solution (according to [25, 21, 22]) is

L = σ(m− 1) + 2(p− 1) = 2(p−m) < 0,

in our range of exponents p ∈ [1,m), thus we expect again to have self-similar solutions
in forward form (if any) with grow-up as t → ∞, that is, in the general form u(x, t) =
tαf(|x|t−β) for some α > 0, β > 0 to be determined. These self-similarity exponents
(whose general form is given in, for example, [22]) become for σ = −2

α = − σ + 2

σ(m− 1) + 2(p− 1)
= 0, β = − m− p

σ(m− 1) + 2(p− 1)
=

1

2
.

It follows that self-similar solutions to Eq. (1.1) (if existing) are expected to have the form

u(x, t) = f(ξ), ξ = |x|t−1/2, (1.6)

where the self-similar profile f(ξ) is a solution to the following differential equation

(fm)′′(ξ) +
N − 1

ξ
(fm)′(ξ) +

1

2
ξf ′(ξ) + ξ−2f(ξ)p = 0. (1.7)

We are now in a position to state our first main result, concerning the uniqueness of a
specific self-similar solution with compact support to Eq. (1.1).

Theorem 1.1. Let m > 1, p ∈ [1,m) and N ≥ 3. There exists a unique compactly
supported self-similar solution (in the sense of Definition 1.2 below) of the form (1.6) to
Eq. (1.1). Its self-similar profile is supported on an interval [0, ξ0] with ξ0 ∈ (0,∞), and
has the following local behavior at its endpoints

f(ξ) ∼
[
− m− p

m(N − 2)
ln ξ +K

]1/(m−p)

, as ξ → 0, ξ > 0, (1.8)

for some K ∈ R, and

f(ξ) ∼
[
m− 1

4m
(ξ20 − ξ2)

]1/(m−1)

+

, as ξ → ξ0 ∈ (0,∞), ξ < ξ0. (1.9)

We notice that the self-similar solution given by Theorem 1.1 is not a “standard”
solution at x = 0, since it has a vertical asymptote at ξ = 0, as it follows from the
local behavior (1.8), but which is of logarithmic type, thus belonging to any Lp space for
p ∈ [1,∞). We thus need to introduce a formulation of the notion of solution to Eq. (1.1).
This is the content of the next definition, denoting in it and in the sequel by u(t) the
mapping x 7→ u(x, t) for a fixed t ≥ 0. We recall here that sometimes this type of solution
is referred as very weak solution, since we pass all the Laplacian to the test function.
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Definition 1.2. By a weak solution to Eq. (1.1) we understand a function u ∈ C((0, T ) :
L1(RN )) for some T > 0, which moreover satisfies the following assumptions:

�

u(t), um(t) ∈ L1(RN ),
up(t)

|x|2
∈ L1(RN ), for any t ∈ (0, T ).

� u is a solution in the sense of distributions to Eq. (1.1), that means that for any
φ ∈ C2,1

0 (RN × (0, T )) and for any t1, t2 ∈ (0, T ) with t1 < t2 we have∫
RN

u(t2)φ(t2) dx−
∫
RN

u(t1)φ(t1) dx−
∫ t2

t1

∫
RN

u(t)φt(t) dx dt

−
∫ t2

t1

∫
RN

um(t)∆φ(t) dx dt =

∫ t2

t1

∫
RN

up(t)

|x|2
φ(t) dx dt.

(1.10)

We say that a function u ∈ C([0, T ) : L1(RN )) for some T > 0 is a weak solution to the
Cauchy problem (1.1)-(1.2) if u is a weak solution to Eq. (1.1) and the initial condition is
taken in L1 sense, that is u(t) → u0 as t → 0 with convergence in L1(RN ).

The functional framework in Definition 1.2 is inspired by the one introduced in [36,
Section 6.2 and Problem 6.2] for the standard porous medium equation, but with the
adaptation required to cope with the reaction term including a singular potential at x = 0.
We emphasize here that with this notion of solution, we refrain from entering the rather
technical problem of convergence of the gradients of the approximating family of solutions
in Section 6. Of course, the self-similar solution in Theorem 1.1 is unbounded at x = 0 but
it stays bounded at any t > 0 and at any x with |x| > 0, as it is readily seen from (1.6),
and it is easily shown that it fulfills the conditions of Definition 1.2. Such a situation of
solutions having a single blow-up point at the origin but remaining a weak solution to the
equation (in suitable Lebesgue or Sobolev spaces) at any t > 0 has been also met in the
limiting case p = m to Eq. (1.1) in [24]. Let us finally mention here that, as a by-product
of the techniques we use, we classify in the body of this paper all the possible local behaviors
of self-similar profiles solving Eq. (1.7).

Using the self-similar solution obtained in Theorem 1.1 in the form of a “friendly giant”,
that is, a very large supersolution which allows for bounds from above and dominated
convergence in approximating processes (see [36, Section 5.9] for the classical notion of
“friendly giant” for the porous medium equation), we can establish existence of at least a
weak solution for any bounded and compactly supported initial condition.

Theorem 1.3. Let m > 1, p ∈ [1,m) and N ≥ 3 and let u0 be a function satisfying (1.2).
Then the Cauchy problem (1.1)-(1.2) has at least a weak solution in the sense of Definition
1.2.

As a consequence of this theorem, we obtain that there is no constant limiting between
existence and non-existence of solutions. More precisely

Remark. Let m > 1, p ∈ [1,m) and N ≥ 3 and let u0 be a function satisfying (1.2). For
any K > 0, the Cauchy problem associated to the equation

∂tu = ∆um +K|x|−2up, (x, t) ∈ RN × (0,∞), (1.11)
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with initial condition u(x, 0) = u0(x) for any x ∈ RN , admits at least a weak solution in the
sense of Definition 1.2. This fact follows readily by employing a scaling argument. Indeed,
by setting

u(x, t) = λ1/(m−1)v(x, λt), s = λt, λ = K(m−1)/(m−p) (1.12)

we find that v introduced in (1.12) solves Eq. (1.1) with an initial condition v0(x) =
K−1/(m−p)u0(x), which also satisfies (1.2). The existence Theorem 1.3 can be then applied
and we get the desired result by undoing the rescaling (1.12).

This is a striking difference with the well-known result of instantaneous complete blow-
up established by Baras and Goldstein [4] for the linear case m = p = 1 when K >
(N − 2)2/4 and also noticed for the other limiting case p = m > 1 in [24]. Indeed, the fact
that p ̸= m is fundamental for removing this upper bound on the constant K for existence
of weak solutions, since it allows for a rescaling of Eq. (1.11) which makes it equivalent to
Eq. (1.1), that is with K = 1, while such a rescaling is not available when p = m. As for
the proof of Theorem 1.3, it is a constructive one based on an approximation with a family
of solutions to regular problems, and the “friendly giant” coming from Theorem 1.1 will be
decisive in ensuring dominated convergence of the approximating family.

Structure of the paper. The proof of Theorem 1.1 is based on a change of variable
transforming Eq. (1.7) into a quadratic autonomous dynamical system and then allowing
to employ the technique of a phase-space analysis to study the orbits connecting critical
points, which will be equivalent to self-similar profiles with specified local behavior. Such
a technique had been used recently with success by the authors in classifying self-similar
solutions to reaction-diffusion equations, see for example works such as [23, 25, 21, 27]. We
thus devote two different sections for the preliminary analysis, a Section 2 concerning the
local analysis of the finite critical points, followed by Section 3 devoted to the critical points
at infinity, where the claimed logarithmic local behavior at ξ = 0 is identified. Existence
and uniqueness of self-similar solutions comes next and is split again into two Sections 4
and 5. Finally, a single Section 6 is dedicated to the construction of the approximating
solutions and the proof of Theorem 1.3. The paper ends with a short section where open
problems are raised and new developments of the theory of Eq. (1.1) are suggested.

2 The dynamical system. Local analysis

We begin here our analysis of the differential equation (1.7) solved by the self-similar profiles
to Eq. (1.1). The following easy result will be very useful in the forthcoming analysis.

Lemma 2.1. A self-similar profile to Eq. (1.1) cannot have positive local minima. In
particular, any profile f(ξ) decreasing for a short interval ξ ∈ (0, δ) will decrease on all its
positivity set.

Proof. Assume for contradiction that ξ1 ∈ (0,∞) is a local minimum point. We infer from
evaluating Eq. (1.7) at ξ = ξ1 that

(fm)′′(ξ1) = −ξ−2
1 f(ξ1)

p < 0,

which is a contradiction with the standard properties of a minimum point.
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We introduce now the following change of variable

X(ξ) = mξ−2f(ξ)m−1, Y (ξ) =
m

ξ
f(ξ)m−2f ′(ξ), Z(ξ) = ξ−2f(ξ)p−1, (2.1)

together with the new independent variable η defined via the differential equation

dη

dξ
=

1

m
ξf(ξ)1−m.

This change of variable converts Eq. (1.7) into the following quadratic autonomous system
Ẋ = X[(m− 1)Y − 2X],

Ẏ = −Y 2 − 1
2Y −NXY −XZ,

Ż = Z[(p− 1)Y − 2X],

(2.2)

where the dot derivatives are taken with respect to the independent variable η. Moreover,
we observe that X ≥ 0, Z ≥ 0 and the coordinate planes {X = 0} and {Z = 0} are
invariant for the system (2.2). Another simple but useful remark is that the flow of the
system (2.2) over the plane {Y = 0} has always negative direction. The system (2.2) has
the following finite critical points

P0 = (0, 0, 0), P1 =

(
0,−1

2
, 0

)
, P γ = (0, 0, γ), for γ > 0,

which will be analyzed below.

Lemma 2.2 (Local analysis near P0). The critical point P0 behaves like an attractor for
orbits coming from the half-space {X > 0} of the phase space associated to the system (2.2).
The orbits entering it contain profiles with the local behavior

lim
ξ→∞

f(ξ) = K > 0, (2.3)

for any constant K > 0.

Proof. The linearization of the system (2.2) in a neighborhood of P0 has the matrix

M(P0) =

 0 0 0
0 −1

2 0
0 0 0

 ,

thus we have a two-dimensional center manifold and a one-dimensional stable manifold.
According to [8, Lemma 1, Section 2.4], all the orbits entering or going out of the critical
point except for the trivial one are tangent to the center manifold. The Center Manifold
Theorem [32, Theorem 1, Section 2.12] together with the approximation theorem [8, The-
orem 3, Section 2.5] ensure that the center manifold near P0 is well approximated by a
quadratic expansion of the form

Y = h(X,Z) = aX2 + bXZ + cZ2 +O(|(X,Z)|3),

7



with coefficients a, b, c to be determined from the equation of the center manifold. Straight-
forward calculations lead to a = c = 0 and b = −2, thus

h(X,Z) = −2XZ +XO(|(X,Z)|)2, (2.4)

where the fact that all the terms in the center manifold are a multiple of X follows readily
from the equation for the center manifold. According thus to the reduction theorem [8,
Theorem 2, Section 2.4], the flow on the center manifold is given by the reduced system
obtained by replacing Y by h(X,Z) in the equations for Ẋ and Ż in (2.2), namely{

Ẋ = −2X2 +X2O(|(X,Z)|),
Ż = −2XZ +XO(|(X,Z)|2), (2.5)

thus all the orbits enter the critical point P0 on the center manifold. The local behavior of
the profiles contained in these orbits is obtained in a first approximation by an integration
in the reduced system (2.5), leading to X ∼ KZ for any constant K > 0, which readily
gives f(ξ) ∼ K after undoing the change of variable (2.1). Moreover, since on these orbits
X → 0 and Z → 0, we infer from (2.1) and the fact that f(ξ) ∼ K that such local behavior
is taken as ξ → ∞, as claimed.

Lemma 2.3 (Local analysis near P1). The system (2.2) has in a neighborhood of the critical
point P1 a two-dimensional stable manifold and a one-dimensional unstable manifold. The
orbits entering P1 on the stable manifold contain profiles with an interface behavior at some
point ξ0 ∈ (0,∞) given by (1.9).

Proof. The linearization of the system (2.2) in a neighborhood of P1 has the matrix

M(P1) =

 −m−1
2 0 0

N
2

1
2 0

0 0 −p−1
2

 ,

thus the two-dimensional stable manifold and the one-dimensional unstable manifold are
obvious. The local behavior near P1 is given by the fact that Y → −1/2 on the orbits
entering P1, together with the fact that X → 0 and Z → 0. If this behavior would be taken
as ξ → ∞, then by writing Y (ξ) = mξ−1(fm−1)′(ξ)/(m− 1), the fact that

ξX ′(ξ) = −2X(ξ) + (m− 1)Y (ξ)

together with an application of [19, Lemma 2.9] for the function X(ξ) would imply that
there exists a sequence ξk → ∞ such that Y (ξk) → 0 and a contradiction to the fact that
Y (ξ) → −1/2. We thus deduce that the local behavior is taken, in terms of profiles, as
ξ → ξ0 ∈ (0,∞) from the left, which gives first that f(ξ0) = 0 and then

(fm−1)′(ξ) ∼ (m− 1)ξ

2m
, as ξ → ξ0,

whence the local behavior given by (1.9) follows by integration on a generic interval (ξ, ξ0).

We are left with the critical half-line containing the points P γ with γ > 0. We shall see
that such points cannot contain any orbit of interest for us.
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Lemma 2.4 (Local analysis near P γ). There are no interesting profiles f(ξ) contained in
orbits of the system (2.2) connecting to or from any of the points P γ with γ > 0.

The proof is rather tedious but follows absolutely analogous steps as in [22, Lemma
2.3], the fundamental aspect of the non-existence of orbits entering these points being the
fact that σ(m− 1) + 2(p− 1) < 0, which holds true in our case as σ = −2 and p < m. We
thus omit the calculations and refer the interested reader to imitate step by step the proof
of [22, Lemma 2.3] given with all the details in the reference, following exactly the same
changes of variable as there to reach the conclusion.

Differences for p = 1. In the case p = 1 a difference with respect to the analysis of the
critical point P1 appears, since this single critical point is replaced for p = 1 by the critical
line

P γ
1 =

(
0,−β

α
, γ

)
, γ > 0.

Lemma 2.5 (Analysis of the points P γ
1 for p = 1). For any γ > 0, the critical point

P γ
1 has a one-dimensional stable manifold, a one-dimensional unstable manifold and a

one-dimensional center manifold. The orbits entering P γ
1 on the stable manifold contain

profiles with interface behaving as in (1.9), while both the center manifold and the unstable
manifold are contained completely in the invariant plane {X = 0}.

The proof is easy as the local behavior of the profiles is obtained in the same way as
in Lemma 2.3 since it still holds true that Y → −1/2 and X → 0 on these orbits. See also
[23, Lemma 2.2] for more details.

3 Local analysis of the critical points at infinity

This section is devoted to the local analysis of the critical points of the system (2.2) at
the infinity of the space. This analysis is needed in order to complete the panorama of
all possible behaviors of the profiles f(ξ) solutions to Eq. (1.7). We pass to the Poincaré
hypersphere through the new variables (X,Y , Z,W ) defined as

X =
X

W
, Y =

Y

W
, Z =

Z

W

and we infer from standard theory [32, Theorem 4, Section 3.10] that the critical points
at space infinity lie on the equator of the hypersphere, thus at points (X,Y , Z, 0) where

X
2
+ Y

2
+ Z

2
= 1 and the following system is satisfied:

X[XZ + (N − 2)XY +mY
2
] = 0,

(p−m)XY Z = 0,

Z[pY
2
+ (N − 2)XY +XZ] = 0,

(3.1)

Taking into account that we are considering only points with coordinates X ≥ 0 and Z ≥ 0
and that we are working in dimension N ≥ 3, we find the following critical points on the
Poincaré hypersphere:

Q1 = (1, 0, 0, 0), Q2,3 = (0,±1, 0, 0), Q4 = (0, 0, 1, 0),

Q5 =

(
m√

(N − 2)2 +m2
,− N − 2√

(N − 2)2 +m2
, 0, 0

)
.
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The analysis of the critical point Q1 will be of utmost importance for the rest of the paper.
Both critical points Q1 and Q5 can be analyzed by projecting on the X variable according
to the theory in [32, Section 3.10]. More precisely, [32, Theorem 5(a), Section 3.10] ensures
that, if we let

y =
Y

X
, z =

Z

X
, w =

1

X
, (3.2)

the critical points at infinity Q1 and Q5 can be identified with the critical points (0, 0, 0),
respectively (−(N − 2)/m, 0, 0) of the following system

ẏ = −(N − 2)y − z −my2 − 1
2yw,

ż = −(m− p)yz,
ẇ = 2w − (m− 1)yw,

(3.3)

obtained by plugging (3.2) into the equations of the system (2.2).

Lemma 3.1 (Local analysis near Q1). The critical point Q1 presents a two-dimensional
center-unstable manifold and a one-dimensional stable manifold. The orbits going out on
the center-unstable manifold contain profiles with the local behavior (1.8) as ξ → 0, while
the stable manifold is contained in the invariant plane {w = 0}.

Proof. The linearization of the system (3.3) in a neighborhood of Q1 = (0, 0, 0) has the
matrix

M(Q1) =

 −(N − 2) −1 0
0 0 0
0 0 2

 .

We set g := (N − 2)y + z in order to put the system (3.3) into the canonical form for the
center manifold theorem, that is

ġ = −(N − 2)g − (g − z)
[

m
N−2g −

p
N−2z +

1
2w
]
,

ż = −m−p
N−2z(g − z),

ẇ = 2w − m−1
N−2w(g − z),

and the center manifold has the form (g(z), w(z)). We easily infer by setting g(z) =
az2 +O(z3), w(z) = bz2 +O(z3) and applying the approximation theorem [8, Theorem 3,
Section 2.5] that a = −p/(N − 2)2 and b = 0 and thus g(z) = −pz2/(N − 2)2+O(z3), that
is, (N − 2)y+ z = −pz2/(N − 2)2+O(z3) and the flow on any (possible not unique) center
manifold is given by the reduced equation

ż =
m− p

N − 2
z2.

We thus find that on the center manifolds we have an unstable flow, going out of Q1.
This is linked with the one-dimensional unstable manifold to generate a center-unstable
manifold, whose orbits behave in a sufficiently small neighborhood of Q1 as the solutions
of the approximating system {

ż = m−p
N−2z

2,

ẇ = 2w + m−1
N−2zw.

(3.4)

10



The system (3.4) can be integrated to find that

w ∼ Cz(m−1)/(m−p)e−2(N−2)/(m−p)z, C ∈ (0,∞), (3.5)

which is equivalent in terms of profiles to

1

m
ξ2f(ξ)1−m ∼ C

[
f(ξ)p−m

m

](m−1)/(m−p)

exp

[
−2m(N − 2)

m− p
f(ξ)m−p

]
.

We perform straightforward calculations in the right hand side of the previous equivalence
to get that

f(ξ)m−p ∼ K − m− p

m(N − 2)
ln ξ, (3.6)

where K ∈ R is an arbitrary constant. Moreover, since z = Z/X → 0 at Q1, we get that
f(ξ)p−m → 0, that is, f(ξ) → ∞. This implies that necessarily the equivalence (3.6) is
taken in the limit as ξ → 0 and the claimed local behavior (1.8) follows.

Lemma 3.2 (Local analysis near Q5). The critical point Q5 is an unstable node. The
orbits going out of it contain profiles with the local behavior

f(ξ) ∼ Dξ−(N−2)/m, as ξ → 0, (3.7)

with D > 0 arbitrary.

Proof. The linearization of the system (3.3) near Q5 = (−(N − 2)/m, 0, 0) has the matrix

M(Q5) =

 N − 2 −1 N−2
2m

0 (m−p)(N−2)
m 0

0 0 2 + (m−1)(N−2)
m

 ,

hence Q5 is an unstable node, since we are in dimension N ≥ 3. The orbits going out of it
satisfy y → −(N − 2)/m, that is

ξf ′(ξ)

f(ξ)
→ −N − 2

m
, (3.8)

while also z → 0, that is, Z/X = f(ξ)p−m → 0, which leads to f(ξ) → ∞. A simple
argument by contradiction shows that if these limits are taken as ξ → ξ0 ∈ (0,∞), then an
integration in (3.8) would contradict the fact that f(ξ) → ∞ as ξ → ξ0. It thus follows that
all the previous limits are taken as ξ → 0 and by integration we find the claimed behavior
(3.7).

The critical points Q2 and Q3 are analyzed through the change of variable

x =
X

Y
, z =

Z

Y
, w =

1

Y
,

according to [32, Theorem 5(b), Section 3.10], leading to the system
±ẋ = −mx− (N − 2)x2 − 1

2xw − x2z,
±ż = −pz − 1

2zw − (N − 2)xz − xz2,
±ẇ = −w − 1

2w
2 −Nxw − xzw,

(3.9)
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where the signs have to be chosen according to the direction of the flow. We notice that
with respect to Q2 one has to choose the minus sign in (3.9), while when analyzing the flow
near Q3 one has to choose the plus sign, since Ẏ is negative near both Q2 and Q3 but the
direction of the flow is reversed. We thus identify Q2 with the origin of (3.9) when taken
the minus sign, which is an unstable node, and Q3 with the origin of (3.9) when taken the
plus sign, which is a stable node.

Lemma 3.3 (Local analysis near Q2 and Q3). The orbits going out of Q2 to the finite part
of the phase space contain profiles f(ξ) which change sign at some ξ0 ∈ (0,∞) in the sense
that f(ξ0) = 0, (fm)′(ξ0) > 0. The orbits entering the point Q3 from the finite part of the
phase space contain profiles f(ξ) which change sign at some ξ0 ∈ (0,∞) in the sense that
f(ξ0) = 0, (fm)′(ξ0) < 0.

The proof follows the same lines as in similar lemmas in previous works such as, for
example, [25, Lemma 2.6] for 1 < p < m and [23, Lemma 2.7] for p = 1 to which we
refer the reader. We are thus left with the critical point Q4, whose analysis employing [32,
Theorem 5(c), Section 3.10] is not easy to perform, since we are left with a critical point
having only zero eigenvalues after the corresponding change of variable. We thus work
directly with Eq. (1.7) in order to establish that no orbit either enters from or goes out
into the finite part of the phase space associated to the system (2.2).

Lemma 3.4. There are no profiles f(ξ) solutions to Eq. (1.7) contained in orbits entering
or going out of Q4 from or to the finite part of the phase space.

Proof. Assume for contradiction that there exist such profiles. An orbit connecting to Q4

satisfies the conditions Z → ∞, X/Z → 0, Y/Z → 0, which translated in terms of profiles
imply

ξ−2f(ξ)p−1 → ∞, f(ξ)m−p → 0, ξf(ξ)m−p−1f ′(ξ) → 0, (3.10)

the limits in (3.10) being taken either as ξ → ∞, or as ξ → ξ0 ∈ (0,∞), or as ξ → 0. Notice
first that the second limit in (3.10) and the fact that m > p already give that f(ξ) → 0,
which, together with the first limit in (3.10) and the fact that p ≥ 1, immediately rule out
the possibility that the limits are taken as ξ → ∞ or as ξ → ξ0 ∈ (0,∞). It remains to
show that the limits in (3.10) cannot hold true as ξ → 0. But this follows the proof in [22,
Lemma 3.5, Step 3] by simply letting therein σ = −2 without any further change.

We are now ready to move towards the global analysis of the system (2.2) and prove
Theorem 1.1.

4 Proof of Theorem 1.1: existence part

This section is dedicated to the proof of the existence of a self-similar profile with the local
behavior given in the statement of Theorem 1.1. The proof borrows ideas from [22, Section
4] (thus we will skip a few details given in the quoted reference) and is based on a shooting
technique on the two-dimensional center-unstable manifold near Q1 (according to Lemma
3.1) performed in the system (3.3). Notice that the center-unstable manifold is tangent to
the vector space spanned by the eigenvector e3 = (0, 0, 1) corresponding to the eigenvalue
λ3 = 2 of the matrix M(Q1) and the direction e2 = (−1, N − 2, 0) of any center manifold
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(which might not be unique), which according to Lemma 3.1 are tangent to the direction
(N − 2)y + z = 0. These vectors belong to the invariant planes {z = 0}, respectively
{w = 0} and the trajectories go out tangent to the one-parameter family of curves given
by (3.5) for C ∈ (0,∞). We thus have to explore the global behavior of the limiting orbits
belonging to the invariant planes.

Proposition 4.1. There exists C∗ > 0 such that the orbits going out of Q1 tangent to the
curves (3.5) with C ∈ (0, C∗) enter the critical point Q3.

Proof. We study the limit orbit with w = 0 by working on the reduced system obtained
from (3.3) in the invariant plane {w = 0}, that is{

ẏ = −(N − 2)y −my2 − z,
ż = −(m− p)yz.

(4.1)

The orbit going out of Q1 goes out tangent to the direction e2 = (−1, N −2), thus it enters
the half-plane {y < 0}. Since the flow of the system (4.1) on the line {y = 0} is negative,
it follows that the orbit stays forever in the negative half-plane. Consider now the isocline

−(N − 2)y −my2 − z = 0, (4.2)

and notice that the orbit goes out tangent to it. But since in the half-plane {y < 0} we have
always ż > 0 and the orbit starts decreasingly in y and increasingly in z near Q1 = (0, 0),
we infer that

dy

dz
=

(N − 2)y + z +my2

(m− p)yz
< 0

in a small neighborhood of Q1, hence the orbit enters the region R := {y < 0, z > −(N −
2)y−my2}. Furthermore, since the direction of the flow of the system (4.1) on the isocline
(4.2) is given by the sign of (m − p)yz < 0, it follows that our orbit going out of Q1 will
remain forever in the region R. Thus, along it we always have ẏ < 0, ż > 0, which means
that y and z have a limit along the trajectory. We prove that z → ∞ and y → −∞ by
removing all the other possibilities. Indeed, if this was not the case, our orbit would be in
one of the following three situations:

• y → y0 ∈ (−∞, 0), z → z0 ∈ (0,∞). Then (y0, z0) must be a finite critical point of
the system (4.1) and there is no such point.

• y → y0 ∈ (−∞, 0) and z → ∞. It follows that

dy

dz
=

(N − 2)y +my2 + z

(m− p)yz
→ 1

(m− p)y0
< 0

and this contradicts the existence of a vertical asymptote of the trajectory at y = y0 since
in such case we would have dy/dz → −∞ at least on some subsequence yk → y0.

• y → −∞ and z → z0 ∈ (0,∞). We have for y very large in absolute value and z close
to z0 that

dy

dz
∼ my

(m− p)z0
, whence y ∼ Kemz/(m−p)z0 → Ke(m−p)/m

and again we reach a contradiction.
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We thus conclude that y → −∞ and z → ∞ along this trajectory, thus for y and z very
large in absolute value

dy

dz
∼ m

m− p

y

z
+

1

(m− p)y
,

which leads to the following first approximation of the trajectory:

y2 ∼ Kz2m/(m−p) − 2z

m+ p
∼ Kz2m/(m−p), K > 0. (4.3)

where for the latter equivalence we took into account that 2m/(m − p) > 2. Thus y ∼
−Kzm/(m−p) for y, z sufficiently large in absolute value and some K > 0, which gives
y/z ∼ −Kzp/(m−p) → −∞, or in terms of the initial variables Y and Z, we also get
Y/Z → −∞. We also notice that y → −∞ translates into Y/X → −∞ in the variables
given by (2.1), thus the orbit has to enter a critical point characterized by

Y

X
→ −∞,

Y

Z
→ −∞

in a neighborhood of it, and this point is Q3 according to the classification given in Section
3. Moreover, since Q3 is a stable node according to Lemma 3.3 and the orbit going out
of Q1 included in the plane {w = 0} corresponds to the parameter C = 0 in (3.5), we
reach the conclusion by standard continuity arguments similar to the ones employed in, for
example, [25, Proposition 3.4] or [26, Proposition 3.3].

Proposition 4.2. There exists C∗ > 0 such that the orbits going out of Q1 tangent to the
curves (3.5) with C ∈ (C∗,∞) enter the critical point P0.

Proof. We now analyze the limit orbit going out of Q1 and contained in the invariant plane
{z = 0}, which is the unique orbit going out of the critical (saddle) point Q1 = (0, 0) of
the reduced system obtained from (3.3) by letting z = 0, that is{

ẏ = −(N − 2)y −my2 − 1
2yw,

ẇ = w(2− (m− 1)y).
(4.4)

This orbit goes out of Q1 tangent to e3 = (0, 1) and it has to stay on the invariant line
{y = 0}. In fact, one can easily see that the two orbits (going out and entering Q1 = (0, 0)
in the system (4.4)) lie on the two axis of (4.4) since both are invariant sets. Thus this
orbit will coincide with the axis {y = 0} for any w > 0. In terms of the variables X = 1/w,
Y , Z, this shows that the limit orbit has to belong to the X axis and thus trivially enters
P0. In order to end the proof, since +∞ is not a number in order to apply a continuity
argument in a neighborhood of it, we have to reverse (3.5) and write it as

g(z) =
1

C
w = C1w, g(z) = z(m−1)/(m−p)e−2(N−2)/(m−p)z.

Noticing that lim
z→0

g(z) = 0, we observe that the orbit included in the invariant plane {z = 0}
lies at the limit C1 → 0, C1 > 0 of the orbits in (3.5), which corresponds to C → +∞.
Since, according to Lemma 2.2, P0 is a stable point for orbits coming from the half-space
{X > 0} of the phase space associated to the system (2.2), the conclusion follows once
more from a continuity argument applied for C1 in a right-neighborhood of zero.
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Before going to the proof of the existence, we need one more preparatory result proving
that at least two coordinates are monotone along all the orbits going out of Q1. This is
essential in order to prevent such orbits from oscillating infinitely many times.

Lemma 4.3. The coordinates X and Z are decreasing along the orbits going out of Q1.

Proof. The flow of the system (2.2) over the plane {Y = 0} is given by the sign of the
expression −XZ ≤ 0, thus no orbit can cross the plane {Y = 0} from left to right. Since
the orbits going out of Q1 enter the half-space {Y < 0}, they will stay forever in this
negative half-space, hence Ẋ < 0 and Ż < 0 on these orbits, as claimed.

We can now complete the proof of the existence of the specific self-similar profile.

Proof of Theorem 1.1: existence. We associate (by tangency) the manifold going out of
Q1 with the one-parameter family of curves given by (3.5) as explained before. We then
consider the following three sets

A = {C ∈ (0,∞) : the orbit with parameter C in (3.5) enters P0},
C = {C ∈ (0,∞) : the orbit with parameter C in (3.5) enters Q3},
B = {C ∈ (0,∞) : the orbit with parameter C in (3.5) does neither enter P0 nor Q3}.

We then deduce from Propositions 4.1 and 4.2 and the fact that Q3 is a stable node, while
P0 is an attractor for the orbits coming from the region {X > 0} of the phase space, that
both sets A and C are open and non-empty. It then follows that B is closed and non-empty.
Let now C ∈ B. The orbit going out of Q1 tangent to the curve (3.5) corresponding to
this value of C does not enter P0, nor Q3 and we infer from the monotonicity of its X
and Z components established in Lemma 4.3 that it has to enter a critical point. This
can be easily seen by showing that the coordinate Y also has a limit along the orbit, by
considering possible sequences of maxima and minima of the Y component and prove that
they converge to the same value. A detailed proof of this rather standard argument follows
the one of [20, Proposition 4.10]. It thus have to enter the unique remaining critical point
which has a stable manifold, that is P1. The profiles contained in such orbits corresponding
to C ∈ B fulfill the statement of Theorem 1.1.

We thus conclude that all the profiles going out of Q1 are decreasing on their support
and are either compactly supported or having a horizontal asymptote as ξ → ∞. This fact
will be used in the proof of the uniqueness of the profile with interface, performed in the
next section.

5 Proof of Theorem 1.1: uniqueness

In this section we complete the proof of Theorem 1.1 by establishing that the set B intro-
duced in the proof of the existence part is in fact a singleton. This will be done at the level
of the profiles, by showing first that the profiles contained in orbits going out of Q1 remain
strictly ordered with respect to the free parameter K ∈ R in (1.8) during all their support.
To this end, we use a rescaling and sliding technique stemming from (up to our knowledge)
Friedman and Kamin [12] but used in many works such as [28, 39, 22] among others. The
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first result is the following monotonicity lemma with respect to K. To fix the notation, let
f(·;K) be the profile contained in the orbit going out of Q1 with local behavior given by
(1.8) for given K ∈ R.

Lemma 5.1. Let −∞ < K1 < K2 < ∞. Then we have f(ξ;K1) < f(ξ;K2) for any ξ > 0
such that f(ξ;K1) > 0.

Proof. Let ξ1 ∈ (0,∞] be such that f(ξ;K1) > 0 for any ξ ∈ (0, ξ1). Since K1 < K2, we
infer from (1.8) that f(ξ;K1) < f(ξ;K2) for ξ in a right neighborhood of the origin. We
can thus introduce

ξ∗ = inf{ξ ∈ (0, ξ1) : f(ξ;K1) = f(ξ;K2)}. (5.1)

It follows that f(ξ;K1) < f(ξ;K2) for any ξ ∈ (0, ξ∗). Assume for contradiction that
ξ∗ < ξ1, that is, the two profiles cross each other before the edge of the support of the first
one. We next argue as in [39, 22] by letting first g1(ξ) = f(ξ;K1)

m, g2(ξ) = f(ξ;K2)
m,

which solve the differential equation

g′′(ξ) +
N − 1

ξ
g′(ξ) +

1

2
ξ(g1/m)′(ξ) + ξ−2g(ξ)p/m = 0, (5.2)

and then introduce for any λ ∈ [0, 1] the following rescaling (which is standard for the
porous medium equation):

fλ(ξ) = λ−2/(m−1)f(λξ;K1), gλ(ξ) = λ−2m/(m−1)g1(λξ). (5.3)

It follows from (5.2) and straightforward calculations that gλ is a solution to the differential
equation

g′′λ(ξ) +
N − 1

ξ
g′λ(ξ) +

1

2
ξ(g

1/m
λ )′(ξ) + λ2(p−m)/(m−1)ξ−2gλ(ξ)

p/m = 0. (5.4)

We furthermore observe that, if 0 < λ < λ′ < 1, due to the monotone decreasing character
of g1 over (0, ξ1), which follows from Lemma 2.1, we have g1(λ

′ξ) < g1(λξ) for any ξ ∈
(0, ξ1), and it follows readily that

gλ(ξ) = λ−2m/(m−1)g1(λξ) > λ′−2m/(m−1)g1(λ
′ξ) = gλ′(ξ)

and also
lim
λ→0

gλ(ξ) = lim
λ→0

λ−2m/(m−1)g1(λξ) = +∞

uniformly on [0, ξ∗]. Finally, we infer from the local behavior (1.8) that

g1(ξ) ∼
[

m− p

m(N − 2)
(− ln ξ) +K1

]m/(m−p)

, as ξ → 0

hence

gλ(ξ) ∼ λ−2m/(m−1)

[
m− p

m(N − 2)
(− ln ξ) +K1 −

m− p

m(N − 2)
ln λ

]
, as ξ → 0. (5.5)
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Since λ ∈ (0, 1), by letting λ sufficiently small in (5.5) such that

K1 −
m− p

m(N − 2)
ln λ > K2,

we get that gλ(ξ) > g2(ξ) for ξ in a right neighborhood of the origin. All the previous
arguments prove that the optimal sliding parameter

λ0 = sup{λ ∈ (0, 1) : g2(ξ) < gλ(ξ), for any ξ ∈ [0, ξ∗]} (5.6)

is correctly defined and we easily derive from (5.1) and (5.6) that λ0 ∈ (0, 1). We further-
more infer from the optimality of λ0 that g2(ξ) ≤ gλ0(ξ) for any ξ ∈ (0, ξ∗] and that there
exists ξ∗ ∈ (0, ξ∗] such that g2(ξ

∗) = gλ0(ξ
∗). Assume first that ξ∗ = ξ∗. This means that

gλ0(ξ
∗) = gλ0(ξ∗) = λ

−2m/(m−1)
0 g1(λ0ξ∗) > g1(ξ∗) = g2(ξ∗) = g2(ξ

∗),

which is a contradiction. Since ξ∗ > 0, we deduce that ξ∗ ∈ (0, ξ∗) and in this case the
function gλ0 − g2 has a minimum point at ξ = ξ∗, hence

gλ0(ξ
∗) = g2(ξ

∗), g′λ0
(ξ∗) = g′2(ξ

∗), g′′λ0
(ξ∗) ≥ g′′2(ξ

∗). (5.7)

We then deduce from Eq. (5.2) solved by g2, Eq. (5.4) solved by gλ0 and the inequalities
(5.7) that

0 = g′′2(ξ
∗) +

N − 1

ξ∗
g′2(ξ

∗) +
1

2
ξ∗(g

1/m
2 )′(ξ∗) + (ξ∗)−2g2(ξ

∗)p/m

≤ g′′λ0
(ξ∗) +

N − 1

ξ∗
g′λ0

(ξ) +
1

2
ξ∗(g

1/m
λ0

)′(ξ∗) + (ξ∗)−2gλ0(ξ
∗)p/m

= (ξ∗)−2
[
1− λ

2(p−m)/(m−1)
0

]
gλ0(ξ

∗)p/m < 0,

since λ0 ∈ (0, 1) and 2(p−m)/(m−1) < 0. We thus reach again a contradiction. It follows
that there cannot be any crossing point ξ∗ ∈ (0, ξ1) and thus the profiles remain ordered
on the support of the smallest one.

We still need one more preparatory lemma before going to the proof of the uniqueness
of the self-similar solution.

Lemma 5.2. Let λ ∈ (0, 1) and fλ be the function obtained from a profile f(ξ) solution to
Eq. (1.7) with interface (that is, corresponding to a parameter C ∈ B) through the rescaling
(5.3). Then the function

Uλ(x, t) = fλ(|x|t−1/2)

is a supersolution to Eq. (1.1).

Proof. A direct calculation gives

∂tUλ −∆Um
λ − |x|−2Up

λ =
1

t
ξ−2fλ(ξ)

p
(
λ2(p−m)/(m−1) − 1

)
> 0,

since λ ∈ (0, 1) and 2(p −m)/(m − 1) < 0. The conclusion follows from the fact that the
contact condition (fm)′(ξ0) = 0 at the edge of the support ξ0 ∈ (0,∞) remains invariant
with respect to the rescaling (5.3).
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The monotonicity given by Lemma 5.1 doesn’t yet give the uniqueness of the profiles
with C ∈ B, since there exists still the possibility of a contact exactly at the edge of the
support. In order to remove this contact, we go back to the full self-similar solutions as
follows.

Proof of Theorem 1.1: uniqueness. Assume for contradiction that there are two parameters
C1, C2 ∈ B corresponding to two self-similar profiles f(·;K1) and f(·;K2) such that −∞ <
K1 < K2 < ∞. We obtain from Lemma 5.1 that the two profiles are totally ordered on
the support of the smallest one. Letting ξ1, respectively ξ2 be the edges of the supports of
f(·;K1), respectively f(·;K2), we find that f(ξ;K1) < f(ξ;K2) for any ξ ∈ (0, ξ1] and that
ξ1 < ξ2. Consider now the rescaling (5.3) and the optimal sliding parameter λ0 ∈ (0, 1)
introduced in (5.6) for the functions gi(ξ) = f(ξ;Ki)

m, i = 1, 2. Since the proof of Lemma
5.1 already gives that no contact between gλ0 and g2 is possible for any ξ ∈ (0, ξ1), it follows
that the only possible contact lies at the edge of the support ξ = ξ2, hence

0 = f(ξ2;K2) = fλ0(ξ2), 0 < f(ξ;K2) < fλ0(ξ) for any ξ ∈ (0, ξ2).

We reintroduce the time variable and construct the functions

U2(x, t) = f(|x|t−1/2;K2), Uλ0(x, t) = fλ0(|x|t−1/2),

and notice that U2 is a solution to Eq. (1.1), while Uλ0 is a supersolution to Eq. (1.1)
according to Lemma 5.2. We next separate the supports of these functions by giving a
small time delay to the bigger function in order to remove the contact at ξ = ξ2 and
then adjust the scaling parameter. More precisely, we start with t = 1, where we have a
precise identification of the function and the self-similar profile, to notice that for any δ > 0
sufficiently small we have

U2(x, 1) ≤ Uλ0(x, 1) < Uλ0(x, 1 + δ),

which gives

U2(x, 1) < λ
−2/(m−1)
0 f(|x|λ0(1 + δ)−1/2;K1), |x| ∈ (0, ξ2]

and with a strict separation also in a right neighborhood of the origin as it follows from the
proof of Lemma 5.1. We can then adjust the scaling parameter by letting some λ1 ∈ (λ0, 1)
sufficiently close to λ0 in order to satisfy simultaneously the following conditions

U2(x, 1) < λ
−2/(m−1)
1 f(|x|λ1(1 + δ)−1/2;K1) = Uλ1(x, 1 + δ), (5.8)

for any x ∈ RN such that |x| ∈ (0, ξ2], and

m− p

m(N − 2)
(− ln |x|) +K2 < λ

−2(m−p)/(m−1)
1

[
m− p

m(N − 2)
(− ln |x|) +K2

− m− p

m(N − 2)
ln λ1

]
,

(5.9)

for any x ∈ RN such that |x| ≤ ϵ for some ϵ > 0 fixed. The latter follows easily from the
fact that λ1 ∈ (0, 1) and the dominant term (the one containing ln |x|) is exactly the same
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in both sides. We next deduce from (5.9) that the two functions U2 and Uλ1 separate even
more in the right neighborhood |x| ∈ (0, ϵ] of the origin at any later times t > 1, since

m− p

m(N − 2)
(− ln |x|) +K2 +

m− p

2m(N − 2)
ln t < λ

−2(m−p)/(m−1)
1

[
m− p

m(N − 2)
(− ln |x|) +K2

− m− p

m(N − 2)
ln λ1

]
+

m− p

2m(N − 2)
λ
−2(m−p)/(m−1)
1 ln(t+ δ),

for any t > 1 and x ∈ RN such that 0 < |x| ≤ ϵ. In particular, the latter implies that
U2(x, t) < Uλ1(x, t+δ) for any x ∈ RN such that |x| = ϵ and t ∈ (1,∞). We then apply the
comparison principle (see for example [2]) in the exterior domain (RN \ B(0, ϵ)) × (1,∞)
(where the weight is uniformly bounded) together with the estimate (5.9) to conclude that
U2(x, t) < Uλ1(x, t+ δ) for any (x, t) ∈ RN \ {0} × (1,∞). We thus find that

f(|x|t−1/2;K2) ≤ λ
−2/(m−1)
1 f(λ1|x|(t+ δ)−1/2;K1),

for any (x, t) ∈ RN \ {0} × (1,∞), or equivalently

f(ξ;K2) ≤ λ
−2/(m−1)
1 f

(
λ1ξ

(
t

t+ δ

)−1/2

;K1

)
,

for any ξ ∈ (0, ξ2] and t > 1. By passing to the limit as t → ∞ we immediately reach
a contradiction with the optimality of the scaling parameter λ0 introduced in (5.6). This
contradiction implies the uniqueness of the self-similar profile with interface and the proof
is complete.

6 Existence for general initial conditions

This section is devoted to the proof of Theorem 1.3. The main tools in the proof are the
construction of an approximating sequence of solutions to regular problems obtained by a
mollification of Eq. (1.1) near x = 0 together with a comparison with the unique self-similar
solution obtained from Theorem 1.1. Let us denote by

U(x, t) = f(|x|t−1/2), (x, t) ∈ RN × (0,∞) (6.1)

the unique self-similar solution given by Theorem 1.1. We start with the following rather
obvious preparatory result.

Lemma 6.1. Let u0 be a compactly supported function as in (1.2). Then there exists τ > 0
such that

u0(x) ≤ U(x, τ),

for any x ∈ RN .

Proof. Let R > 0 such that suppu0 ⊆ B(0, R). Since

lim
x→0

U(x, t) = +∞, for any t > 0
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it follows that there exists R0 > 0 such that U(x, 1) = f(|x|) > ∥u0∥∞ for any x ∈ RN

with 0 < |x| < R0. Let then τ be sufficiently large such that Rτ−1/2 < R0. Then for any
x ∈ RN such that 0 < |x| < R we have |x|τ−1/2 < R0, hence

U(x, τ) = f(|x|τ−1/2) > ∥u0∥∞ ≥ u0(x),

for any x ∈ B(0, R) (where comparison is extended at x = 0 trivially since the self-similar
solution is infinite there). Since u0(x) = 0 for |x| ≥ R, the conclusion follows.

We are now ready to complete the proof of the existence theorem.

Proof of Theorem 1.3. Let u0 be as in (1.2). For any ϵ > 0, consider the Cauchy problem
associated to the following regularized equation near x = 0

∂tu−∆um − (|x|+ ϵ)−2up = 0, (6.2)

with initial condition u(x, 0) = u0(x). Since the coefficient of the zero order term in
Eq. (6.2) belongs to L∞(RN ), standard theory for quasilinear parabolic equations (see for
example [30, Section 8, Chapter 5] and [3, Sections 3 and 5], in the latter Eq. (6.2) being
studied for ϵ = 1 but the same argument holds true with any ϵ > 0) gives that there exists
a unique solution uϵ to the Cauchy problem (6.2)-(1.2) and moreover, the comparison
principle holds true for Eq. (6.2). In particular, the solution uϵ fulfills the very weak
formulation of Eq. (6.2), which means that, in particular, for any φ ∈ C2,1

0 (RN × (0, T ))
and for any t1, t2 ∈ (0, T ) with t1 < t2 we have∫

RN

uϵ(t2)φ(t2) dx−
∫
RN

uϵ(t1)φ(t1) dx−
∫ t2

t1

∫
RN

uϵ(t)φt(t) dx dt

−
∫ t2

t1

∫
RN

umϵ (t)∆φ(t) dx dt =

∫ t2

t1

∫
RN

upϵ (t)

(|x|+ ϵ)2
φ(t) dx dt.

(6.3)

and the initial condition is taken in L1 sense. We furthermore observe that for any 0 <
ϵ1 < ϵ2 < ∞, the solution uϵ1 to Eq. (6.2) with ϵ = ϵ1 is a supersolution to Eq. (6.2) with
ϵ = ϵ2, since

(|x|+ ϵ1)
−2 > (|x|+ ϵ2)

−2.

The comparison principle applied for Eq. (6.2) with ϵ = ϵ2 then entails that uϵ1 ≥ uϵ2 if
ϵ1 < ϵ2. We thus obtain a monotone sequence of functions, hence there exists a pointwise
limit (which a priori might be equal to +∞)

u(x, t) = lim
ϵ→0

uϵ(x, t). (6.4)

Let us now consider the time delay τ > 0 given by Lemma 6.1 such that U(x, τ) ≥ u0(x) for
any x ∈ RN , where U(x, t) is the unique self-similar solution to Eq. (1.1) given by Theorem
1.1. It is immediate to check that U is a supersolution to Eq. (6.2) for any ϵ > 0. The
comparison principle applied to Eq. (6.2) leads to uϵ(x, t) ≤ U(x, t + τ), for any x ∈ RN ,
t > 0. We then infer that the limit function

u(x, t) = lim
ϵ→0

uϵ(x, t) ≤ U(x, t+ τ),
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for any (x, t) ∈ RN × (0,∞). In particular, we find that u(x, t) is globally defined (in time),
and that it belongs to the functional spaces in Definition 1.2, as being bounded from above
by the function U(x, t + τ) which belongs to these integral spaces. Moreover, since the
integrals in (6.3) are well defined in dimension N ≥ 3 if replacing uϵ by U(·, · + τ), we
can pass to the limit in the weak formulation (6.3) by using the Lesbesgue’s dominated
convergence theorem in order to find that the limit solution u(x, t) defined in (6.4) satisfies
the weak formulation (1.10) corresponding to Eq. (1.1). An easy argument based on the
monotone convergence theorem also gives that u0 is taken in L1 sense by u as limit when
t → 0. We can thus conclude that the function u defined in (6.4) is a weak solution to the
Cauchy problem (1.1)-(1.2).

Remark. The weak formulation we are using in this work avoids the problems of having to
pass to the limit on the gradients of the approximating functions, as it would have happened
if considering the more standard theory where only one integration by parts in the term
with the Laplacian is performed (instead of two). We believe that the same function u
introduced in (6.4) will also satisfy this slightly different weak formulation, but its proof
requires more work by establishing bounds on the gradients of uϵ. We refrain from entering
this discussion here.

Extensions, comments and open problems

The results in this paper represent only a first step towards the general theory of Eq. (1.1).
Indeed, our aim was not to construct a full theory of well-posedness of Eq. (1.1), but the
more modest objective of revealing an interesting behavior of a special, unique solution
in self-similar form to this equation and then show how an immediate application of it
is the existence of at least a global solution for any compactly supported and bounded
initial condition. This is already very noticeable, as it is in striking contrast with the cases
m = p = 1 or m = p > 1 where this existence is limited by the Hardy optimal constant.
Of course, there are many new developments that can be considered as further interesting
problems related to Eq. (1.1) and we suggest below some points to be addressed in the
future.

• uniqueness of solutions and comparison principle to Eq. (1.1). Recall that in Section
6 we have constructed the weak solutions as limits of an approximating process. Although
this strongly suggests that it is not likely to have a different process leading to different
solutions, there is no proof of uniqueness and comparison for solutions to Eq. (1.1). This
problem is completely non-trivial, since in the neighboring case of letting σ ∈ (−2, 0), we
have shown recently in [22] that uniqueness does not hold true by constructing a nonzero
solution stemming from zero initial condition, in the form of a forward self-similar solution.
In our case, we have the “feeling” that uniqueness of solutions should hold true, but a proof
of it does not seem obvious.

• instantaneous vertical asymptote at x = 0. Another open question suggested by the
present work is to establish whether a solution u(x, t) with initial condition u0 as in (1.2)
instantaneously blows up (by forming a vertical asymptote) at x = 0. In the limiting case
p = m with σ = −2, such an interesting instantaneous blow-up of a wide class of solutions
was established by the authors in [24], together with the interesting point (similar to our
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case) that this blow-up does not stop the solutions to stay in the suitable functional spaces
at any t > 0. A similar thing is expected to happen here. However, since comparison is
not yet available and the analysis of the self-similar profiles does not give a class of “small”
subsolutions to Eq. (1.1), estimates pushing u to increase very rapidly near x = 0 are to
be obtained.

• large time behavior of solutions. This is a very natural question once we have a very
strong candidate for the large time behavior, in the form of a unique self-similar solution
with some specific behavior. One can readily see that Lemma 6.1 also provides, in terms
of self-similar variables, an optimal upper bound for the general solutions. We then miss
a good lower bound that has to be obtained in a different way, probably using energy-like
estimates and functional inequalities, in order to establish that the self-similar scale is the
right one for the dynamics of the equation. Moreover, a step of establishing compactness
(or Holder estimates for the solutions) is required for convergence.
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[20] R. G. Iagar, Ph. Laurençot and A. Sánchez, Self-similar shrinking of supports and non-
extinction for a nonlinear diffusion equation with strong nonhomogeneous absorption,
Submitted (2022), Preprint ArXiv no. 2204.09307.
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