Bioaccumulation and effects of metals bound to sediments collected from Gulf of Cádiz (SW Spain) using the polychaete, *Arenicola marina*

Judit Kalman (⊠)

Instituto de Ciencias Marinas de Andalucía, CSIC Polígono Río San Pedro s/n. 11510 Puerto Real (Cádiz). Spain.

Cátedra UNESCO/UNITWIN/WiCop. Facultad de Ciencias del Mar y Ambientales.Universidad de Cádiz.

Polígono Río San Pedro s/n.

11510 Puerto Real (Cádiz). Spain

e-mail: judit.kalman@uca.es

Inmaculada Riba, Angel DelValls

Cátedra UNESCO/UNITWIN/WiCop. Facultad de Ciencias del Mar y Ambientales.Universidad de Cádiz. Polígono Río San Pedro s/n. 11510 Puerto Real (Cádiz). Spain

Julian Blasco

Instituto de Ciencias Marinas de Andalucía, CSIC Polígono Río San Pedro s/n. 11510 Puerto Real (Cádiz). Spain.

1 Introduction

2

3 Sediments are widely recognized and employed in assessing the impact of contaminants on aquatic systems (Bryan and Langston 1992) as chemicals normally have 4 considerable higher concentrations in sediments than in the water column. Given that 5 aquatic sediments can act as reservoir for persistent contaminants (e.g. trace metals), 6 7 organisms which live in and feed on sediment can accumulate considerable amount of contaminants. Thus, to assess the adverse effects of pollutants on the aquatic 8 9 sedimentary environment, several authors have proposed the use of sediment toxicity 10 tests (Chapman and Wang 2001). These kinds of tests aim to study the relationships 11 between the sediment concentration of chemicals and any adverse biological effects on the biota resulting from exposure to these chemicals. Therefore, the choice of test 12 13 organisms is essential for providing appropriate information of the hazards of chemical stressors (Chapman et al. 2002). Polychaetes, in particular A. marina have been used as 14 biomonitors of littoral and estuarine contamination (Packer et al. 1980; Bat 1998; 15 OSPAR 1995; Casado-Martínez et al. 2008; Morales-Caselles et al. 2008). Lugworms 16 17 are abundant, tolerant to a wide range of environmental factors and ecologically 18 important, moreover they live in direct contact with the sediment. 19 The majority of studies on metal availability in sediments are based on toxicity, however bioaccumulation may be a more accurate endpoint for assessing bioavailability 20 21 in risk assessment (Ankley et al. 1996). Trace metals may be bioavailable even if toxicity is not observed since toxicity depends on various factors such as the sensitivity 22 23 of organism, length of exposure period etc. Biological adverse effects of pollutants may also be manifested at the biochemical level in organisms or at higher levels of 24 25 organisation and responses are measurable. Biomarkers have been incorporated into

environmental toxicology research for decades, but they are still seldom used in a day to 26 27 day management of the environment (Handy et al. 2003). The biomarker based on the measurement of metallothionein-like protein (MTLP) concentration in biological tissues 28 represents a detoxification role for structures which have been reversibly impaired by 29 inappropriate metal binding (Martín-Díaz et al. 2007). They have been considered as 30 useful and suitable biomarkers of metal exposure in aquatic organisms (see review by 31 Amiard et al. 2006). 32 33 The aim of this work was to assess the bioavailability of metals bound to sediments

collected from twelve sampling sites along the Gulf of Cádiz, characterized with

35 different types and degrees of metal contaminations. In order to assess the defence

36 mechanisms against the accumulated metals, the induction of a typical biomarker,

37 metallothionein-like proteins was determined in tissues sampled after 7 and 14 days of

exposure. Data were integrated by multivariate analysis to correlate the concentrations

39 of contaminants and biological responses in the biota.

40

41 Materials and Methods

42

43 Study area, sample collection and characterization

44 Sediments were collected from twelve sampling sites along the southwest coast of Spain

45 (Table 1). Guadiana (sample 1, near the international bridge between Spain and Portugal

and sample 2 in the mouth of the river) and Huelva estuaries (sample 3 is more

47 influenced by the rivers Tinto and Odiel, and sample 4 in the Pedro Santo Channel) are

48 influenced by the surrounding mining area, moreover an industrial complex is located in

49 the proximity of Ría of Huelva. Sampling points in the Guadalquivir estuary (5 and 6)

50 are impacted by maritime transport and urban activities, as well as samples from the

51 Bay of Cádiz (samples 7 and 8), while sample 9 is a comparatively clean area

52 considered suitable as negative toxicity control according to previous studies (Riba et al.

53 2004a). The Bay of Algeciras (sample 10 and 12 in the mouth of Guadarranque River,

54 near chemical processing plants; sample 11 in the mouth of river Palmones) is

55 considered as an important harbour and receives considerable contaminant input derived

56 from several industrial and commercial shipping activities.

57 Sediments were collected with a 0.025 m^2 Van Veen grab from approximately the top

58 20 cm of the sediments. Samples were transferred to the laboratory where they were

homogenized, sieved through a 2 mm mesh and stored in dark at 4 °C no longer than 2

60 weeks before the start of testing. Total organic carbon (TOC) was determined using the

El Rayis (1985) modification based on an acidification of the sediment sample, and

62 grain size distribution was analysed by using a laser particle size Fristch (model

63 Analysette 22) following the method reported by Riba et al. (2003).

64

65 Toxicity test

The test organisms, Arenicola marina were collected in the Cantabrian coast (North 66 67 Spain) by hand digging and were transported to the laboratory in cool boxes containing 68 clean seawater. Worms were transferred to 20 L tanks containing clean sediment (5 cm depth) and seawater and acclimated to laboratory conditions for a week prior to the test 69 (17±1°C, salinity 38). Tests organisms were placed in tanks containing only seawater to 70 71 depurate the digestive tract 24 h prior to tests. The bioassay was performed in duplicate. Small tanks were filled with approximately 1 kg of sediments and 5 cm overlying clean 72 seawater provided with gentle aeration. After the acclimation period 7 organisms were 73 placed in every tank and after 24 h unburied worms were replaced. During the 14 days 74 of exposure, the overlying water was replaced every two days and physical parameters 75

(temperature, pH, salinity, dissolved oxygen concentration) were measured in each tank
on the same day. Lugworms were sampled on day 0 to obtain the initial concentrations
of tissues. After 7 and 14 days 4 individuals from each station were collected and 2 of
them were immediately frozen at -80 °C (MTLP measurement), while the rest were
placed for 24 h in clean seawater for depuration and stored at -20°C until trace metal
analysis. The mortality was also recorded during the experimental period.

82

83 Trace metal analyses

84 The whole tissues of lugworms were lyophilised and digested in concentrated HNO₃

and H₂O₂ (Suprapur, Merck) at 95°C (García-Luque et al. 2007), while sediment

samples after freeze-drying were extracted with 1 N HCl to provide more information

about the bioavailability of metals (Luoma and Bryan 1982). In both cases, blanks were

88 prepared simultaneously in the same way as the sample. Concentrations of Cd, Co, Cu,

89 Ni, Pb and Zn in the acid digests were determined with an inductively coupled plasma-

90 optical emission spectrometer (Optima 2000 DV, Perkin Elmer). The accuracy of the

91 analyses was checked by digesting certified reference material (TORT-2, Lobster

92 Hepatopancreas, National Research Council, Canada) and was considered satisfactory

93 (Table 2). Data are expressed as $\mu g g^{-1}$ dry weight.

94

95 MTLP induction

96 Tissue samples were homogenized with an ultraturrax homogenizer with Trizma-

97 HCl/Trizma-Base 0.1M (pH 7.6) buffer (at a ratio of 1:3) on ice (4°C) and centrifuged at

98 30 000g for 2 h at 4°C. The supernatant (cytosol) was separated from the pellet and 0.1

99 mL of supernatant was added to 0.9 mL of NaCl (0.9%), heated at 95° C for 4 min and

100 centrifuged at 10 000g for 15 min at 4°C. Metallothionein-like protein concentrations

101	were determined in the supernatant by Anodic Stripping Voltametry (ASV), according
102	to the procedure described by Olafson and Olson (1991), using purified rabbit
103	metallothionein (Sigma-Aldrich, MT I-II). The total protein concentration was
104	determined with a bicinchoninic acid protein assay (Smith et al. 1985).
105	
106	Results and Discussion
107	
108	Chemical characteristics of sediments
109	The concentrations of trace metals (Cu, Zn, Cd, Ni, Co and Pb) presented in the twelve
110	sediments are shown in Table 3. Among all stations the negative control (sample 9) and
111	sample 5 from the Guadalquivir estuary showed the lowest metal concentrations in
112	sediments, whereas sediments from sample sites from Huelva estuary and Bay of
113	Algeciras (samples 3, 4, 6 and 10) contained greater amount of trace metals. For
114	instance, the highest concentrations of Cd, Zn, Cu and Pb were measured in sample 3.
115	Total organic carbon content and grain size most probably control metal concentrations
116	in sediments. The proportion of fines ranged between 30 and 90%, except samples 5
117	and 9 with a proportion of fines (referring to the proportion of sediment $< 63 \mu m$) $<$
118	10%. Similarly, the TOC varied between 0.10 and 3%, except samples 5 and 9, which
119	had TOC values $< 0.10\%$. The correlation between the proportion of fines and TOC
120	concentrations in sediments was statistically significant (p<0.05). It has to be mentioned
121	that independently of the exclusion of the sandy sediment samples, this relationship
122	behaved similar.
123	

124 Biological responses in *Arenicola marina*

Organisms exposed to the sediment collected from the proximity of chemical processing plants in the Bay of Algeciras (sample 10) showed the highest accumulated mortality at the end of the exposure (66.6%), followed by those in Huelva estuary (sample 3) and the two sampling points in the Guadalquivir estuary (sample 5 and 6). Toxic responses measured in sediments from the mouth of Guadiana estuary (sample 2), Huelva estuary (sample 4) and mouth of river Palmones (sample 11) were lower, while the rest of the stations did not cause mortality.

The rate of increase in metal concentrations (K_{metal}) from days 0 to 14 in *A. marina* was described by a linear kinetic approach (Martín-Díaz et al. 2007) and was fitted with the results as follows:

135
$$\ln [M] = \ln [C_0] + K_t$$

where C_0 is the concentration of metal or MTLP at t = 0; M is the concentration of

137 metal or MTLP at time t minus at the initial time (0); K is the constant rate of increase.

138 The positive K values obtained from these equations demonstrated that lugworms had

139 potential to accumulate trace metals during the exposure time. In general, trace metal

140 concentrations were higher in specimens sampled from the contaminated sites. On day

141 14, elevated concentrations of Zn, Cu, Ni and Co were recorded in individuals from the

- 142 Bay of Algericas (sample 10), as well as Cu, Zn in lugworms exposed to sediments
- 143 from Huelva estuary (samples 3 and 4). Part of the samples were accidentally lost
- 144 during the analysis, therefore no data for K_{Pb} are available.
- 145 The rate of metallothionein-like protein increase (K_{MT}) demonstrated the induction of
- 146 these proteins in organisms along the 14 days of exposure. Lowest MTLP synthesis was
- 147 observed in lugworms from samples 2 and 9, whereas increased concentrations were

148 elevated in various samples, such as 3, 5, 10 and 11.

150 Multivariate analysis

151	In order to observe the relationships between the chemical concentrations in sediments
152	and biological effects on test organisms, multivariate analysis was applied. The initial
153	data matrix contains 12 cases, the twelve stations and 15 variables, the geochemical
154	characteristics (fines and total organic carbon), the metal concentrations in sediments
155	(Cd, Zn, Ni, Co, Cu and Pb), the toxicity measured as mortality, the rate of increase of
156	MT concentrations (K_{MT}) and the rate of increase of bioaccumulation of metals in
157	tissues (K _{Cd} , K _{Zn} , K _{Ni} , K _{Co} , K _{Cu}). The factor analysis with varimax normalized permitted
158	after the reduction of 15 variables to three principal factors, which explains 79.14 % of
159	the total variance (Table 4).
160	The first principal factor (F1) was predominant and accounted for 41.75% of the
161	variance. This factor combines concentrations of Cd, Zn, Cu and Pb in sediment and
162	shows relationship with the induction of MTs (K_{MT}) and with the increase in
163	bioaccumulation of Zn and Cu (K_{Zn} , K_{Cu}). The second principal factor (F2) accounts for
164	21.35% of the total variance and has positive loadings for the sediment concentrations
165	of Ni and Co, the fine particles and total organic carbon of sediments and associates
166	with toxicity to A. marina. The third principal factor (F3) accounts for 16.04% of total
167	variance and combines the bioaccumulation of Cd, Zn, Ni, Co. This factor suggests that
168	the bioaccumulation of these trace metals was not associated neither with the biological
169	responses that we have studied nor with the concentrations of these metals measured in
170	sediments.
171	Estimated factor scores are to explain the prevalence of every component for each
172	station and used to confirm the factor descriptions (Figure 1).
173	The first factor (F1), which is representative of the contaminants (Cd, Zn, Cu, Pb) in

sediment, the bioaccumulation of Zn and Cu and the MTLP induction in tissues, has

positive loadings in samples 3 and 4 from the Huelva estuary. Both samples are 175 176 characterized by high concentrations of trace metals due to mining and industrial 177 activities (Riba et al. 2004a). The elevated concentrations of Zn and Cu measured in tissues of A.marina according to F1 did not cause toxicity. The most likely explanation 178 179 could be that Cu and Zn are considered as strong inducers of MTLPs, as these proteins can bind them via the sulfhydryl group of cysteine residues. Therefore MTLPs were 180 181 probably involved in protection against trace metal toxicity. The induction of MTLPs in 182 polychaetes after metal exposure has been confirmed by several authors. In the Cdexposed Neanthes arenaceodentata an increase in the metal concentration associated 183 184 with MTLPs was observed by Jenkins and Mason (1988). Ng et al. (2008) found no 185 increase in MTLP concentrations, but higher MTLP turnover (synthesis and breakdown) in the nereid polychaete, Perinereis aibuhitensis after Cd pre-exposure. These findings 186 187 indicate that measuring the MTLP concentration alone can be misleading. The synthesis 188 of MTLPs was observed in Eurythoe complanata after exposure to Cu or Zn (Marcano et al. 1996). However these authors reported no increase in the concentrations of 189 MTLPs in the combined Cu-Zn treatments, suggesting the possible interaction between 190 191 the metals. Trace metals in sediments from the Huelva estuary also caused MTLP 192 induction in female shore crabs, Carcinus maenas (Martín-Díaz et al. 2009) after 28 193 days of exposure. Numerous studies support the idea of using MTLP concentrations in 194 organisms as biomarkers in environmental monitoring programme. It has to be 195 mentioned that the expression of MTLPs can be influenced by various natural factors that affect the metal accumulation, such as salinity (Leung et al. 2002) or temperature 196 197 (Serafim et al. 2002). In some species the presence of MTLPs has been confirmed but their levels were not correlated to the local metal bioavailability due to the ability to 198 regulate their metal burden (Mouneyrac et al. 2003; Poirier et al. 2006). Thus, additional 199

research on the relationship between metal toxicity and MTLP induction in this species 200 201 is required before their routine use in biomonitoring programs. Conversely, the Ni and 202 Co sediment concentrations, which were comprised in F2 and showed positive factor 203 scores in sample 3, 6, 10 and 11 (Figure 1) did not cause MTLP induction, but related to high mortality to A. marina. F2 is mainly prevalent in sample 10, collected from the 204 205 Bay of Algeciras, continuously impacted by industrial effluents and maritime activities. 206 Morales-Caselles et al. (2007) previously reported high toxicity to *Corophium volutator* 207 exposed to sediment collected from the same area due to Ni and Co contaminants 208 associated with PAHs in oil spills. A. marina was chosen as an organism known to be 209 sensitive to hydrocarbons, but no measurements of these contaminants were included in 210 the present work. These two metals obviously could originate from any other sources, however Riba et al. (2004b) reported hydrocarbon contamination in sediments from the 211 212 Huelva estuary (sample 3). Cesar et al. (2007) found that contaminations by PAHs and Ni were closely related to amphipods (C. volutator) mortality in the Bay of Algeciras as 213 well as in the Huelva estuary. The characterization of sediments can provide some 214 215 explanations for the metal accumulation in the organisms. Usually the trace metal 216 concentrations increase with decreasing grain size of the sediment. In the case of fine 217 sediments, the surface binding sites per unit mass of the particle increase. Organic 218 matter can contain functional groups that form complexes with metals and decrease 219 their bioavailability to organisms. Negative correlations between bioavailability of some 220 metals to A. marina and the proportion of fines and total organic material have been considered by Casado-Martínez (2006). It has been shown that deposit-feeding 221 222 invertebrates can adjust their rates of ingestion according to the quality of the sediment (Cammen 1980). Thus, lower organic matter content may lead to an increase in 223 ingestion rate to satisfy their nutrient requirement. In the present study, lowest TOC 224

were recorded for two samples (5 and 9), in which low concentrations of metals were
measured, and as a consequence the bioaccumulation in lugworms exposed to these two
sediments was obviously low. Although higher TOC values were related to greater
amounts of accumulated metals by organisms (e.g. samples 3 and 10), these metals
generally are associated with organic materials in the sediments, that lugworms feed
preferentially.
The third factor demonstrates the bioaccumulation of Cd, Zn, Ni, Co in the tissues

without toxic or sublethal effect on the test organisms. The capacity of lugworms to

accumulate trace metals from sediments has been addressed by several authors (Packer

et al. 1980; Bat 1998; Bat and Raffaelli 1998; Casado-Martínez et al. 2008). Time

course of metal uptake was also revealed in three body compartments (body wall,

intestine and blood) of *A. marina* after 25 days of copper sediment exposure (Everaarts1986).

238

239 **Conclusions**

240

241 The results of this survey confirm that MTLPs induction in A. marina was related to 242 increased sediment metal concentrations in samples collected from the Huelva area. The 243 rates of increase in MTLP and accumulated metal concentrations along the exposure time seemed to be good and suitable tools for evaluation of metal bioavailability in 244 245 sediments. Results suggest that MTLP induction in tissues played an important protective role, therefore lower toxicity was detected. In our study, the test organism, 246 247 Arenicola marina due to its capacity to accumulate metals from sediment was found as a possible indicator species for sediment quality assessment. The use of multivariate 248

249	analysis appeared to be a useful tool to link the chemical concentrations and biological
250	responses.
251	
252	Acknowledgement
253	
254	This work was supported by the project "Interreg IIIA Cooperación Transfronteriza
255	España-Portugal, FEDER-EU" (SP3.E101/03). J. K. thanks i3p program of Spanish
256	National Research Council for funding her research fellowship.
257	
258	References
259	
260	Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006)
261	Metallothioneins in aquatic invertebrates: Their role in metal detoxification and
262	their use as biomarkers. Aquat Toxicol 76:160-202
263	Ankley GT (1996) Evaluation of metal/acid volatile sulphide relationship in the
264	prediction of metal bioaccumulation by benthic macroinvertebrates. Environ
265	Toxicol Chem 15:2138-2146
266	Bat L (1998) Influence of sediment on heavy metal uptake by the polychaete Arenicola
267	marina. Tr J Zoology 22:341-350
268	Bat L, Raffaelli D (1998) Sediment toxicity testing: a bioassay approach using the
269	amphipod Corophium volutator and the polychaete Arenicola marina. J Exp
270	Mar Biol Ecol 226:217-239
271	Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy
272	metals in sediments with special reference to United Kingdom estuaries: a
273	review. Environ Pollut 76:89-131

274	Cammen L (1980) Ingestion rate: An empirical model for aquatic deposit feeders and
275	detritivores. Oecologia 44:303-310
276	Casado-Martínez MC (2006) Caracterización de material dragado optimizando un
277	método integrado de evaluación de la calidad ambiental. Tesis Doctoral.
278	Universidad de Cádiz.
279	Casado-Martínez MC, Branco V, Vale C, Ferreira AM, DelValls TA (2008) Is
280	Arenicola marina a suitable test organism to evaluate the bioaccumulation of
281	Hg, PAHs and PCBs from dredged sediments? Chemosphere 70:1756-1765
282	Cesar A, Chourei RB, Riba I, Morales-Caselles C, Pereira CDS, Santos AR, Abessa
283	DMS, DelValls TA (2007) Comparative sediment quality assessment in
284	different littoral ecosystems from Spain (Gulf of Cadiz) and Brazil (Santos and
285	São Vicente estuarine system). Environ Int 33:429-435
286	Chapman PM, Ho KT, Munns WR, Solomon K, Weistein MP (2002) Issues in sediment
287	toxicity and ecological risk assessment. Mar Pollut Bull 44:271-274
288	Chapman P, Wang F (2001) Assessing sediment contamination in estuaries. Environ
289	Toxicol Chem 20:3-22
290	DelValls TA, Conradi M (2000) Advances in marine ecotoxicology: Laboratory tests
291	versus field assessment data on sediment quality studies. Cienc Mar 26:39-64
292	El Rayis OA (1985) Re-assessment of the titration method for determination of organic
293	carbon in recent sediment. Rapp Comm Int Mediterr Contam Toxicol 35:348-
294	353
295	Everaarts JM (1986) The uptake and distribution of copper in the lugworm, Arenicola
296	marina (Annelida, polychaete). Netherlands J Sea Res 20:253-267

297	García-Luque E, DelValls TA, Forja JM, Gómez-Parra A (2007) Biological adverse
298	effects on bivalves associated with trace metals under estuarine environments.
299	Environ Monitor Ass 131:27-35
300	Garg A, Antón-Martín R, García-Luque E, Riba I, DelValls TA (2009) Distribution of
301	butyltins (TBT, DBT, MBT) in sediments of Gulf of Cádiz (Spain) and its
302	bioaccumulation in the clam Ruditapes philippinarum. Ecotoxicol 18:1029-1035
303	Handy RD, Galloway TS, Depledge MH (2003) A proposal for the use of biomarkers
304	for the assessment of chronic pollution and in regulatory toxicology. Ecotoxicol
305	12:331-343
306	Jenkins KD, Mason AZ (1988) Relationships between subcellular distributions of
307	cadmium and perturbations in reproduction in the polychaete Neanthes
308	arenaceodentata. Aquat Toxicol 12:229-244
309	Leung KMY, Svavarsson J, Crane M, Morritt D (2002) Influence of static and
310	fluctuating salinity on cadmium uptake and metallothionein expression by the
311	dogwhelk Nucella lapillus (L.). J Exp Mar Biol Ecol 274:175-189
312	Luoma SN, Bryan GW (1982) A statistical study of environmental factors controlling
313	concentrations of heavy metals in the burrowing bivalve Scrobicularia plana
314	and the polychaete Nereis diversicolor. Estuar Coast Shelf Sci 15:95-108
315	Marcano L, Nusetti O, Rodríguez-Grau J, Vilas J (1996) Uptake and depuration of
316	copper and zinc in relation to metal-binding protein in the polychaete Eurythoe
317	complanata. Comp Biochem Physiol C114:179-184
318	Martin-Díaz ML, Kalman J, Riba I, Fernández de la Reguera D, Blasco J, DelValls TÁ
319	(2007) The use of metallothionein-like proteins (MTLP) kinetic approach for
320	metal bioavailability monitoring in dredged material. Environ Int 33:463-468

321	Martin-Díaz ML, Blasco J, Sales D, DelValls TA (2009) The use of a kinetic biomarker
322	approach for in situ monitoring of littoral sediments using the crab Carcinus
323	maenas. Mar Environ Res 68:82-88
324	Morales-Caselles C, Kalman J, Riba I, DelValls TA (2007) Comparing sediment quality
325	in Spanish littoral areas affested by acute (Prestige, 2002) and chronic (Bay of
326	Algericas) oil spill. Environ Pollut 146:233-240
327	Morales-Caselles C, Ramos J, Riba I, DelValls TA (2008) Using the polychaete
328	Arenicola marina to determine toxicity and bioaccumulation of PAHs bound to
329	sediments. Environ Monitor Ass 142:219-226
330	Mouneyrac C, Mastain O, Amiard JC, Amiard-Triquet C, Beaunier P, Jeantet AY,
331	Smith BD, Rainbow PS (2003) Trace-metal detoxification and tolerance of the
332	estuarine worm Hediste diversicolor chronically exposed in their environment.
333	Mar Biol 143:731-744
334	Ng TYT, Rainbow PS, Amiard-Triquet C, Amiard JC, Wang WX (2008) Decoupling of
335	cadmium biokinetics and metallothionein turnover in a marine polychaete after
336	metal exposure. Aquat Toxicol 89:47-54
337	Olafson RW, Olson PE (1991) Electrochemical detection of metallothionein. In:
338	Riordan, J.F., Vallee, B.L. (Eds.), Methods in Enzymology:
339	Metallobiochemistry: Part B: Metallothionein and Related Molecules, 205, 205-
340	213. San Diego, Academic Press.
341	OSPAR (1995) Protocols on Methods for the Testing of Chemicals Used in the
342	Offshore Industry. Oslo and Paris Commissions, London, UK.
343	Packer DM, Ireland MP, Wootton RJ (1980) Cadmium, copper, lead, zinc and
344	manganese in the polychaete Arenicola marina from sediments around the coast
345	of Wales. Environ Pollut 22 :309-321

346	Poirier L, Berthet B, Amiard JC, Jeantet AY, Amiard-Triquet C (2006) A suitable
347	model for the biomonitoring of trace metal bioavailabilities in estuarine
348	sediments: the annelid polychaete Nereis diversicolor. J Mar Biol Ass UK
349	86:71-82
350	Riba I, DelValls TA, Forja JM, Gómez-Parra A (2003) Comparative toxicity of
351	contaminated sediment from a mining spill using two amphipod species:
352	Corophium volutator and Amphelisca brevicornis. Bull Environ Toxicol Chem
353	71:1061-1068
354	Riba I, Casado-Martínez C, Forja JM, DelValls TA (2004a) Sediment quality in the
355	Atlantic coast of Spain. Environ Toxicol Chem 85:141-156
356	Riba I, Conradi M, Forja JM, DelValls TA (2004b) Sediment quality in the
357	Guadalquivir estuary: lethal effects associated with the Aznalcóllar mining spill.
358	Mar Pollut Bull 48:144-152
359	Serafim MA, Company RM, Bebianno MJ, Langston WJ (2002) Effect of temperature
360	and size on metallothionein synthesis in the gill of Mytilus galloprovincialis
361	exposed to cadmium. Mar Environ Res 54:361-365
362	Smith PL, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD,
363	Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein
364	using bicinchoninic acid. Anal Biochem 150:76–85

Figure captions

Figure 1. Factor loadings for the three principal factors in each of the twelve cases. The factor scores quantify the prevalence of every factor for each station and are used to establish the description of each factor.