
An analysis of software parallelism in big data
technologies for data-intensive architectures

Felipe Cerezo1[0000-0002-0128-0783], Carlos E. Cuesta1[0000-0003-0286-4219] and Belén Vela1[0000-

0003-0604-7312]

1VorTIC3 Research Group
Universidad Rey Juan Carlos

C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
jf.cerezo.2019@alumnos.urjc.es, carlos.cuesta@urjc.es,

belen.vela@urjc.es

Abstract. Data-intensive architectures handle an enormous amount of infor-
mation, which require the use of big data technologies. These tools include the
parallelization mechanisms employed to speed up data processing. However, the
increasing volume of these data has an impact on this parallelism and on resource
usage. The strategy traditionally employed to increase the processing power has
usually been that of adding more resources in order to exploit the parallelism;
this strategy is, however, not always feasible in real projects, principally owing
to the cost implied. The intention of this paper is, therefore, to analyze how this
parallelism can be exploited from a software perspective, focusing specifically
on whether big data tools behave as ideally expected: a linear increase in perfor-
mance with respect to the degree of parallelism and the data load rate. An analysis
is consequently carried out of, on the one hand, the impact of the internal data
partitioning mechanisms of big data tools and, on the other, the impact on the
performance of an increasing data load, while keeping the hardware resources
constant. We have, therefore, conducted an experiment with two consolidated big
data tools, Kafka and Elasticsearch. Our goal is to analyze the performance ob-
tained when varying the degree of parallelism and the data load rate without ever
reaching the limit of hardware resources available. The results of these experi-
ments lead us to conclude that the performance obtained is far from being the
ideal speedup, but that software parallelism still has a significant impact.

Keywords: Data-intensive architecture, software parallelism, partitioning, big
data technologies, linear scalability.

1 Introduction

The last decade has witnessed an exponential rise in the magnitude of information to
be processed, causing the current interest in Big Data technologies. Even the advances
in modern hardware have been unable to cope with this growth, and in order to bridge
this gap, it has been necessary to resort to the widespread adoption of parallelism. When
more processing power is required, more cores are added to a server, or more nodes are

2

added to a processing cluster. These strategies, known as vertical and horizontal scala-
bility [1], distribute the work between these new elements, which are partially or com-
pletely used by the process. In general terms, this approach to parallelism leads to a
linear performance speedup [2][3], although some contention factors [2][4] must also
be taken into account.

But simply increasing the processing power will not make it possible to achieve the
required results. This has triggered a new interest in software parallelism [5], defined
here as the partitioning and distribution strategy of our software. This provides the basis
for z-axis (diagonal) scalability [1], in which data elements are partitioned and scattered
in the parallel structure, and which is obviously relevant in the context of data-intensive
architectures.

However, an adequate use of parallelism in big data tools has often been neglected.
Existing tools provide several alternatives that can be used to define this, but they typ-
ically lack any sort of guidelines with which to define an optimal setting. This config-
uration usually depends on the number of threads available, and/or the number of par-
allel storage elements (partitions, shards) in which to allocate data entities.

This paper intends to analyze how the data partitioning mechanisms that define in-
ternal software parallelism in big data tools influence their performance from a com-
parative perspective. Our goal is to achieve a better comprehension of how these mech-
anisms affect the system as a whole and how they may affect the design of data-inten-
sive software architectures [6]. In particular, the claim often made is that their parallel-
ism provides the same sort of linear scalability [7] usually expected from parallel com-
puter architectures. It is our intent to verify the validity of these assumptions.

As our goal is to study software parallelism, we have designed an experiment in
which the hardware is stable and the resources are constant, explicitly avoiding the sat-
uration regime. Rather than employing the approach normally used in hardware perfor-
mance benchmarks (i.e., maintaining a constant workload while resources are in-
creased), our experiment utilizes the complementary approach, that is, maintaining the
same (constant) set of resources while scalability is tested by:

1. Increasing the number of internal parallelism elements, as defined by the system
parameters of our big data tools, and

2. Increasing the data load rate in order to verify how much this software scales.

Our working hypothesis is that when the data insertion rate increases, an adequate
configuration of these tools should provide a linear speedup of their performance.

Different big data tools use different parallelism mechanisms, even when several of
them are variants of the same theoretical concepts. In order to obtain independent re-
sults, it is necessary to use several different tools. We focus on different approaches to
data parallelism, as provided by horizontal partitioning and data sharding.

We designed an experiment in which we studied the impact of internal data parti-
tioning mechanisms with several different configurations, when both the degree of par-
allelism and the data load rate were increased. The comparable alternatives chosen as
representative of internal parallelism were Apache Kafka and Elasticsearch, two well-
known and highly performant data-centered big data tools, both of which are widely
used and established in industry.

3

Our results suggest that these configurations provide good initial results, with almost
linear scaling, even with quite different speedup factors. But our experiment also shows
that there are unexpected limits, clearly imposed by the software itself. The perfor-
mance results obtained for the two tools are significantly dissimilar, and these scaling
limits manifest themselves at very different stages of the experiment.

The remainder of the paper is organized as follows. Section 2 includes a comparison
of the parallelization mechanisms of the chosen tools. In Section 3, we provide detailed
descriptions of the design of the experiment and of the different choices about the pa-
rameters that affect internal parallelism and the increasing data load rate. We then go
on to discuss the results of these experiments in Section 4. Finally, our main conclusions
and future work are summarized in Section 5.

2 Software parallelism in big data tools

In order to perform an analysis of the parallelization mechanisms and their impact in
data-intensive architectures, it was necessary to define the criteria for selecting the ad-
equate Big Data tools. The first one was that we wished to select open source and
independent big data tools whose use does not require additional software. The second
requirement was that the tool should have a configurable internal parallelism mecha-
nism. The third one was that we wished to analyze standalone tools, we discarded
execution frameworks as they require the development of additional code in order to
test them. The fourth was that the tools should be considered as mature tools, that
means that they have a history of use and versions and are used widely in the industry.
Finally, we also wished to select tools with a large support and development commu-
nity, for which extensive documentation was available. After evaluating several tools,
we chose Elasticsearch and Kafka because they comply with all these requirements.

Apache Kafka [8] is an independent, open source, big data tool whose first version
dates to January 2011. Apache Kafka aims to provide a unified, high-throughput, low-
latency platform to handle real-time data feeds. Kafka is developed in Java and Scala
and allows the manual configuration of its internal parallelism mechanism.

Elasticsearch is an independent, open source, big data tool whose first version ap-
peared in February 2010. ElasticSearch provides a distributed, multitenant-capable full-
text search engine with web interface and schema-free documents. Elasticsearch is de-
veloped in Java. Its internal parallelism mechanism can be configured manually.

The internal data partitioning mechanisms are implemented as follows:

• In Kafka, the data processing unit is the topic (queue), and each topic can be config-
ured with a number of different partitions. Each partition is fed and accessed inde-
pendently, and both the performance obtained and the resources used for each topic
will, therefore, depend on how many partitions are configured.

• In ElasticSearch, the data storage unit is the index. Each index can be configured in
a number of different storage partitions (called shards). When writing to or reading
from an index, each different thread actually writes to or reads from each of the
shards, thus the application is generating an additional parallelism of its own.

4

3 Experiment design

In this paper we conduct an experiment with the two big data tools chosen, Kafka and
Elasticsearch, in order to analyze their performance (while maintaining the resources
constant), varying the degree of internal parallelism and the data load rate.

The objective of this experiment was to verify two different aspects:

• How the performance is affected by the internal data partitioning mechanism,
• How the performance is affected when then load is increased.

The internal parallelism should increase the performance of the system. We studied
the impact of different configuration alternatives on the performance.

In our experiment we focused on data load insertion, which requires an intensive use
of all the hardware resources: CPU, disk, memory and network.

The following independent variables were, therefore, considered for both tools: (1)
number of elements for internal partitioning, (2) data insertion rate.

We began our experiment by using a basic configuration: one parallelism element
for each instance within the cluster. Smaller configurations do not make sense, as each
instance must store at least a part of the data in order to take proper advantage of par-
allelism. We increased the number of storage elements per instance in each iteration.

We built a multithreaded process. Each atomic thread in this process was pro-
grammed to insert data at a constant rate. The insertion rate was increased by increasing
the number of threads. When we refer to a “x3 load”, we are increasing the insertion
rate by the factor of three.

We also considered the possibility of performing simultaneous loads on different
data entities. Therefore, in another set of tests, we ran two instances of the multithreaded
process. Each instance loaded data into a different entity. The different loads within
each process were combined in order to obtain a total load from x2 to x8.

Resource usage monitoring was key in our experiment. It was necessary for the
tools to work without reaching, in any case, the limit of the available hardware re-
sources; that is, CPU, disk, RAM memory or network bandwidth. If this resource satu-
ration had been reached, the results would have been distorted.

A test time of 30 minutes was determined for each configuration (internal parallel-
ism and load). This was sufficient time for the tools to pass through the transient start-
up period of the load processes and to work in the normal regime.

We chose a representative dataset from the big data domain: 2.142.000 records, 25
fields of information with different datatypes, an average length of 312 bytes per record
and a standard deviation in the size of the records of 28 bytes. The distinct fields have
different cardinalities: from 2 different values up to 2 million.
 We carried out our experiment using Elasticsearch and Kafka.

• In the case of Elasticsearch, we ran the insertion experiment 36 times. This covered
all the combinations of a degree of internal parallelism from 1 to 6 and a data inser-
tion load from x1 to x6.

• Kafka can support higher loads, so internal parallelism degrees used were 1 to 6, 8,
10 and 12 partitions in each instance, and a data insertion load from x1 to x8.

5

The use of all system resources, CPU, network, disk and memory remained below
the maximum limits of the servers in all cases for both tools. The resources used were
fairly homogeneous between the servers throughout the test and remained almost con-
stant throughout the test.

In the part of the experiment in which we insert into two independent data entities,
we have executed them only for a selected set of values, in order to evaluate internal
data partitioning. We chose those values that had performed best in the previous tests:
2 elements for Elasticsearch (a total of 60) and 12 elements for Kafka (a total of 360).

We also verified whether different proportions of insertions had an impact on the
global insertion rate. The fact that more than one combination provides the same total
load (for example, x4 can be obtained as x2 + x2 or as x3 + x1) made it possible to
assess this aspect.

4 Results

In this section, we present the results of the experiment with regard to the following
two aspects: a) internal parallelism b) load increasing.

The following figure shows the number of insertions per second. The horizontal axis
shows the internal parallelism (number of shards in Elasticsearch and number of par-
titions in Kafka) used for the experiment. It is important to keep in mind that we used
30 instances, signifying that the numbers that appear are always multiples of 30. Each
line represents a different, and increased, data insertion rate (data load).

Fig. 1. Data load in Elasticsearch (a) vs. Kafka (b)

The data partitioning mechanism implemented in these big data tools, when com-
pared, show a very different behavior in each case.

In Elasticsearch there is a clear optimal value of 2 elements per instance, while in
Kafka, a value of 12 elements per instance was still attained, always increasing the
performance of the data insertion process.

With regard to the load increasing, the figure below shows the number of insertions
into a single entity per second. The horizontal axis shows the data insertion rate (data
load) used for the experiment. Each line represents the number of parallel elements
(number of shards in Elasticsearch and number of partitions in Kafka).

Load performance

re
co

rd
s/

se
c

Load
30sh 60sh 90sh 120sh 150sh 180sh

40k

50k

60k

70k

80k

90k

100k

x1

x2

x3

x4
x5

x6

Load performance

re
co

rd
s/

se
c

Load
P-30 P-60 P-90 P-120 P-150 P-180 P-240 P-300 P-360

400k

600k

800k

1000k

1200k

1400k

1600k

1800k

x2

x3

x4

x5

x6

x7

x8

6

When the degree of internal parallelism is kept constant for different data loads in
each iteration of the experiment, the result can be approximated by a straight line. It is
possible to consider that the growth with the insertion load is linear, the lowest corre-
lation coefficient for the loads was r=0.983 (Elasticsearch) and r=0.996 (Kafka).

Fig. 2. Load performances of Elasticsearch vs. Kafka

The growth rate should ideally be 100%: one thread obtains 100% output, two obtain
200%, three obtain 300%, etc. Actually, this ratio is 93% in Kafka. Its behavior is very
close to that of the ideal theoretical models, with a linear growth and a ratio very close
to 100%. In Elasticsearch, this ratio is just 30%. The growth behavior is linear, but its
growth rate is very low.

The following figure shows a comparison between the number of insertions (load
increase) per second into one (in red) or two different entities (in blue). The ideal
behavior is depicted by means of a green line, representing a linear increase with a ratio
of 100%. The horizontal axis shows the insertion rate (data load) used for the experi-
ment, while the vertical axis shows the number of insertions per second. Each experi-
mental iteration is represented by a dot; the unfilled dots indicate the data loads that can
be generated with different distributions (x4 can be generated as x2 + x2 or x3 + x1).
The lines indicate the linear regression.

Fig. 3. Load performance when increasing the insert ratio: Elasticsearch vs. Kafka

Load performance ES

re
co

rd
s/

se
c

Load
x1 x2 x3 x4 x5 x6

40k

50k

60k

70k

80k

90k

100k

shards 180
shards 150
shards 120
shards 90
shards 60
shards 30

Load performance Ka

re
co

rd
s/

se
c

Load
x2 x3 x4 x5 x6 x7 x8

400k

600k

800k

1000k

1200k

1400k

1600k

1800k
360 partitions
300 partitions
240 partitions
180 partitions
150 partitions
120 partitions
90 partitions
60 partitions
30 partitions

Load performance

x1 x2 x3 x4 x5 x6 x7 x8

40k

60k

80k

100k

120k

140k

re
co

rd
s/

se
c

Load

1 Load
2 Loads in parallel
Ideal for 2 loads

Load performance

re
co

rd
s/

se
c

Load
x2 x3 x4 x5 x6 x7 x8

600k
800k
1000k
1200k
1400k
1600k
1800k
2000k
2200k
2400k
2600k

1 Load
2 Loads in parallel
Ideal for 2 loads

7

The results for both tools are very similar. The main difference between them is that
Elasticsearch is much further away from the ideal behavior than Kafka is.

The performances of the executions represented by the unfilled dots (different dis-
tributions) are very close to each other in every case. It is, therefore, possible to con-
clude that the performance obtained in these scenarios depends only on the total inser-
tion load, not on how the load is distributed between the two data entities.

The regression line of the two-process load is parallel to the single-process load line
for both tools. A higher performance is attained when storing the data in two entities
rather than one, and this increase is constant with the load.

In the case of ElasticSearch, there is a low increase in performance (30%) and also
a performance bonus in the case of loading in two different data entities. These two
insights lead to different architectural scenarios when scaling the data load: (i) a single
cluster with a single data entity, (ii) a single cluster with two data entities, (iii) two
different clusters, each with a single data entity. The performance will be very different
in each of these scenarios. If the insertion ratio is doubled, the performance will increase
by 50% (one cluster with one entity, i), 90% (one cluster with two entities) and 100%
(two clusters). If the increase is quadruplicated, then we obtain 125% (one cluster with
one entity), 180% (one cluster with two entities) and 200% (two clusters).

In the case of Kafka, since the growth with the load is close to 100%, all the scenarios
are very similar, and the behavior is consistent.

5 Conclusions

In this paper we study the impact of software parallelism on data-intensive architec-
tures by means of an experiment, in which two factors have been evaluated, namely
internal partitioning mechanisms and increasing the load rate. When conducting our
experiment, we chose two representative big data tools: Kafka and Elasticsearch. The
results of these experiments lead us to conclude that these tools do not behave as ex-
pected, that is, the performance obtained is far from the assumed speedup. But our ex-
periment also shows that the software parallelism mechanisms still have a significant
impact on the performance. This improvement is entirely dependent on the implemen-
tation of the partitioning mechanism in each of the tools.

Throughout the experiment, our goal was always to analyse the performance without
ever reaching the limit of available hardware resources. We considered constant hard-
ware resources, signifying that any increment in the processing power had to be pro-
vided by internal parallelism mechanisms. Scalability was checked later by increment-
ing the data load rate.

In the case of internal parallelism mechanisms, it was reasonable to assume that per-
formance would improve if we increased the number of parallelization elements: parti-
tions in Kafka and shards in Elasticsearch. Our results show that this is not always true.
In the case of Kafka, this actually occurred: increasing the internal parallelism also in-
creased the performance obtained. But in the case of Elasticsearch, this occurred only
until we attained a value that maximized the performance, after which the performance
decreased as the number of internal parallelism elements increased.

8

In the case of the increasing data load, a linear growth of performance should be
expected. The ratio between the data insertions and the processed data led to highly
disparate values in both tools: 93% for Kafka and 30% for Elasticsearch. The tools
should ideally have a load/processing ratio of 100%, that is, if we double the data load
rate, the performance should scale in the same proportion. However, as stated in [2],
there are non-parallelizable elements that can make the ratio obtained lower. In Kafka,
the result is very close to the maximum expected value, but in Elasticsearch, the result-
ing value of 30% clearly indicates that it is far from the ideal expected behavior.

The fact that these tools do not perform according to expectations has important im-
plications for data-intensive architectures in big data context. As mentioned previously,
the performance of the tool would be different depending on the architectural scenario
chosen (number of clusters, number of entities, number of internal storage elements…).
Moreover, the difference between these scenarios as regards the performance rate be-
comes greater with an increasing data insertion rate.

Another implication of our study is that there is a great dependency on the specific
big data tool. It is, therefore, necessary to perform detailed tests regarding the behavior
of these tools in order to discover whether there is a performance limit and where this
maximum value is located. In the case of Kafka, it will be noted that the speedup is
maintained as the internal partitioning increases. It is not, however, possible to guaran-
tee that there will be no upper limit with this tool in another scenario. In the case of
Elasticsearch, we discovered that using two shards per instance allowed us to attain of
an optimal performance as regards data loading. But it is again impossible to guarantee
that this value will be optimal in all cases. It is possible that by modifying the number
of physical instances within the cluster, this optimal parameter could also vary.

We therefore conclude that big data tools must be evaluated quantitatively for the
particular scenario in which they will be used. When evaluating a data-intensive archi-
tecture, we cannot straightforwardly assume an increase in linear performance when
applying software parallelism mechanisms.

6 References

[1] Abbott, M.L., Fisher, M.T.: The Art of Scalability. Pearson (2009).
[2] Amdahl, G.M.: Validity of single-processor approach to achieving large-scale computing

capability. In: Proceedings of AFIPS Joint Computer Conference. AFIPS (1967).
[3] Gustafson, J.L.: Reevaluating Amdahl’s Law. Commun. ACM. 31, 532–533 (1988).

https://doi.org/10.1145/42411.42415.
[4] Gunther, N.J.: Guerrilla Capacity Planning: Tactical Approach to Planning for Highly

Scalable Applications and Services. Springer (2007).
[5] Pacheco, P. An Introduction to Parallel Programming. Morgan-Kaufmann (2011).
[6] Cerezo, F., Cuesta, C.E. & Vela, B.: Phi: a software architecture for big & fast data.

Submitted for publication (2021).
[7] Gunther, N.J., Puglia, P., Tomasette, K.: Hadoop superlinear scalability. Commun. ACM. 58,

46–55 (2015). https://doi.org/10.1145/2719919.
[8] Kafka (2021) Apache Kafka Project: https://kafka.apache.org/. Accessed 21 January 2021.

	1 Introduction
	2 Software parallelism in big data tools
	3 Experiment design
	4 Results
	5 Conclusions
	6 References

