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Abstract

Active debris removal missions pose demanding guidance, navigation and con-

trol requirements. We present a novel approach which adopts deep learning

technologies to the problem of attitude determination of an uncooperative de-

bris satellite of an a-priori unknown geometry. A siamese convolutional neural

network is developed, which detects and tracks inherently useful landmarks from

sensor data, after training upon synthetic datasets of visual, LiDAR or RGB-D

data. The method is capable of real-time performance while improving upon

conventional computer vision-based approaches, and generalises well to previ-

ously unseen object geometries, enabling this approach to be a feasible solution

for safely performing guidance and navigation in active debris removal, satellite

servicing and other close proximity operations. The performance of the algo-

rithm, its sensitivity to model parameters and its robustness to illumination and

shadowing conditions, are analysed via numerical simulation.

Keywords: active debris removal, spacecraft attitude determination, deep

learning, image processing

1. Introduction

In the past 60 years, the amount of debris in the Low Earth Orbit (LEO) has

been increasing steadily [1, 2]. This poses a threat to current space missions,
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as highlighted by the 2003 collision between Iridium 33 and Cosmos 2251 [3].

In fact, the Kessler syndrome states that, even if all space launches were to be5

stopped, the amount of debris would continue to increase [1]. Therefore, it is

clear that a method of actively removing debris is required.

Active debris removal (ADR) is a research area which has been a high priority

for recent years. The recent RemoveDebris mission was the first to demonstrate

many of the required technologies in a space environment, though there remain10

several challenges to be met before a real debris object can be removed. These

challenges include legal aspects, cost, mission design and technological issues. In

particular, there are strict requirements on the guidance, navigation and control

system [4].

Guidance, navigation and control (GNC) for proximity operations and ren-15

dezvous in orbit is very technologically challenging. Due to the time scales and

the criticality of this section of an ADR mission, there is increasing interest in

the GNC system to be able to perform in a fully autonomous manner. Addi-

tionally, it is of crucial importance that the proximity operations do not lead

to a collision, thereby adding to the space debris problem. As such, the debris20

removal satellite must be capable of accurately and robustly determining the

position, attitude and tumbling angular velocity of the target.

The GNC system for an ADR mission faces particularly significant challenges

where the target parameters are unknown and the target is uncooperative. For

such a scenario there are strict GNC requirements that have not yet been con-25

clusively demonstrated in flight in a fully autonomously manner. These may

be enumerated as: 1) identification of geometric and physical characteristics of

an unknown co-orbiting object; 2) measurement of the target-chaser relative

rototranslational state; 3) guidance and navigation around an uncooperative

co-orbital object; and 4) capture, stabilisation and de-orbit of an uncooperative30

spacecraft.

For contactless debris removal missions the chaser would need to safely op-

erate within a few meters of the target [5], whereas for contact methods the

spacecraft should be able to dock or berth, thus imposing stringent require-

2



ments also to their relative velocity, within 1 cm/s in range rate and 4� in35

relative angular rate [6]. In addition, the short time scales and high risk of col-

lision make autonomous operations of the GNC system a very desirable feature.

However, the uncooperative (and often unknown) nature of the target intro-

duces a further di�culty, thus preventing the straightforward use of readily

flight-proven technologies, which rely on prior information about a cooperative40

satellite, often equipped with docking systems. The control system of the chaser

satellite requires the synchronisation of attitude motion with the debris target

[7], or alternatively active detumbling of the debris [8], in order to reduce the

relative angular rate to within the stated threshold. In either case, an accurate

estimate of the attitude and rotational state of the target is required. This is45

the main focus of our work.

There have not yet been any active debris removal missions to date, except

for a small number of ADR demonstration missions with the aim of testing

some of the required technologies. The RemoveDebris mission was the first in-

orbit demonstration of ADR technologies, including net and harpoon capture50

mechanisms and a vision-based navigation system [9]. The navigation system

consisted of visual, infrared and LiDAR cameras and the measurements were

verified using GPS. On-orbit servicing is a similar problem requiring close-range

operations, where there have only very recently been successful missions [10, 11].

The Mission Extension Vehicle (MEV) by Northrop Grumman demonstrated the55

first docking with a satellite which was not built with docking in mind. How-

ever, in these missions the target was fully known and cooperative (either fitted

with retroreflectors or, in the case of MEV, targeting a liquid apogee engine of

known dimensions and properties). Again, in the MEV mission visual, infrared

and LiDAR sensors were used. Despite these few demonstration missions, the60

technical readiness level (TRL) of several ADR technologies is as yet too low to

enable any real debris removal missions, so we instead look to similar missions

which have demonstrated autonomous GNC in a real environment. Navigation

around asteroids and cometary bodies, where the large delay in communications

feedback necessitates an autonomous GNC system [12, 13], is a scenario where65
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autonomous GNC systems have been successfully tested. In these cases a 3D

model of the asteroid or comet is constructed by extracting key landmarks from

images during an observation phase, but often the processing of these landmarks

is done o↵-line.

Visual navigation systems can achieve high accuracies under good conditions,70

and so are generally accepted as the best solution for autonomous guidance. The

selection of the best onboard sensors can vary depending on the applications

and requirements. Active LiDAR sensors are one of the most popular choices

since they provide a measurement of the depth and are relatively insensitive

to illumination conditions, with a wide range of working distances. However,75

LiDAR sensors have a high power consumption and often a limited field of view.

Stereo or RGB-D cameras are other potential options, since these also measure

the depth. There are also solutions which propose using a single monocular

camera. However, many solutions, such as those of RemoveDebris and Northrop

Grumman, use a combination of di↵erent sensors.80

A conventional approach for visual navigation about an unknown target

consists of extracting landmarks from an image which describe the object’s

pose and tracking the motion of these landmarks to estimate the rotational

state, potentially using complex processing techniques such as optical flow or

simultaneous localisation and mapping [14]. The pose descriptors are processed85

within a filtering scheme; several of these filters are compared by Pesce et al

[15], the most common being the extended Kalman filter (EKF) [16, 17, 18].

Unfortunately, these algorithms can be computationally intensive, they have no

colour saliency and tend to have di�culty in situations with di�cult illumination

conditions [19, 20]. Some of the complexity can be removed if the geometry of90

the target is known beforehand [21, 22], though this will not always be true in

the most general case.

This paper focuses on the estimation of the instantaneous rotational state of

an unknown and uncooperative target from image landmarks, which would then

be combined with a filtering system to reconstruct the attitude. It investigates95

whether deep learning technologies can improve upon the performance of the
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conventional algorithms, by training a model on datasets under these challenging

conditions, as deep learning methods have the advantage of being resistant to

non-linearities in the data, such as those caused by varying lighting conditions.

Once trained, these models also tend to be fast to run, making them suitable100

for real-time applications. The downsides are the requirement for large, labelled

datasets and the risk of overfitting to the training data.

The domains of image processing and computer vision have seen significant

advances in recent years attributed to the deep learning revolution, particu-

larly for object detection and classification tasks [23, 24]. However, in contrast,105

the applications of deep learning to visual navigation have seen less research,

although this area has begun to experience more interest recently [25]. Partic-

ularly, most work in this domain has been focused on ground-based problems

[26, 27]; in comparison, research on space-based guidance applications has been

more limited.110

There has been increased interest recently into the applications of machine

learning to GNC in space. Sharma and D’Amico [28] present a method for pose

estimation with a monocular camera using a convolutional neural network. This

work also contributes the Spacecraft Pose Estimation Network (SPEED), which

has since been made publicly available through a competition on pose estimation115

run by the European Space Agency [29]. Other similar research has also looked

at pose estimation from monocular images [30, 31], often using finetuned neural

network architectures such as ResNet and VGG19. However, in each of these

cases, the target spacecraft is known a priori; either the 3D model is provided,

or the neural network is trained on a dataset containing a single satellite model.120

Instead, we aim to solve the more general case, in which the structure of the

debris target is entirely unknown. Furthermore, we propose that finetuning a

network which has been pretrained on a di↵erent image processing task, such as

object detection on ImageNet, will result in a network which looks for abstract

features, which are not useful in determining the pose of an object.125

In this article we propose a novel method for the autonomous, real time

estimation of the attitude of an unknown and uncooperative target spacecraft
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using deep learning technologies. The proposed approach is accurate, robust,

and can be used with LiDAR or RGB-D sensors with good results. The same

approach is also applicable for monocular cameras; however, the accuracy in130

this case is heavily impacted by the lack of depth information and so the model

requires more refinement before it is able to achieve a similar performance with

this restriction. Machine learning technologies have the advantages of being

fast and robust to non-linearities, such as varying lighting conditions. However,

the drawback of these methods is the requirement for vast amounts of labelled135

image data, required for training the network. Such a dataset does not exist

for this problem, so there has been little investigation into the applications of

machine learning in space-based guidance systems. In order to overcome this,

synthetic images were generated by simulating the relative motion between two

satellites. Thus, the ability of our deep learning model to predict the rotation140

of a debris satellite is investigated using simulated visual sensor data.

While methods to perform full object rotation state estimation using deep

learning have been proven to be di�cult [32], we can simplify the problem by

only looking at the change in attitude across a time step. Given two images of

a satellite as observed by a co-orbital satellite at successive instants of time, we145

compute the angular velocity of the target satellite. In particular, we employ

the simple landmark extraction and tracking approach, aiming to improve upon

the performance of conventional algorithms. The model is thus divided into

two parts with di↵erent purposes: first, landmarks are extracted from the two

images and matches between both images are identified; second, the angular150

velocity and full rotational state are estimated using the matched landmark

locations.

For the first part, a convolutional neural network (CNN) is proposed to ex-

tract useful landmarks from two images or point clouds, separated by a short

time-step; it su�ces to look only at high-level features in the form of image155

landmarks. By making use of the properties of neural networks, we can match

landmarks between images implicitly, with no need for complex feature descrip-

tors. In particular, in neural networks the ordering of the output vector is
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important, a property that can be exploited by proposing that the extracted

landmarks from two images passed through the same network can be matched160

simply by their position in the output vector.

In the second part, the matched landmarks are then used to estimate the

rotation of the target over the timestep. The system is encouraged to find land-

marks which are inherently useful for the rotation estimation problem, through

the use of several loss terms. In order to reject outliers, we also adapt the165

random sample consensus (RANSAC) algorithm for use within an end-to-end

trainable deep learning network.

The remainder of the article is structured as follows: Section 2 discusses the

construction of the simulation framework; our proposed approach to divide the

model into two parts, namely the landmark detection and matching algorithm,170

and the rotation estimation algorithm, are discussed in detail in Sections 3 and

4, respectively; the results of the investigations are analysed in Section 5, where

our model is compared with conventional techniques; finally, conclusions are

summarised in Section 6.

2. Observational Data of in-Orbit Proximity Operations175

In order to apply supervised learning techniques to the problem, there is a

requirement for a large amount of pose-labelled data. Such a dataset does not

currently exist, and would be time-consuming and di�cult to generate for real

images. Thus, synthetic training data is used as an alternative to real data.

This approach enables complete control over all parameters of the data and180

allows us to generate large datasets quickly.

We have therefore constructed an ad-hoc simulation framework for this pur-

pose. In an active debris removal mission, a debris object (hereafter, the target)

is approached, observed in close proximity, and eventually captured by a de-

bris removal satellite (hereafter, the chaser). During these operations, both185

satellites are co-orbiting relative to each other, for which the chaser requires of

observational data of the target in order to determine its relative position and
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pose, and characterise its dynamics, geometry and integrity, to feed this infor-

mation to the GNC subsystem in order to safely perform proximity operations.

The aim of this simulation framework is to generate realistic, synthetic optical190

data from the viewpoint of the chaser. We use Blender1 for visualisation with

python scripts to change the simulation conditions and compute the relative

motion of the two satellites.

There are several elements to the simulation: 1) the relative orbital motion

between the two satellites must be modelled, as well as their rotational dynam-195

ics; 2) the lighting and shadowing conditions must emulate realistic in-flight

conditions; and 3) the output video stream should be labelled with the target’s

pose at each time, and should simulate the output of optical, RGB-D or LiDAR

sensors.

2.1. Relative Orbital and Attitude Motion200

For studying the relative orbital motion, it is customary to use the target-

centred, Local-Vertical-Local-Horizontal (LVLH) reference frame, as illustrated

in Fig. 1. Following Kaplan’s notation [33], the R̂ unit vector is colinear with

the position vector, Ŵ is normal to the orbit plane, and Ŝ completes a right-

handed frame, so for a circular orbit Ŝ is aligned with the orbital velocity vector.

The relative motion of the observing chaser satellite can be described in relation

to this new reference frame. The relative position vector of the chaser, rrel, is

given as

rrel = robs � rtgt (1)

where robs and rtgt are, respectively, the planetocentric position vectors of the

chaser (observer) and target satellites.

The equations of relative motion can be linearised which, under di↵erent

assumptions, yield analytical models of di↵erent complexity. The Clohessy-

Wiltshire equations [34] are appropriate for modelling close proximity operations205

1www.blender.org
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(b) Relative orbital motion

Figure 1: The target-centred LVLH reference frame.

in a circular orbit, whereas for the case of an elliptic orbit, the Tschauner-

Hempel equations [35] are a classical alternative.

In an active debris removal mission, there will often be an observation or

monitoring phase in which the chaser moves around the target satellite to char-

acterise its rotational state and other geometric and physical parameters of in-210

terest. When the orbital periods of the chaser and target satellites are synced,

there are periodic solutions to the relative orbital motion that allow the chaser

to circle around the target to perform such activities [36].

The rotational motion of both satellites is also simulated, assuming the tar-

get is in a tumbling state, whereas the attitude of the chaser can be controlled.215

Quaternions are used for attitude parameterisation, which describe the orienta-

tion of their body frame coordinates with respect to inertial space [37]. Quater-

nions are employed due to their built-in redundancy, which not only yields a

singularity-free representation, but also conveys error correcting capabilities;

additionally, a neural network can easily regress the quaternion directly, as will220

be discussed later.

For our test case, we consider the chaser to be in the observation phase of

a debris removal mission, during which chaser will attempt to keep a circular

relative orbit around the target. The target is assumed to be in a circular orbit

at an altitude of 500km; thus, the periodic solutions to the Clohessy-Wiltshire225

solutions result in the monitoring trajectory illustrated in Figure 2. At all points

in orbit, we assume that the chaser rotates such that it is always facing towards
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the target, using its attitude control system. This change in attitude of the

chaser over time is considered to be known by the system. On the other hand,

the tumbling angular velocity of the target satellite is considered to be constant230

within its rotating LVLH body frame.

Figure 2: The relative position of the chaser over one orbital period, starting from an initial

displacement of [�50, 0, 0] with initial velocity [0, 0.1109, 0], where 0.1109 = �2!x0

2.2. Lighting and Shadowing Conditions

The unique lighting conditions in space present a key di�culty for optical

guidance algorithms, due to the high contrast and reflections, so these must be

emulated in the simulation framework. We consider the Sun to be the sole light235

source, which can be simulated as a distant point source. For simplicity, light

reflected from Earth is omitted, and the shadow of the chaser spacecraft upon

the target (when both are aligned with the Sun pointing vector) is disregarded.

As is the case in orbit, the direction of the light source (i.e. the sun-pointing

vector) changes over the course of the simulation. This is due to the position240

of the target along its orbit, the direction in which the chaser is facing, and

the heliocentric motion of the Earth (Solar ephemerides by Blanco-Muriel et al.

[38] are used). We simplify the test cases by selecting inclined orbits, so that
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spacecraft do not cross the umbra and penumbra regions in the shadow cone of

the Earth, and thus both spacecraft are illuminated at all times.245

2.3. The Output Video Stream

The output of the simulation not only provides the dynamical states of both

spacecraft (and their relative states), but also needs to simulate the outputs

of an optical camera, a RGB-D sensor and a LiDAR, all onboard the chaser.

Optical and RGB-D sensors both provide a colour image, with the latter also250

providing the depth at each pixel. A LiDAR sensor also measures the depth of

an image, with a lower resolution which depends on the sampling rate of the

sensor; this data is generated from the depth image by sampling pixels at a given

sampling rate, and returning a point cloud containing sparse 3D information.

These forms of sensor data are illustrated in Figure 3.255

(a) RGB sensor (b) RGB-D sensor (c) LiDAR sensor

Figure 3: Di↵erent simulated sensors

The output images must be collected into datasets which can be used in

training the neural networks. The datasets consist of a collection of pairs of

successive images, with a small time step having passed between the two images.

We select the position and attitude parameters of the target and chaser such

that there is a large variation in relative angular rate between simulations, from260

0.5� per step up to 7�. In order to increase the size and variation of the datasets,

we also collect image pairs with a gap of 2, 3 or 4 times the time step, enabling

us to investigate the response for up to 28� rotations in a single time-step,

although the higher end is likely to be very di�cult to solve. We use a dataset
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of approximately 60,000 image pairs for training the model, varying the debris265

targets, rotations speeds and illumination conditions. Separate, smaller datasets

are created for testing and validation, with di↵erent simulation parameters; this

data is not seen by the model during training. Each image pair must then be

labelled with the rotational state of the target satellite across this time step.

2.4. Using Synthetic Data270

Synthetic data presents a number of advantages: 1) it enables the use ma-

chine learning in environments where real data would be very time consuming

or di�cult to process; 2) the size of datasets made up of synthetic data can

be much larger than would be achievable with real data, due to the speed of

generation; and 3) by simply changing certain parameters of the simulation, it275

is possible to generate new datasets under di↵erent conditions to further test

the model. In our simulation framework, all parameters are contained in an

editable configuration file, which can be either specified precisely or randomised

before generating a dataset of tens of thousands of image pairs, a task which

would be unrealistically time-consuming for real data.280

However, using synthetic data may lead to di�culties at a later stage, when

aiming the model to generalise to real images. The synthetic data will not

match exactly to real data – in particular, the camera and sensors will not be as

accurate as in the simulation, where the depth of each pixel is known precisely.

In addition, it is di�cult to assess to which extent the synthetic data matches285

the real data closely enough so the network trained with synthetic data would

perform equally well for in-flight operation use.

In this regard, the capability of the model to generalise to real data could

be improved by distorting the data [39], which encourages the model to learn

the object features and disregard the inaccuracies in the sensor. In order to290

determine the generalisability of our model, in a further stage we will be gen-

erating realistic experimental data in a lab environment as part of a follow-up

development plan.
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3. Landmark Detection and Matching

In order to estimate the rotational state of an object, we must track the295

motion of di↵erent areas of the target, which are exhibiting apparent changes

due to the object’s rotation; from this information an estimate of the rotation

can be reconstructed. We therefore divide our approach into two key parts.

Firstly, we use a landmark detection and matching algorithm to select specific

areas or features on the target and track their motion over time. Then, an300

estimate of the rotation is determined using the motion of these landmarks.

This subdivision of tasks enables the neural network to focus on the specific task

of landmark detection, by training this part of the model separately. Finally,

we can put both parts together to finetune the response, encouraging the model

to find landmarks which are specifically useful for estimating the rotation. This305

section describes our approach towards the landmark detection and matching

and presents the mathematical model of the neural network used.

Often, the landmark detection problem is simplified by fitting the target

with retro-reflectors at a known location on the target, which are simple to

extract from images. Alternatively, if there exists a-priori knowledge of the310

object’s geometry, features can be predefined based on this and matched with the

observed data. Instead, we present an algorithm which requires no knowledge

of the debris object and is capable of automatically obtaining a set of matched

landmark locations which best define the rotational state of the target, thereby

enabling fully autonomous operations.315

Our landmark detection network accepts two images and returns K feature

maps for each image, each corresponding to a di↵erent landmark. A spatial

soft-argmax [40] over the feature maps then results in two sets of K three-

dimensional points {p
k
} and {p0

k
}; k = 1, 2, ...,K. The landmark matching

process makes use of a core property of neural networks: the ordering inside320

the vectors is important. This means that the output at index k in each vector

p
k
and p

0
k
of the aforementioned sets will describe the same feature in both

images. There is therefore no need for complex and costly feature description
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and matching algorithms; the correspondences are instead determined implicitly

from the position in the output vector. An additional advantage of neural325

networks is their ability to learn features which are inherently useful for the

specific problem on which they have been trained.

The network can accept data from optical cameras, RGB-D sensors or a

sparse point cloud (such as may be generated from a LIDAR sensor). If a point

cloud is provided, it is converted to a dense depth map using the method of Ku330

et al [41]. Landmarks can be extracted from a three-channel colour image, or

directly from a depth map. In the latter case, the depth map is first converted

to a three-channel image, with the three channels containing the x, y and z

information respectively. Alternatively, the RGB and depth information may

be fused together to form a six-channel input image. All types of input data335

are investigated in the later sections.

3.1. Network Architecture

A convolutional neural network is proposed to detect and match landmarks

in the two input images, with the layout shown in Figure 4. This is a siamese

network, where each input image passes through the same network to extract340

image landmarks. The network architecture consists of only two convolutional

layers with large kernel sizes and no pooling layers, to generate a set ofK feature

maps, M. A shallow network is proposed, which emphasises features with a low

level of abstraction such as corners and edges. In addition, pooling layers lead

to a loss of geometrical information, so these should be avoided. The landmark345

locations are extracted from the feature maps by a spatial soft-argmax layer [40].

The soft-argmax algorithm aims to find the location of the highest peak in the

feature map. Unlike a simple argmax, this is fully di↵erentiable which ensures

that the network is end-to-end trainable. First, the softmax function is applied

to the two-dimensional feature maps to obtain a probability distribution over
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Figure 4: Landmark detection network architecture

the height and width:

Sk(u, v) =
exp(Mk(u, v)/T )

HX

u=1

WX

v=1

exp(Mk(u, v)/T )

(2)

whereMk is the k-th channel of the feature map, withH andW being the height

and width of the map, and Sk(u, v) the value of the probability distribution of

feature k at the pixel (u, v). The temperature, T , is a parameter which can be

set beforehand or learned by the network. Summing this probability distribution350

over the height and width provides the (x, y) location of the maximum of each

feature map. This is considered to be the position of the landmark at index k,

denoted as p
k
.

At this point, we have the on-screen (x, y) location of several object land-
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marks. However, in order to solve for the rotation we instead require the three355

dimensional (x, y, z) coordinates of each landmark. If RGB-D or LiDAR data

is used, the z coordinate is taken directly from the depth map. If depth infor-

mation is not provided, the network can learn an estimate of the z component,

using the same image data as before passed through a few convolutional layers.

However, this is not a simple task using the limited information provided, so the360

accuracy is understandably worse in this case. Once the depth of each landmark

has been computed, we must correct for the camera perspective to obtain the

3D point cloud corresponding to each landmark, in the target’s body frame; this

is trivial given that the camera parameters are known [42, Ch. 6].

The internal architecture of the network, including the number and size of365

convolution layers, can be easily modified by a configuration file. This enables

e�cient testing of di↵erent architectures. In addition, if the image data used in

training is of a su�ciently high resolution, dilation can be used to increase the

e↵ective size of the network without obtaining an unreasonably large number of

parameters [43].370

3.2. Loss Terms

We encourage the network to find landmarks which are inherently useful for

the task of rotation estimation, by the choice of several loss terms. To this end,

the main loss term is specifically designed to produce landmarks which follow

the rotation of the target over the time step. Once a set of learnt landmark

locations p
k
are available for a given image, and if the quaternion q̂ describing

the estimated or predicted rotation between the two considered images is also

known, then one would expect that the landmarks in this first image, p
k
, when

rotated by q̂, would result in the vector of landmarks from the second image,

p
0
k
. Therefore, the loss term Lrot is calculated as the di↵erence between this

expected result and the observed landmarks in the second image:

Lrot =
KX

k=1

��p0
k
�
�
q̂⇤ ⌦ p

k
⌦ q̂

���2 (3)
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where p
k
and p

0

k
are the landmark vectors from the first and second image

inputs, respectively, expressed in quaternion form, q̂⇤ is the conjugate of q̂,

⌦ denotes the quaternion product, and the operation q̂⇤ ⌦ p
k
⌦ q̂ refers to a

rotation of the vector p
k
by the quaternion q̂.375

With this loss term alone, there would be a risk that the network could break

down by finding a local minimum where all features are at the centre of rotation,

in which case Lrot would tend to 0. This can be prevented by incorporating an

additional separation loss term, Lsep [44]. This term encourages the landmarks

to spread out over the image by preventing them from clumping together. The

separation loss term is given by

Lsep =
KX

k,k0=1; k 6=k0

exp

 
� |p

k0 � p
k
|2

2�2
sep

!
(4)

where �sep is a weighting parameter.

We would expect that a higher peak in the feature map will likely correspond

to a strong landmark, such as a corner or edge. Therefore, we include a final

loss term to look at the concentration of the feature map around the landmark

location, termed as Lconc. The concentration of each landmark is computed by

applying a Gaussian mask centred at the landmark location across the output

of the softmax layer. The loss term is then calculated as

Lconc =
KX

k=1

exp

 
� 1

2�2
conc

HX

u=1

WX

v=1

Mk(u, v) G(xk,yk)(u, v)

!
(5)

where G(xk,yk) is a Gaussian mask centered at the landmark location (xk, yk)

and �conc is a weighting parameter.

The proposed loss term is the sum of the three terms described above, and

therefore presents two adjustable weighting factors that allow for fine control380

over the output of the landmark detector.

4. Rotation Estimation

Following the detection of image landmarks, the next task is to estimate the

rotation of the target from the motion of the landmarks. Given two sets of a
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minimum of three matched 3D points (i.e. landmarks on two subsequent images385

that are known to represent the very same feature of the target), an algorithmic

method can be devised to determine the best-fit rotation that is compatible with

the observed displacement of the landmarks between two successive images. In

fact, this information is su�cient to also compute the relative translational

motion of the target satellite. However, this has been well covered in past390

research and we consider it a less challenging problem, which will not provide

as valuable an indication of the usefulness of our extracted feature points. We

therefore focus our analysis on the sole problem of rotation estimation.

The rotation estimation can be achieved by solving a root-mean-square de-

viation (RMSD) minimisation problem [45], or alternatively, one can train a395

fully-connected neural network (FCNN) to estimate the rotation given the 3D

points as inputs. Both approaches are implemented in the following, and their

performance is analysed and compared.

4.1. Root-Mean-Square Deviation.

This approach provides the rotation which minimises the residual between

the observed and predicted landmarks, i.e. the di↵erence between landmark po-

sitions observed in an image, and the ones predicted by rotating the landmarks

from their observed positions in the preceding image. The residual computation

is fully expressed in quaternion notation, so conversions to rotation matrices or

other intermediate attitude representations are avoided inside the network. In

the quaternion approach [45] the residual E is given by

E =
1

K

KX

k=1

⇣
q̂⇤ ⌦ p

k
⌦ q̂� p

0

k

⌘
⌦
⇣
q̂⇤ ⌦ p

k
⌦ q̂� p

0

k

⌘⇤
. (6)

The value of the rotation quaternion which minimises the residual can be

found from the correlation matrix, C, between the two sets of image landmarks.

This value is equal to the eigenvector corresponding to the maximum eigenvalue
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of the matrix

F =

2

6666664

c11 + c22 + c33 c23 � c32 c31 � c13 c12 � c21

c23 � c32 c11 � c22 � c33 c12 + c21 c13 + c31

c31 � c13 c12 + c21 �c11 + c22 � c33 c23 + c32

c12 � c21 c13 + c31 c23 + c32 �c11 � c22 + c33

3

7777775

(7)

where cij are the components of the correlation matrix C.400

4.2. Fully-Connected Neural Network.

As an alternative to the algorithmic RMSD approach, a simple deep learning

network can also be proposed to estimate the rotation given the matched land-

marks. This method takes the 3D points as inputs which are passed through a

FCNN to directly regress the rotation quaternion q [46].405

A simple neural network architecture is investigated, consisting of two hidden

layers of 128 units each. The input to the network contains the initial locations

of each landmark as well as the change in position over the time step, which is

a vector of length 6 ⇥K where K is the number of landmarks. The output is

a 4-element vector describing the rotation; a constraint is applied to ensure the

quaternion has unit norm. The network is trained to minimise the loss term

LFCNN =
1� cos(✓)

2
(8)

where ✓ refers to the angular distance between the true quaternion, q, and the

predicted quaternion, q̂ [47]:

✓ = arccos(|q⌦ q̂|) (9)

The FCNN method requires further training on the same datasets. Similarly

to the landmark detection network, the data must be labelled with the rotation

quaternion between images.

4.3. Relationship Between the Absolute and Relative Rotational Motion

The simulated image pairs are labelled with the true change in attitude of the410

target satellite. However, the observed change in attitude is a combination of the
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rotations of both the target and the chaser. Since the chaser is an operational

spacecraft, and thus presumably equipped with su�ciently accurate sensors and

a fully functional attitude and orbit control system, one can assume that the

motion of the chaser satellite is known. Therefore, it is possible to determine415

the actual rotational state of the target by means of in-orbit observations of its

relative motion as observed from the chaser.

Instantaneous rotations1 between two frames (or ’rotations’, for short) are

most e↵ectively described in terms of quaternions. Thus, the instantaneous rota-

tion from frame FA to frame FB is given by the quaternion q
BA

. Quaternions

have a convenient composition relation that allows to concatenate successive

rotations when multiple frames are considered:

qCA = qCB ⌦ qBA (10)

It is important to note that instantaneous rotations and the attitude of an

object are deeply related concepts, as the attitude of an object can be described

through an instantaneous rotation of its body frame from a given departure420

reference frame; interestingly, note that the departure reference frame can be

arbitrarily chosen.

Consequently, in order to describe an object’s change in attitude between

two successive images (in practice, each taken at successive instants of time), it

su�ces to find the quaternion that describes the instantaneous rotation exhib-425

ited by its body frame from one image to the next. To this ends, body frames

must be defined for both, the target and the chaser, and they must be observed

at successive instants of time, each of which will provide an image to feed into

the landmark detection algorithm.

This is illustrated in Figure 5, which depicts two di↵erent instants of time430

where the attitude of the aforementioned body frames is considered. The frame

1The term instantaneous is here used to devoid the concept of a rotation from any notion

of time dependence, and thus highlight that the considered rotation is simply defined as the

di↵erence in attitude between two frames, regardless of kinematic considerations.
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Figure 5: Depiction of the body frames of the target and chaser satellites, before and after a

time step �t.

F1 is defined as a reference frame that is aligned with the chaser’s body frame at

the initial instant of time, where the first image is obtained; thus, note that in

the subsequent rotational motion the chaser’s body frame will evolve, whereas

F1 will remain unchanged in the LVLH space. After a time step �t, when the435

second image is to be obtained, the chaser’s body frame would have evolved

(following its attitude dynamics) to its current pose; thus, another reference

frame can be defined, namely F2, that is aligned with the chaser’s body frame at

this instant of time. Therefore, the change of attitude exhibited by the chaser’s

reference frame in the considered timeframe, is equivalent to the instantaneous440

rotation from frame F1 to frame F2, which can thus be represented by the

quaternion q21. Similarly, reference frames F3 and F4 can be defined so they

match the attitude of the target’s body frame at the two considered instants

of time, where quaternion q43 establishes the rotation from F3 to F4. Finally,

in order to describe the attitude of each of these four reference frames, it is445

useful to define a separate inertial reference frame, F0, which can be arbitrarily

defined and used as a common departure reference frame.

Determining the rotational state of the target requires that the quaternion

q43 be known from images at any two successive instants of time. However,

since F3 and F4 are unknown, the determination of q43 can only be done in-

directly. To this end, the only information available in practice is the target’s

observed change in attitude as seen by the chaser, i.e. the relative attitude of
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the target body frame referred to the chaser body frame. The relative attitude

of the target with respect to the chaser is described by quaternions q31 and q42,

respectively, for each of the two instants of time considered. The change of the

target’s attitude relative to the chaser is, precisely, the output that the algo-

rithms presented in Sections 4.1 and 4.2 provide, as well as the same quaternion

used in the definition of the loss term Lrot presented in Eq. (3). Thus, for the

sake of notation consistency, we shall denote this change of the relative attitude

by q̂, where no subscript is indicated; from the quaternion composition relation

it is straightforward to see that this quaternion is related to q31 and q42 by

means of

q42 = q̂⌦ q31. (11)

The rotational state of the chaser satellite with respect to an inertial frame

F0 is assumed to be known with accuracy at all times, thus quaternions q10 and

q20 are available, and so is q21. The desired rotation, q43, can thus be written

in terms of the known initial state of the chaser body frame, i.e.

q43 = q41 ⌦ q13 = q41 ⌦ q ⇤
31 (12)

In order to solve for q43, Eq. (12) shows that q41 needs to be expressed

in terms of known quantities. Using rotation composition and combining with

Eq. (11) yields:

q41 = q42 ⌦ q21 = q̂⌦ q31 ⌦ q21, (13)

thus Eq. (12) can be rewritten as

q43 = q̂⌦ q31 ⌦ q21 ⌦ q ⇤
31. (14)

Clearly, this expression still contains an unknown quantity, q31, since the true

initial state of the target is unknown; finding a work-around requires some

additional considerations. At this stage, it must be noted that we have not450

at any point introduced any assumption nor constraint in the definition of the

target body frame, beyond the fact that it needs to be a body frame, i.e. a

frame rigidly attached to the target object. Usual choices for a body frame are
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typically based either on geometric considerations, or on the mass geometry of

the object and its principal axes of inertia; however, the orientation of the body455

frame can actually be arbitrary, as long as it rotates with the body it is attached

to. One must also bear in mind that the target object can in principle be of

unknown geometry and properties, so for a rotation estimation algorithm to be

general, it is actually desirable that it does not depend on a-priori information

nor predefined body frames, and thus that it be an automatic, self-starting460

algorithm that will work on any target object, regardless of its shape or inertia

properties.

With these considerations in mind, and since one is free to choose any body

frame for the target, a convenient choice is to define a target body frame which is

intentionally aligned with the chaser body frame at the very first instant of time.

It is easy to see that this choice yields to an initial quaternion q31 associated to

an identity rotation matrix, since the body frame of the chaser and the target

would both be coincident, i.e. there would be no rotation between them. Hence,

Eq. (14) would simply to

q43 = q̂⌦ q21. (15)

Obviously, in subsequent instants of time this would no longer be the case if

the target, the chaser or both are rotating, so Eq. (14) would need to be used

in all remaining time steps; indeed, as time evolves and the rotation estimation465

algorithm is thus successively applied at subsequent instants of time, the quater-

nion q31 for images belonging to successive instants of time would change, but

it would now be a known quantity, because it can be computed from the angular

velocity by integrating the equations of motion for the relative attitude; indeed,

the proposed choice for the target body frame allows to set the initial condi-470

tions at the very first instant of time, which allows to start the integration of the

equations of motion, which in turn can provide q31(t) at any subsequent instant

of time, and therefore the rotation estimation algorithm would be complete.

Alternatively, note that if one is solely interested in determining the instan-

taneous rotation between any two subsequent frames (i.e., a quaternion), but475

23



not the angular velocity vector, then the arbitrary target body frame could ac-

tually be reset or redefined at each time step so it recurrently coincides with the

chaser body frame; therefore, in practice Eq. (15) could be used at each time

step instead of Eq. (14). Note, however, that with this procedure computing

the angular velocity would require extra caution due to the target body frame480

being re-defined in each time step.

The proposed choice of the target body frame provides a universal algorithm

in the sense that it does not require any a-priori or predefined information about

the target object; however, there are situations where one needs to specifically

select a user-specified target body frame, e.g. based on recognisable features of485

the target object. For example, this would be the case for a rendezvous and

docking manoeuvre, where the location of docking stations, solar arrays and

other peripherals of the target are provided in a specific target body frame,

and thus it would be required that the target’s attitude relative to the chaser

be computed using a predefined target body frame. In this case, the presented490

procedure would still remain valid, with the notable advantage that the attitude

of F3 with respect to F1 at the initial instant would be provided, and therefore

the quaternion q31 is initially known, so Eq. (14) can be used all along without

the need to define an ad-hoc arbitrary reference frame.

4.4. Outlier Rejection495

Since the landmark matching method used is simplistic in nature, the matches

may not always be accurate. For example, one landmark may show the top-right

corner of the target; after a rotation, the top-right corner may be a di↵erent

part of the target which was previously unseen. Therefore, we would like to

ignore landmarks which are not useful or are matched poorly.500

We achieve this, in part, by assigning a value for the confidence of each

pair of detected landmarks. The confidence value is simply a measure of the

likelihood that a certain feature corresponds with a strong object landmark.

This confidence measure is calculated in a similar way to the loss term Lconc,

i.e. by applying a Gaussian mask, centred at the landmark location, across the505
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output feature map. This value is used to reject those features with the lowest

confidence.

We also implement an outlier rejection algorithm within the end-to-end

learnt network. A common choice for outlier rejection is the random sample

consensus method, RANSAC [48]. However, this is an iterative algorithm, which510

makes it unsuitable for use within deep learning networks in its current state.

The RANSAC algorithm was therefore adapted to make it parallel and fully

di↵erentiable. Figure 6 illustrates an adapted RANSAC algorithm for outlier

rejection within a neural network. The steps of the algorithm are as follows:

All 3D 
points

... 

Best inliers

Predicted
rotation

Generate 
hypotheses

Estimate
rotation

Find best 
hypothesis

Refine 
hypothesis

3 points

Inliers

... 

... 

3 points

Inliers

Figure 6: The adapted RANSAC algorithm

1. Generate hypotheses. Randomly sample N sets of three landmark515

pairs from the sets of all landmarks. These form the set of hypotheses H.

Each hypothesis Hn contains a set of three points (h1,h2,h3) randomly

sampled from {p
k
}. Three landmarks are the minimum required to predict

a rotation.
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2. Score hypotheses. For each hypothesis Hn, estimate the rotation using520

only the sample of three landmarks. Apply this rotation to all {p
k
} to

obtain {pr

k
}. Each landmark pair (p

k
,p

0
k
) for which |p0

k
�p

r

k
|/|p

k
| < � is

an inlier, while all other pairs are rejected as outliers.

3. Rank hypotheses. Order hypotheses based on the number of inliers,

and select the best one.525

4. Refine hypothesis. Using all inliers from the best hypothesis, but ig-

noring outliers, predict the rotation.

Being di↵erentiable and parallelised, this implementation of the RANSAC

algorithm may be contained within the end-to-end trainable neural network.

This enables the parameters of the algorithm itself, such as the cut-o↵ value �,530

to be trained alongside the rest of the network.

4.5. Finetuning

The two sub-networks, for landmark detection and rotation estimation, are

trained separately before combining the two together. At this point, we can

finetune the entire network with the aim of encouraging it to detect landmarks535

which are inherently useful to the specific problem at hand.

The finetuning process involves training the entire network against the ro-

tation estimation loss, with a reduced learning rate. We also introduce another

loss term for the finetuning, Linliers, which penalises feature sets with small num-

bers of inliers. This loss term aims to improve the accuracy of the landmark540

matching between the two images.

5. Performance Analysis on Simulated Test Data

Before looking at the accuracy of the output of the model, it is helpful to

visualise each stage of the process. Figure 7 shows the outputs of the inner layers

in the network. The convolutional layers are searching for specific features which545

can be used to describe the rotation. The feature maps are then passed through

the spatial soft-argmax to find the landmark points of each feature, which we
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have overlaid onto the original images. The RANSAC process removes those

landmarks which do not appear to match correctly between the two images.

Then, only these matched inliers are passed to the rotation estimator.550
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Predicted rotation
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Figure 7: Visualisation of a subset of the outputs of the interior network layers

It can be observed that the the feature maps from the final convolutional

layer contain areas of high intensity which correspond with several possible

features. The spatial softmax followed by argmax find the landmark locations

from each feature map as the point of maximum intensity, where the magnitude

of the peak at this point can provide an estimate of the confidence in this555

landmark. We also see that the RANSAC algorithm successfully removes poorly

matched landmarks.

We now look at how the performance of our model changes under di↵erent

test cases. The use of synthetic test image data facilitates the investigation of

our proposed model under di↵erent conditions, thus revealing the advantages of560

it as well as any potential downfalls. We also wish to look at the e↵ects of chang-
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ing the various parameters of the model itself. However, being a deep-learning

based approach, there will always be a significant amount of randomness in the

training process. This must be taken into account during numerical analysis.

The loss of the model is defined as the di↵erence in angle between the pre-565

dicted rotation quaternion and the true value. This angle ✓ is calculated as in

Equation (9), and is equivalent to the angle of the rotation between the final

orientation of the target and the predicted orientation following rotation by the

estimated quaternion.

We look at four di↵erent 3D models for the target satellite, as illustrated570

in Figure 8. The first three of these (LRO, ICECube and MiRaTa) are real

satellite models, taken from NASA’s catalogue of 3D models. ICECube and

MiRaTa both have simple geometries, but this leads to the downside of having

fewer strong features and more rotational ambiguities. The LRO model has

a slightly more complex geometry but more strong image features. Finally,575

the skull model is also included as this represents the most di�cult test case,

with a complex geometry and few strong features. In each test case, the chaser

satellite is considered to be in a circular monitoring trajectory about the target,

as described in Section 2.1

Figure 8: Satellite 3D models. Left to right: ICECube, MiRaTa, LRO, Skull

5.1. Lighting Conditions580

We begin the analysis by looking at the response of our model under di↵erent

lighting conditions, since this is a critical challenge in space missions. Figure 9

contains a comparison of the mean model loss, averaged over the test datasets.

In this test case, the illumination direction is rotated between 0� (behind the
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observer) to 180� (behind the target). The figure also shows the camera view585

under the change in illumination angle, to illustrate the amount of information

present in the image.

(a) Mean loss when changing the illumination angle through 0� to

180�

(b) The view from the chaser satellite where the sun direction is 0�, 90� and

180�, respectively

Figure 9: Model loss response to changing illumination angle, tested on datasets with rota-

tion angles of 20� per step. When the object is poorly illuminated, the images contain less

information and the landmark detection is more challenging

In all following analysis, we look at the case where the sun angle is at 90� to

the camera view direction, since it is important to maintain good performance

under these more challenging illumination conditions.590

5.2. Model Accuracy

We now look at the accuracy of the model on a number of test datasets. The

rotation axis, lighting conditions and relative position of the satellites are all

kept consistent between each dataset. The loss (✓) at each step of an observation
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period is plotted in Figure 10 against the o↵set from the initial attitude. Here,595

the target is the ICECube satellite which is rotating by 20� per step. The

Figure is labelled with the view from the chaser at several points during the

observation.

Loss: 31.5° Loss: 0.4° Loss: 48.1°

Figure 10: Loss over the observation period against the o↵set from the initial position, illus-

trated with examples of the image data at several steps

There is a significant amount of variation in the results over the test dataset.

The model is capable of providing accurate estimates where the conditions are600

good, but is not robust to the more challenging conditions. For example, when

we have disappearing edges or significant lighting variations between the two

input images, the model can fail resulting in a loss angle which is much larger

than the rotation angle of the target over the timestep. These failures have a

noticeable impact on the mean loss of the model.605

Figure 11 shows the mean losses over entire datasets, between which the

angular velocity (and therefore the rotation angle per step) of the target satellite

is varied. Since we expect the loss angle to strongly correlate with the rotation

angle, we normalise the loss by dividing the former by the latter.

From this Figure, we notice a di↵erent response for the di↵erent target ob-610

jects. In all cases, as the rotation angle increases the motion of the landmarks is

more pronounced which gives us better information for calculating the rotation.

However, on the other hand, as the rotation angle increases we are more likely to
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Figure 11: Loss normalised by the rotation angle on all datasets

have self-occlusions, disappearing faces or changes in lighting which the model

is not robust to and will lead to failures as addressed previously.615

The combination of these two e↵ects depends on the satellite target. For the

more detailed LRO target, there is more information in the images to work with

but more likelihood of self-occlusions due to the large solar panel, for example.

In contrast, the simpler, CubeSat-like, satellites (ICECube and MiRaTa) con-

tain fewer details but are less prone to these issues. Finally, the Skull has a very620

di�cult geometry and few strong features so has lower accuracy throughout.

These observed e↵ects can be seen more clearly in Figure 12. In this fig-

ure, the loss angle is plotted against the number of inliers after the RANSAC

algorithm at each step. We show the results for four di↵erent rotation angles.

It is clear from this figure that at very low rotation angles, any small error625

in the position of landmarks has a large impact on the result so the predictions

have a universally high loss. As we increase the angle, the accuracy of the

majority of cases increases, but this is counteracted by an increased chance of

failure. As has already been noted, the chance of failure is higher on the LRO

dataset.630

The other result to note here is that the failures occur when the model fails to

find a su�cient number of inliers to correctly define the rotation. This suggests
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(a) 1� rotations (b) 8� rotations

(c) 16� rotations (d) 24� rotations

Figure 12: Step-wise loss against number of inliers. A larger rotation angle results in improved

accuracy in the general case but leads to higher likelihoods of a poor match between landmarks

that it is possible to predict a failure by looking at the number of inliers, and

rejecting that reading preemptively.

5.3. Network Architecture635

As discussed in Section 4, we investigated two approaches for the rotation

estimation layer of the model. The root-mean-square deviation method is an

algorithmic approach, while the alternative uses a dense fully-connected neural

network to make the model completely deep learning-based. Figure 13 analyses

the two approaches, labelled as “rmsd” and “dense” respectively.640

This Figure shows that the fully deep-learning approach is incapable of learn-

ing a useful solution, so it defaults to predicting no rotation. It is possible that

the problem is too complicated for a simple neural network architecture. How-

ever, we believe that this is more likely caused by the lack of robustness as
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Figure 13: Response of the di↵erent estimation layers, on the ICECube dataset

addressed above. When the feature matching layer fails, this often results in645

large errors, in which cases predicting no rotation is more accurate. This makes

training the model more challenging. We also note that finetuning the entire

network, as opposed to training the landmark extraction separately to the esti-

mation layer, yields only small improvements, likely for a similar reason.

5.4. Generalisability and Robustness650

The same network configuration can be used with various forms of input

data. In Figure 14, we investigate the response of the model using data from

each of several di↵erent visual sensors. These are: a single RGB camera with

no depth information; an ideal RGB-D sensor; a LiDAR depth sensor with an

angular resolution of one quarter of that of the RGB camera; an RGB camera655

with LiDAR; and finally, merged RGB and LiDAR data in 6-channel images.

In each case, the model is re-trained using data of each type.

Firstly, providing RGB images alone, with no depth information, appears to

be insu�cient to predict the rotation. An ideal RGB-D sensor performs best,

with a slight drop in accuracy when using LiDAR data since there is a loss660

in information due to the sampling rate. Interestingly, the model with RGB-

LiDAR data does not perform noticeably better than with LiDAR data only.
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(a) Di↵erent input data formats (b) Restricted training datasets

Figure 14: Performance on di↵erent datasets, illustrating the possibility of using di↵erent

sensor types and unseen debris targets

This suggests that either the RGB data is less important than the depth, or the

model is not making good use of the RGB data.

The second plot addresses the generalisability of the model to previously665

unseen targets. Poor generalisability is a known risk when using deep learning

approaches; it is important that the model remains accurate when given input

data which it has not seen during training. When training on only satellite

targets which the model struggles with, we see that our model performs worse

on all datasets. On the other hand, if our training data contains targets with670

strong edges and features from which the network can learn to extract land-

marks, we see an improved performance - even on those targets which were not

present in the training data. From this, we can conclude that the model has

good generalisation properties. This is somewhat expected, since our landmark

detection approach looks only for simple image features, due to the low depth675

of the network.

In the previous analysis, we showed that our model works well under good

conditions but is not robust to large changes in lighting conditions or self-

occlusions. We further investigate this in Figure 15. In the first of these plots,

we look at the axis of rotation of the target in reference to the viewpoint of the680

chaser. We consider the simplest case to be a rotation about the camera’s z

axis, in which the motion is contained entirely within the camera’s view plane
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and the depth information is less important. We o↵set the rotation axis from

0� to 90� from the z axis and observe the response of the loss. The second

plot investigates the response to changing the distance between observer and685

target. Due to the camera’s field of view, when the two satellites are within 20

metres, the entire target no longer fits within the image frame. In both cases,

we consider a rotation angle of 8� at each step.

(a) O↵set of rotation axis from the z axis (b) Distance of the observer from the target

Figure 15: Analysis of the robustness to di↵erent conditions

Again, we observe that our model shows promising results under the simpler

conditions, but the robustness requires improvement for the more challenging690

scenarios. In particular, if the target is not fully contained within the camera

frame, this approach does not work. However, the state determination will

usually be performed during an observation phase prior to rendezvous, so this

should not be an issue.

5.5. Comparison695

Finally, we present a comparison of our method with a conventional approach

to the same problem, using computer vision techniques for keypoint extraction

and matching. Following the keypoint matching, the rest of the algorithm is ap-

plied identically to our method. The first method we look at uses ORB features

[49] with brute-force matching. The second employs SIFT [50] for keypoint700

extraction with matching based on the Fast Approximate Nearest Neighbour

Search (FLANN) algorithm [51]. Both SIFT and ORB are commonly used in
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various image matching applications. The brute-force matching approach en-

sures best matches by looking at all possible matches, whereas FLANN is a

more e�cient approach but will not always find the best match. In addition, we705

compare our results with a point cloud based technique, using nearest neighbour

matching and the iterative closest point (ICP) algorithm, using 10 iterations per

step. The results of the comparison are plotted in Figure 16, on the ICECube

test dataset.

Figure 16: Prediction accuracy compared with conventional computer vision algorithms

Our model appears to have an improved performance in almost all cases710

when compared with the conventional approaches. The significant improvement

over the same approach using conventional feature matching algorithms shows

that our neural network-based approach is capable of learning intrinsically more

useful image features for this specific problem. The computer vision approaches

may have di�culty matching features in this challenging environment, since715

the matching is based on descriptions of the surrounding pixels and many of

the features look very similar. By training on images in this environment, we

can learn to better match these features, and to extract features which best

describe the rotation. In addition, we have shown that the mean loss for our

model is heavily influenced by a few steps with high losses; this is not the720

case for the conventional approaches, which instead show a more consistent loss
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which is higher than in our model, in the general case. If these steps can be

identified and rejected, by making use of their relationship with the number

of inliers, we will expect a further improvement. The fact that our approach

shows similar or better performance than the ICP method, which has been used725

in real missions, shows that our improved feature matching approach could be

a feasible alternative solution to this problem.

Our model has a further advantage over the conventional approaches. While

the latter require a greyscale image only, our model can accept any form sensor

data, including combinations of depth and visual sensors. The requirement is730

simply that the model be trained or finetuned using the specific input data.

The timing analysis illustrates an area where our model falls slightly behind

the state of the art, in part due to the fact that the RANSAC algorithm is not

well optimised for the GPU. We noted a sampling rate of 23Hz for our model,

increasing to 30Hz if the RANSAC layer is disabled. In contrast, when using the735

ORB feature extractor with brute force matching, we can achieve up to 50Hz,

though this is also reduced to 25Hz if we include the same RANSAC algorithm.

Our implementation of the ICP method is significantly slower, approximately

2-3 Hz – however, it should be noted that the e�ciency of the implementation

could be much improved, so this is not a fair comparison. Analysis of light740

curves [52] shows that the minimum observed period of rotation for an object

in LEO is approximately 1 second, with most being significantly higher. Even

in the most extreme case, a sampling rate of 20Hz would result in a rotation

angle of 18� per step, which is within the range of reasonable accuracy for

our model. Our model also uses a GPU for the majority of the calculations745

while the conventional approaches use CPU processing. GPUs o↵er improved

performance and energy e�ciency for a lower cost when compared with CPUs,

making them an attractive candidate for on-board computation in space [53].

37



6. Conclusion

In this study, we have presented a deep learning model to determine the750

change in attitude of an unknown satellite target. The developed model uses

machine learning techniques to detect and match landmarks from visual data.

Outlier landmarks have been rejected by constructing a fully di↵erentiable and

parallelised implementation of the RANSAC algorithm. The model is compared

with several conventional approaches, showing similar or better performance755

throughout. The neural network-based approach to feature extraction is able

to learn intrinsically more useful image features than conventional approaches,

enabling this method as a potential alternative to the commonly-used iterative

closest point algorithm. For simple cases, the model demonstrates a good per-

formance, though it is not yet fully robust to the more challenging conditions760

which can be present in the space environment. Although the developed model

can be prone to large errors where too many landmarks are rejected as outliers,

we have shown that these poor estimations are predictable by their relation-

ship with the number of inliers, and so can be rejected preemptively to improve

the accuracy. In addition, as the model can generalise well to previously unseen765

satellite shapes, due to the nature of the feature extraction approach, it does not

require information about the target satellite to be known a-priori. We are able

to perform calculations at a su�ciently high rate for any observed tumbling rate

of debris objects, using GPU instead of CPU processing which is increasingly

looking like a more attractive solution for on-board computation.770

This work proposes a promising solution to the problem of guidance, nav-

igation and control in active debris removal missions. However, there remain

some further avenues to investigate. More work is required to improve the ro-

bustness, either by preventing or pre-emptively rejecting those steps with high

errors. However, as is always the case in machine learning applications, the ro-775

bustness can likely be improved simply by increasing the amount and variance

of the training data. Also, by looking at only one step we are not making use of

the fact that the angular velocity of the target spacecraft should not be chang-
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ing significantly over small timesteps, and must do so according to its attitude

kinematics; thus, by providing rotational information from previous steps, we780

can increase the amount of information that the model relies on to make a pre-

diction; alternatively, the model could be combined with appropriate filtering

techniques, such as a Kalman filter, to improve the accuracy of the attitude

reconstruction. Additionally, all analysis of the model is performed using sim-

ulated data. In order to determine whether the model will generalise well to785

real data, we aim to produce more realistic, experimental datasets within a lab,

using actual visual and LiDAR sensors.

7. Acknowledgements

This work was supported by the EPSRC Centre for Doctoral Training in

Next Generation Computational Modelling Grant No. EP/L015382/1. The790

authors acknowledge the use of the IRIDIS High Performance Computing Fa-

cility, and associated support services at the University of Southampton, in the

completion of this work. Hodei Urrutxua also wishes to acknowledge funding

from grant ESP2017-87271-P (MINECO/AEI/FEDER, UE), as well as Project

Grant F663 - AAGNCS by the “Dirección General de Investigación e Innovación795
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Abstract

Active debris removal missions pose demanding guidance, navigation and con-

trol requirements. We present a novel approach which adopts deep learning

technologies to the problem of attitude determination of an uncooperative de-

bris satellite of an a-priori unknown geometry. A siamese convolutional neural

network is developed, which detects and tracks inherently useful landmarks from

sensor data, after training upon synthetic datasets of visual, LiDAR or RGB-D

data. The method is capable of real-time performance while improving upon

conventional computer vision-based approaches, and generalises well to previ-

ously unseen object geometries, enabling this approach to be a feasible solution

for safely performing guidance and navigation in active debris removal, satellite

servicing and other close proximity operations. The performance of the algo-

rithm, its sensitivity to model parameters and its robustness to illumination and

shadowing conditions, are analysed via numerical simulation.

Keywords: active debris removal, spacecraft attitude determination, deep

learning, image processing

1. Introduction

In the past 60 years, the amount of debris in the Low Earth Orbit (LEO) has

been increasing steadily [1, 2]. This poses a threat to current space missions,
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as highlighted by the 2003 collision between Iridium 33 and Cosmos 2251 [3].

In fact, the Kessler syndrome states that, even if all space launches were to be5

stopped, the amount of debris would continue to increase [1]. Therefore, it is

clear that a method of actively removing debris is required.

Active debris removal (ADR) is a research area which has been a high priority

for recent years. The recent RemoveDebris mission was the first to demonstrate

many of the required technologies in a space environment, though there remain10

several challenges to be met before a real debris object can be removed. These

challenges include legal aspects, cost, mission design and technological issues. In

particular, there are strict requirements on the guidance, navigation and control

system [4].

Guidance, navigation and control (GNC) for proximity operations and ren-15

dezvous in orbit is very technologically challenging. Due to the time scales and

the criticality of this section of an ADR mission, there is increasing interest in

the GNC system to be able to perform in a fully autonomous manner. Addi-

tionally, it is of crucial importance that the proximity operations do not lead

to a collision, thereby adding to the space debris problem. As such, the debris20

removal satellite must be capable of accurately and robustly determining the

position, attitude and tumbling angular velocity of the target.

The GNC system for an ADR mission faces particularly significant challenges

where the target parameters are unknown and the target is uncooperative. For

such a scenario there are strict GNC requirements that have not yet been con-25

clusively demonstrated in flight in a fully autonomously manner. These may

be enumerated as: 1) identification of geometric and physical characteristics of

an unknown co-orbiting object; 2) measurement of the target-chaser relative

rototranslational state; 3) guidance and navigation around an uncooperative

co-orbital object; and 4) capture, stabilisation and de-orbit of an uncooperative30

spacecraft.

For contactless debris removal missions the chaser would need to safely op-

erate within a few meters of the target [5], whereas for contact methods the

spacecraft should be able to dock or berth, thus imposing stringent require-
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ments also to their relative velocity, within 1 cm/s in range rate and 4� in35

relative angular rate [6]. In addition, the short time scales and high risk of col-

lision make autonomous operations of the GNC system a very desirable feature.

However, the uncooperative (and often unknown) nature of the target intro-

duces a further di�culty, thus preventing the straightforward use of readily

flight-proven technologies, which rely on prior information about a cooperative40

satellite, often equipped with docking systems. The control system of the chaser

satellite requires the synchronisation of attitude motion with the debris target

[7], or alternatively active detumbling of the debris [8], in order to reduce the

relative angular rate to within the stated threshold. In either case, an accurate

estimate of the attitude and rotational state of the target is required. This is45

the main focus of our work.

There have not yet been any active debris removal missions to date, except

for a small number of ADR demonstration missions with the aim of testing

some of the required technologies. The RemoveDebris mission was the first in-

orbit demonstration of ADR technologies, including net and harpoon capture50

mechanisms and a vision-based navigation system [9]. The navigation system

consisted of visual, infrared and LiDAR cameras and the measurements were

verified using GPS. On-orbit servicing is a similar problem requiring close-range

operations, where there have only very recently been successful missions [10, 11].

The Mission Extension Vehicle (MEV) by Northrop Grumman demonstrated the55

first docking with a satellite which was not built with docking in mind. How-

ever, in these missions the target was fully known and cooperative (either fitted

with retroreflectors or, in the case of MEV, targeting a liquid apogee engine of

known dimensions and properties). Again, in the MEV mission visual, infrared

and LiDAR sensors were used. Despite these few demonstration missions, the60

technical readiness level (TRL) of several ADR technologies is as yet too low to

enable any real debris removal missions, so we instead look to similar missions

which have demonstrated autonomous GNC in a real environment. Navigation

around asteroids and cometary bodies, where the large delay in communications

feedback necessitates an autonomous GNC system [12, 13], is a scenario where65
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autonomous GNC systems have been successfully tested. In these cases a 3D

model of the asteroid or comet is constructed by extracting key landmarks from

images during an observation phase, but often the processing of these landmarks

is done o↵-line.

Visual navigation systems can achieve high accuracies under good conditions,70

and so are generally accepted as the best solution for autonomous guidance. The

selection of the best onboard sensors can vary depending on the applications

and requirements. Active LiDAR sensors are one of the most popular choices

since they provide a measurement of the depth and are relatively insensitive

to illumination conditions, with a wide range of working distances. However,75

LiDAR sensors have a high power consumption and often a limited field of view.

Stereo or RGB-D cameras are other potential options, since these also measure

the depth. There are also solutions which propose using a single monocular

camera. However, many solutions, such as those of RemoveDebris and Northrop

Grumman, use a combination of di↵erent sensors.80

A conventional approach for visual navigation about an unknown target

consists of extracting landmarks from an image which describe the object’s

pose and tracking the motion of these landmarks to estimate the rotational

state, potentially using complex processing techniques such as optical flow or

simultaneous localisation and mapping [14]. The pose descriptors are processed85

within a filtering scheme; several of these filters are compared by Pesce et al

[15], the most common being the extended Kalman filter (EKF) [16, 17, 18].

Unfortunately, these algorithms can be computationally intensive, they have no

colour saliency and tend to have di�culty in situations with di�cult illumination

conditions [19, 20]. Some of the complexity can be removed if the geometry of90

the target is known beforehand [21, 22], though this will not always be true in

the most general case.

This paper focuses on the estimation of the instantaneous rotational state of

an unknown and uncooperative target from image landmarks, which would then

be combined with a filtering system to reconstruct the attitude. It investigates95

whether deep learning technologies can improve upon the performance of the
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conventional algorithms, by training a model on datasets under these challenging

conditions, as deep learning methods have the advantage of being resistant to

non-linearities in the data, such as those caused by varying lighting conditions.

Once trained, these models also tend to be fast to run, making them suitable100

for real-time applications. The downsides are the requirement for large, labelled

datasets and the risk of overfitting to the training data.

The domains of image processing and computer vision have seen significant

advances in recent years attributed to the deep learning revolution, particu-

larly for object detection and classification tasks [23, 24]. However, in contrast,105

the applications of deep learning to visual navigation have seen less research,

although this area has begun to experience more interest recently [25]. Partic-

ularly, most work in this domain has been focused on ground-based problems

[26, 27]; in comparison, research on space-based guidance applications has been

more limited.110

There has been increased interest recently into the applications of machine

learning to GNC in space. Sharma and D’Amico [28] present a method for pose

estimation with a monocular camera using a convolutional neural network. This

work also contributes the Spacecraft Pose Estimation Network (SPEED), which

has since been made publicly available through a competition on pose estimation115

run by the European Space Agency [29]. Other similar research has also looked

at pose estimation from monocular images [30, 31], often using finetuned neural

network architectures such as ResNet and VGG19. However, in each of these

cases, the target spacecraft is known a priori; either the 3D model is provided,

or the neural network is trained on a dataset containing a single satellite model.120

Instead, we aim to solve the more general case, in which the structure of the

debris target is entirely unknown. Furthermore, we propose that finetuning a

network which has been pretrained on a di↵erent image processing task, such as

object detection on ImageNet, will result in a network which looks for abstract

features, which are not useful in determining the pose of an object.125

In this article we propose a novel method for the autonomous, real time

estimation of the attitude of an unknown and uncooperative target spacecraft
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using deep learning technologies. The proposed approach is accurate, robust,

and can be used with LiDAR or RGB-D sensors with good results. The same

approach is also applicable for monocular cameras; however, the accuracy in130

this case is heavily impacted by the lack of depth information and so the model

requires more refinement before it is able to achieve a similar performance with

this restriction. Machine learning technologies have the advantages of being

fast and robust to non-linearities, such as varying lighting conditions. However,

the drawback of these methods is the requirement for vast amounts of labelled135

image data, required for training the network. Such a dataset does not exist

for this problem, so there has been little investigation into the applications of

machine learning in space-based guidance systems. In order to overcome this,

synthetic images were generated by simulating the relative motion between two

satellites. Thus, the ability of our deep learning model to predict the rotation140

of a debris satellite is investigated using simulated visual sensor data.

While methods to perform full object rotation state estimation using deep

learning have been proven to be di�cult [32], we can simplify the problem by

only looking at the change in attitude across a time step. Given two images of

a satellite as observed by a co-orbital satellite at successive instants of time, we145

compute the angular velocity of the target satellite. In particular, we employ

the simple landmark extraction and tracking approach, aiming to improve upon

the performance of conventional algorithms. The model is thus divided into

two parts with di↵erent purposes: first, landmarks are extracted from the two

images and matches between both images are identified; second, the angular150

velocity and full rotational state are estimated using the matched landmark

locations.

For the first part, a convolutional neural network (CNN) is proposed to ex-

tract useful landmarks from two images or point clouds, separated by a short

time-step; it su�ces to look only at high-level features in the form of image155

landmarks. By making use of the properties of neural networks, we can match

landmarks between images implicitly, with no need for complex feature descrip-

tors. In particular, in neural networks the ordering of the output vector is
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important, a property that can be exploited by proposing that the extracted

landmarks from two images passed through the same network can be matched160

simply by their position in the output vector.

In the second part, the matched landmarks are then used to estimate the

rotation of the target over the timestep. The system is encouraged to find land-

marks which are inherently useful for the rotation estimation problem, through

the use of several loss terms. In order to reject outliers, we also adapt the165

random sample consensus (RANSAC) algorithm for use within an end-to-end

trainable deep learning network.

The remainder of the article is structured as follows: Section 2 discusses the

construction of the simulation framework; our proposed approach to divide the

model into two parts, namely the landmark detection and matching algorithm,170

and the rotation estimation algorithm, are discussed in detail in Sections 3 and

4, respectively; the results of the investigations are analysed in Section 5, where

our model is compared with conventional techniques; finally, conclusions are

summarised in Section 6.

2. Observational Data of in-Orbit Proximity Operations175

In order to apply supervised learning techniques to the problem, there is a

requirement for a large amount of pose-labelled data. Such a dataset does not

currently exist, and would be time-consuming and di�cult to generate for real

images. Thus, synthetic training data is used as an alternative to real data.

This approach enables complete control over all parameters of the data and180

allows us to generate large datasets quickly.

We have therefore constructed an ad-hoc simulation framework for this pur-

pose. In an active debris removal mission, a debris object (hereafter, the target)

is approached, observed in close proximity, and eventually captured by a de-

bris removal satellite (hereafter, the chaser). During these operations, both185

satellites are co-orbiting relative to each other, for which the chaser requires of

observational data of the target in order to determine its relative position and
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pose, and characterise its dynamics, geometry and integrity, to feed this infor-

mation to the GNC subsystem in order to safely perform proximity operations.

The aim of this simulation framework is to generate realistic, synthetic optical190

data from the viewpoint of the chaser. We use Blender1 for visualisation with

python scripts to change the simulation conditions and compute the relative

motion of the two satellites.

There are several elements to the simulation: 1) the relative orbital motion

between the two satellites must be modelled, as well as their rotational dynam-195

ics; 2) the lighting and shadowing conditions must emulate realistic in-flight

conditions; and 3) the output video stream should be labelled with the target’s

pose at each time, and should simulate the output of optical, RGB-D or LiDAR

sensors.

2.1. Relative Orbital and Attitude Motion200

For studying the relative orbital motion, it is customary to use the target-

centred, Local-Vertical-Local-Horizontal (LVLH) reference frame, as illustrated

in Fig. 1. Following Kaplan’s notation [33], the R̂ unit vector is colinear with

the position vector, Ŵ is normal to the orbit plane, and Ŝ completes a right-

handed frame, so for a circular orbit Ŝ is aligned with the orbital velocity vector.

The relative motion of the observing chaser satellite can be described in relation

to this new reference frame. The relative position vector of the chaser, rrel, is

given as

rrel = robs � rtgt (1)

where robs and rtgt are, respectively, the planetocentric position vectors of the

chaser (observer) and target satellites.

The equations of relative motion can be linearised which, under di↵erent

assumptions, yield analytical models of di↵erent complexity. The Clohessy-

Wiltshire equations [34] are appropriate for modelling close proximity operations205

1www.blender.org
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Figure 1: The target-centred LVLH reference frame.

in a circular orbit, whereas for the case of an elliptic orbit, the Tschauner-

Hempel equations [35] are a classical alternative.

In an active debris removal mission, there will often be an observation or

monitoring phase in which the chaser moves around the target satellite to char-

acterise its rotational state and other geometric and physical parameters of in-210

terest. When the orbital periods of the chaser and target satellites are synced,

there are periodic solutions to the relative orbital motion that allow the chaser

to circle around the target to perform such activities [36].

The rotational motion of both satellites is also simulated, assuming the tar-

get is in a tumbling state, whereas the attitude of the chaser can be controlled.215

Quaternions are used for attitude parameterisation, which describe the orienta-

tion of their body frame coordinates with respect to inertial space [37]. Quater-

nions are employed due to their built-in redundancy, which not only yields a

singularity-free representation, but also conveys error correcting capabilities;

additionally, a neural network can easily regress the quaternion directly, as will220

be discussed later.

For our test case, we consider the chaser to be in the observation phase of

a debris removal mission, during which chaser will attempt to keep a circular

relative orbit around the target. The target is assumed to be in a circular orbit

at an altitude of 500km; thus, the periodic solutions to the Clohessy-Wiltshire225

solutions result in the monitoring trajectory illustrated in Figure 2. At all points

in orbit, we assume that the chaser rotates such that it is always facing towards
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the target, using its attitude control system. This change in attitude of the

chaser over time is considered to be known by the system. On the other hand,

the tumbling angular velocity of the target satellite is considered to be constant230

within its rotating LVLH body frame.

Figure 2: The relative position of the chaser over one orbital period, starting from an initial

displacement of [�50, 0, 0] with initial velocity [0, 0.1109, 0], where 0.1109 = �2!x0

2.2. Lighting and Shadowing Conditions

The unique lighting conditions in space present a key di�culty for optical

guidance algorithms, due to the high contrast and reflections, so these must be

emulated in the simulation framework. We consider the Sun to be the sole light235

source, which can be simulated as a distant point source. For simplicity, light

reflected from Earth is omitted, and the shadow of the chaser spacecraft upon

the target (when both are aligned with the Sun pointing vector) is disregarded.

As is the case in orbit, the direction of the light source (i.e. the sun-pointing

vector) changes over the course of the simulation. This is due to the position240

of the target along its orbit, the direction in which the chaser is facing, and

the heliocentric motion of the Earth (Solar ephemerides by Blanco-Muriel et al.

[38] are used). We simplify the test cases by selecting inclined orbits, so that
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spacecraft do not cross the umbra and penumbra regions in the shadow cone of

the Earth, and thus both spacecraft are illuminated at all times.245

2.3. The Output Video Stream

The output of the simulation not only provides the dynamical states of both

spacecraft (and their relative states), but also needs to simulate the outputs

of an optical camera, a RGB-D sensor and a LiDAR, all onboard the chaser.

Optical and RGB-D sensors both provide a colour image, with the latter also250

providing the depth at each pixel. A LiDAR sensor also measures the depth of

an image, with a lower resolution which depends on the sampling rate of the

sensor; this data is generated from the depth image by sampling pixels at a given

sampling rate, and returning a point cloud containing sparse 3D information.

These forms of sensor data are illustrated in Figure 3.255

(a) RGB sensor (b) RGB-D sensor (c) LiDAR sensor

Figure 3: Di↵erent simulated sensors

The output images must be collected into datasets which can be used in

training the neural networks. The datasets consist of a collection of pairs of

successive images, with a small time step having passed between the two images.

We select the position and attitude parameters of the target and chaser such

that there is a large variation in relative angular rate between simulations, from260

0.5� per step up to 7�. In order to increase the size and variation of the datasets,

we also collect image pairs with a gap of 2, 3 or 4 times the time step, enabling

us to investigate the response for up to 28� rotations in a single time-step,

although the higher end is likely to be very di�cult to solve. We use a dataset
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of approximately 60,000 image pairs for training the model, varying the debris265

targets, rotations speeds and illumination conditions. Separate, smaller datasets

are created for testing and validation, with di↵erent simulation parameters; this

data is not seen by the model during training. Each image pair must then be

labelled with the rotational state of the target satellite across this time step.

2.4. Using Synthetic Data270

Synthetic data presents a number of advantages: 1) it enables the use ma-

chine learning in environments where real data would be very time consuming

or di�cult to process; 2) the size of datasets made up of synthetic data can

be much larger than would be achievable with real data, due to the speed of

generation; and 3) by simply changing certain parameters of the simulation, it275

is possible to generate new datasets under di↵erent conditions to further test

the model. In our simulation framework, all parameters are contained in an

editable configuration file, which can be either specified precisely or randomised

before generating a dataset of tens of thousands of image pairs, a task which

would be unrealistically time-consuming for real data.280

However, using synthetic data may lead to di�culties at a later stage, when

aiming the model to generalise to real images. The synthetic data will not

match exactly to real data – in particular, the camera and sensors will not be as

accurate as in the simulation, where the depth of each pixel is known precisely.

In addition, it is di�cult to assess to which extent the synthetic data matches285

the real data closely enough so the network trained with synthetic data would

perform equally well for in-flight operation use.

In this regard, the capability of the model to generalise to real data could

be improved by distorting the data [39], which encourages the model to learn

the object features and disregard the inaccuracies in the sensor. In order to290

determine the generalisability of our model, in a further stage we will be gen-

erating realistic experimental data in a lab environment as part of a follow-up

development plan.
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3. Landmark Detection and Matching

In order to estimate the rotational state of an object, we must track the295

motion of di↵erent areas of the target, which are exhibiting apparent changes

due to the object’s rotation; from this information an estimate of the rotation

can be reconstructed. We therefore divide our approach into two key parts.

Firstly, we use a landmark detection and matching algorithm to select specific

areas or features on the target and track their motion over time. Then, an300

estimate of the rotation is determined using the motion of these landmarks.

This subdivision of tasks enables the neural network to focus on the specific task

of landmark detection, by training this part of the model separately. Finally,

we can put both parts together to finetune the response, encouraging the model

to find landmarks which are specifically useful for estimating the rotation. This305

section describes our approach towards the landmark detection and matching

and presents the mathematical model of the neural network used.

Often, the landmark detection problem is simplified by fitting the target

with retro-reflectors at a known location on the target, which are simple to

extract from images. Alternatively, if there exists a-priori knowledge of the310

object’s geometry, features can be predefined based on this and matched with the

observed data. Instead, we present an algorithm which requires no knowledge

of the debris object and is capable of automatically obtaining a set of matched

landmark locations which best define the rotational state of the target, thereby

enabling fully autonomous operations.315

Our landmark detection network accepts two images and returns K feature

maps for each image, each corresponding to a di↵erent landmark. A spatial

soft-argmax [40] over the feature maps then results in two sets of K three-

dimensional points {p
k
} and {p0

k
}; k = 1, 2, ...,K. The landmark matching

process makes use of a core property of neural networks: the ordering inside320

the vectors is important. This means that the output at index k in each vector

p
k
and p

0
k
of the aforementioned sets will describe the same feature in both

images. There is therefore no need for complex and costly feature description
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and matching algorithms; the correspondences are instead determined implicitly

from the position in the output vector. An additional advantage of neural325

networks is their ability to learn features which are inherently useful for the

specific problem on which they have been trained.

The network can accept data from optical cameras, RGB-D sensors or a

sparse point cloud (such as may be generated from a LIDAR sensor). If a point

cloud is provided, it is converted to a dense depth map using the method of Ku330

et al [41]. Landmarks can be extracted from a three-channel colour image, or

directly from a depth map. In the latter case, the depth map is first converted

to a three-channel image, with the three channels containing the x, y and z

information respectively. Alternatively, the RGB and depth information may

be fused together to form a six-channel input image. All types of input data335

are investigated in the later sections.

3.1. Network Architecture

A convolutional neural network is proposed to detect and match landmarks

in the two input images, with the layout shown in Figure 4. This is a siamese

network, where each input image passes through the same network to extract340

image landmarks. The network architecture consists of only two convolutional

layers with large kernel sizes and no pooling layers, to generate a set ofK feature

maps, M. A shallow network is proposed, which emphasises features with a low

level of abstraction such as corners and edges. In addition, pooling layers lead

to a loss of geometrical information, so these should be avoided. The landmark345

locations are extracted from the feature maps by a spatial soft-argmax layer [40].

The soft-argmax algorithm aims to find the location of the highest peak in the

feature map. Unlike a simple argmax, this is fully di↵erentiable which ensures

that the network is end-to-end trainable. First, the softmax function is applied

to the two-dimensional feature maps to obtain a probability distribution over
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Figure 4: Landmark detection network architecture

the height and width:

Sk(u, v) =
exp(Mk(u, v)/T )

HX

u=1

WX

v=1

exp(Mk(u, v)/T )

(2)

whereMk is the k-th channel of the feature map, withH andW being the height

and width of the map, and Sk(u, v) the value of the probability distribution of

feature k at the pixel (u, v). The temperature, T , is a parameter which can be

set beforehand or learned by the network. Summing this probability distribution350

over the height and width provides the (x, y) location of the maximum of each

feature map. This is considered to be the position of the landmark at index k,

denoted as p
k
.

At this point, we have the on-screen (x, y) location of several object land-
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marks. However, in order to solve for the rotation we instead require the three355

dimensional (x, y, z) coordinates of each landmark. If RGB-D or LiDAR data

is used, the z coordinate is taken directly from the depth map. If depth infor-

mation is not provided, the network can learn an estimate of the z component,

using the same image data as before passed through a few convolutional layers.

However, this is not a simple task using the limited information provided, so the360

accuracy is understandably worse in this case. Once the depth of each landmark

has been computed, we must correct for the camera perspective to obtain the

3D point cloud corresponding to each landmark, in the target’s body frame; this

is trivial given that the camera parameters are known [42, Ch. 6].

The internal architecture of the network, including the number and size of365

convolution layers, can be easily modified by a configuration file. This enables

e�cient testing of di↵erent architectures. In addition, if the image data used in

training is of a su�ciently high resolution, dilation can be used to increase the

e↵ective size of the network without obtaining an unreasonably large number of

parameters [43].370

3.2. Loss Terms

We encourage the network to find landmarks which are inherently useful for

the task of rotation estimation, by the choice of several loss terms. To this end,

the main loss term is specifically designed to produce landmarks which follow

the rotation of the target over the time step. Once a set of learnt landmark

locations p
k
are available for a given image, and if the quaternion q̂ describing

the estimated or predicted rotation between the two considered images is also

known, then one would expect that the landmarks in this first image, p
k
, when

rotated by q̂, would result in the vector of landmarks from the second image,

p
0
k
. Therefore, the loss term Lrot is calculated as the di↵erence between this

expected result and the observed landmarks in the second image:

Lrot =
KX

k=1

��p0
k
�
�
q̂⇤ ⌦ p

k
⌦ q̂

���2 (3)
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where p
k
and p

0

k
are the landmark vectors from the first and second image

inputs, respectively, expressed in quaternion form, q̂⇤ is the conjugate of q̂,

⌦ denotes the quaternion product, and the operation q̂⇤ ⌦ p
k
⌦ q̂ refers to a

rotation of the vector p
k
by the quaternion q̂.375

With this loss term alone, there would be a risk that the network could break

down by finding a local minimum where all features are at the centre of rotation,

in which case Lrot would tend to 0. This can be prevented by incorporating an

additional separation loss term, Lsep [44]. This term encourages the landmarks

to spread out over the image by preventing them from clumping together. The

separation loss term is given by

Lsep =
KX

k,k0=1; k 6=k0

exp

 
� |p

k0 � p
k
|2

2�2
sep

!
(4)

where �sep is a weighting parameter.

We would expect that a higher peak in the feature map will likely correspond

to a strong landmark, such as a corner or edge. Therefore, we include a final

loss term to look at the concentration of the feature map around the landmark

location, termed as Lconc. The concentration of each landmark is computed by

applying a Gaussian mask centred at the landmark location across the output

of the softmax layer. The loss term is then calculated as

Lconc =
KX

k=1

exp

 
� 1

2�2
conc

HX

u=1

WX

v=1

Mk(u, v) G(xk,yk)(u, v)

!
(5)

where G(xk,yk) is a Gaussian mask centered at the landmark location (xk, yk)

and �conc is a weighting parameter.

The proposed loss term is the sum of the three terms described above, and

therefore presents two adjustable weighting factors that allow for fine control380

over the output of the landmark detector.

4. Rotation Estimation

Following the detection of image landmarks, the next task is to estimate the

rotation of the target from the motion of the landmarks. Given two sets of a

17



minimum of three matched 3D points (i.e. landmarks on two subsequent images385

that are known to represent the very same feature of the target), an algorithmic

method can be devised to determine the best-fit rotation that is compatible with

the observed displacement of the landmarks between two successive images. In

fact, this information is su�cient to also compute the relative translational

motion of the target satellite. However, this has been well covered in past390

research and we consider it a less challenging problem, which will not provide

as valuable an indication of the usefulness of our extracted feature points. We

therefore focus our analysis on the sole problem of rotation estimation.

The rotation estimation can be achieved by solving a root-mean-square de-

viation (RMSD) minimisation problem [45], or alternatively, one can train a395

fully-connected neural network (FCNN) to estimate the rotation given the 3D

points as inputs. Both approaches are implemented in the following, and their

performance is analysed and compared.

4.1. Root-Mean-Square Deviation.

This approach provides the rotation which minimises the residual between

the observed and predicted landmarks, i.e. the di↵erence between landmark po-

sitions observed in an image, and the ones predicted by rotating the landmarks

from their observed positions in the preceding image. The residual computation

is fully expressed in quaternion notation, so conversions to rotation matrices or

other intermediate attitude representations are avoided inside the network. In

the quaternion approach [45] the residual E is given by

E =
1

K

KX

k=1

⇣
q̂⇤ ⌦ p

k
⌦ q̂� p

0

k

⌘
⌦
⇣
q̂⇤ ⌦ p

k
⌦ q̂� p

0

k

⌘⇤
. (6)

The value of the rotation quaternion which minimises the residual can be

found from the correlation matrix, C, between the two sets of image landmarks.

This value is equal to the eigenvector corresponding to the maximum eigenvalue
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of the matrix

F =

2

6666664

c11 + c22 + c33 c23 � c32 c31 � c13 c12 � c21

c23 � c32 c11 � c22 � c33 c12 + c21 c13 + c31

c31 � c13 c12 + c21 �c11 + c22 � c33 c23 + c32

c12 � c21 c13 + c31 c23 + c32 �c11 � c22 + c33

3

7777775

(7)

where cij are the components of the correlation matrix C.400

4.2. Fully-Connected Neural Network.

As an alternative to the algorithmic RMSD approach, a simple deep learning

network can also be proposed to estimate the rotation given the matched land-

marks. This method takes the 3D points as inputs which are passed through a

FCNN to directly regress the rotation quaternion q [46].405

A simple neural network architecture is investigated, consisting of two hidden

layers of 128 units each. The input to the network contains the initial locations

of each landmark as well as the change in position over the time step, which is

a vector of length 6 ⇥K where K is the number of landmarks. The output is

a 4-element vector describing the rotation; a constraint is applied to ensure the

quaternion has unit norm. The network is trained to minimise the loss term

LFCNN =
1� cos(✓)

2
(8)

where ✓ refers to the angular distance between the true quaternion, q, and the

predicted quaternion, q̂ [47]:

✓ = arccos(|q⌦ q̂|) (9)

The FCNN method requires further training on the same datasets. Similarly

to the landmark detection network, the data must be labelled with the rotation

quaternion between images.

4.3. Relationship Between the Absolute and Relative Rotational Motion

The simulated image pairs are labelled with the true change in attitude of the410

target satellite. However, the observed change in attitude is a combination of the
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rotations of both the target and the chaser. Since the chaser is an operational

spacecraft, and thus presumably equipped with su�ciently accurate sensors and

a fully functional attitude and orbit control system, one can assume that the

motion of the chaser satellite is known. Therefore, it is possible to determine415

the actual rotational state of the target by means of in-orbit observations of its

relative motion as observed from the chaser.

Instantaneous rotations1 between two frames (or ’rotations’, for short) are

most e↵ectively described in terms of quaternions. Thus, the instantaneous rota-

tion from frame FA to frame FB is given by the quaternion q
BA

. Quaternions

have a convenient composition relation that allows to concatenate successive

rotations when multiple frames are considered:

qCA = qCB ⌦ qBA (10)

It is important to note that instantaneous rotations and the attitude of an

object are deeply related concepts, as the attitude of an object can be described

through an instantaneous rotation of its body frame from a given departure420

reference frame; interestingly, note that the departure reference frame can be

arbitrarily chosen.

Consequently, in order to describe an object’s change in attitude between

two successive images (in practice, each taken at successive instants of time), it

su�ces to find the quaternion that describes the instantaneous rotation exhib-425

ited by its body frame from one image to the next. To this ends, body frames

must be defined for both, the target and the chaser, and they must be observed

at successive instants of time, each of which will provide an image to feed into

the landmark detection algorithm.

This is illustrated in Figure 5, which depicts two di↵erent instants of time430

where the attitude of the aforementioned body frames is considered. The frame

1The term instantaneous is here used to devoid the concept of a rotation from any notion

of time dependence, and thus highlight that the considered rotation is simply defined as the

di↵erence in attitude between two frames, regardless of kinematic considerations.
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Figure 5: Depiction of the body frames of the target and chaser satellites, before and after a

time step �t.

F1 is defined as a reference frame that is aligned with the chaser’s body frame at

the initial instant of time, where the first image is obtained; thus, note that in

the subsequent rotational motion the chaser’s body frame will evolve, whereas

F1 will remain unchanged in the LVLH space. After a time step �t, when the435

second image is to be obtained, the chaser’s body frame would have evolved

(following its attitude dynamics) to its current pose; thus, another reference

frame can be defined, namely F2, that is aligned with the chaser’s body frame at

this instant of time. Therefore, the change of attitude exhibited by the chaser’s

reference frame in the considered timeframe, is equivalent to the instantaneous440

rotation from frame F1 to frame F2, which can thus be represented by the

quaternion q21. Similarly, reference frames F3 and F4 can be defined so they

match the attitude of the target’s body frame at the two considered instants

of time, where quaternion q43 establishes the rotation from F3 to F4. Finally,

in order to describe the attitude of each of these four reference frames, it is445

useful to define a separate inertial reference frame, F0, which can be arbitrarily

defined and used as a common departure reference frame.

Determining the rotational state of the target requires that the quaternion

q43 be known from images at any two successive instants of time. However,

since F3 and F4 are unknown, the determination of q43 can only be done in-

directly. To this end, the only information available in practice is the target’s

observed change in attitude as seen by the chaser, i.e. the relative attitude of
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the target body frame referred to the chaser body frame. The relative attitude

of the target with respect to the chaser is described by quaternions q31 and q42,

respectively, for each of the two instants of time considered. The change of the

target’s attitude relative to the chaser is, precisely, the output that the algo-

rithms presented in Sections 4.1 and 4.2 provide, as well as the same quaternion

used in the definition of the loss term Lrot presented in Eq. (3). Thus, for the

sake of notation consistency, we shall denote this change of the relative attitude

by q̂, where no subscript is indicated; from the quaternion composition relation

it is straightforward to see that this quaternion is related to q31 and q42 by

means of

q42 = q̂⌦ q31. (11)

The rotational state of the chaser satellite with respect to an inertial frame

F0 is assumed to be known with accuracy at all times, thus quaternions q10 and

q20 are available, and so is q21. The desired rotation, q43, can thus be written

in terms of the known initial state of the chaser body frame, i.e.

q43 = q41 ⌦ q13 = q41 ⌦ q ⇤
31 (12)

In order to solve for q43, Eq. (12) shows that q41 needs to be expressed

in terms of known quantities. Using rotation composition and combining with

Eq. (11) yields:

q41 = q42 ⌦ q21 = q̂⌦ q31 ⌦ q21, (13)

thus Eq. (12) can be rewritten as

q43 = q̂⌦ q31 ⌦ q21 ⌦ q ⇤
31. (14)

Clearly, this expression still contains an unknown quantity, q31, since the true

initial state of the target is unknown; finding a work-around requires some

additional considerations. At this stage, it must be noted that we have not450

at any point introduced any assumption nor constraint in the definition of the

target body frame, beyond the fact that it needs to be a body frame, i.e. a

frame rigidly attached to the target object. Usual choices for a body frame are
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typically based either on geometric considerations, or on the mass geometry of

the object and its principal axes of inertia; however, the orientation of the body455

frame can actually be arbitrary, as long as it rotates with the body it is attached

to. One must also bear in mind that the target object can in principle be of

unknown geometry and properties, so for a rotation estimation algorithm to be

general, it is actually desirable that it does not depend on a-priori information

nor predefined body frames, and thus that it be an automatic, self-starting460

algorithm that will work on any target object, regardless of its shape or inertia

properties.

With these considerations in mind, and since one is free to choose any body

frame for the target, a convenient choice is to define a target body frame which is

intentionally aligned with the chaser body frame at the very first instant of time.

It is easy to see that this choice yields to an initial quaternion q31 associated to

an identity rotation matrix, since the body frame of the chaser and the target

would both be coincident, i.e. there would be no rotation between them. Hence,

Eq. (14) would simply to

q43 = q̂⌦ q21. (15)

Obviously, in subsequent instants of time this would no longer be the case if

the target, the chaser or both are rotating, so Eq. (14) would need to be used

in all remaining time steps; indeed, as time evolves and the rotation estimation465

algorithm is thus successively applied at subsequent instants of time, the quater-

nion q31 for images belonging to successive instants of time would change, but

it would now be a known quantity, because it can be computed from the angular

velocity by integrating the equations of motion for the relative attitude; indeed,

the proposed choice for the target body frame allows to set the initial condi-470

tions at the very first instant of time, which allows to start the integration of the

equations of motion, which in turn can provide q31(t) at any subsequent instant

of time, and therefore the rotation estimation algorithm would be complete.

Alternatively, note that if one is solely interested in determining the instan-

taneous rotation between any two subsequent frames (i.e., a quaternion), but475
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not the angular velocity vector, then the arbitrary target body frame could ac-

tually be reset or redefined at each time step so it recurrently coincides with the

chaser body frame; therefore, in practice Eq. (15) could be used at each time

step instead of Eq. (14). Note, however, that with this procedure computing

the angular velocity would require extra caution due to the target body frame480

being re-defined in each time step.

The proposed choice of the target body frame provides a universal algorithm

in the sense that it does not require any a-priori or predefined information about

the target object; however, there are situations where one needs to specifically

select a user-specified target body frame, e.g. based on recognisable features of485

the target object. For example, this would be the case for a rendezvous and

docking manoeuvre, where the location of docking stations, solar arrays and

other peripherals of the target are provided in a specific target body frame,

and thus it would be required that the target’s attitude relative to the chaser

be computed using a predefined target body frame. In this case, the presented490

procedure would still remain valid, with the notable advantage that the attitude

of F3 with respect to F1 at the initial instant would be provided, and therefore

the quaternion q31 is initially known, so Eq. (14) can be used all along without

the need to define an ad-hoc arbitrary reference frame.

4.4. Outlier Rejection495

Since the landmark matching method used is simplistic in nature, the matches

may not always be accurate. For example, one landmark may show the top-right

corner of the target; after a rotation, the top-right corner may be a di↵erent

part of the target which was previously unseen. Therefore, we would like to

ignore landmarks which are not useful or are matched poorly.500

We achieve this, in part, by assigning a value for the confidence of each

pair of detected landmarks. The confidence value is simply a measure of the

likelihood that a certain feature corresponds with a strong object landmark.

This confidence measure is calculated in a similar way to the loss term Lconc,

i.e. by applying a Gaussian mask, centred at the landmark location, across the505
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output feature map. This value is used to reject those features with the lowest

confidence.

We also implement an outlier rejection algorithm within the end-to-end

learnt network. A common choice for outlier rejection is the random sample

consensus method, RANSAC [48]. However, this is an iterative algorithm, which510

makes it unsuitable for use within deep learning networks in its current state.

The RANSAC algorithm was therefore adapted to make it parallel and fully

di↵erentiable. Figure 6 illustrates an adapted RANSAC algorithm for outlier

rejection within a neural network. The steps of the algorithm are as follows:

All 3D 
points

... 

Best inliers

Predicted
rotation

Generate 
hypotheses

Estimate
rotation

Find best 
hypothesis

Refine 
hypothesis

3 points

Inliers

... 

... 

3 points

Inliers

Figure 6: The adapted RANSAC algorithm

1. Generate hypotheses. Randomly sample N sets of three landmark515

pairs from the sets of all landmarks. These form the set of hypotheses H.

Each hypothesis Hn contains a set of three points (h1,h2,h3) randomly

sampled from {p
k
}. Three landmarks are the minimum required to predict

a rotation.

25



2. Score hypotheses. For each hypothesis Hn, estimate the rotation using520

only the sample of three landmarks. Apply this rotation to all {p
k
} to

obtain {pr

k
}. Each landmark pair (p

k
,p

0
k
) for which |p0

k
�p

r

k
|/|p

k
| < � is

an inlier, while all other pairs are rejected as outliers.

3. Rank hypotheses. Order hypotheses based on the number of inliers,

and select the best one.525

4. Refine hypothesis. Using all inliers from the best hypothesis, but ig-

noring outliers, predict the rotation.

Being di↵erentiable and parallelised, this implementation of the RANSAC

algorithm may be contained within the end-to-end trainable neural network.

This enables the parameters of the algorithm itself, such as the cut-o↵ value �,530

to be trained alongside the rest of the network.

4.5. Finetuning

The two sub-networks, for landmark detection and rotation estimation, are

trained separately before combining the two together. At this point, we can

finetune the entire network with the aim of encouraging it to detect landmarks535

which are inherently useful to the specific problem at hand.

The finetuning process involves training the entire network against the ro-

tation estimation loss, with a reduced learning rate. We also introduce another

loss term for the finetuning, Linliers, which penalises feature sets with small num-

bers of inliers. This loss term aims to improve the accuracy of the landmark540

matching between the two images.

5. Performance Analysis on Simulated Test Data

Before looking at the accuracy of the output of the model, it is helpful to

visualise each stage of the process. Figure 7 shows the outputs of the inner layers

in the network. The convolutional layers are searching for specific features which545

can be used to describe the rotation. The feature maps are then passed through

the spatial soft-argmax to find the landmark points of each feature, which we
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have overlaid onto the original images. The RANSAC process removes those

landmarks which do not appear to match correctly between the two images.

Then, only these matched inliers are passed to the rotation estimator.550
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Predicted rotation
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Figure 7: Visualisation of a subset of the outputs of the interior network layers

It can be observed that the the feature maps from the final convolutional

layer contain areas of high intensity which correspond with several possible

features. The spatial softmax followed by argmax find the landmark locations

from each feature map as the point of maximum intensity, where the magnitude

of the peak at this point can provide an estimate of the confidence in this555

landmark. We also see that the RANSAC algorithm successfully removes poorly

matched landmarks.

We now look at how the performance of our model changes under di↵erent

test cases. The use of synthetic test image data facilitates the investigation of

our proposed model under di↵erent conditions, thus revealing the advantages of560

it as well as any potential downfalls. We also wish to look at the e↵ects of chang-
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ing the various parameters of the model itself. However, being a deep-learning

based approach, there will always be a significant amount of randomness in the

training process. This must be taken into account during numerical analysis.

The loss of the model is defined as the di↵erence in angle between the pre-565

dicted rotation quaternion and the true value. This angle ✓ is calculated as in

Equation (9), and is equivalent to the angle of the rotation between the final

orientation of the target and the predicted orientation following rotation by the

estimated quaternion.

We look at four di↵erent 3D models for the target satellite, as illustrated570

in Figure 8. The first three of these (LRO, ICECube and MiRaTa) are real

satellite models, taken from NASA’s catalogue of 3D models. ICECube and

MiRaTa both have simple geometries, but this leads to the downside of having

fewer strong features and more rotational ambiguities. The LRO model has

a slightly more complex geometry but more strong image features. Finally,575

the skull model is also included as this represents the most di�cult test case,

with a complex geometry and few strong features. In each test case, the chaser

satellite is considered to be in a circular monitoring trajectory about the target,

as described in Section 2.1

Figure 8: Satellite 3D models. Left to right: ICECube, MiRaTa, LRO, Skull

5.1. Lighting Conditions580

We begin the analysis by looking at the response of our model under di↵erent

lighting conditions, since this is a critical challenge in space missions. Figure 9

contains a comparison of the mean model loss, averaged over the test datasets.

In this test case, the illumination direction is rotated between 0� (behind the
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observer) to 180� (behind the target). The figure also shows the camera view585

under the change in illumination angle, to illustrate the amount of information

present in the image.

(a) Mean loss when changing the illumination angle through 0� to

180�

(b) The view from the chaser satellite where the sun direction is 0�, 90� and

180�, respectively

Figure 9: Model loss response to changing illumination angle, tested on datasets with rota-

tion angles of 20� per step. When the object is poorly illuminated, the images contain less

information and the landmark detection is more challenging

In all following analysis, we look at the case where the sun angle is at 90� to

the camera view direction, since it is important to maintain good performance

under these more challenging illumination conditions.590

5.2. Model Accuracy

We now look at the accuracy of the model on a number of test datasets. The

rotation axis, lighting conditions and relative position of the satellites are all

kept consistent between each dataset. The loss (✓) at each step of an observation
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period is plotted in Figure 10 against the o↵set from the initial attitude. Here,595

the target is the ICECube satellite which is rotating by 20� per step. The

Figure is labelled with the view from the chaser at several points during the

observation.

Loss: 31.5° Loss: 0.4° Loss: 48.1°

Figure 10: Loss over the observation period against the o↵set from the initial position, illus-

trated with examples of the image data at several steps

There is a significant amount of variation in the results over the test dataset.

The model is capable of providing accurate estimates where the conditions are600

good, but is not robust to the more challenging conditions. For example, when

we have disappearing edges or significant lighting variations between the two

input images, the model can fail resulting in a loss angle which is much larger

than the rotation angle of the target over the timestep. These failures have a

noticeable impact on the mean loss of the model.605

Figure 11 shows the mean losses over entire datasets, between which the

angular velocity (and therefore the rotation angle per step) of the target satellite

is varied. Since we expect the loss angle to strongly correlate with the rotation

angle, we normalise the loss by dividing the former by the latter.

From this Figure, we notice a di↵erent response for the di↵erent target ob-610

jects. In all cases, as the rotation angle increases the motion of the landmarks is

more pronounced which gives us better information for calculating the rotation.

However, on the other hand, as the rotation angle increases we are more likely to
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Figure 11: Loss normalised by the rotation angle on all datasets

have self-occlusions, disappearing faces or changes in lighting which the model

is not robust to and will lead to failures as addressed previously.615

The combination of these two e↵ects depends on the satellite target. For the

more detailed LRO target, there is more information in the images to work with

but more likelihood of self-occlusions due to the large solar panel, for example.

In contrast, the simpler, CubeSat-like, satellites (ICECube and MiRaTa) con-

tain fewer details but are less prone to these issues. Finally, the Skull has a very620

di�cult geometry and few strong features so has lower accuracy throughout.

These observed e↵ects can be seen more clearly in Figure 12. In this fig-

ure, the loss angle is plotted against the number of inliers after the RANSAC

algorithm at each step. We show the results for four di↵erent rotation angles.

It is clear from this figure that at very low rotation angles, any small error625

in the position of landmarks has a large impact on the result so the predictions

have a universally high loss. As we increase the angle, the accuracy of the

majority of cases increases, but this is counteracted by an increased chance of

failure. As has already been noted, the chance of failure is higher on the LRO

dataset.630

The other result to note here is that the failures occur when the model fails to

find a su�cient number of inliers to correctly define the rotation. This suggests
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(a) 1� rotations (b) 8� rotations

(c) 16� rotations (d) 24� rotations

Figure 12: Step-wise loss against number of inliers. A larger rotation angle results in improved

accuracy in the general case but leads to higher likelihoods of a poor match between landmarks

that it is possible to predict a failure by looking at the number of inliers, and

rejecting that reading preemptively.

5.3. Network Architecture635

As discussed in Section 4, we investigated two approaches for the rotation

estimation layer of the model. The root-mean-square deviation method is an

algorithmic approach, while the alternative uses a dense fully-connected neural

network to make the model completely deep learning-based. Figure 13 analyses

the two approaches, labelled as “rmsd” and “dense” respectively.640

This Figure shows that the fully deep-learning approach is incapable of learn-

ing a useful solution, so it defaults to predicting no rotation. It is possible that

the problem is too complicated for a simple neural network architecture. How-

ever, we believe that this is more likely caused by the lack of robustness as
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Figure 13: Response of the di↵erent estimation layers, on the ICECube dataset

addressed above. When the feature matching layer fails, this often results in645

large errors, in which cases predicting no rotation is more accurate. This makes

training the model more challenging. We also note that finetuning the entire

network, as opposed to training the landmark extraction separately to the esti-

mation layer, yields only small improvements, likely for a similar reason.

5.4. Generalisability and Robustness650

The same network configuration can be used with various forms of input

data. In Figure 14, we investigate the response of the model using data from

each of several di↵erent visual sensors. These are: a single RGB camera with

no depth information; an ideal RGB-D sensor; a LiDAR depth sensor with an

angular resolution of one quarter of that of the RGB camera; an RGB camera655

with LiDAR; and finally, merged RGB and LiDAR data in 6-channel images.

In each case, the model is re-trained using data of each type.

Firstly, providing RGB images alone, with no depth information, appears to

be insu�cient to predict the rotation. An ideal RGB-D sensor performs best,

with a slight drop in accuracy when using LiDAR data since there is a loss660

in information due to the sampling rate. Interestingly, the model with RGB-

LiDAR data does not perform noticeably better than with LiDAR data only.
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(a) Di↵erent input data formats (b) Restricted training datasets

Figure 14: Performance on di↵erent datasets, illustrating the possibility of using di↵erent

sensor types and unseen debris targets

This suggests that either the RGB data is less important than the depth, or the

model is not making good use of the RGB data.

The second plot addresses the generalisability of the model to previously665

unseen targets. Poor generalisability is a known risk when using deep learning

approaches; it is important that the model remains accurate when given input

data which it has not seen during training. When training on only satellite

targets which the model struggles with, we see that our model performs worse

on all datasets. On the other hand, if our training data contains targets with670

strong edges and features from which the network can learn to extract land-

marks, we see an improved performance – even on those targets which were not

present in the training data. From this, we can conclude that the model has

good generalisation properties. This is somewhat expected, since our landmark

detection approach looks only for simple image features, due to the low depth675

of the network.

In the previous analysis, we showed that our model works well under good

conditions but is not robust to large changes in lighting conditions or self-

occlusions. We further investigate this in Figure 15. In the first of these plots,

we look at the axis of rotation of the target in reference to the viewpoint of the680

chaser. We consider the simplest case to be a rotation about the camera’s z

axis, in which the motion is contained entirely within the camera’s view plane
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and the depth information is less important. We o↵set the rotation axis from

0� to 90� from the z axis and observe the response of the loss. The second

plot investigates the response to changing the distance between observer and685

target. Due to the camera’s field of view, when the two satellites are within 20

metres, the entire target no longer fits within the image frame. In both cases,

we consider a rotation angle of 8� at each step.

(a) O↵set of rotation axis from the z axis (b) Distance of the observer from the target

Figure 15: Analysis of the robustness to di↵erent conditions

Again, we observe that our model shows promising results under the simpler

conditions, but the robustness requires improvement for the more challenging690

scenarios. In particular, if the target is not fully contained within the camera

frame, this approach does not work. However, the state determination will

usually be performed during an observation phase prior to rendezvous, so this

should not be an issue.

5.5. Comparison695

Finally, we present a comparison of our method with a conventional approach

to the same problem, using computer vision techniques for keypoint extraction

and matching. Following the keypoint matching, the rest of the algorithm is ap-

plied identically to our method. The first method we look at uses ORB features

[49] with brute-force matching. The second employs SIFT [50] for keypoint700

extraction with matching based on the Fast Approximate Nearest Neighbour

Search (FLANN) algorithm [51]. Both SIFT and ORB are commonly used in
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various image matching applications. The brute-force matching approach en-

sures best matches by looking at all possible matches, whereas FLANN is a

more e�cient approach but will not always find the best match. In addition, we705

compare our results with a point cloud based technique, using nearest neighbour

matching and the iterative closest point (ICP) algorithm, using 10 iterations per

step. The results of the comparison are plotted in Figure 16, on the ICECube

test dataset.

Figure 16: Prediction accuracy compared with conventional computer vision algorithms

Our model appears to have an improved performance in almost all cases710

when compared with the conventional approaches. The significant improvement

over the same approach using conventional feature matching algorithms shows

that our neural network-based approach is capable of learning intrinsically more

useful image features for this specific problem. The computer vision approaches

may have di�culty matching features in this challenging environment, since the715

matching is based on descriptions of the surrounding pixels and many of the

features look very similar. By training on images in this environment, we can

learn to better match these features, and to extract features which best describe

the rotation. In addition, we have shown that the mean loss for our model is

heavily influenced by a few steps with high losses; this is not the case for the720

conventional approaches, which instead show a more consistent loss which is

36



higher than in our model, in the general case. If these steps can be identified

and rejected, by making use of their relationship with the number of inliers,

we will expect a further improvement. The fact that our approach achieves

similar or better performance than the ICP method, which has been used in725

real missions, shows that our improved feature matching approach could be a

feasible alternative solution to this problem.

Our model has a further advantage over the conventional approaches. While

the latter require a greyscale image only, our model can accept any form sensor

data, including combinations of depth and visual sensors. The requirement is730

simply that the model be trained or finetuned using the specific input data.

The timing analysis illustrates an area where our model falls slightly behind

the state of the art, in part due to the fact that the RANSAC algorithm is not

well optimised for the GPU. We noted a sampling rate of 23Hz for our model,

increasing to 30Hz if the RANSAC layer is disabled. In contrast, when using the735

ORB feature extractor with brute force matching, we can achieve up to 50Hz,

though this is also reduced to 25Hz if we include the same RANSAC algorithm.

Our implementation of the ICP method is significantly slower, approximately

2-3 Hz – however, it should be noted that the e�ciency of the implementation

could be much improved, so this is not a fair comparison. Analysis of light740

curves [52] shows that the minimum observed period of rotation for an object

in LEO is approximately 1 second, with most being significantly higher. Even

in the most extreme case, a sampling rate of 20Hz would result in a rotation

angle of 18� per step, which is within the range of reasonable accuracy for

our model. Our model also uses a GPU for the majority of the calculations745

while the conventional approaches use CPU processing. GPUs o↵er improved

performance and energy e�ciency for a lower cost when compared with CPUs,

making them an attractive candidate for on-board computation in space [53].

37



6. Conclusion

In this study, we have presented a deep learning model to determine the750

change in attitude of an unknown satellite target. The developed model uses

machine learning techniques to detect and match landmarks from visual data.

Outlier landmarks have been rejected by constructing a fully di↵erentiable and

parallelised implementation of the RANSAC algorithm. The model is compared

with several conventional approaches, showing similar or better performance755

throughout. The neural network-based approach to feature extraction is able

to learn intrinsically more useful image features than conventional approaches,

enabling this method as a potential alternative to the commonly-used iterative

closest point algorithm. For simple cases, the model demonstrates a good per-

formance, though it is not yet fully robust to the more challenging conditions760

which can be present in the space environment. Although the developed model

can be prone to large errors where too many landmarks are rejected as outliers,

we have shown that these poor estimations are predictable by their relation-

ship with the number of inliers, and so can be rejected preemptively to improve

the accuracy. In addition, as the model can generalise well to previously unseen765

satellite shapes, due to the nature of the feature extraction approach, it does not

require information about the target satellite to be known a-priori. We are able

to perform calculations at a su�ciently high rate for any observed tumbling rate

of debris objects, using GPU instead of CPU processing which is increasingly

looking like a more attractive solution for on-board computation.770

This work proposes a promising solution to the problem of guidance, nav-

igation and control in active debris removal missions. However, there remain

some further avenues to investigate. More work is required to improve the ro-

bustness, either by preventing or pre-emptively rejecting those steps with high

errors. However, as is always the case in machine learning applications, the ro-775

bustness can likely be improved simply by increasing the amount and variance

of the training data. Also, by looking at only one step we are not making use of

the fact that the angular velocity of the target spacecraft should not be chang-
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ing significantly over small timesteps, and must do so according to its attitude

kinematics; thus, by providing rotational information from previous steps, we780

can increase the amount of information that the model relies on to make a pre-

diction; alternatively, the model could be combined with appropriate filtering

techniques, such as a Kalman filter, to improve the accuracy of the attitude

reconstruction. Additionally, all analysis of the model is performed using sim-

ulated data. In order to determine whether the model will generalise well to785

real data, we aim to produce more realistic, experimental datasets within a lab,

using actual visual and LiDAR sensors.
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Coira, Computing the solar vector, Solar Energy 70 (5) (2001) 431 – 441.950

doi:10.1016/S0038-092X(00)00156-0.

[39] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, R. Triebel, Im-

plicit 3d orientation learning for 6d object detection from rgb images, 2018.

[40] S. Honari, P. Molchanov, S. Tyree, P. Vincent, C. Pal, J. Kautz, Improving

landmark localization with semi-supervised learning (2017). arXiv:1709.955

01591.

[41] J. Ku, A. Harakeh, S. L. Waslander, In defense of classical image processing:

Fast depth completion on the cpu, in: 2018 15th Conference on Computer

and Robot Vision (CRV), IEEE, 2018, pp. 16–22.

[42] R. Szeliski, Computer Vision: Algorithms and Applications, 1st Edition,960

Springer-Verlag, Berlin, Heidelberg, 2010.

[43] F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions

(2015). arXiv:1511.07122.

[44] Y. Zhang, Y. Guo, Y. Jin, Y. Luo, Z. He, H. Lee, Unsupervised discovery of

object landmarks as structural representations (2018). arXiv:1804.04412.965

[45] E. Coutsias, C. Seok, K. Dill, Using quaternions to calculate rmsd, Journal

of computational chemistry 25 (2004) 1849–57. doi:10.1002/jcc.20110.

[46] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–44.

doi:10.1038/nature14539.

[47] D. Huynh, Metrics for 3d rotations: Comparison and analysis, Journal970

of Mathematical Imaging and Vision 35 (2009) 155–164. doi:10.1007/

s10851-009-0161-2.

45

http://dx.doi.org/10.1007/978-1-4939-0802-8
http://dx.doi.org/10.1016/S0038-092X(00)00156-0
http://arxiv.org/abs/1709.01591
http://arxiv.org/abs/1709.01591
http://arxiv.org/abs/1709.01591
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1804.04412
http://dx.doi.org/10.1002/jcc.20110
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1007/s10851-009-0161-2
http://dx.doi.org/10.1007/s10851-009-0161-2
http://dx.doi.org/10.1007/s10851-009-0161-2


[48] M. A. Fischler, R. C. Bolles, Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartogra-

phy, Commun. ACM 24 (6) (1981) 381–395. doi:10.1145/358669.358692.975

[49] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, Orb: An e�cient alterna-

tive to sift or surf, in: 2011 International Conference on Computer Vision,

2011, pp. 2564–2571.

[50] D. Lowe, Distinctive image features from scale-invariant keypoints, In-

ternational Journal of Computer Vision 60 (2004) 91–. doi:10.1023/B:980

VISI.0000029664.99615.94.

[51] M. Muja, D. G. Lowe, Fast approximate nearest neighbors with automatic

algorithm configuration, in: In VISAPP International Conference on Com-

puter Vision Theory and Applications, 2009, pp. 331–340.
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