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Abstract

The objective of this paper is to identify the illumination conditions that maximise the di↵erences that can be measured between light curves
of an object resulting from its attitude state. This is relevant to attitude determination techniques using light curve data, and is valuable for the
design of observation strategies that maximise the information contained in light curves.

For this purpose, synthetic light curves were generated for a number of attitude states, object geometries and illumination configurations. The
light curves were generated through application of a Bidirectional Reflectance Distribution Function (BRDF) to a faceted object geometry. The
di↵erences between the light curves were quantified using a Root Mean Square Error (RMSE).

Results showed that, depending on the reflection model, the object geometry and the attitude state, particular illumination conditions existed
that led to the largest RMSE between di↵erent attitude states. In most cases, increasing the phase angle increased the RMSE between light curves
arising from di↵erent attitude states. The maximum RMSE occurred when the illumination vector was either aligned with the rotation vector
or o↵set from it by 90�. It is concluded that characterising the rotational motion of an object from its brightness data is best performed using
multiple observations. These observations should be constructed in a way that maximises the di↵erence in the illumination geometry. One way of
achieving this would be to use observations from multiple observatories with a diverse range of geographical locations.
© 2021 COSPAR. Published by Elsevier Ltd All rights reserved.
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1. Introduction

Near-Earth space has become one of humanity’s most valu-

able resources. Many aspects of modern-day life now rely upon

our satellite infrastructure. However, more than 70 years of

space flight have left large amounts of space debris within this

environment. As of January 2020 there were more than 20000

Resident Space Objects (RSOs) that could be reliably tracked

using ground-based radars and telescopes (object diameter >10

⇤Corresponding author: Tel.: +0-000-000-0000; fax: +0-000-000-0000;
Email address: ldjb1g15@soton.ac.uk (Laurence Blacketer)

cm) (Liou et al., 2020). These RSOs range from small mission-

related debris such as lens-caps, up to the massive upper stages

of rockets. This number increases by orders of magnitude when

small objects that cannot be reliably tracked are included. Their

presence is known through occasional observations or inferred

through statistical analysis (Schildknecht, 2007).

The large number of RSOs in near-Earth space has raised

concerns that Earth’s orbital environment is not being used sus-

tainably. Evolutionary debris models have been used to help

explore this issue. Results indicate that the number of objects

in Earth-orbit may already be su�cient to sustain orbital pop-
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ulation growth through collision activity, even without future

launch tra�c (Liou & Johnson, 2008; Lewis et al., 2009). One

of the suggested solutions is Active Debris Removal (ADR),

where a massive object with high risk of involvement in fu-

ture collision activity is removed from the space environment

(Lewis et al., 2009; Liou & Johnson, 2009).

In addition to the goal of space sustainability, spacecraft op-

erators want to ensure that their mission remains safe from im-

pacts with space debris. This is particularly the case for high-

value orbits such as Sun-synchronous and Geosynchronous.

For these reasons, Collision Avoidance (CA) has become a crit-

ical component of modern space operations.

ADR and CA analysis both require highly accurate data on

object position and attitude state. Powerful radar installations

are capable of providing this information, but their high cost

precludes them from being more generally applicable to the en-

tire RSO population. However, low-cost optical systems can be

deployed in large numbers across the globe and provide an at-

tractive alternative. Although, simple, low-cost optical systems

are only capable of measuring object brightness against time,

these light curves can be collected in very large numbers. As a

result, light curves may form an important component of future

Space Situational Awareness (SSA) capabilities.

Optical light curves have a long heritage in determining

properties such as rotation period (Goguen et al., 1976), shape,

albedo and attitude (Kaasalainen et al., 1992b,a) of asteroids

(Kaasalainen & Torppa, 2001; Kaasalainen et al., 2001; Torppa

et al., 2003), using a variety of techniques. Determination of

each of these properties is performed using a priori information

for the others, either assumed or determined using other tech-

niques.

Light curves have also been used to determine various prop-

erties of spacecraft. For instance, light curves of tumbling

spacecraft typically exhibit highly periodic signals and so have

proved to be well-suited for determining rotation rates through

periodicity analysis (Šilha et al., 2018). Performing this peri-

odicity analysis over time has been used to determine rotation

rate dynamics and provide insight into the on-orbit torques that

induce this rotational motion (Earl & Wade, 2015). Attempts

have been made to use light curve analysis to determine the

direction of the rotation vector (Williams, 1979a,b), and have

also been applied over time to determine the evolution of ro-

tational dynamics (Koshkin et al., 2016). Techniques are also

being developed to use light curves for object shape characteri-

sation (Linares et al., 2014).

Determination of space object rotation state is of particular

importance for ADR and CA analysis. For CA, attitude state

information can be used to calculate forces such as atmospheric

drag and solar radiation pressure more accurately, reducing the

uncertainty in a predicted future position. Minimising the un-

certainty in position predictions provides higher confidence in

determining if an operator should move their satellite to avoid

a collision. For ADR, if the mission needs to capture an object,

such as with a robotic arm, then the attitude state must be well

characterised. Studies have shown the viability of light curve

attitude state determination, (Wetterer & Jah, 2009), but further

research is required in order to fully understand the relation-

ship between attitude state and brightness signal. This paper

contributes by examining the observability and measurability

of the rotational state, as a function of the illumination and ob-

servation geometry.

The objective of this work was to identify illumination con-

ditions under which the light curves of an object with di↵erent

attitude states are most di↵erent from one another. This will

help to devise observation strategies that maximise the like-

lihood that an object is observed in a way that its rotational

motion is detectable and distinguishable from similar rotational

motions. Additionally, it will help to identify and avoid illumi-

nation conditions that are not well suited for detecting or distin-

guishing rotational motion. To achieve this objective, synthetic

light curves were generated for a selection of object geometries

and rotational motions and the illumination conditions under

which they were most di↵erent were identified. It is not pos-

sible to test all combinations of object geometry, attitude state

and illumination conditions. These three properties were there-

fore constrained to a small range of representative examples.



Laurence Blacketer etal / Advances in Space Research xx (2021) xxx-xxx 3

Three object geometries were selected. These were: a cube,

a 20-sided icosahedron and a 500-sided polyhedron. The cube

geometry was selected as it is a good analogue of the typical

‘box-like’ shape of a satellite. The icosahedron was selected

because it has facets at a range of di↵erent angles, which is

representative of satellites that have less uniform surfaces. Fi-

nally, the polyhedron geometry was used to be representative

of a sphere. Although spherical objects are much rarer in Earth

orbit, in theory their rotational motions should be the least de-

tectable and distinguishable. The polyhedron was therefore in-

cluded as a control.

The rotational motions considered in this paper were con-

strained to rotations about an axis that remained fixed in inertial

space. In order to measure di↵erences between di↵erent rota-

tions, three rotation vectors were selected. These were rotations

about each of the three orthogonal body-fixed axes. In addition,

a ‘no-rotation case’ was included as a control.

Finally, a range of illumination conditions were required.

This was achieved by fixing the direction of the observation

vector to be coincident with one of the three body-fixed orthog-

onal axes, then varying the direction of the illumination vector.

Di↵erences between light curves were quantified using Root

Mean Square Error (RMSE). Light curves generated with var-

ious combinations of object geometry, rotational motion and

illumination conditions were compared first using a purely dif-

fuse reflection model, then again using a purely specular model

of reflection.

This paper is organised as follows: Section 2 describes the

model used to generate synthetic light curves, including a de-

scription of the reference frame and model inputs. Section 3

provides the numerical results simulating various illumination

and rotation conditions, together with the key discussion points.

The results for selected illumination conditions are presented,

then the results and discussion are extended to a realistic light

curve scenario. This demonstrates some of the key findings and

their relevance to real-life applications. The final conclusions

are summarised in Section 4.

✓
✓

↵
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A

Fig. 1. The reflection geometry. V is the observation vector, L is the illumina-
tion vector and H is the angular bisector of these two vectors. N is the surface
normal and A is the surface area. The angle between V and L is 2✓ and the
angle between H and N is ↵.

2. Methodology

To generate a synthetic brightness measurement, a Bidirec-

tional Reflectance Distribution Function (BRDF) was applied to

every facet of a geometry model. A BRDF calculates the light

reflected from a surface in a given direction due to illumination

from another direction. Summing the brightness contributions

from each face of the geometry model, at each time step, al-

lows the production of a synthetic light curve as observed from

a prescribed direction.

The apparent magnitude of an object m1,app, relative to an

object m2,app, is calculated using the equation

m1,app = m2,app � 2.5 log10

 
B1

B2

!
(1)

where B1 and B2 are the measured fluxes of objects 1 and 2

respectively (Kutner, 2003). The Cook-Torrence BRDF is given

by

Ci = (sRs + dRd)⇡Ai(Ni · L)(Ni · V), (2)

where Ci is the ratio of incident to reflected flux at the i-th facet,

Ai is the area of the i-th facet, Rs and Rd are the specular and

di↵use bidirectional reflectances and s and d are the specular

and di↵use coe�cients, with s+d = 1 (Cook & Torrance, 1982).

The surface normal vector, Ni, illumination vector, L, and the

observation vector, V, are shown in Fig 1.

The di↵use and specular reflectances are given by the equa-

tions

Rd =
!

⇡
(3)
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and

Rs =
F
⇡

DG
(N · L)(N · V)

, (4)

where ! is the di↵use albedo. F and G and are the surface

reflectance and geometric attenuation factor, respectively. Fur-

ther information on the calculation of F and G is available in

Ref. (Cook & Torrance, 1982). The property D is the facet

slope function, which provides the fraction of facets that are

aligned with the angular bisector vector, H. H is the normal

vector of a hypothetical surface for which the angle of inci-

dence is equal to the angle of reflection, leading to specular

reflection. D is a function of ↵, the angle between the angular

bisector and surface normal vectors, and a Root Mean Square

(RMS) slope term, m, which parameterises the surface rough-

ness. Higher values for m correspond to a rougher surface and

hence a broader distribution in the specular reflections.

The ratio of incident to reflected flux, C, as seen by an ob-

server at a distance r, and summed across all reflecting surfaces

N, is given by

C =
NX

i=1

Bi

4⇡r2 , (5)

(Wetterer & Jah, 2009). As the incident flux is due to the Sun,

C is equal to the ratio of B1 to B2 in Eq. 1. Eq. 5 can there-

fore be substituted into Eq. 1, together with the Sun’s apparent

magnitude to arrive at the equation:

mapp = �26.74 � 2.5 log10

0
BBBBB@

NX

i=1

Bi

4⇡r2

1
CCCCCA . (6)

Evaluating this equation at a succession of time steps allows

production a synthetic light curve. The synthetic brightness

model described above does not accommodate shadowing and

occultation of facets, which was unnecessary as all of the con-

sidered geometry models are convex.

The di↵erence between two synthetic light curves is quanti-

fied with a RMSE, using the equation

RMS E =

rPn
i=1(ŷi � yi)2

n
, (7)

where ŷi and yi are the i-th data points of the two light curves,

each containing n data points.

xb yb
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xb yb
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xb yb
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Fig. 2. The three object geometries considered in this paper. A ‘b’ subscript
denotes a body-fixed axis.
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Fig. 3. A figure showing the reflection geometry and object geometry. The
observation vector, V, is aligned with the X-axis of the system and the position
of the illumination vector, L, is defined by the angles  and �.

The three object geometries are shown in Figure 2. These

are: a cube, a 20-sided regular icosahedron, and a polyhedron

where each facet of the icosahedron has been subdivided into 25

facets, such that the centroid of each facet is equidistant from

the centre of the geometry. The cube has a side-length of 2 m

and the icosahedron and polyhedron each have a radius of 1 m.

Figure 3 shows the reflection configuration used in the gen-

eration of each synthetic light curve with respect to the pre-

scribed reference frame XYZ. The vector V is the observation

vector and always remains aligned with the X axis. The vector

L is the illumination vector, the direction of which is varied to

analyse its influence on the generated light curve. The illumina-

tion vector is o↵set from the X axis with a direction described

by the two angles  and �, where  is the angle between the XZ

plane and the plane containing the X axis and L vector, and � is

the angle formed between the X axis and L vector. These two

angles therefore describe the o↵set of the illumination vector,

L, with respect to the observation vector, V. � is the angle be-

tween the illumination and observation vectors, and is therefore

the phase angle.
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Fig. 4. An example polar plot for the cube geometry with a di↵use reflection
and a rotational motion about the Y body-fixed axis.

All synthetic light curves were generated with the object

placed at 1000 km from the observer. The position of the object

was fixed and was only allowed to rotate about its geometric

centre. Each light curve was 240 s long with a 0.1 s time step.

3. Results and Discussion

The results for this work are RMSE measurements between

a baseline light curve, which will be discussed later, and a sec-

ond light curve generated with a di↵erent illumination vector

direction. Because the direction of the illumination vector is de-

scribed using the two angles  and �, the results are presented

in the form of polar plots. An example polar plot is provided

as Figure 4, where  is measured clockwise along the periph-

ery of the plot and � is measured radially. These polar plots

describe the direction of an illumination vector in a hemisphere

centred on the direction of the observation vector. The angle �

is therefore equivalent to the phase angle. The colour of each

pixel shows the RMSE between a light curve generated with an

illumination vector direction given by the position on the plot

and a baseline light curve. When the colour is white, such as the

innermost ring of pixels in Figure 4, the RMSE is zero. These

plots were generated for four di↵erent rotational motions, either

no-rotation, or rotation about one of three body-fixed axes: xb,

yb and zb. Initially, the observation vector and the body-fixed

xb axis were coincident with the X axis of Figure 3. Therefore,

a rotation about the xb axis is the same as a rotation about the

observation vector. This set of four plots were then generated

for each of the three object geometries. This entire process was

performed twice, firstly using a purely di↵use reflection model,

then again using a purely specular reflection model.

The reference frame in Figure 3 is used to represent a

satellite-centred orbital reference frame. In such a frame, and

assuming a circular orbit, the Z axis is normal to the orbital

plane, the Y axis is aligned with the velocity vector and the X

axis points away from the centre of the Earth. Each plot also

includes three concentric circles, which indicate the angular re-

gion within which the theoretical position of the Earth would

obscure these illumination vectors. These three circles corre-

spond to, in order of increasing value of �, orbital altitudes of

35,786 km, 2000 km and 1000 km. In Figure 4 and all subse-

quent Figures, these three circles are coloured cyan, blue and

green respectively. In this work the objects have been set at

1000 km, but these circles illustrate how some illumination vec-

tors would become available as orbital altitude increases.

3.1. Cube with di↵use reflection

The first result is presented as Figure 5, for the cube geom-

etry and a di↵use reflection model. The cube was selected to

represent the typical ‘box-like’ shape of satellites. The baseline

light curve, indicated at the centre of the no-rotation plot using a

green ‘x’, corresponds to a non-rotating object with � =  = 0.

Within this figure, are the results for the four di↵erent rotational

motions that were considered. For the three rotating cases, the

direction of the rotation axis is indicated using a red ‘+’. The

pixelation of the plots is caused by using 10� bins for � and

 . Because the geometry being considered is a cube, an illumi-

nation vector o↵set of 90� (� = 90�) results in no light being

reflected in the direction of the observation vector. For this rea-

son, the outermost ring of pixels in each of these polar plots is

excluded.

In these plots the RMSE measured against the baseline case

increases as phase angle � is increased. This is caused by an

overall reduction in light curve brightness that results from an

increased phase angle. Considering only the no-rotation and x-

rotation cases, the results are identical and independent of  .



6 Laurence Blacketer etal / Advances in Space Research xx (2021) xxx-xxx

This is because only a single face of the cube contributes to the

reflection, which remains perpendicular to the observation vec-

tor throughout the light curve timespan. In the y-rotation and

z-rotation cases, the largest RMSEs were measured when the

illumination vector was closely aligned with the rotation vector

(red ‘+’s). In all four polar plots, zero RMSE was measured in

the innermost ring of pixels that corresponded to � = 0. This

indicates that under such illumination conditions, rotating and

non-rotating objects were indistinguishable from each other.

Figure 6 shows the result of performing a pixel-to-pixel sub-

traction between the polar plots of each of the rotating cases.

To correct for negative values, the absolute value of this sub-

traction was used. These plots remove the e↵ect of brightness

reduction due to increased phase angle, allowing the di↵erences

between the individual rotational motions to be seen more eas-

ily. These plots do not measure the RMSE between the two

rotational motions, but rather the di↵erence in the RMSE mea-

sured from the baseline for each state. Therefore, zero-valued

pixels in this plot do not necessarily show that the light curves

of the two di↵erent rotational motions are identical, just that the

two light curves are di↵erent from the baseline by an exactly

equal amount. The rotation vectors of the two rotational mo-

tions being compared are again indicated using red ‘+’s. These

plots show that the direction of the illumination vector can have

a large e↵ect on the di↵erence in RMSE measured between

the two light curves and the baseline. Depending upon which

two rotational motions are being compared, the largest RMSE

di↵erences are recorded either when the illumination vector is

aligned with the rotation vector (z-y case), or when the  angle

of the illumination vector is o↵set from the  angle of the rota-

tion vector by 90� (y-x and z-x cases). In all cases, the largest

di↵erences are always measured when the illumination vector

is o↵set from the observation vector by 90�.

These results for the cube geometry highlight the illumina-

tion conditions that are most ideal for distinguishing rotational

motions. In all cases, a large o↵set between the observation and

illumination vectors is desired. The ideal direction of the illu-

mination with respect to the rotation vector is dependent upon
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Fig. 5. Results for a di↵use reflection model and a cubic object geometry.
RMSE is measured from a no-rotation no illumination o↵set baseline.
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Fig. 6. The result of performing a pixel-to-pixel subtraction between two of the
plots from Figure 5. The two rotation cases in question are labelled above each
polar plot. The reflection model is di↵use and the object geometry is a cube.

the two rotational motions to be distinguished. In Figure 6, the

band of white pixels that are horizontal through the origin in the

y-x plot (middle) and vertical in the z-x plot (right) shows that

these attitude motions are indistinguishable if the observation

vector, the illumination vector and the rotation vector are all in

the same plane.

Note that the y-x plot (middle) is exactly the same as the z-x

plot (right), but rotated through 90�. This is the case for all of

the subtraction results presented in this paper. For this reason,

the z-x polar plot is excluded from all subsequent figures.

3.2. Cube with specular reflection

The next result is for the cube geometry with a specular re-

flection model. All model inputs and parameters are identical

to the di↵use results, with the only exception being the reflec-
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Fig. 7. Results for a specular reflection model and a cubic object geometry.
RMSE is measured from a no-rotation no illumination o↵set baseline.

tion model. Considering Figure 7, the magnitudes of the RMSE

measurements are larger than for the di↵use results, but the po-

sitions of the largest RMSE values with respect to the illumi-

nation and rotation vectors are the same. The most notable dif-

ference is that the innermost ring of pixels for � = 0 in the

y-rotation and z-rotation cases no longer correspond with zero

RMSE. This shows that with specular reflection these rotational

motions can be distinguished, which was impossible under dif-

fuse reflection conditions.

Figure 8 shows the result of the pixel-to-pixel subtraction.

The z-y case is the same as for the di↵use reflection model.

However, the y-x and z-x cases show an inverted behaviour.

The largest RMSE now occurs when the illumination vector is

aligned with the rotation vector, rather than when they are o↵set

by 90�.

With specular reflection, the most ideal conditions for distin-

guishing rotational motions are again with maximum illumina-

tion vector o↵set. The ideal direction for the illumination vector

is to be coincident with the rotation axis.

3.3. Icosahedron with di↵use reflection

The next two figures show the results for the icosahedron ge-

ometry with a di↵use reflection model. The icosahedron geom-

etry was selected due to it having a more varied range of facet

angles. In Figure 9 the y-rotation and z-rotation cases have been
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Fig. 8. The result of performing a pixel-to-pixel subtraction between two of the
plots from Figure 7. The two rotation cases in question are labelled above each
polar plot. The reflection model is specular and the object geometry is a cube.
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Fig. 9. Results for a di↵use reflection model and a icosahedron object geometry.
RMSE is measured from a no-rotation no illumination o↵set baseline.

excluded because there was no discernible di↵erence between

those two plots and the two plots that have been provided. Fig-

ure 9 shows that the largest RMSEs were caused by increasing

the phase angle, �. All of the results appear to be independent

of  angle. The four rotational motions cannot be distinguished

from this figure.

In the pixel-to-pixel subtraction plots of Figure 10, the ro-

tational motions are distinguishable. In Figure 10, the change

in pixel values as  is varied shows that  does have an e↵ect

on the di↵erence in RMSE. However, the magnitude of this dif-

ference is very small, which is shown by the scale bar having a

maximum value of 0.05.

The much smaller RMSE measurements between the light

curves of di↵erent rotational motions shows that the icosahe-

dron with di↵use reflection has adopted a more ‘sphere-like’

behaviour. However as was the case for the previous results,

the ideal conditions to distinguish these rotational motions is

with maximum phase angle and an illumination vector closely

aligned with the rotation vector.



8 Laurence Blacketer etal / Advances in Space Research xx (2021) xxx-xxx

0°

45°

90°

135°

180°

225°

270°

315°

0
20
40
60
80

z � y
0°

45°

90°

135°

180°

225°

270°

315°

0
20
40
60
80

y � x

0.01

0.02

0.03

0.04

0.05

R
M

S
E

Fig. 10. The result of performing a pixel-to-pixel subtraction between two of
the plots from Figure 9. The two rotation cases in question are labelled above
each polar plot. The reflection model is di↵use and the object geometry is a
icosahedron.

3.4. Icosahedron with specular reflection

The next two figures show the results for the icosahedron

with a specular reflection model.

In Figure 11, increasing the phase angle is no longer the

cause of the largest RMSE measurements. Instead, it is par-

ticular illumination vector directions that lead to these largest

values, which is due to the high sensitivity of specular reflec-

tions to specific illumination conditions. In the no-rotation case,

the large RMSE measurements at approximately � = 60� and

 = 0� or 180� are caused by very bright specular reflections

from a single facet of the icosahedron. In the rotating cases, the

largest RMSE measurements were made when the illumination

vector was placed such that bright specular glints were intro-

duced into the light curve, that were not present in the baseline.

Figure 12 shows the pixel-to-pixel subtractions. The largest

di↵erences in the RMSE measurements shown in this plot result

from illumination vector directions where specular glints are

introduced into the light curves of one rotation state, but not the

other.

These results exhibit a departure from the behaviour ob-

served in previous figures. With specular reflection, the icosa-

hedron geometry no longer demonstrates ‘sphere-like’ be-

haviour, as the measurable di↵erences between rotational mo-

tions have greatly increased.

3.5. Polyhedron with di↵use reflection

The next two results are for the polyhedron, which was used

to represent a sphere. Figure 13, once again, only shows the
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Fig. 11. Results for a specular reflection model and a icosahedron object geom-
etry. RMSE is measured from a no-rotation no illumination o↵set baseline.
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Fig. 12. The result of performing a pixel-to-pixel subtraction between two of
the plots from Figure 11. The two rotation cases in question are labelled above
each polar plot. The reflection model is specular and the object geometry is a
icosahedron.
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Fig. 13. Results for a di↵use reflection model and a 5-frequency subdivided
polyhedron object geometry. RMSE is measured from a no-rotation no illumi-
nation o↵set baseline.
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Fig. 14. The result of performing a subtraction between two of the plots from
Figure 13. The two rotation cases in question are labelled above each polar
plot. The reflection model is di↵use and the object geometry is a 5-frequency
subdivided polyhedron.

no-rotation and x-rotation cases because the y-rotation and z-

rotation cases are visually identical. In this figure, any changes

in RMSE measurements due to the di↵erent rotation motions

were negligible compared to brightness reduction due to in-

creasing phase angle. This is the same result as the icosahe-

dron geometry with a di↵use reflection model of Figure 9. This

highlights the ‘sphere-like’ behaviour of icosahedron geometry

under di↵use reflection conditions.

The subtraction plots are also very similar to those of the

icosahedron with di↵use reflection, but the magnitude of the

di↵erence decreased by two orders of magnitude. The fact that

di↵erences are still measured between the di↵erent rotational

motions is likely to be caused by the discretisation used to gen-

erate the object geometry. This again highlights the ‘sphere-

like’ behaviour of the icosahedron with di↵use reflection.

3.6. Polyhedron with specular reflection

The next two figures present the results for the polyhedron

with a specular reflection model. The polar plots of Figure 15

show all the same phenomena as the previous results. The only
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Fig. 15. Results for a specular reflection model and a 5-frequency subdivided
polyhedron object geometry. RMSE is measured from a no-rotation no illumi-
nation o↵set baseline.
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Fig. 16. The result of performing a subtraction between two of the plots from
Figure 15. The two rotation cases in question are labelled above each polar
plot. The reflection model is specular and the object geometry is a 5-frequency
subdivided polyhedron

noticeable di↵erence is a very slight � angle dependence in the

no-rotation case, which indicates that the polyhedron geometry

is not perfectly isotropic. The fact that this result is so simi-

lar to the di↵use results shows that the polyhedron geometry is

su�ciently spherical that strong specular reflections from sin-

gle facets no longer have an e↵ect on the light curves. This is

in contrast to the icosahedron, which exhibited a breakdown in

‘sphere-like’ behaviour after switching to specular reflection.

The final subtraction plot is presented in Figure 16. The dif-

ferences measured, which are larger than those for the di↵use

case, are likely due to the object geometry discretisation and

exacerbated by the specular reflection model.
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3.7. Synthetic Light Curve Demonstration

To illustrate how the results presented in this paper may af-

fect real-world light curve characterisation, a realistic demon-

stration light curve scenario was constructed. Like all previous

synthetic light curves, the light curve was 240 s long and the

object was placed at a fixed distance from the observer. This

scenario used the cube geometry and a di↵use reflection model.

Figure 17 shows the light curve illumination geometry at t = 0

and at t = 240. In this figure, all vectors lie in the plane of the

xb and yb body-fixed rotation vectors, with the zb vector point-

ing out of the page. This reference frame represents a satellite-

centred orbital reference system for a circular orbit, where the

X-axis points to the centre of the Earth, the Y-axis is coincident

with the velocity vector and the Z-axis (out of the page) is the

normal to the orbital plane. The body-fixed axes remain con-

stant in this reference frame and so are therefore moving in the

inertial frame. Throughout the light curve, the direction of the

observation vector moved from the initial position shown on the

left, to the final position shown on the right. This change in ob-

servation vector direction is equivalent to the observation vector

motion that results from a satellite passing over a ground-based

observation site. As a result of this motion, the phase angle

increases from 40� at the start of the light curve to 80� at the

end.

Figure 18 shows the light curves of the four considered rota-

tional motions for this scenario. Two results are demonstrated

in this plot. Firstly, only the z-rotation case shows a di↵er-

ence from the no-rotating case. The no-rotation, x-rotation and

y-rotation cases are indistinguishable under these illumination

conditions. These three light curves are superimposed in Figure

18. The second result is that the measurable di↵erence between

the z-rotation case and no-rotation case increased as phase angle

increased. These light curves demonstrate the results of Figure

6, which showed that only a z-rotation is detectable if the ob-

servation vector, illumination vector and rotation vector are in

the same plane.

A second light curve scenario was generated using a di↵er-

ent object attitude state such that none of the three body-fixed
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Fig. 17. The initial and final illumination conditions used in the first light curve
scenario. L is the illumination vector and V is the observation vector. The
curved dotted line shows the outline of the Earth.
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Fig. 18. Light curves for the four rotation states considered in this paper, using
the illumination geometry presented in Figure 17. All light curves, with the
exception of the ‘z-rot’ case are superimposed.

geometry axes were in the same plane as the observation and

illumination vectors. This illumination geometry is shown in

Figure 19. The only change from the previous scenario is the

object’s attitude state. Considering the light curves in Figure

20, the four rotational motions can now be distinguished, as the

rotation axes are no-longer in the same plane as the observation

and illumination vectors.
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Fig. 19. The initial and final illumination conditions used in the first light curve
scenario. L is the illumination vector and V is the observation vector. The
curved dotted line shows the outline of the Earth.
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Fig. 20. Light curves for the four rotation states considered in this paper, using
the illumination geometry presented in Figure 19.

4. Conclusions

The results presented in this work have demonstrated that

the direction of the illumination vector with respect to the ob-

servation and rotation vectors can determine whether or not dif-

ferences can be measured between light curves with di↵erent

rotational motions.

In the results that used a di↵use reflection model, the most

important parameter was phase angle and large phase angles

were best able to distinguish between rotational motions. At

low phase angles, the light curves of di↵erent rotational mo-

tions were either very similar or identical. Fortunately, if using

ground-based observations of RSO’s, very low phase angles are

made impossible by the position of the Earth. However, this

would be an important consideration for space-based observa-

tions as, typically, low phase angles are desired to maximise

signal. When phase angle was su�ciently high, the direction of

the illumination vector with respect to the axis of rotation be-

came the most important parameter determining the measurable

di↵erence between rotational motions. No single illumination

vector direction with respect to rotation vector was ideal for dis-

tinguishing all of the di↵erent rotational motions for each of the

three object geometries. However, in all cases the ideal direc-

tion was either closely aligned with the rotation axis, or o↵set

from it by 90�.

In the results using a specular reflection model, the direction

of the illumination vector with respect to the object geometry

had a much larger a↵ect on the di↵erences measured between

rotational motions. This is particularly true for object geome-

tries that have facets at a range of di↵erent angles such as the

icosahedron. However, this result breaks down as the object

becomes more spherical causing the specular results to become

more similar to those for di↵use reflection.

Regardless of object geometry, attitude state and reflection

model, the largest di↵erences between rotations were measured

with an illumination vector either closely aligned with the rota-

tion axis, or o↵set from the rotation axis by 90�.

The results in this paper have identified illumination condi-

tions that produce the largest measurable di↵erences between

di↵erent rotational motions. Certain properties can be gener-

alised across the considered geometries and rotational motions.

For example, a large phase angle typically increased the mea-

surable di↵erences. However, there was no single set of illu-

mination conditions that provided large measurable di↵erences

between all the considered rotation motions for all geometries.

Rather, the ideal conditions were specific to the object’s shape,

the reflection characteristics of its surfaces and the rotational

motion to be detected. Furthermore, all results showed par-

ticular illumination conditions that resulted in only very small

measurable di↵erences between rotation motions.

This work indicates that characterising the rotational mo-

tion of an object from its brightness data is best performed us-

ing multiple observations. These observations should be con-

structed in such a way that maximises the di↵erence in the il-

lumination geometry. One way of achieving this would be by

using observations from multiple observatories with a diverse

range of geographical locations. This would maximise the mea-

surable di↵erences between rotation motions and minimise the

possibility of incorrect characterisation.
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