Laboratory Animals

Laboratory Animals

RADIOGRAPHIC ASSESSMENT OF THE IMPACT OF SEX AND THE CIRCADIAN RHYTHM-DEPENDENT BEHAVIOR ON GASTROINTESTINAL TRANSIT IN THE RAT

Journal:	Laboratory Animals
Manuscript ID	LA-22-003.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Gálvez-Robleño, Carlos; Universidad Rey Juan Carlos, Basic Health Sciences López-Tofiño, Yolanda; Universidad Rey Juan Carlos, Basic Health Sciences López-Gómez, Laura; Universidad Rey Juan Carlos, Basic Health Sciences Bagues, Ana; Universidad Rey Juan Carlos, Basic Health Sciences Soto-Montenegro, María Luisa; Instituto de Investigación Sanitaria Gregorio Marañón Abalo, Raquel; Universidad Rey Juan Carlos, Basic Health Sciences
Keywords:	circadian rhythm, gastrointestinal transit, radiographic methods, rat, sex

1	RADIOGRAPHIC ASSESSMENT OF THE IMPACT OF SEX AND THE CIRCADIAN RHYTHM-
2	DEPENDENT BEHAVIOR ON GASTROINTESTINAL TRANSIT IN THE RAT
3	Sex, circadian rhythm & GI transit
4	
5	Gálvez-Robleño C ^{1,2} , López-Tofiño Y ^{1,2} , López-Gómez L ^{1,2} , Bagüés A ^{1,3,4} , Soto-
6	Montenegro ML ^{2,5,6} , Abalo R ^{1,2,3,7} *.
7	
8	¹ Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón,
9	Spain.
10	² High Performance Research Group in Physiopathology and Pharmacology of the
11	Digestive System (NeuGut), URJC, Alcorcón, Spain.
12	³ Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.
13	⁴ High Performance Research Group in Experimental Pharmacology (PHARMAKOM),
14	URJC, Alcorcón, Spain.
15	⁵ Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
16	⁶ CIBER de Salud Mental (CIBERSAM), Madrid, Spain.
17	⁷ Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del
18	Dolor, Madrid, Spain.
19	

1		
2		
3		
4		
5		
6		
/		
8	• •	*
9 10	20	* CORRESPONDENCE
10		
12	21	Raquel Abalo, Department of Basic Health Sciences, Faculty of Health Sciences,
13		
14	22	University Rey Juan Carlos, Alcorcón, Madrid, Spain.
15		
16	23	Phone: +3/01/88885/ Email: raquel abalo@uric es
17	23	Filolie. +34314888834. Lillall. Taquel.abalo@uljc.es
18	• •	
19	24	
20		
21	25	
22		
23	26	
24 25	20	
25	27	
27	27	
28		
29		
30		
31		
32		
33		
34		
35		
27		
38		
39		
40		
41		
42		
43		
44		
45		
46		
4/ 10		
40 40		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59 60		
60		

28 ABSTRACT

Relatively little is known about the influence of sex and the circadian rhythm on gastrointestinal transit. However, these factors could have an important impact on aspects such as digestion, oral absorption of drugs or the clinical manifestation of gastrointestinal diseases, among others. Remarkably, preclinical models have scarcely taken these factors into consideration. In this study, we assessed the gastrointestinal transit of young adult Wistar Han rats of both sexes, under normal and inverted light cycle. To do this, serial radiographs were taken for 24h (T0-T24) after intragastric barium administration and subsequently analyzed to construct transit curves for each gastrointestinal region. Under a normal light cycle, transit curves were similar, except for a slower transit in females compared with males from T8 to T24. Under the inverted cycle, there was a significant acceleration in stomach emptying (similar in both sexes), emptying of the small intestine (even faster in females) and filling of the caecum and colon (which was also even faster in females). This study confirms, using X-ray non-invasive methods for the first time, that both, sex and circadian rhythm (probably through its effect on behavior) influence gastrointestinal transit in laboratory animals.

KEYWORDS: circadian rhythm, gastrointestinal transit, radiographic methods, rat, sex.

47 INTRODUCTION

Gastrointestinal transit may be influenced by many factors that cause relevant inter- and
intra-subject variability, both in human and animal models. Amid these factors, the role
of sex and the circadian rhythm on gastrointestinal transit has been scarcely studied
although they could be important factors in processes such as digestion, oral absorption
of drugs or gastrointestinal pathologies, among others.

In relation to the impact of sex, early human studies showed a shorter gastrointestinal transit time in healthy men compared to women¹⁻⁴. Recent data further support the concept that men have faster gastric emptying and intestinal transit than women⁵. Sex hormones, on the one hand, and the phases of the menstrual cycle, on the other, are important variables to consider.⁶ With respect to the circadian rhythm, most life forms engage a 24-hour cycle of feeding and fasting.⁷ However, relatively little attention has been paid to the investigation of the relationship between the circadian rhythm and the functions of the alimentary tract.^{8,9} For example, one early study compared colonic transit in healthy patients using 24-hour ambulatory colonic manometry, and showed significant less pressure activity in the colon during daylight hours in women when compared to men.¹⁰ Similarly, in a recent investigation in mice, both sex and time of the day when the experiments were carried out significantly influenced intestinal transit.¹¹

Page 5 of 46

In general, preclinical studies have used invasive techniques to evaluate the effects of sex and/or circadian rhythm on gastrointestinal motor function.¹¹ An attractive and non-invasive alternative is the use of radiographic techniques, which allow the study of gastrointestinal transit and changes in size and density of the gastrointestinal regions using radiopaque contrast.¹² Until now, we and others have used these techniques to evaluate the impact on gastrointestinal transit of different drugs as well as to analyze gastrointestinal transit in aged or stressed animals, or in those exposed to different dietary modifications (see supplementary Table I for references). However, these studies were carried out with rodents (mainly male or both sexes, without comparison) under normal light cycle (lights on during the day: animals are studied in their low-activity circadian phase) (supplementary Table I). To our knowledge, radiographic studies which compare gastrointestinal transit in male and female laboratory animals under both normal and inverted light cycles are lacking.

80 Therefore, the aim of this study was to evaluate the effect of sex and the circadian cycle81 on gastrointestinal transit, using radiographic techniques.

85 METHODS AND MATERIALS

86 Animals

The experiments were designed and performed in accordance with the EU Directive for the Protection of Animals Used for Scientific Purposes (2010/63/EU) and Spanish regulations (Law 32/2007, RD 53/2013 and order ECC/566/2015) and were approved by the Ethical Committee at Universidad Rey Juan Carlos (URJC) and Comunidad Autónoma de Madrid (PROEX 063/18, PROEX 023/19). The health and welfare of the animals used for the study was supervised by the personnel of the URJC Veterinary Unit where the study was performed. All experiments were designed to minimize the number of animals used and their suffering.

Male (N=24; weight= 342-520 g) and female (N=24; weight= 191-270 g) sexually-mature, young adult (3-4 months old) Wistar HAN healthy rats were obtained from the Veterinary Unit of URJC and housed (2-4/cage), after simple randomization, in standard transparent cages (60 x 40 x 20 cm) in a temperature (20°C) and humidity-controlled room (60%), with a 12 h light/12 h dark cycle (lights off between 20:00 and 08.00 hours for animals with normal light cycle conditions or between 8.00 and 20:00 hours for animals with inverted light-dark cycle). Animals were divided in 4 groups (N=12/group): Males, Normal Cycle (M-N) (this was considered the control or reference group); Males,

104 Inverted Cycle (M-I); Females, Normal Cycle (F-N); Females, Inverted Cycle (F-I). Animals
105 had free access to standard laboratory rat chow (LASQ diet[®] Rod 14-A www.altromin.de)
106 and tap water until sacrifice.

107 Gastrointestinal transit

Gastrointestinal motor function was evaluated once in the URJC animal facility, radiographically, as described.¹² Prior to the X-ray assay, the experimental animals were not fasted, due to the long duration of the X-ray study (24 h), but all of them were weighed, and the estrous cycle phase of females was analyzed by vaginal cytology.^{13,14} In addition, their health conditions were observed before and during the experimental procedures, i.e. the appearance and color of the hair coat, legs, eyes and nose and also their behavior and movement. For the radiographic evaluation, barium sulfate suspension (Barigraph[®] AD, Juste SAQF, Madrid, Spain; 2 g mL-1 in tap water, temperature=22°C, 2.5 mL) was administered by gavage at 9 am and serial radiographs were obtained at 0, 1, 2, 4, 6, 8 and 24 h (T0-T24) after contrast administration. Plain facial radiographs of the gastrointestinal tract were obtained using a CS2100 (Carestream Dental, Madrid, Spain) digital X-ray apparatus (60 kV, 7 mA), and X-rays were recorded on Carestream Dental T-MAT G/RA film (15×30 cm) housed in a cassette provided with regular intensifying screen. Exposure time for X-ray shots was set to 0.02 seconds and focus distance was manually fixed to 50±1 cm. Immobilization of the rats in prone position was achieved by placing them inside hand-made transparent plastic tubes (recording chamber), which were adjusted to the size of the rat so they could not move, scape or turn around (Fig. S1). Moreover, training was not necessary, because, as shown before, this procedure does not cause stress-induced alterations in gastrointestinal transit.¹² Radiographs were then developed using a Kodak X-OMAT 2000 automated processor (Kodak AG, Stuttgart, Germany). For each animal, radiographs were taken in the same order at each time point, so that time intervals between shots were of the same duration for all animals. The analysis of the radiographs was performed by a trained investigator who was blinded to the experimental groups. Transit curves were constructed for each gastrointestinal region (stomach, small intestine, caecum and colorectum) using a semi-quantitative score, assigning a range of values to each region considering the following parameters (Fig. S2): percentage of the region filled with contrast (0-4); contrast intensity (0-4); contrast homogeneity (0-2); and sharpness of the profile of the gut region (0-2). Each of these parameters was scored and summed (0-12 points). In addition, the size and density of the barium contrast were analyzed for stomach, caecum, and fecal pellets, with the aid of an image analysis system (Image J 1.38 for Windows, National Institute of Health, USA, free software: <u>http://rsb.info.nih.gov/ij/</u>).

1		
2		
3		
4		
5		
6 7		
7 8		
9	1 / 1	The number of facel pollets within the coloractum was also determined for each rat at
10	141	The number of fecal penets within the colorectum was also determined for each fat at
11		
12	142	each time point.
13		
14	143	Moreover, at T0, right after the administration of barium, the animals were placed in
15		
16	144	new cages with fresh bedding and the feces present in the cage at each time point of
1/		
18	1/15	the radiographic session (T1-T24) were collected. The following parameters were
20	145	the radiographic session (11-124) were conected. The following parameters were
20	4.4.5	
22	146	measured: the % of labeled feces and their radiopacity; the weight of the feces at
23		
24	147	collection and after drying them in an oven (70 ºC, 24-48 h); their moisture (dry vs. wet
25		
26	148	fecal material, as difference).
27		
28	149	
29	145	
30 31	150	Charlingtian an alumin
32	150	
33		
34	151	Sample size for each experiment was estimated using G*power assuming $\alpha = 0.05$ and
35		
36	152	power = 0.8 and 2-tailed tests. Mean and SD for the variables of the control group in the
37		
38	153	gastrointestinal transit experiments were based on those obtained in our previous
39		
40	15/	ctudy 12
41	154	study.
42 43		
44	155	Data were analyzed using Graph PadPrism, v. 7.0. [®] . Data are presented as the mean
45		
46	156	values ± SEM. All the data obtained during the experiments were included in the
47		
48	157	statistical analysis, and no animal was excluded from the analysis. Each animal was
49		
50	158	considered as an experimental unit when analyzing the differences related to transit
51	150	considered as an experimental unit when analyzing the unreferences related to transit,
52	150	
55 57	159	whilst the cages were considered as the experimental unit when analyzing the data
55		
56		
57		
58		
50		

Laboratory Animals

2		
3		
4		
5		
7		
8		
9 10	160	related to feces. All data passed the D'Agostino and Pearson's normality test, thus
11 12	161	differences between groups were analyzed using unpaired Student's t-test, with Welch's
14 15	162	correction when appropriate, or one- or two-way ANOVA followed by Tukey post-hoc
16 17	163	multiple comparison tests. The differences between female groups regarding the
18 19 20	164	distribution of the estrous cycle phases were analyzed with the Chi-square test. Values
21 22	165	of P < 0.05 were regarded as being significantly different.
23 24 25	166	
26 27	167	RESULTS
28 29 30	168	Animal characteristics at T0
31 32	169	Body weight was significantly lower in females when compared to males. Additionally,
33 34 35	170	the average weight of M-I was significantly higher than that of M-N (Fig. 1A).
36 37	171	
38 39 40	172	As seen in Fig. 1B, just before the X-ray scan, all phases of the estrous cycle (Fig. 1C)
40 41 42	173	were represented in F-N whereas only three of them were represented in F-I. However,
43 44	174	these differences were not statistically significant (p= 0.3).
45 46 47	175	
48 49	176	Radiographic analysis of gastrointestinal motor function
50 51 52 53 54 55 56 57 58 59	177	Semiquantitative analysis
60		

2		
3		
4		
5		
7		
8		
9	178	Gastric emptying in animals under normal cycle (M-N, F-N) was progressive from barium
10	1/0	
11	170	administration (TO) until the end of the study (TOA) without statistically significant
12	179	auministration (10) until the end of the study (124) without statistically significant
13	400	
14	180	differences between sexes (Fig. 2A, 2F). Likewise, gastric emptying of the animals under
15		
10	181	inverted-cycle (M-I, F-I) was similar between males and females, but significantly faster
18		
19	182	compared to their sex-matched group under normal cycle. (Fig. 2A, 2F).
20		
21	183	
22	105	
23	104	In the small intersting, as in the structure that is used a sale survey shows a significantly.
24	184	In the small intestine, as in the stomach, the inverted cycle groups showed a significantly
25		
20	185	faster emptying of the small intestine than the normal-cycle ones (Fig. 2B, 2F).
27		
20 29	186	Additionally, no significant sex-dependent differences were found in animals with the
30		
31	187	same cycle except for a faster intestinal emptying in F-I compared to M-I at T2 and a
32	107	
33	100	higher barium content in Γ N compared to M N at T24 (Fig. 2D)
34	100	nigher banum content in F-N compared to M-N at 124 (Fig. 26).
35		
36	189	
3/		
20	190	In the normal-cycle groups, barium reached the caecum at T2 after administration and
40		
41	191	completely filled this organ by T4 (Fig. 2C, 2F). Caecum emptying only started after T8,
42		, , , , , , , , , , , , , , , , , , , ,
43	192	and at T24 it was almost empty in M-N but not in E-N (Fig. 2C. 2F). In the inverted-cycle
44	152	
45	402	-
46	193	groups, caecum filling was slightly but significantly faster at 12 and its emptying was also
47		
48	194	slightly faster in the inverted-cycle animals, although at T24 M-I was significantly slower
49 50		
50	195	than M-N and F-I was significantly faster than F-N and M-I, and similar to M-N (Fig. 2C,
52		
53	196	2F).
54		,
55		
56		
57		
58		

2		
5 4		
5		
6		
7		
8		
9	197	
10		
11	198	Finally, in the normal-cycle groups barium reached the colorectum at T4 after
12		,, , , , , , , , , , , , , , , , , , , ,
14	199	administration and completely filled this organ by T8 with no significant differences
15	155	administration and completely micd this organ by 10, with no significant uncrences
16	200	hat we are a lower that are at TO 4 while in NAN the calculation was already
17	200	between sexes. Nevertheless, at 124, whilst in M-N the colorectum was almost
18		
19	201	completely empty again, in F-N it showed significantly more barium (Fig. 2D, 2F). Again,
20		
21	202	colorectum filling was, in general, faster in the inverted-cycle groups, particularly in F-I,
22		
23	203	which reached the colorectum already at T2 (Fig. 2D. 2E). At T24 all groups showed more
24	205	which reached the colorectum aready at 12 (Fig. 2D, 21). At 124 an groups showed more
25	204	
20	204	barium than M-N in the colorectum (Fig. 2D).
28		
29	205	
30		
31	206	Fecal pellet number in the colorectum
32		
33	207	The number of fecal pellets counted in the colorectum followed the same trend as the
34	207	The humber of recar penets counted in the colorectain followed the same trend as the
35	200	
36	208	semiquantitative score in this organ, with no differences found in the amount of feces
3/		
30	209	observed between F-N and M-N, except at T24 (Fig. 2D, 2E). Likewise, the occurrence of
40		
41	210	fecal pellets was accelerated in the animals under inverted cycle, particularly in females.
42		
43	211	although males presented a much larger amount of feces than females with the
44	211	altiough males presented a much larger amount of reces than remales, with the
45	242	the second se
46	212	maximum number occurring at 16 in both sexes, whereas it was at 18 in the normal cycle
47		
48	213	groups (Fig. 2E).
49 50		
50	214	
52		
53	215	Mornhometric and densitometric analysis
54	215	Norphometrie und densitömetrie analysis
55		
56		
57		
58		
59		
60		

1 2		
3 4 5		
5 6 7		
7 8 9 10	216	The morphometric (size) and densitometric (contrast density) analysis of stomach,
11 12	217	caecum and fecal pellets showed similar changes throughout the experiment, as those
13 14 15	218	found in the semiquantitative study. Thus, here we will focus on the maximum values
16 17	219	obtained for size and contrast density of these items.
18 19	220	
20 21 22	221	The maximum size of the stomach at T0, was around 480-550 mm ² , except for F-I, which
23 24	222	was significantly smaller, around 376 mm ² (Fig. 3A). The maximum gastric density, also
25 26 27	223	obtained at T0, was close to 100% for all groups (Fig. 3B).
28 29	224	
30 31 32	225	In contrast, the maximum size of the caecum was slightly, but significantly, smaller in
33 34	226	females than in males, regardless of the type of light cycle (Fig 3C). When analyzing the
35 36 27	227	density, all groups reached similar maximum values at T2-T4, without statistically
37 38 39	228	significant differences at these time points (Fig. 3D).
40 41	229	
42 43 44	230	Finally, the fecal pellet area and density values were averaged between T4 and T8 (when
45 46	231	these values reached their maximum). The maximum size was similar for all groups,
47 48 40	232	around 70-85 mm ^{2,} except for F-I which was significantly smaller, around 53 mm ² (Fig.
49 50 51	233	3E). With respect to barium density, the fecal pellets of the M-I group had a lower
52 53 54	234	density than the M-N group, whilst no differences were observed due to the cycle in
55 56		
57 58		
59		
00		

3		
4		
6		
7		
8		
9 10	235	females. Furthermore, the density in the F-I group was higher when compared to M-I
11	226	
12	250	(Fig. SF).
13	227	
14	237	
16	220	Characteristics of the faces callested during the View section
17	238	Characteristics of the jeces conected during the X-ray session
18	220	The second state of the state o
19 20	239	Figure 4A shows representative images of barium-stained and non-stained fecal pellets
20 21	• • •	
22	240	at 124. Rats expelled 0-4 fecal pellets per hour, without significant differences among
23		
24	241	groups (Fig. S3A). The percentage of expelled stained fecal pellets increased in all groups
25 26		
20 27	242	in a time-dependent manner, with the F-I group being significantly faster than the other
28		
29	243	groups, followed by M-I, M-N and F-N, in that order (Fig. 4B). The radiopacity pattern
30	_	
31	244	was similar to that of the % of stained fecal pellets, but interestingly M-I practically
32 33		
34	245	overlapped with M-N throughout the whole study, whilst significant differences in the
35		
36	246	radiopacity along time were found between F-N and F-I (Fig. 4C).
3/ 20		
39	247	
40		
41	248	To evaluate the moisture of the feces, the difference between wet and dry weight (wet
42		
43 44	249	weight – dry weight <mark>; Fig. S3B and C show these parameters individualized</mark>) was
45		
46	250	calculated. All the groups had similar values throughout the experiment except M-N
47		
48	251	group at T1, when the difference was significantly greater compared to the rest of the
49 50		
51	252	groups. The other groups had a value of about half of that found in M-N at T1 (Fig. 4C).
52		
53	253	
54		
55 56		
57		
58		
59		
60		

2
3
4
5
6
7
8
0
10
10
11
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
28
20
20
50
31
32
33
34
35
36
37
38
39
10
40
41
42
43
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
59

60

254 **DISCUSSION**

255 Although many different techniques have been used to analyze gastrointestinal transit 256 in laboratory animals (for example, see Table S1 in ¹⁵), non-invasive techniques are 257 preferable for both ethical reasons and translatability. In the present study we have 258 demonstrated, for the first time using non-invasive radiographic techniques, the effects 259 of the circadian rhythm and its related behavior and that of sex on gastrointestinal 260 transit. Importantly, our results agree with those of other researchers using other 261 invasive or indirect techniques,^{11,16} with the advantages of including a relatively low 262 number of animals and obtaining more detailed information from the different 263 gastrointestinal organs along time.

264 <u>X-ray study of gastrointestinal transit in male rats under normal light cycle</u>

In this 24-hour study, we used the M-N group as a reference, in the same way as in most
rodent X-ray studies, including those carried out by our research group in rats
(Supplementary Table I), since the transit patterns are well established in these animals.
As expected, in this study the transit pattern in M-N group was similar to that previously
found by other authors and also by our group.^{12,17-19}

The present study benefits from the performance of a comprehensive analysis of thefecal pellets collected during the radiographic session. The percentage of stained fecal

3 4		
5		
6 7		
8 9 10	272	pellets showed a progressive increase from T4 to T24. Similar to the number of stained
11 12 13	273	fecal pellets within the colorectum, radiopacity increased up to T8 and decreased
13 14 15	274	afterwards. Since radiopacity is measured using the average of all fecal pellets, the
16 17 19	275	decrease at T24 is a reflection of the production of new pellets (without staining) during
19 20	276	the night, when animals are more active and also eat more. ²⁰⁻²²
21 22 23	277	The increased moisture (associated with highest wet fecal matter expulsion, Fig. S3B) of
24 25 26	278	the fecal pellets collected at T1 (Fig. 4D), probably reflects some level of psychological
27 28	279	stress, since increased fecal moisture and fecal production are generally considered as
29 30 31	280	indirect markers of stress in male rats. ²³
32 33 34 35	281	X-ray study of gastrointestinal transit in female rats under normal light cycle
36 37 28	282	To our knowledge, no previous study has specifically evaluated the influence of sex on
39 40	283	gastrointestinal transit using radiographic methods in rodents. In the few radiographic
41 42 43	284	studies in which females were used, results from animals of both sexes were either
44 45	285	combined ²⁴⁻²⁸ or evaluated separately without a specific comparison ²⁹ and
46 47 48	286	methodological differences (including animal species) preclude proper comparison with
49 50	287	our results. In the present study, the F-N transit curves were similar to those of M-N
51 52 53	288	from the moment of barium administration (TO) until T8 for all regions, but from this
54 55 56 57	289	point till T24 gastrointestinal transit was delayed in F-N. Although early human studies

showed shorter gastrointestinal transit times in healthy men compared to healthy women,¹⁻⁵ our results suggest that, under normal light conditions, gastrointestinal transit is equivalent in rats of both sexes for the first 8 h, when the animals are relatively inactive, eat less and, consequently, their gastrointestinal motility is less stimulated (which could be somehow similar to fasting in humans). Afterwards, during the activity phase, transit of the large intestine appears to be delayed in females compared to males, with a certain degree of retention of barium-stained content in both the caecum and colorectum. The reduction in the maximum size of the caecum found in females, is probably related to its sexual dimorphism in body weight.^{30,31} However, these morphometric differences would have favored a faster transit in the large intestine. Thus, they do not seem to contribute to the transit differences between the two sexes under normal cycle.

In F-N, the curve for the percentage of stained fecal pellets showed a similar pattern to those of M-N, except for the fact that at T8 no stained fecal pellet was recovered from the cage. Interestingly, the absence of stained fecal pellets in the cage at T8 was followed by a slight increase in stomach size and small intestine staining at T24 in this group of animals, maybe due to coprophagia, which is a common behavior in rats.^{32,33}

h	307	A difference between sexes, unlikely related with their body weight, was the fact that at
1 2	308	T1 females produced less fecal matter with significantly lower moisture. Interestingly, in
3 4	309	a previous study also performed in male and female mice under normal light cycle, we
5 7	310	found similar results. ³⁴ In that study, mice were isolated in cages without bedding for 4
3	311	hours after intragastric administration of barium and the fecal pellets produced were
) 1	312	radiographically analyzed. Despite the evident methodological differences, in both
2 3 4	313	species, males produced more feces and with more moisture at the beginning of the
5	314	study than at later moments, reflecting a certain level of initial stress, perhaps
/ 3 9	315	associated with the manipulation (barium administration) and the new conditions (new
) 1	316	cage). This phenomenon may reflect some important dimorphism in rodent biology that
2 3 1	317	deserves further investigation regarding its mechanisms and function and could be
+ 5 5	318	attributed to differences in the gastrocolic response to mechanical stimulation of the
7 3	319	stomach by barium administration and/or psychological stress associated with the initial
€) 1	220	bandling and exposure to the new environment, aforementioned 23,35
1 2 3	520	nandling and exposure to the new environment, alorementioned.
4 5	321	Influence of the circadian rhythm on the gastrointestinal transit of male and female rats
5 7		

Although the impact of the circadian rhythm on gastrointestinal transit has been evaluated in different species, including humans,³⁶⁻³⁸ to the best of our knowledge, it has never been addressed in laboratory animals using radiographic methods.

2		
3 ⊿		
5		
6		
7		
8 9 10	325	Compared with M-N, M-I showed much faster transit in the upper gastrointestinal tract
10 11 12	326	(stomach and small intestine) and faster filling and emptying of the caecum and the
13 14 15	327	colorectum during the first 8 h of the study. However, emptying of caecum and
16 17	328	colorectum was delayed at T24. These results were expected, since in the M-I group the
18 19 20	329	experiments performed from TO-T8 occur during their activity phase, when animals
20 21 22 23	330	move, eat, and defecate more. ^{20-22,39}
24 25 26	331	Interestingly, the moisture of the fecal pellets did not increase at T1 in M-I as seen for
27 28	332	M-N, suggesting that during their activity phase the males might be less sensitive to the
29 30 21	333	stress produced by the new experimental conditions (transport to the X-ray room,
32 33 34	334	barium gavage, brief restraint) than during their inactivity phase.
35 36	335	Finally, in F-I, gastric emptying was similar to that of M-I but emptying of the small
37 38 39	336	intestine and caecum was much faster in F-I than in any other group, including F-N,
40 41	337	leading to much faster colorectum filling which was also reflected in a higher percentage
42 43 44	338	of expelled stained pellets at earlier times. Furthermore, female groups were not
45 46	339	significantly different in terms of their body weight or their distribution among estrous
47 48 49	340	phases, suggesting that these factors had little contribution to our transit results. In the
50 51	341	morphometric analysis, F-I animals showed smaller stomach (at TO) and fecal pellets (at
52 53 54 55 56 57	342	T4-T8), but their maximum caecum size (at T4-T6) was not significantly different from

that of F-N group. Thus, although we did not measure the small and large intestine lengths at sacrifice, which would have helped to ascertain this issue, it is unlikely that the morphometric differences found in the X-rays explain such a fast gastrointestinal transit in F-I group. Furthermore, a higher level of stress at the beginning of the study does not seem to underlie the faster transit either, since at T1 the moisture parameters of fecal pellets were as in M-I and F-N. Nevertheless, our results agree with a recent invasive study in mice, in which Soni et al¹¹ compared the transit of males and females at different phases of the day and with different fasting times. They found that females analysed in the morning had a slower gastrointestinal transit than those analysed in the afternoon and concluded that females are more sensitive than males to the phase of the circadian rhythm. Moreover, an indirect study, based on the analysis of the microbiota, also found differences between the sexes associated with the circadian rhythm.¹⁶ Although other activities, such as locomotor activity, may affect gastrointestinal transit, the impact of food ingestion is a relevant driving force leading to its acceleration. In this sense, food ingestion increases during the phase of activity, which corresponds to the lights off period²⁰. Although fasting is usually imposed in gastrointestinal transit studies and its duration has an impact on the results,¹¹ in the present study we did not fast the animals before the experiments for ethical reasons (fasting duration would have been much longer than 24 h). Therefore, manipulation, which was the same for all animals,

2		
4		
5		
6 7		
/ 8		
9 10	362	was only limited to the unavoidable handling of the animals needed to take the X-rays.
11		
12	363	Thus, in this study, the animal activities that normally take place during the different
13		
14	364	moments of the day were only minimally altered.
15		
17		
18	365	Finally, it could seem that our results were mainly due to the difference in body weight
19		
20	366	displayed by male and female rats (which ranged from 72 to 329 g). In agreement, M-N
21		
22	367	tended to produce more wet and dry fecal matter than F-N, particularly at T6-T24 (Fig.
24		
25	368	S3B, C). However, the amount of fecal matter collected from the cage of the animals
26		
27	369	under the inverted cycle, was practically the same up to T8, regardless of their sex (Fig.
28		
29 30	370	S3B, C). Thus, the differences in body weight alone do not suffice to explain our results
31		
32	371	on fecal matter production and gastrointestinal transit.
33		
34 25		
35 36	372	CONCLUSIONS
37		
38		
39	373	In the present study, the influence on gastrointestinal transit of sex and the circadian
40		
41	374	rhythm and its related behavior was evaluated in the rat using radiographic methods for
42 43		
44	375	the first time. When the study was performed under normal light cycle, i.e., during the
45		
46	376	inactivity phase of the animals, males and females had similar transit times despite their
47		
48 40	377	different body weight and slightly different defecation. Under an inverse light/dark
50	-	
51	378	cycle, animals of both sexes showed an accelerated gastrointestinal transit compared to
52	570	
53	379	animals under a normal light cycle, but females displayed an even more accelerated
54	575	
55 56		
57		
58		
59		
55		

transit when compared to males, although fecal matter production was similar. Thus,

both sex and the circadian rhythm (or its associated feeding and locomotor activities)

Our results highlight the need for more detailed studies to precisely define the influence

of sex on the gastrointestinal and other physiological functions, and how these functions

noe periez

have a paramount influence on gastrointestinal transit.

change throughout the day.

2	
3 ⊿	
5	
6	
7	
8	200
9 10	380
11	204
12	381
13	
14	382
16	
17	202
18	202
19	204
20 21	384
22	205
23	385
24	
25	
20 27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
30 39	
40	
41	
42	
43 11	
45	
46	
47	
48	
49 50	
51	
52	
53	
54 55	
55 56	
57	
F O	

1

2 3		
4		
6		
7 8		
9 10	386	ACKNOWLEDGEMENTS
12 13	387	We thank Comunidad Autónoma de Madrid for the predoctoral contract of Y. López-
14 15 16	388	Tofiño (PEJD-2017-PRE/BMD-3924) and URJC for the predoctoral contracts of Y. López-
17 18	389	Tofiño (PREDOC20-054) and C. Galvez Robleño (PREDOC20-054).
19 20 21	390	
22 23	391	CONFLICT OF INTEREST
24 25 26	392	The authors declare that there is no conflict of interest.
27 28	393	
29 30 31	394	FUNDING
32 33	395	This work was supported by Ministerio de Ciencia, Innovación y Universidades [PID2019-
34 35 36	396	111510RB-I00]; Ministerio de Ciencia e Innovación - Instituto de Salud Carlos III
37 38	397	[PI17/01766, BA21/00030]; co-financed by European Regional Development Fund
39 40 41	398	(ERDF) "A way to make Europe"; Delegación del Gobierno para el Plan Nacional sobre
42 43	399	Drogas (2017/085); and Grupo Español de Motilidad Digestiva (Beca Allergan, 2017).
44 45	400	
46 47	401	AUTHOR CONTRIBUTIONS
48 49 50	402	RA designed the study and provided financial support. CGR, LLG, YLT y AB performed the
51 52 53 54 55 56 57 58 59 60	403	experiments. CGR analyzed the data. CGR and RA wrote the manuscript. MLSM provided

2		
3		
4 5		
5		
7		
, 8		
9	404	essential intellectual input. All authors critically reviewed and approved the final version
10	404	essential intellectual input. All dutions entically reviewed and approved the final version
11	405	
12	405	of the manuscript.
13		
14	406	
15		
16		
1/ 10	407	
10		
20	400	
20	408	
22		
23	409	The data that support the findings of this study are available from the corresponding
24		
25	410	author (Raguel Abalo) upon reasonable request. Contact email: Raguel.abalo@uric.es
26		
27	/11	
28	411	
29		
30	412	
31	112	
32		
34		
35		
36		
37		
38		
39		
40		
41		
42 43		
43 44		
45		
46		
47		
48		
49		
50		
51		
52		
53 54		
55		
56		
57		
58		
59		
60		

1		
2		
3		
4		
5		
6 7		
/ Q		
9	410	DEFEDENCES
10	415	REFERENCES
11		
12	414	1 Metcalf AM Phillins SF Zinsmeister A R et al Simplified assessment of segmental
13	/15	colonic transit. <i>Castroenterology</i> 1987: 92: 40–47
14	415	Colonic transit. Cost denterology 1987, 92. 40-47.
15	410	2 James J.M. Fredetrens C.D. Clavia J.J. et al. Cau differences in colonia functions a
16	417	2. Lampe J.W, Fredstrom S.B, Slavin J.L, et al. Sex differences in colonic function: a
1/ 10	418	randomised trial. <i>Gut</i> 1993; 34: 531-536.
10	419	
20	420	3. Meier R, Beglinger C, Dederding J.P, et al. Influence of age, gender, hormonal status
21	421	and smoking habits on colonic transit time. Neurogastroenterol Motil 1995; 7: 235-
22	422	238.
23	423	
24	424	4 Teff K L Alavi A Chen L et al Muscarinic blockade inhibits gastric emptying of mixed-
25	125	nutrient meal: effects of weight and gender. Am I Physiol 1990: 276(3 Pt 2): R707-
26	425	D714
27	420	K714.
20 29	427	
30	428	5. Houghton LA, Heitkemper M, Crowell M, et al. Age, gender and women's health and
31	429	the patient. <i>Gastroenterology</i> 2016; 150:1332-1343.
32	430	
33	431	6. Prusator DK, Chang L. Sex-related differences in GI disorders. Handb Exp Pharmacol
34	432	2017; 239: 177-192.
35 36	433	
37	434	7. Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and
38	435	periphery, in health and disease. <i>Nat Rev Neurosci</i> 2003; 4: 649-661.
39	436	
40	437	8. Scheving LA. Biological clocks and the digestive system. <i>Gastroenterology</i> 2000: 119:
41	438	536-49
42	439	
43 44	435	9 Scheving IA Russell WE It's about time: Clock genes unveiled in the gut
45	440	Gastroontorology 2007: 122: 1272 6
46	441	Gustiventerology 2007, 155. 1575-0.
47	442	
48	443	10. Rao S.S, Sadegni P, Beaty J, et al. Ambulatory 24-n colonic manometry in nealthy
49	444	humans. Am J Physiol Gastrointest Liver Physiol 2001; 280: G629-G639.
50 51	445	
51 52	446	11. Soni KG, Halder T, Conner M E, et al. Sexual dimorphism in upper gastrointestinal
53	447	motility is dependent on duration of fast, time of day, age, and strain of mice.
54	448	Neurogastroenterol. <i>Motil</i> 2019; 31(9): e13654.
55		
56		
57		
58		
59 60		
00		

1		
2		
3		
4		
5		
6		
/		
8		
9 10	449	
10	450	12. Cabezos PA, Vera G, Castillo M, et al. Radiological study of gastrointestinal motor
12	451	activity after acute cisplatin in the rat. Temporal relationship with pica. Auton
13	452	Neurosci 2008; 141: 54–65.
14	453	
15	454	13. Prusator DK. Greenwood- Van Meerveld B. Gender specific effects of neonatal
16	455	limited nesting on viscerosomatic sensitivity and anxiety-like behavior in adult rats
17	455	Neurogastroantarol Motil 2015: 27:1 pp. 72.91
18	450	Neurogustroenteror Motif 2015, 27.1 pp. 72-81.
19	457	
20	458	14. Prusator DK, Greenwood-Van Meerveld B. Sex-related differences in pain behaviors
21	459	following three early life stress paradigms. <i>Biol Sex Differ</i> 2016; 7(1): 29.
22	460	
24	461	15. Giron R, Perez-Garcia I, Abalo R. X-ray analysis of gastrointestinal motility in
25	462	conscious mice. Effects of morphine and comparison with rats. <i>Neurogastroenterol</i>
26	463	Motil 2016: 28: 74-84
27	405	
28	404	16 Lines V. Buckman ED. Fitz Carold CA. Bhuthminity of the intertinal microhists in
29	465	16. Liang X, Bushman FD, FitzGerald GA. Rhythmicity of the intestinal microbiola is
30	466	regulated by gender and the host circadian clock. PNAS 2015; 112(33): 10479-
31	467	10484.
32 22	468	
22 24	469	17. Abalo R, Cabezos PA, Vera G, et al. The cannabinoid antagonist SR144528 enhances
35	470	the acute effect of WIN 55,212-2 on gastrointestinal motility in the rat.
36	471	Neurogastroenterol Motil 2010: 22(6): 694-e206.
37	472	
38	472	18 Irianda Dalland A. Carnaia ES. Earnandaz Comaz B at al Bioaccasibility
39	475	18. Inondo-Denond A, Corriejo FS, Fernandez-Gomez B,et al. Bioaccesibility,
40	474	Metabolism, and excretion of lipids composing spent coffee grounds. Nutrients
41	475	2019; 11(6): 1411.
42	476	
43	477	19. López-Tofiño Y, Vera G, López-Gómez L, et al. Effects of the food additive
44 15	478	monosodium glutamate on cisplatin-induced gastrointestinal dysmotility and
46	479	peripheral neuropathy in the rat. <i>Neurogastroenterol Motil</i> 2021; 33(4): e14020.
47	480	
48	481	20 Bagues A López-Tofiño V Galvez-Robleño C Effects of two different acute and
49	101	subchronic strossors on gastrointoctinal transit in the rat: A radiographic analysis
50	402	Neuro exectes entered Martil 2021, 22: e14222
51	483	Neurogastroenteroi Motil 2021; 33: e14232.
52	484	
53		
54 55		
55 56		
57		
58		
59		
60		

2		
3		
4		
5		
6		
/		
8		
9	485	21. Stephan FK, Zurcker I. Circadian rhythms in drinking behavior and locomotor activity
10	486	of rats are eliminated by hypothalamic lesions. Poc Nat Acad Sci 1972; 69(6): 1583-
12	487	1586.
13	488	
14	489	22. Johnson RF. Johnson AK. Light/Dark Cycle Modulates food to water intake ratios in
15	100	rate Dhysiology & Rehavior 1990: 48: 707-711
16	490	Tats. Physiology & Denavior 1990, 48. 707-711.
17	491	
18	492	23. Sanger GJ, Yoshida M, Yahyah M, et al. Increased defecation during stress or after 5-
19	493	hydroxytryptophan: selective inhibition by the 5-HT4 receptor antagonist, SB-
20	494	207266. British Journal of Pharmacology 2000; 130: 706-712.
21	495	
22	496	24. Diani AR. Grogan DM. Yates ME. et al. Radiologic abnormalities and autonomic
23	107	nouronathology in Digostivo Tract of the Ketenuric Diabetic Chinese Hamster
24	497	Disketelesis 1070: 17: 22.40
25	498	Diabetologia 1979; 17: 33-40.
20	499	
27	500	25. Costall B, Gunning SJ, Naylor RJ, et al. A central site of action for benzamide
29	501	facilitation of gastric emptying. European journal of pharmacology 1983; 91: 197-
30	502	205.
31	503	
32	504	26 Read DE Pigrau M Lu L et al Bead study: a novel method to measure
33	504	gestrointectinal transit in mice. Neurogestroanteral Metil 2014; 26: 1662-1669
34	505	gastronnestinal transit in fince. <i>Neurogustroenteroi Niotii</i> 2014, 20. 1005-1008.
35	506	
36	507	27. Robinson AM, Rahman AA, Carbone SE, et al. Alterations of colonic function in the
37	508	Winnie mouse model of spontaneous chronic colitis. Am J Physiol Gastrointest Liver
38	509	Physiol 2017; 312: G85-G102.
39 40	510	
40 41	511	28. Sahakian L. Filippone RT. Stavely R. et al. Inhibition of APE1/Ref-1 redox signaling
42	512	alleviates intestinal dysfunction and damage to myenteric neurons in a mouse
43	512	model of spontaneous shronis colitis. Inflamm Rowal Dis 2021, 27(2): 200 406
44	515	model of spontaneous chronic contis. <i>Influmin Bower Dis</i> 2021, 27(5). 566-406.
45	514	
46	515	29. Jacenik D, Bagüés A, López-Gómez L, et al. Changes in Fatty Acid Dietary Profile Affect
47	516	the Brain-Gut Axis Functions of Healthy Young Adult Rats in a Sex-Dependent
48	517	Manner. <i>Nutrients</i> 2021; 13(6): 1864.
49	518	
50	519	30. Madeira MD. Sousa N. Cadete-Leite A. et al. The supraontic nucleus of the adult rat
5 I 5 2	520	hypothalamus displays marked sexual dimorphism which is dependent on body
52 53	520 E 21	woight Neuroscience 1002: 52/2): 407 512
55	521	weight. wealoscience 1995, 52(5). 497-515.
55	522	
56		
57		
58		
59		
60		

- 31. Brower M, Grace M, Kotz CM, et al. Comparative analysis of growth characteristics of Sprague Dawley rats obtained from different sources. Lab Anim Res 2015; 31: 166–173. 32. Barnes, RH, Fiala, G, McGhee B, et al. Prevention of coprophagy in the rat. Journal of Nutrition 1957; 63: 489-498. 33. Torrallardona D, Harris CI, Coates ME, et al. Microbial amino acid synthesis and utilization in rats: The role of coprophagy. British Journal of Nutrition 1996; 76: 701-709. 34. Gallego P, Bagüés A, Escasany E, et al. Influence of sex and diet on the gastrointestinal tract in a mice model with partial deficiency for TGF- β 3. Proceedings 2020; 61(1): 18. 35. Malone JC, Thavamani A. Physiology, Gastrocolic Reflex. StatPearls [Internet], www.ncbi.nlm.nih.gov/books/NBK549888/ (2021) 36. Hazlerigg DG, Tyler NJC. Activity in mammals: Circadian dominance challenged. PLOS *Biol* 2019; 17(7): e3000360. 37. Rich A. A new high-content model system for studies of gastrointestinal transit: the zebrafish. Neurogastroenterol Motil 2009; 21: 225-228 38. Kambayashi A, Sako K, Kondo H. Effects of diurnal variation and food on gastrointestinal transit of 111In-labeled hydrogel matrix extended release tablets and 99mTc-labeled pellets in humans. J Pharm Sci 2020; 109 (2): 1020-1025. 39. Verwey M, Robinson B, Amir S. Recording and analysis of circadian rhythms in running-wheel activity in rodents. J Vis Exp 2013; 71.

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

1		
2		
3 4		
5		
6 7		
8		
9 10	555	FIGURE LEGENDS
11 12 12	556	Figure 1. Animal characteristics at T0. (A) Body weight, values represent the mean \pm
13 14 15	557	SEM. (B) Estrous cycle phase, values represent the % of females in each phase. $^{\#}p<0.05$,
16 17	558	#### p<0.0001 vs M-N; ^{\$\$\$\$} p<0.0001 vs M-I (One-way ANOVA followed by Tukey post-hoc
18 19 20	559	test). (C) Representative images of the estrous phases.
21 22	560	
23 24 25 26 27 28 29 20	561	Figure 2. Radiographic study of the differences in gastrointestinal transit by sex and
	562	circadian rhythm: semiquantitative analysis. Data represent mean \pm SEM for motor
	563	function in stomach (A), small intestine (B), caecum (C) and colorectum (D). (E) Number
30 31 32	564	of fecal pellets stained within the colon at each time point of the X-ray session. $*p<0.05$,
33 34 35	565	^{##} p<0.01, ^{####} p<0.0001 vs M-N; ^{\$} p<0.05, ^{\$\$\$\$} p<0.0001 vs M-I; [*] p<0.05, ^{**} p<0.01,
36 37	566	***p<0.001, ****p<0.0001 vs F-N (Two-way ANOVA followed by Tukey post-hoc test). (F)
38 39	567	Representative X-rays of rats.
40 41 42	568	
43 44	569	Figure 3. Radiographic study of the differences in gastrointestinal transit by sex and
45 46 47	570	circadian rhythm: morphometric and densitometric analysis. (A), (C), (E) Changes in the
48 49	571	size of stomach, caecum and fecal pellets, respectively. (B), (D), (F) Changes in density
50 51 52	572	of barium within the same stained organs. Values represent the mean \pm SEM. #p<0.05,
53 54 55 56 57 58	573	^{##} p<0.01, ^{####} p<0.0001 vs M-N; ^{\$} p<0.05, ^{\$\$} p<0.01, ^{\$\$\$} p<0.001 vs M-I; [*] p<0.05, ^{**} p<0.01,
59 60		

****^p<0.0001 vs F-N (A-D, Two-way ANOVA followed by Tukey post-hoc test; E-F, One-way ANOVA followed by Tukey post-hoc test). Abbreviations: M-N, male-normal cycle; F-N, female-normal cycle; M-I, male-inverted cycle; F-I, female-inverted cycle. Figure 4. Characteristics of the feces collected during the X-ray session: staining and moisture. (A) Representative images showing a photograph of the feces collected at T24 in one cage (left) and their radiographic appearance (right). Barium-stained, residually-stained and non-stained fecal pellets are shown. (B) % of stained fecal pellets. (C) Radiopacity. (D) Fecal pellet moisture measured as difference (wet-dry fecal matter). Data represent the mean \pm SEM. # p<0.05, ## p<0.01, ### p<0.001, #### p<0.0001 vs M-N; ^{\$\$\$} p<0.001, ^{\$\$\$\$} p<0.0001 vs M-I; *p<0.05, ****p<0.0001 vs F-N (Two-way ANOVA followed by Tukey post-hoc test). Abbreviations: M-N, male-normal cycle; F-N, female-normal cycle; M-I, male-inverted cycle; F-I, female-inverted cycle. Figure S1. Restraining device for the radiographic study. The restraining device is a hand-made flexible transparent plastic tube with two hind flaps and one front flap that allow the non-stressful insertion and release of the animal, respectively (A). To limit the movement of the animals during the X-ray procedures, they are inserted in the restraining tube. Once the animal has entered the trap, the base is closed with two

593 Velcro tabs located at the base of the tube itself (hind flaps); after the X-ray has been 594 taken, the animal is allowed to exit the tube by opening the front flap (B).

Figure S2. Characteristic transit pattern for the stomach, small intestine, caecum and colorectum obtained from male rats during normal cycle. A single dose of barium sulfate (2.5 mL, 2 g mL-1) was intragastrically administered at time 0 and X-rays were taken immediately at 0, 1, 2, 4, 6, 8 and 24 h after administration. In (A), (B), (C) and (D) the data for each parameter analyzed at each time point for each organ are shown: Percentage of the organ filled with contrast (P, up to 4 points); Intensity of contrast (I, up to 4 points); Sharpness of the profile of the organ (S, up to 2 points); Homogeneity of contrast (H, up to 2 points). In (E) the sum of each of the analyzed parameters for each organ is shown at each of the experimental time points. Data represent the mean±SEM. (F) Representative X-rays obtained from the normal cycle male rats at 1, 4, 8 and 24 h after administration of barium sulfate. Abbreviations in F: St, stomach; SI, small intestine; C, caecum; FP, fecal pellets in the colorectum.

Figure S3. Characteristics of feces collected during the X-ray session. Motor function was

610 measured by radiological methods (see text). Four groups of animals were used, according to

611 sex (males, M; females, F) and the exposure to normal (lights on 8 am to 8 pm, N) or inverted

2 3		
4 5 6		
7 8		
9 10	612	(lights on 8 pm to 8 am, I) light cycle: M-N, M-I, F-N, F-I. The fecal pellets were collected from
11 12	613	the cages along the X-ray session and weighted both before and after drying in an oven (see
13 14	614	text). Data represent the mean \pm SEM for the number of fecal pellets (A), as well as the wet (B)
15 16 17	615	and dry (C) weight of fecal pellets. # <i>p<0.05 vs M-N;</i> * <i>p<0.05 vs F-<mark>N</mark> (Two-way ANOVA followed</i>
17 18 19	616	by Tukey post-hoc test).
20 21	617	
22 23		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35 26		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52 53		
54 55		
56 57		
58 59		
60		

phase, values represent the % of females in each phase. # p<0.05, #### p<0.0001 vs M-N; \$\$\$\$ p<0.0001 vs M-I (One-way ANOVA followed by Tukey post-hoc test). (C) Representative images of the estrous phases.

Figure 2. Radiographic study of the differences in gastrointestinal transit by sex and circadian rhythm: semiquantitative analysis. Data represent mean □ SEM for motor function in stomach (A), small intestine (B), caecum (C) and colorectum (D). (E) Number of fecal pellets stained within the colon at each time point of the X-ray session. # p<0.05, ## p<0.01, #### p<0.0001 vs M-N; \$ p<0.05, \$\$\$\$ p<0.001 vs M-I; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 vs F-N (Two-way ANOVA followed by Tukey post-hoc test). (F) Representative X-rays of rats.

Figure 3. Radiographic study of the differences in gastrointestinal transit by sex and circadian rhythm: morphometric and densitometric analysis. (A), (C), (E) Changes in the size of stomach, caecum and fecal pellets, respectively. (B), (D), (F) Changes in density of barium within the same stained organs. Values represent the mean ± SEM. # p<0.05, ## p<0.01, #### p<0.0001 vs M-N; \$ p<0.05, \$\$ p<0.01, \$\$\$ p<0.001 vs M-I; *p<0.05, **p<0.01, ****p<0.0001 vs F-I (A-D, Two-way ANOVA followed by Tukey posthoc test; E-F, One-way ANOVA followed by Tukey post-hoc test). Abbreviations: M-N, male-normal cycle; F-N, female-normal cycle; M-I, male-inverted cycle; F-I, female-inverted cycle.

Figure 4. Characteristics of the feces collected during the X-ray session: staining and moisture. (A) Representative images showing a photograph of the feces collected at T24 in one cage (left) and their radiographic appearance (right). Barium-stained, residually-stained and non-stained fecal pellets are shown. (B) % of stained fecal pellets. (C) Radiopacity. (D) Fecal pellet moisture measured as difference (wet-dry fecal matter). Data represent the mean □ SEM. # p<0.05, ## p<0.01, ### p<0.001, #### p<0.0001 vs M-N; \$\$\$ p<0.001, \$\$\$\$ p<0.0001 vs M-I; *p<0.05, ****p<0.0001 vs F-I (Two-way ANOVA followed by Tukey post-hoc test). Abbreviations: M-N, male-normal cycle; F-N, female-normal cycle; M-I, male-inverted cycle; F-I, female-inverted cycle.

 Laboratory Animals

Table I. Studies using non-invasive radiographic methods to evaluate gastrointestinal motility in small experimental animals (mainly rodents).

Year	Drug or condition studied	Species	Sex of animals	Light cycle phase	Reference
1979	No drug administration.	Chinese	Both, without	N.S.	Diani et al., 1979
	Diabetic animals.	hamsters	comparison		
1983	Different drugs (dopamine antagonists, apomorphine, atropine,	Guinea pig	Both, without	N.S.	Costall et al.,
	eserine, prazosin, propranolol).		comparison		1983
1993	No drug administration.	Rat	Female	N.S.	Perry et al., 1993
	Groups with different ages at the point of X-ray study.				
1994	No drug administration.	Rat	Female	N.S.	Perry et al., 1994
	1,000 eggs of Taenia taeniaformis dosed orally.				
1995	No drug administration.	Rat	N.S.	N.S.	Munakata et al.,
	Dietary fiber (wheat bran) at 0, 20 or 40% (% weight).				1995
2005	Ethosuximide (150 mg/kg) oral administration for 15 days.	Rat	Male	N.S.	Sirakov et al.,
	One single neostigmine (4 ml kg ⁻¹ 0.25%, i.m.) or metoclopramide (10				2005
	mg kg ⁻¹ , i.p.) administration.				
2008	One single cisplatin (3 or 6 mg kg ⁻¹ , i.p.) administration.	Rat	Male	Normal	Cabezos et al.,
					2008
2009	WIN 55,212-2 (0.5 or 5 mg kg ⁻¹ , i.p) administration, once a day for 14	Rat	Male	Normal	Abalo et al., 2009
	consecutive days.				
2010	One single WIN 55,212-2 (0.5, 1, 2 and 5 mg kg ⁻¹ , i.p.) administration.	Rat	Male	Normal	Abalo et al., 2010
	One single CB1 antagonist AM251 (1 mg kg ⁻¹ , i.p.) and/or the CB2				
	antagonist SR144528 (1 mg kg ⁻¹ , i.p.) administration.				
2010	Cisplatin (at 1, 2, or 3 mg kg ⁻¹ , i.p.) administration once a week for	Rat	Male	Normal	Cabezos et al.,
	four weeks				2010

2011	WIN 55,212-2 (0.5 or 5 mg kg ⁻¹ , i.p.) administration alone or after CB1 antagonist/ inverse agonist AM251 (1 mg kg ⁻¹ , i.p.) administration, once a week for four weeks.	Rat	Male	Normal	Abalo et al., 2011
2013	One single loperamide (5 or 10 mg kg ⁻¹ , i.p.) administration.	Mice	Female	Inverted	Myagmarjalbuu et al., 2013
2013	WIN 55,212-2 (0.5 or 1 mg kg ⁻¹ , i.p.) and cisplatin (2 mg kg ⁻¹ , i.p.) administrations, once a week for four weeks.	Rat	Male	Normal	Abalo et al., 2013
2014	Loperamide (5 mg kg ⁻¹ , s.c.), metoclopramide (10 mg kg ⁻¹ , i.p.) or milk of magnesia (0.2 mL, gavage) administration.	Mice	Both, without comparison	Normal	Reed et al., 2014
2014	Granisetron (1 mg kg ⁻¹ , i.p.) and, 30 minutes after, cisplatin (2 mg kg ⁻¹ , i.p.), once per week for 4 weeks.	Rat	Male	Normal	Vera et al., 2014
2014	One single 6-OHDA stereotaxic administration in the medial forebrain bundle.	Rat	Male	Normal	Vegezzi et al., 2014
2015	MSG (4 g L ⁻¹) in the drinking water for 6 weeks.	Rat	Male	Normal	López-Miranda et al., 2015
2015	One single AM841 (0.1 or 1 mg kg ⁻¹ , i.p.) or WIN 55,212-2 (5 mg kg ⁻¹ , i.p.) administration. One single CB1 (AM251, 1 mg kg ⁻¹ , i.p.) or CB2 (AM630, 1 mg kg ⁻¹ , i.p.) antagonist administration prior to the agonists.	Rat	Male	Normal	Abalo et al., 2015
2016	One single morphine (5 or 10 mg/kg, i.p.) administration.	Rat /mice	Male	Normal	Girón et al., 2016
2016	Prucalopride or loperamide (1, 2, or 4 mg kg ⁻¹ , s.c.) continuous (osmotic mini-pump) administration, for seven days, in aged animals (18 months-old).	Rat	Male	Normal	Dalziel et al., 2016
2016	5-FU (23 mg kg ⁻¹ , i.p.) administration three times a week for two weeks.	Mice	Male	Normal	McQuade et al., 2016
2017	No drug administration. Genetic model of IBD (Winnie mice).	Mice	Both, without comparison	Normal	Robinson et al., 2017

2017	One single vincristine (0.1 or 0.5 mg kg ⁻¹ , i.p.) administration, alone	Rat	Male	Normal	Vera et al., 2017
	or with CB1 (AM251) or CB2 (AM630) administered 1-3 times (1 mg				
	kg ⁻¹ , i.p.; 20 min before, 12 h after, 24 after vincristine).				
2017	5-FU (150 mg kg ⁻¹ , i.p.) once a day for two consecutive days alone or	Rat	Male	Normal	Abalo et al., 2017
	with WIN 55,212-2 (0.5 mg kg ⁻¹ , i.p.) administration once a day for				
	four days.				
2017	Basal conditions.	Rat	Male	Normal	Dalziel et al.,
	WKY (stress-prone) rats				2017
2017	Prucalopride or loperamide (1, 2, or 4 mg kg ⁻¹ , s.c.) continuous	Rat	Male	Normal	Dalziel et al.,
	(osmotic mini-pump) administration, for seven days, in aged animals				2017
	(18 months-old) fed a control or test diet (enriched in milk proteins,				
	whey or casein, hydroized or not).				
2018	Oxaliplatin (3 mg kg ⁻¹ , i.p.) with or without BGP-15 (15 mg kg ⁻¹ , i.p.)	Mice	Male	Normal	McQuade et al.,
	administration three times a week for two weeks.				2018
2018	Vincristine (0.1 mg kg ⁻¹ , i.p.) administration once daily in 2 cycles of 5	Rat	Male	Normal	López Gomez et
	days each.				al., 2018
2018	Normal rats at different ages (2-3, 12, 18, 24 months)	Rat	Male	Normal	Abalo et al., 2018
	Streptozotocin (60 mg kg ⁻¹ , i.p.) administration and X-ray evaluation				
	4 weeks after.				
2019	Coffee silverskin melanoidins in drinking water for 4 weeks.	Rat	Male	Normal	Tores de la Cruz
					et al., 2019
2019	Granisetron (1 mg kg ⁻¹ , i.p.) followed by cisplatin (6 mg kg ⁻¹ , i.p.)	Rat	Male	Normal	Martín-Ruíz et
	administration 30 minutes after.				al., 2019
2019	5-FU (23 mg kg ⁻¹ , i.p.) administration with or without BGP-15 (15 mg	Mice	Male	Normal	McQuade et al.,
	kg ⁻¹ , i.p.) three times a week.				2019
2019	Spent coffee grounds (1 g kg ⁻¹ , gavage) administration by oral gavage	Rat	Male	Normal	Iriondo-DeHond
	every day for 4 weeks.				et al., 2019

2
3
4
5
6
7
/ 0
ö
9
10
11
12
13
14
15
16
17
12
10
19
20
21
22
23
24
25
26
27
29
20
29
30
31
32
33
34
35
36
37
38
20
27 40
40
41
42
43
44
45
46

2019	Loperamide (0.1, 1, or 10 mg kg ⁻¹ , i.p.) administration.	Rat	Male	Normal	Vera et al., 2019
2019	Four different diets (standard, AIN-93G and AIN-93G enriched in	Rat	Male	Normal	Mosinska et al.,
	coconut or evening primrose oil) with a different amount and				2019
	composition of fatty acids for 4 weeks.				
2019	LPS (0.1, 1 or 5 mg kg ⁻¹ , i.p.) administration.	Rat	Male	Normal	Abalo et al., 2019
2019	Viral antigen Poly I:C i.p. administration on gestational day 15.	Rat	Male	Normal	Gálvez et al.,
	X-rays were taken at young adult age of the male offspring.				2019
2021	Genetic model of IBD (Winnie mice) treated with APX3330 (25 mg kg	Mice	Both, without	Normal	Sahakian et al.,
	¹ , i.p.) administration, twice daily for 2 weeks		comparison		2021
2021	Three different diets (AIN-93G and AIN-93G enriched in coconut or	Rat	Both, with	Normal	Jacenik et al.,
	evening primrose oil) with a different amount and composition of		comparison		2021
	fatty acids for 6 weeks.				
2021	MSG (4 g L ⁻¹) in drinking water for 6 weeks (0-5). Cisplatin (2 mg kg ⁻¹ ,	Rat	Male	Normal	López-Tofiño et
	i.p.) administration on the first day of weeks 1-5.				al., 2021
2021	No drug administration.	Rat	Male	Normal	Bagués et al.,
	Acute and subchronic stress through forced swim or restrain at 4°C.				2021

Abbreviations: 5-FU, 5-fluorouracil; 6-OHDA, 6-hydroxydopamine; i.m., intramuscular; ip., intraperitoneal; LPS, lipopolysaccharide; MSG, monosodium glutamate; N.S., not specified; s.c., subcutaneous.

<u>REFERENCES</u>:

Abalo R, Cabezos PA, López-Miranda V, Vera G, González C, Castillo M, Fernández-Pujol R, Martín MI. Selective lack of tolerance to delayed gastric emptying after daily administration of WIN 55,212-2 in the rat. *Neurogastroenterol Motil* 2009; 21(9): 1002-e80.

Abalo R, Cabezos PA, Vera G, Fernández-Pujol R, Martín MI. The cannabinoid antagonist SR144528 enhances the acute effect of WIN 55,212-2 on gastrointestinal motility in the rat. *Neurogastroenterol Motil* 2010; 22(6): 694-e206.

Abalo R, Cabezos PA, Vera G, López-Miranda V, Herradón E, Martín-Fontelles MI. Cannabinoid-induced delayed gastric emptying is selectively increased upon intermittent administration in the rat: role of CB1 receptors. *Neurogastroenterol Motil* 2011; 23(5): 457-67, e177.

Abalo R, Cabezos PA, Vera G, López-Pérez AE, Martín MI. Cannabinoids may worsen gastric dysmotility induced by chronic cisplatin in the rat. *Neurogastroenterol Motil* 2013; 25(5): 373-82, e292.

Laboratory Animals

- Abalo R, Chen C, Vera G, Fichna J, Thakur GA, López-Pérez AE, Makriyannis A, Martín-Fontelles MI, Storr M. In vitro and non-invasive in vivo effects of the cannabinoid-1 receptor agonist AM841 on gastrointestinal motor function in the rat. *Neurogastroenterol Motil* 2015; 27(12): 1721-35.
- Abalo R, Uranga JA, Pérez-García I, de Andrés R, Girón R, Vera G, López-Pérez AE, Martín-Fontelles MI. May cannabinoids prevent the development of chemotherapy-induced diarrhea and intestinal mucositis? Experimental study in the rat. *Neurogastroenterol Motil* 2017; 29(3).
- Abalo R; Vera G; Talavera A; Núñez M; Fernández N; Girón R; Keightley L; Costa M; Martín-Fontelles M. Diabetes and aging induce different gastrointestinal motor alterations in the rat: In vivo radiographic analysis and in vitro whole colon studies. *Neurogastroenterology & Motility* 2018; 30 (Suppl. 1): e13423.
- Abalo R, Sánchez A, Vera G, Castro M, Valero M, Martín-Fontelles M. Early gastrointestinal effects of lipopolysaccharide-induced sepsis in a rat model. *Turk J Gastroenterol* 2019; 30 (Suppl 3): S820-1.
- Bagués A, López-Tofiño Y, Gálvez C, Abalo R. Effects of two different acute and subchronic stressors on gastrointestinal transit in the rat: A radiographic **analysis.** Neurogastroenterol Motil 2021; 33(11):e14232.
- Cabezos PA, Vera G, Castillo M, Fernández-Pujol R, Martín MI, Abalo R. Radiological study of gastrointestinal motor activity after acute cisplatin in the rat. Temporal relationship with pica. *Auton Neurosci* 2008; 141: 54–65.
- Cabezos PA, Vera G, Martín-Fontelles MI, Fernández-Pujol R, Abalo R. Cisplatin-induced gastrointestinal dysmotility is aggravated after chronic administration in the rat. Comparison with pica. *Neurogastroenterol Motil* 2010; 22(7): 797-805, e224-5.
- Costall B, Gunning SJ, Naylor RJ, Simpson KH. A central site of action for benzamide facilitation of gastric emptying. *European journal of pharmacology* 1983; 91: 197- 205.
- Dalziel JE, Young W, Bercik P, Spencer NJ, Ryan LJ, Dunstan KE, Lloyd-West CM, Gopal PK, Haggarty NW, Roy NC. Tracking gastrointestinal transit of solids in aged rats as pharmacological models of chronic dysmotility. *Neurogastroenterol Motil* 2016; 28(8): 1241-51.
- Dalziel JE, Fraser K, Young W, McKenzie CM, Bassett SA, Roy NC. Gastroparesis and lipid metabolism-associated dysbiosis in Wistar-Kyoto rats. *Am J Physiol Gastrointest Liver Physiol* 2017; 313(1): G62-G72
- Dalziel JE, Young W, McKenzie CM, Haggarty NW, Roy NC. Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model. *Nutrients* 2017; 9(12): 1351.
- Diani AR, Grogan DM, Yates ME, Risinger DL, Gerritsen GC. Radiologic Abnormalities and Autonomic Neuropathology in the Digestive Tract of the Ketonuric Diabetic Chinese Hamster. *Diabetologia* 1979; 17: 33-40.

Laboratory Animals

- Gálvez C, Romero-Miguel D, López-Tofiño Y, Casquero-Veiga M, Cuño M, Lamanna-Rama N, Gómez-Rangel V, Desco M, Soto-Montenegro ML, Abalo R. Gastrointestinal motility is altered in the maternal immune activation rat model of schizophrenia. *Turk J Gastroenterol* 2019; 30 (Suppl 3): S581-2.
- Giron R, Perez-Garcia I, Abalo R. X-ray analysis of gastrointestinal motility in conscious mice. Effects of morphine and comparison with rats. *Neurogastroenterol Motil* 2016; 28: 74-84.
- Iriondo-DeHond A, Cornejo FS, Fernandez-Gomez B, Vera G, Guisantes-Batan E, Alonso SG, Andres MIS, Sanchez-Fortun S, Lopez-Gomez L, Uranga JA, Abalo R, Del Castillo MD. Bioaccesibility, Metabolism, and Excretion of Lipids Composing Spent Coffee Grounds. *Nutrients* 2019; 11(6): 1411.
- Jacenik D, Bagüés A, López-Gómez L, et al. Changes in Fatty Acid Dietary Profile Affect the Brain-Gut Axis Functions of Healthy Young Adult Rats in a Sex-Dependent Manner. Nutrients 2021; 13(6): 1864.
- López-Gómez L, Díaz-Ruano S, Girón R, López-Pérez AE, Vera G, Herradón Pliego E, López-Miranda V, Nurgali K, Martín-Fontelles MI, Uranga JA, Abalo R. Preclinical evaluation of the effects on the gastrointestinal tract of the antineoplastic drug vincristine repeatedly administered to rats. *Neurogastroenterol Motil* 2018; 30(11): e13399.
- López-Miranda V, Soto-Montenegro ML, Uranga-Ocio JA, Vera G, Herradon E, Gonzalez C, Blas C, Martínez-Villaluenga M, López-Perez AE, Desco M, Abalo R. Effects of chronic dietary exposure to monosodium glutamate on feeding behavior, adiposity, gastrointestinal motility, and cardiovascular function in healthy adult rats. *Neurogastroenterol Motil* 2015; 27: 1559-1570.
- López-Tofiño Y, Vera G, López-Gómez L, Girón R, Nurgali K, Uranga JA, Abalo R. Effects of the food additive monosodium glutamate on cisplatin-induced gastrointestinal dysmotility and peripheral neuropathy in the rat. *Neurogastroenterol Motil* 2021; 33(4): e14020.
- Martín-Ruíz M, Uranga JA, Mosinska P, Fichna J, Nurgali K, Martín-Fontelles MI, Abalo R. Alterations of colonic sensitivity and gastric dysmotility after acute cisplatin and granisetron. *Neurogastroenterol Motil* 2019; 31(3): e13499.
- McQuade RM, Stojanovska V, Donald E, Abalo R, Bornstein§ JC, Nurgali K. Gastrointestinal dysfunction and enteric neurotoxicity following treatment with anticancer chemotherapeutic agent 5-fluorouracil. *Neurogastroenterol Motil* 2016; 28(12):1861-1875.
- McQuade RM, Stojanovska V, Stavely R, Timpani C, Petersen AC, Abalo R, Bornstein JC, Rybalka E, Nurgali K.Oxaliplatin-induced enteric neuronal loss and intestinal dysfunction is prevented by co-treatment with BGP-15. *British Journal of Pharmacology* 2018; 175: 656-677.
- McQuade RM, Al Thaalibi, Petersen AC, Abalo R, Bornstein JC, Rybalka E, Nurgali K. Co-treatment With BGP-15 Exacerbates 5-Fluorouracil-Induced Gastrointestinal Dysfunction. *Frontiers in Neuroscience* 2019; 13: 449.
- Mosińska P, Martín-Ruiz M, González A, López-Miranda V, Herradón E, Uranga JA, Vera G, Sánchez-Yáñez A, Martín-Fontelles MI, Fichna J, Abalo R. Changes in the diet composition of fatty acids and fiber affect the lower gastrointestinal motility but have no impact on cardiovascular parameters: In vivo and in vitro studies. *Neurogastroenterol Motil* 2019; 31(9): e13651.

> 44 45 46

Laboratory Animals

3	
4	Munakata A. Iwane S. Todate M. Nakaji S. Sugawara K. Effects of Dietary Fiber on Gastrointestinal Transit Time, Fecal Properties and Fat
5	Absorption in Rats. Toboku I Exp. Med 1995: 176-227-238
6	Myagmarialbuu B. Moon MI. MS1. Heo SH. Jeong SI. Park LS. MD2. Jun IV. Jeong VV. Kang HK. Establishment of a Protocol for Determining
7 8	Castrointestinal Transit Time in Mice Using Darium and Padionague Markers, Korogn J. Padiol 2012; 14(1): 4E-E0
9	Gastronitestinal fransit fine in Mice Osing Banun and Radiopaque Markers. <i>Koreun J Rudiol</i> 2015, 14(1), 45-50.
10	Perry RL, Carrig CB, Williams JF, Johnson CA, Kaneene JB. Anatomic features and radiographic observations of gastric emptying and small
11	intestinal motility in the rat. Laboratory animal science 1993; 43(6).
12	Perry RL, Williams JF, Carring CB, Kaneene JB, Schilihorn van Veen TW. Radiologic evaluation of the liver and gastrointestinal tract in rats
13	infected with Taenia taeniaeformis. Am J Vet Res 1994; 55(8).
14	Sahakian L, Filippone RT, Stavely R, Robinson AM, Yan XS, Abalo R, Eri R, Bornstein JC, Kelley MR, Nurgali K. Inhibition of APE1/Ref-1 Redox
15	Signaling Alleviates Intestinal Dysfunction and Damage to Myenteric Neurons in a Mouse Model of Spontaneous Chronic Colitis. Inflamm
16	Bowel Dis 2021: 27(3): 388-406.
/ 10	Sirakov V Krastev A Kostadinova I Turijski V Neostigmine but not Metoclonramide Abolishes Ethosuximide-Induced Eurotional
10	Gastrointestinal Disturbances Bharmacology 2005: 75: 197-104
20	Gastronitestinal Disturbances. Phannacology 2005, 75. 167-194.
21	Tores de la Cruz S, inondo-Dehond A, Herrera T, Lopez-Tolino Y, Galvez-Robieno C, Prodanov M, Velazquez-Escobar F, Abalo R, Castilio MDD.
22	An Assessment of the Bioactivity of Coffee Silverskin Melanoidins. <i>Foods</i> 2019; 8(2): 68.
23	Vegezzi G, Al Harraq Z, Levandis G, Cerri S, Blandini F, Gnudi G, Miduri F, Blandizzi C, Domenichini G, Bertoni S, Ballabeni V, Barocelli E.
24	Radiological analysis of gastrointestinal dysmotility in a model of central nervous dopaminergic degeneration: Comparative study with
25	conventional in vivo techniques in the rat. Journal of Pharmacological and Toxicological Methods 2014; 70: 163-169.
26	Vera G, López-Pérez AE, Martínez-Villaluenga M, Cabezos PA, Abalo R. X-ray analysis of the effect of the 5-HT3 receptor antagonist granisetron
27	on gastrointestinal motility in rats repeatedly treated with the antitumoral drug cisplatin. Exp Brain Res 2014: 232(8): 2601-12.
20	Vera G. López-Pérez AF. Uranga IA. Girón R. Martín-Fontelles MI. Abalo R. Involvement of Cannabinoid Signaling in Vincristine-Induced
30	Gastrointestinal Dysmotility in the Bat Front Pharmacol 2017: 8:37
31	Vora G. Girán P. Martín Egetellos MI. Abalo P. Padiographic doso dependency study of lonoramide effects on gastrointestinal motor function
32	in the ret. Temperal relationship with pauses like behavior. Neurogastroonterol Matil 2010, 21(9), e12621
33	In the rat. Temporal relationship with haused-like behavior. <i>Neurogustroenterol Notil</i> 2019; 31(8): e13621.
34	
35	
36	
3/	
30	
40	
41	
42	
43	ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

337x189mm (75 x 75 DPI)

60

Ε

15

units

Arbitrary

ı.

T24

то T1 т2 T4 тб

+ Stomach

F

GASTROINTESTINAL MOTILITY

Time (h)

- Small Intestine

T24

3 cm

- Caecum - Colorectum

CHARACTERISTICS OF FECES COLLECTED DURING THE X-RAY SESSION

190x253mm (133 x 133 DPI)

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901