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Abstract

Non Cryptographic Hash Functions have an immense number of im-
portant practical applications due to their powerful search properties.
However, those properties critically depend on good designs: inappro-
priately chosen hash functions are a very common source of performance
losses. On the other hand, hash functions are difficult to design: they are
extremely non linear and counterintuitive, and relationships between the
variables are often intricate and obscure. In this work we demonstrate
the utility of Genetic Programming and avalanche effect to automatically
generate non cryptographic hashes that can compete with state-of-the-art
hash functions. We describe the design and implementation of our system,
called GP-hash, and its fitness function, based on avalanche properties.
Also, we experimentally identify good terminal and function sets and pa-
rameters for this task, providing interesting information for future research
in this topic. Using GP-hash, we were able to generate two different fam-
ilies of non cryptographic hashes. These hashes are able to compete with
a selection of the most important functions of the hashing literature, most
of them widely used in the industry, and created by world-class hashing
experts with years of experience.

1 Introduction

Hashing is everywhere. Hash functions are the core of hash tables, of course,
but they also have a multitude of other applications: Bloom Filters, Distributed
Hash Tables, Local Sensitive Hashing, Geometric Hashing, string search algo-
rithms, error detection schemes, transposition tables, cache implementations,
and many more. For example, Robert Jenkins reports in his webpage1 that
his hash function lookup3 has been used by top class companies like Google,
Oracle, or Dreamworks (they used it for the Shrek movie). He also reported
that lookup3 was used in implementations of Infoseek, Perl, Ruby, and Linux,
among others. The creators of the FNV hash function also report2 some impres-
sive real-life applications of their function: DNS Servers, NFS implementations

1http://burtleburtle.net/bob/other/resume2.html
2http://www.isthe.com/chongo/tech/comp/fnv/
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(FreeBSD 4.3, IRIX, Linux), videogames (ps2, Gamecube and xbox consoles),
Twitter, etc.

Why is hashing so important? The answer is that, under some reasonable
assumptions, hashing allows to search for objects in a set in constant time O(1),
independently of the size of the set. So, it is not only that the access times
are optimal: the most important feature is the perfect scalability of the system.
Lookup time remains constant no matter how large the set is. Considering that
we live in a world in which governments, companies, and research centers use
every day massive databases containing thousands of terabytes of data that must
be constantly accessed and updated, it should not be a surprise that hashing is
such a popular technique.

Of course, finding elements in time O(1) is the ideal case. In fact, one of
the most important drawbacks of hashing is that it has a terrible worst case:
finding an object in a set of n elements could has a cost of O(n). This happens
only when the hash function maps every input key to the same hash value, and
this extreme behaviour is very unlikely as long as we design a decent function.
However, performance losses due to unsuitable hash functions are very common.
The performance of a hashing system entirely depends on how we design (or
choose) the hash function.

1.1 Motivation

The problem is that designing top quality hash functions is a difficult process.
They are extremely nonlinear, counterintuitive mathematical constructions in
which the relationships between the variables are intentionally obscure and in-
tricate. In fact, most of the non cryptographic hashes that are commonly used
in the software industry were handcrafted by experts. Some very popular func-
tions, like FNV, use magic numbers, which are numerical constants arbitrarily
selected in a trial-and-error process. On top of that, there is no generally ac-
cepted way of measuring the quality of non cryptographic hash functions, so,
even if one does a good job designing a hash function, it is very difficult to
compare it with the state of the art.

These difficulties in the design of good hash functions suggest that Artificial
Intelligence (AI) techniques such as Genetic Programming (GP) could do a good
job replacing humans in the task of creating new hashes. The reason is that
GP is specially suitable for that specific kind of problems: In Poli et al. [2008]
authors claim that, based on the experience of numerous researchers over many
years, GP is specially productive in problems having some or all of the following
properties:

1. The interrelationships among the relevant variables is unknown or poorly
understood.

2. Finding the size and shape of the ultimate solution is a major part of the
problem.

3. Significant amounts of test data are available in computer-readable form.

4. There are good simulators to test the performance of tentative solutions
to a problem, but poor methods to directly obtain good solutions.
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5. Conventional mathematical analysis does not, or cannot, provide analytic
solutions.

6. An approximate solution is acceptable.

7. Small improvements in performance are routinely measured (or easily mea-
surable) and highly prized.

We can say that the problem of finding new hash functions completely fulfills
at least conditions 1, 3, 4, and 7. And it probably fulfills also all the others in
some way.

1.2 Objectives

In this work we want to prove that GP, in conjunction with an adequate fitness
function, is able to automatically design NCHF that are competitive with those
generated by human experts with years of experience. The great difference
with previous works on evolution of hashes is the use of avalanche effect as
a powerful estimator of the general quality level of a NCHF. This concept,
related to information theory, and widely used in cryptography and hashing,
represents the power of the hash to efficiently diffuse input patterns and produce
an apparently random output. In this work, we prove that selecting NCHF by
their levels of avalanche effect is an efficient, unbiased, and accurate way to
discover high quality functions. This allow us to use a very fast mono-objective
optimization approach that obtains highly competitive results.

In the next sections we describe the design and implementation of our hash-
ing generation system based on GP. We call this system GP-hash. We also show
the experimental work carried out to prove the practical utility of our system,
and we claim that GP-hash is able to generate some hashes that compete in
performance with state-of-the-art functions that are massively used in industry,
like lookup3, FNV, SuperFastHash or MurmurHash.

1.3 Organization

The remainder of this document is organized as follows: In Sections 2 and 3
we introduce respectively NCHF, and GP. Those are the two main technologies
on which this work is based. Their sections give a very brief introduction to
the most important concepts and suggest further reading to those interested.
Then, in Section 4 we review some previous works that involve the application
of Evolutionary Computation techniques (and Artificial Intelligence in general)
to hashing. Section 5 is dedicated to our GP-hash system: we describe all the
design and implementation issues, including fitness function, terminal and func-
tion sets, parameter tuning, etc. Then, in Section 6 we use our experimental
results to show the utility of GP-hash to generate non cryptographic hashes.
Finally in Section 7 we summarize the most important achievements and con-
tributions of this work, and give detailed explanations of what we have learned
from it.

3



2 Non Cryptographic Hash Functions

Hash functions are a family of mathematical expressions that take a message of
variable length as input, and return a hash value of fixed length in the output
(see Figure 1). This asymmetry between the sizes of inputs and outputs is
one of the most important properties of hash functions. Another desirable and
important property, also illustrated in Figure 1, is that minimum changes in the
input of a hash function should produce maximum changes in the output.

car

the red car is 
under the table

the red cat is 
under the table

Message

Hash 
Function 0x34FF79C8

0xFCB75A33

0xA5442CBB

Hash Value

Hash 
Function

Hash 
Function

Figure 1: Example of a typical hash function: Input values could have any
length; outputs are 32 bits values; The two last inputs only differ in a few
letters, but their outputs are completely different.

Most hash functions (both cryptographic and non cryptographic) follow
the Merkle-Damg̊ard construction scheme3 (independently developed by Merkle
[Merkle, 1989] and Damg̊ard [Damg̊ard, 1990]). Figure 2 illustrates how it works:
inputs of the hash function are split into smaller blocks of fixed size, then blocks
are processed one by one by the mixing function, whose mission is to scramble
input bits and internal state producing a highly entropic output. In step i, the
inputs of the mixing function are block i and the output of processing block
i − 1. If the length of the message is not a multiple of the block size, then a
padding must be added to the last block.

There is a huge number of practical applications of hash functions, but the
most important one (and the base for most of the others) is the hash table.
Hash tables are data structures composed of: a random-access container (e.g.
an array) with M slots (usually called buckets) that can store entries; and a
hash function. Entries consists of two elements: the data we actually want to
store, and a key that identifies the entry. To insert an entry into the table,
the hash function is fed with the key, producing a hash value. This value is
translated into a valid index of the table, and then the key-data pair is inserted
into the bucket indicated by the generated index. When looking for a particular

3This does not apply to cryptographic hash functions, which use a variety of systems other
than Merkle–Damg̊ard. This is because this construction scheme is no longer considered
safe, since different cryptanalysis studies have exposed some weaknesses that are considered
important for cryptographic applications. Alternative schema include HAIFA Biham and
Dunkelman [2006], wide-pipe construction Lucks [2005] and sponge construction Bertoni et al.
[2007, 2008]
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Figure 2: Merkle-Damg̊ard construction scheme.

entry in the table, the process is reversed: the key associated to the entry is
hashed and the hash value is translated into an index. The entry is supposed
to be in the bucket indicated by the produced index.

Ideally, every hash value should identify a unique input message. However, as
stated above, inputs of a hash function have variable size, and outputs have fixed
size. This means that there is an infinite number of possible inputs and a finite
number of possible outputs. The consequence is that some inputs must produce
exactly the same output. We call this a collision. Collisions are an unavoidable
problem that can dramatically decrease the performance of hashing.

Apart from collision resistance, we generally require a NCHF to be fast, to
distribute outputs evenly, and to produce great levels of avalanche effect.

2.1 Quality criteria for NCHF

According to the hashing literature, the most important quality criteria for
NCHF are collision resistance, distribution of outputs, avalanche effect, and
speed (see Valloud [2008], Henke et al. [2008], Goodrich and Tamassia [2009]).

• Collision resistance: A hash function must reduce the collisions it pro-
duces to a minimum [Knott, 1975, Valloud, 2008, Goodrich and Tamassia,
2009]. If we assume that the function produces each hash value with ex-
actly the same probability, it should take about 2n/2 hash evaluations
(where n is the size of the output in bits) to find two colliding keys us-
ing a birthday attack. However, it could take much fewer if the NCHF is
poorly designed [Bellare and Kohno, 2004]. Collisions are one of the major
reasons of performance loss in hashing applications, and they should be
carefully controlled. Collision resistance is data-dependent: the collision
properties of a function can be measured only in relation to a specific key
set Knuth [1973], Valloud [2008].

• Distribution of outputs: It is very important for a non-cryptographic
hash to produce outputs that follow a uniform distribution [Knott, 1975,
Sedgewick, 2001, Cormen et al., 2001, Valloud, 2008]. The function must
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generate each possible output value with the same probability, indepen-
dent of the distribution of the inputs. An uneven distribution of outputs
would produce clustering problems, which greatly affect the performance
of a NCHF. Similar to the collision rate, this quality criterion is data-
dependent .

• Avalanche effect: The avalanche effect of a hash function refers to its
ability to produce a large change in output under a minimum change in
the input . This property is very important for NCHF [Valloud, 2008,
Henke et al., 2008]. A hash with a good avalanche level can dissipate the
statistical patterns of the inputs into larger structures of the output, thus
generating high levels of disorder and preventing clustering problems. This
criterion is independent of the architecture and the data, which greatly
simplifies its study and measurement.

• Speed: NCHF are useful because they allow searches to be performed very
quickly. This means that a NCHF must be as fast as possible [Goodrich
and Tamassia, 2009, Heileman, 1996, Knuth, 1973, Ramakrishna and Zo-
bel, 1997, Sedgewick, 2001, McKenzie et al., 1990]. For this purpose,
NCHF should use very few operators, and these operators should be ef-
ficient in terms of CPU consumption. This criterion obviously depends
on the architecture in which the hash function runs, since different CPUs
offer different performance levels for the same operators (see, for example
Matsui and Fukuda [2005]).

2.2 Most common NCHF in the literature

According to their practical applications and their presence in the literature,
the most important NCHF are the following:

• FNV Fowler et al. [1991]: This function was designed by Glenn Fowler and
Phong Vo in 1991, and later improved by Landon Curt Noll. It is one of
the most efficient and widely-used hash functions ever created. According
to the authors, dozens of very important software products use FNV Hash,
including Linux and FreeBSD distributions, Twitter, DNS servers, NFS
implementations (FreeBSD 4.3, IRIX, Linux), video games (in PlaySta-
tion2, GameCube or xBox consoles), etc. There are two versions of this
hash: FNV-1 and FNV-1a.

• lookup3 Jenkins [1997]: This function was designed by Robert Jenkins
and is one of the most important references in the field of non-cryptographic
hashes. According to Jenkins, companies such as Google, Oracle and
Dreamworks have been using lookup3 in their products. This hash is
also included in implementations of PostgreSQL, Linux, Perl, Ruby and
Infoseek.

• SuperFastHash Hsieh [2004-2008]: This hash was created by Paul Hsieh
with the objective of being elegant, extremely fast, and providing high
levels of avalanche. It was inspired by some principles found in FNV and
lookup3. This function is popular in the software industry: according
to Hsieh, Apple uses SuperFastHash in its Open Source project WebKit,
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which is in turn used in browsers like Safari and Google Chrome. This
function was also part of several versions of the former Macromedia prod-
uct Flash Player.

• MurmurHash2 Appleby [2008]: This function was designed by Austin
Appleby in 2008 and, despite its short lifetime, enjoys great prestige among
hashing experts. It is used in some important Open Source projects,
like libmemcached, Maatkit, and Apache Hadoop, and has outstanding
avalanche properties .

• DJBX33A: This function was originally proposed by Prof. Daniel J.
Bernstein and is used very often for hashing strings. Many different pro-
gramming languages such as PHP 5, Python and ASP.NET use DJBX33A
or functions derived from it. Java also uses a function that is essentially
equivalent to DJBX33A when hashing String objects. This has greatly in-
fluenced many application servers, like Tomcat, Geronimo, Jetty or Glass-
fish, which could be exposed to Denial of Service (DoS) attacks that use
known weaknesses of DJBX33A to bring the application server to its knees
(see Klink and Wälde [2011], and Crosby and Wallach [2003])

• BuzHash: This is a general purpose hash function that was invented
by Robert Uzgalis in 1992. It uses a substitution table that replaces each
input byte by a randomized alias. These aliases are made so that for every
bit position exactly one half of the aliases have a one and the other half
have a zero. It is suited for any input distribution, even extremely skewed
distributions.

• DEK: This is a multiplicative hashing that is based on the ideas of Don-
ald E. Knuth Knuth [1973]. It is one of the oldest and simplest hashing
algorithms ever created, and is still very popular in the hashing commu-
nity. The version used in this work is part of the ”General Hash Function
Library” by Arash Partow Partow [2010].

• BKDR: This function was originally proposed in Kernighan and Ritchie
[1988], and is included in the aforementioned ”General Hash Function
Library”.

• APartow Partow [2010]: This hybrid rotative and additive hash function
algorithm was proposed by Arash Partow and is included in his library of
hashes.

2.3 Further Reading

According to Donald E. Knuth, the first publication about hashing is an internal
memorandum by H. P. Luhn, an IBM employee, in 1953, but the most cited
reference about hashing is Knuth [1998]. It is probably the first textbook that
gives a serious introduction to hashing, but its first edition is from the 70’s
and could be a bit outdated. There are other modern textbooks that also
worth the reading: Valloud [2008] is the only textbook that we know which is
a comprehensive dedicated guide to hashing. The only con is that the book is
focused on SmallTalk. Other textbooks containing interesting chapters about
hashing: Sedgewick [2001], Cormen et al. [2001], Goodrich and Tamassia [2009],
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Heileman [1996]. Another great source of information are the video lectures of
the CS course Introduction to Algorithms at MIT, publicly available through
MIT Open Course Ware.

3 Genetic Programming

GP (Koza [1992]) is a stochastic search technique that tries to automatically
generate solutions to a problem starting from high-level statements of what
needs to be done. GP belongs to the family of Evolutionary Computation
techniques. GP populations are composed of computer programs. Thus, GP
part from a random population of programs, and tries to improve them through
generations using mechanisms inspired by Natural Selection and Evolution.

In order to exert a selective pressure over the population and properly guide
the search, GP uses a combination of two elements: first, a cost function (or
fitness function) that evaluates computer programs and assign them a score in-
dicating their level of adaptation to the problem; and second, a set of operators,
that recombine or modify individuals of the population trying to produce fitter
programs. As stated in Poli et al. [2008], a typical GP run executes the following
algorithm:

1. Randomly create an initial population of programs from the available
primitives.

2. repeat:

3. Execute each program and ascertain its fitness.

4. Select one or two program(s) from the population with a probability based
on fitness to participate in genetic operations.

5. Create new individual program(s) by applying genetic operations with
specified probabilities (Section 2.4 ).

6. until an acceptable solution is found or some other stopping condition is
met (e.g., a maximum number of generations is reached).

7. return the best-so-far individual.

Each generation, the current population is evaluated. At the end of this
process, each individual has been assigned a numerical value, called the fitness
value. In some problems, we are looking for low fitness values (e.g. minimize
the collisions produced by a hash function), in some others, we want high fitness
values (e.g. maximize the disorder produced by a hash function measuring the
randomness of the outputs). Programs with better-than-average fitnesses are
selected to breed and produce new individuals for the next generation. The
most common genetic operators used to breed new programs are:

• Crossover: The offspring is created by combining randomly chosen parts
from two previously selected parents.

• Mutation: The new child is created by randomly altering some parts of
a previously selected parent.
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Individuals are usually represented as parse trees or their equivalent syntactic
expressions in polish notation (see Figure 3). Internal nodes of the tree are
functions (operators that accept parameters), and leaves are terminals (variables
or constants).

log +

3 Y-

*

7X

(* (log (- X 7)) (+ 3 Y))

Figure 3: Example of GP individual represented as a tree and its equivalent
syntax expression.

4 Artificial Intelligence + Hashing

In section 1.1, we explained the reasons why GP could be very suitable to
automatically design hash functions: Evolutionary Computation techniques in
general are proved to be very good in finding approximate solutions to poorly
understood problems, in which the relationships between the variables are not
completely known. Furthermore, GP is particularly good at discovering un-
expected hash functions because the individuals it evolves does not need to
have a fixed size or shape, which is perfect for evolving arbitrary mathematical
expressions.

Surprisingly, there is not much research on this topic. Actually, it is hard to
find research work that uses AI techniques to automatically generate NCHF.

The most similar work we found is [Safdari, 2009]. In fact, the author cites
a previous work that we published in 2006 [Estébanez et al., 2006a] describing
the first prototype of our GP-hash system. In his paper, M. Safdari starts with
the following family of universal hash functions:

ha,b(k) = ((ak + b) mod p) mod N

And uses a Genetic Algorithm to evolve parameters a and b trying to find
the best function for a particular set of inputs. All the databases he uses are
sets of random integers lying in a predefined range. The results are promising,
but the methodology is questionable: If the input data is purely random, which
is the case, then a hash function is not needed at all: just use the input values
(or a portion of them) as hash values to obtain a perfect uniform distribution
and a minimum collision rate. It will be much more interesting to try the same
experiments with biased input sets, which are far more difficult for NCHF.
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Furthermore, there are no significance tests (or at least mean values over a
number of runs) on the results. The cost function used to guide the search is
based in the collision rate and the load factor of the table, two concepts that
are mixed in the same function in an apparently arbitrary way.

In a previous work [Berarducci et al., 2004] authors already followed a similar
approach, trying to automatically generate hash functions for hashing integer
numbers. Their system, called GEVOSH, is even closer to GP-hash than the
work of M. Safdari, because GEVOSH uses Grammatical Evolution [Ryan et al.,
1998, O’Neill and Ryan, 2003], a technique which is closely related to GP, and
because complete hash functions are evolved instead of using a fixed schema
and evolve the parameters. The fitness function is based on the collision rate.
Two hash functions are obtained and compared with six hashes extracted from
[Wang, 2007]. The authors claim that their hashes are competitive with the
other six, but the reader can’t really tell, because charts in the paper are very
difficult to understand (very low quality graphics and no explanation on the
text). It is not clear in the paper whether the datasets they used were random
or not.

Hussain and Malliaris [2000] is a very short paper in which the authors
use a Genetic Algorithm with a collisions-based fitness to evolve some kind of
polynomials that they use as hash functions. There is no explanation about how
those polynomials are constructed or used to hash, so we assumed that they are
using a schema similar to the Polynomial Hash Codes studied in [Goodrich and
Tamassia, 2009]. The experimental results appear to be good, but the extreme
lack of details makes very difficult to evaluate their real impact.

Another interesting flavor of this problem is the automatic design of hashing
circuits using Evolvable Hardware. This technique uses evolutionary algorithms
to automatically design electronic devices [Sipper et al., 1997, Gordon and Bent-
ley, 2002]. In this domain, [Damiani et al., 1998] offer an interesting approach.
They use an evolutionary algorithm to evolve a FPGA-based digital circuit
which computes a hash function mapping 16-bit entries into 8-bit hash values.
The evolutionary algorithm uses dynamical mutation and uniform crossover.
The fitness function is based on the uniformity of the outputs distribution. In
[Damiani and Tettamanzi, 1999] this system is adapted to on-line reconfigura-
tion of the circuits. Finally, in [Widiger et al., 2006] we have another example
of the application of Evolvable Hardware to the generation of FPGA hashing
circuits. In this case, the hash circuits are intended to work as hardware packet
classifiers inside routers. The routing rules that the device needs to hash are
constantly changing, so the designed hash function must be adaptive, and the
circuits must allow on-line reconfigurations. Different hash schemes are used
and the results are very interesting.

The automatic generation of cryptographic hashes is completely out of the
scope of this work because their design goals and restrictions are completely
different from those related to non cryptographic hashes. Even so, we suggest
an interesting publication on this topic: [Snasel et al., 2009].

In [Estévez-Tapiador et al., 2008] some of our colleges at Universidad Carlos
III de Madrid continued our previous work presented in [Estébanez et al., 2006b]
and created a variation of our system that evolves cryptographic hashes. Al-
though we are not dealing with cryptographic functions in this work, we think it
is important to cite this work because it shows that the central idea of GP-hash
is flexible and powerful enough to be easily adapted to different domains. In
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the aforementioned paper, authors were able to generate a block cypher that
they used as the compression function of a cryptographic hash following the
Miyaguchi-Preneel construction scheme [Miyaguchi et al., 1990, Preneel, 1993].
The function they generated was very fast and passed some statistical tests that
proves that the function has not evident weaknesses and suggest that it could
be secure enough to resist some attacks. They used the same fitness function
based on avalanche effect that we developed in our previous work.

4.1 Contributions of GP-hash

In this section we reviewed the previous work on AI applied to the automatic
design of NCHF, including Hussain and Malliaris [2000], Safdari [2009], and
GEVOSH system proposed in Berarducci et al. [2004]. The most important
difference between GP-hash and these systems is the fitness measure: while in
previous works collisions rate is always the quality criterion used to evaluate
general purpose NCHF, GP-hash uses a fitness function based on the avalanche
effect.

This is important because collision rate is data dependent. This means that
for calculating the collision resistance of a NCHF, one needs to actually hash a
key set and study the frequency of the outputs. So it is only possible to measure
the collision properties of a hash with relation to a specific key set. This is a
major drawback when trying to evolve general purpose hashes, which should
perform well with a wide range of very different key sets.

On the other hand, our approach uses avalanche effect as the main optimiza-
tion objective. Avalanche is a fundamental characteristic of the internal mixing
process of the NCHF, so it does not depend on the hashed key set. This feature
makes the avalanche effect a perfect candidate to evolve general purpose hashes.
Furthermore, avalanche effect could be seen as a measure of how much disorder
the hash function can generate, and how well it disrupts the input patterns.
Our hypothesis is that this measure could be a good estimator of the overall
quality of a hash function. In Section 6 we experimentally prove this hypothesis,
showing how the performance of NCHF evolved with this criteria is comparable
to the state of the art in non cryptographic hashing.

5 GP-hash: Design and Implementation

The objective of this work is to automatically discover general purpose, state-
of-the-art, NCHF using GP. In order to do so, we used our GP system for
automatic generation of non cryptographic hashes. We call this system GP-
hash. It is coded in Java, and it makes use of two more publicly available
Java libraries: ProGen4, which provides the GP framework (population man-
agement, evaluation and selection, genetic operators, strong typing, etc.), and
HashBench5, which offers a very rich API for NCHF evaluation. A primitive
version of GP-hash was previously proposed in [Estébanez et al., 2006b].

4ProGen website:
http://eva.evannai.inf.uc3m.es/personal/cesteban/cesteban/ProGen.html

5HashBench website:
http://eva.evannai.inf.uc3m.es/personal/cesteban/cesteban/HashBench.html
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In the remainder of this section we explain the decisions made during the
design and implementation of GP-hash:

1. Design of the fitness function.

2. Definition of the terminal and function set.

3. Parameter Tuning.

5.1 Fitness Function

In order to design a fitness function for NCHF we considered the quality criteria
defined in Section 2:

1. Collisions resistance

2. Distribution of outputs

3. Avalanche effect

4. Speed

The speed is not adequate as the only fitness measure in a mono objective
optimization approach: we want our function to be very fast, but that is not
enough. This expression for example: h = 0x0; return h; is a syntactically
valid hash function and it is extremely fast, but it is completely useless. If we use
speed as the objective function of a GP run, then we will obtain many individuals
like that. The speed could be seen as a secondary objective that have influence
on the fitness through a weighted addition (the architecture dependence could
be avoided by assigning a cost to each operation proportional to the architecture
involved), or it could be considered a constraint of the problem. GP-hash follows
the later approach: the size (number of nodes) of the evolved hashes is always
limited, so they can only have a limited number of operators. This way, the
execution time of the evolved hashes is bounded.

Previous approaches invariably use fitness functions based on collisions re-
sistance properties. As we explained in Section 2.1, collisions resistance is a
data dependent metric. This means that it is mandatory to choose a specific
key set for training the hash function, which only guarantees that the evolved
NCHF will do a good job hashing key sets with similar structures. This lack
of generality is a major drawback when evolving general purpose NCHF, which
are expected to deliver a proper performance with many key sets of very differ-
ent natures. The second quality criterion, distribution of outputs, is also data
dependent, thus has exactly the same limitation.

One of the most important contributions of GP-hash is the use of avalanche
effect as the fitness measure to evolve general purpose NCHF. Avalanche is a
intrinsic property of the mixing function of a NCHF, so it is not data dependent.
That makes it a perfect candidate to evaluate general purpose NCHF. Further-
more, it is a measure of how well the function disrupts the input patterns and
produce an apparently unpredictable output. This feature is intuitively related
with a good distribution of outputs (the more random the output looks, the
more evenly the outputs distribute) and thus with the collisions rate (biased
distributions generate more collisions than pure uniform distributions). This
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make us hypothesize that avalanche effect could be a very accurate estimator of
the global quality of a NCHF.

Although GP-hash also implements fitness functions based on collisions re-
sistance and distribution of outputs, in this work we only use the avalanche
effect based fitness. We describe this fitness function next.

5.1.1 Avalanche Fitness

We already introduced the avalanche effect as a quality criterion for NCHF
in Section 2.1. In this section, we first provide a more formal definition of
avalanche effect and Strict Avalanche Criterion (SAC). Then, we describe the
avalanche-based fitness functions designed for GP-hash.

Avalanche effect and SAC: The concept avalanche effect was introduced by
Horst Feistel as an important property of block ciphers [Feistel, 1973]. Later, this
concept was extended to s-boxes [Schneier, 1996], cryptographic hash functions
[Preneel, 1993], non cryptographic hashes [Valloud, 2008, Mulvey, 2007], etc. We
say that a hash function achieves a good avalanche when minimum changes in
the input produces maximum changes in the output. This happen if each input
bit has some influence on every output bit. The consequence is that flipping a
single bit in the input produces an avalanche of bit flips in the output. If a hash
function achieves high avalanche effect, then the disorder caused by the hash is
maximum (see Figure 4).

00 1 1 1 0 1 0

00 1 0 1 0 1 0

10 1 0 0 1 0 1

01 0 0 1 1 0 1

h

h

Figure 4: A hash function h with a nice avalanche effect.

A more rigorous concept is the Strict Avalanche Criterion (SAC) introduced
in Webster and Tavares [1986]: A hash function satisfies the SAC if for every
change in any of the input bits (toggle between 0 and 1) all the bits of the
output change with probability 1/2. In other words: flipping one bit of the
input changes on average half of the output bits:

∀x, y : {H(x, y) = 1} ⇒ E [H(f(x), f(y))] = n/2; (1)

Where H(x, y) is the Hamming distance between x and y; f is a hash func-
tion; and n is the number of output bits of f .

Avalanche fitness: A high quality fitness function must deliver smooth and
accurate measures, while keeping an eye on efficiency. The SAC is the most
precise measurement of avalanche, but checking whether an individual satisfies
SAC is not practical: for individuals with 32-bits input and output, that means
hashing 32 ∗ 232 (i.e. 137, 438, 953, 472) bitstrings for each individual, for each
generation. That is a huge amount of CPU time that we cannot afford. Instead,
the avalanche fitness uses a Monte Carlo Simulation: it generates N random
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bitstrings6 and the hash values for those bitstrings. Then, for each bitstring,
it generates the 32 possible flipped bitstrings (a flipped bitstring is the same
original bitstring but with a single bit flipped) and their hash values. Finally,
the avalanche function checks the differences between h(bitstring) and each of
h(flippedBitstring). Then, there are two possibilities (and two different fitness
functions):

1. Measuring the probability pi,j of each input bit i affecting output bit j
(i.e. if pi,j is 0.8, that means that if input bit i changes, then output
bit j changes 80% of the time). With all the probabilities, construct the
avalanche matrix. This matrix contains all the probabilities of every input
bit affecting every output bit:

AM =


p0,0 p0,1 . . . p0,31
p1,0 p1,1 . . . p1,31

...
...

...
...

pn,0 pn,1 . . . pn,31


For a perfect avalanche, all probabilities must be 0.5, so we can calculate
the total error (we used RMSE) and use this value as the fitness of the
individual.

2. Calculate Hamming distances between the hash values of original bitstring
and the corresponding flipped bitstrings. We know that those distances
should follow a Binomial distribution with parameters 1/2 and n:

∀x, y|H(x, y) = 1, H
(
F (x), F (y)

)
≈ B

(
1

2
, n

)
This can be used to calculate the goodness of fit using Pearson’s Chi
Square test:

χ2 =

N∑
i=1

(Hi − n/2)2

n/2

And comparing χ2 with a chi square distribution of N − 1 degrees of
freedom we obtain the goodness of fit and the fitness of the evaluated
individual.

Both methods work very well, but for the default settings of GP-hash we
prefer avalanche matrices because they offer the possibility of nice graphical
representations like those shown in Figure 5. The color of square in position
(i, j) represents the probability of input bit i affects output bit j. A black square
means that changes in bit i do not change bit j at all, or always changes it7

(0.0 or 1.0 probability of change). A white square means that i has a perfect
influence on j (i.e. probability = 0.5).

6In our experiments we used N = 100 by default.
7Note that a probability of 1.0 is as bad as 0.0, because 1.0 means that the value of the

output bit is defined by the input bit (every time we change input bit, output bit changes).
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Figure 5: Examples of graphical representation of avalanche matrices corre-
sponding to APartow, DJBX33A, FNV-1, and lookup3 hashes.
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5.2 Terminal and Function Set

In this section we explain all the aspects related with the building blocks that
GP-hash uses to construct syntactically correct, efficient NCHF. First we give a
brief description of the internal representation of the hashing structures. Then,
we explain how we choose the terminals and functions of our problem. And
finally we show the experimental evidence that support our choice.

5.2.1 Representation of Individuals

The mission of GP-hash is to evolve 32-bits non-cryptographic hashes (we focus
on 32-bit NCHF because those are the most common, and we do not want to
unnecessarily complicate the explanations, but it is trivial to configure GP-hash
to produce functions with different output sizes, e.g. 64, 128, etc.). Given that
we already know that virtually all NCHF uses Merkle–Damg̊ard construction,
it is an unnecessary waste of time and resources to ask GP-hash to reinvent
the wheel: the optimal solution is to provide a Merkle–Damg̊ard construction
and make GP-hash to only evolve mixing functions. Internally, individuals
of GP-hash only code mixing functions whose inputs in a particular step are
the block being processed and the output from the previous step. When we
want to externally use those individuals we wrap them with Merkle–Damg̊ard
constructions obtaining fully functional hash functions. Mixing functions are
coded as regular GP trees.

5.2.2 Terminal Set

Given that evolved functions will follow the Merkle–Damg̊ard scheme, we need
at least two different terminals:

• hval: 32-bit variable containing the internal state of the hash function.
When processing block Mi, hval contains the result of processing the
previous block Mi−1. By default it is initialized to zero, but could be
initialized to any other value.

• a0,a1 . . .an: These variables contain the block being processed in the
current step. In the Merkle–Damg̊ard scheme, these blocks have a fixed
size, but internally the mixing function could process them in separated
parts. In the most common case, blocks are 32 or 8 bits long, and we
only use one variable a0 coded in an integer (32 bits) or in a byte (8 bits).
However, other combinations are possible and very common in the hashing
literature. For example, the mixing function of lookup3 consumes blocks
of 96 bits on each step, and internally the function splits each block in 3
variables of 32 bits length and mixes them separately. To obtain a similar
mixing function in GP-hash we should use 3 integer variables (a0,a1,a2).
By default, we always use one 8-bit variable a0.

Other important building blocks are magic constants. They are very common
in hashing literature, in the form of big numbers that are combined with the
variables of the system (hval, a0, a1 . . .an) to improve the overall entropy.
There are not established rules about how to choose those numbers, but, in
general, prime numbers are preferred, because they are considered to provide
more disorder (see for example [Partow, 2010]). In GP-hash, magic constants
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are implemented as Ephemeral Random Constants or ERCs (special terminals
that are randomly initialized the first time they are evaluated, but that keep
their values during the rest of the GP run, as defined in [Koza, 1992]). Each
ERC is initialized with an integer randomly selected from a list8 of one million
prime numbers between 15,485,867 and 32,452,843.

Terminal Set = {hval,a0,a1 . . .an,PrimesERC}

5.2.3 Function Set

The approach we follow to create the function set is to gather some of the
most widely used non cryptographic hash functions and check which are the
operators that more frequently appear. This way we defined a basic function
set by putting together the most common operators in hashing literature. Then
we carry out a battery of experiments to refine the basic function set.

In Table 1 we show some of the most important non cryptographic hashes
and the operators they use. Addition (+), subtraction (-), multiplication (*)
and division (/) are the common arithmetic operators we use everyday9. Bitwise
operators xor (∧), and (&), or (|), and not (¬) are also very usual, and do not
need explanation. Rigth shift (�) and right rotation (≫) are bitwise operators
that literally move the bits of a variable to the right. The difference between�
and ≫ is that in the former, bits originally placed in the right end are discarded,
and zeros are injected in the left end, while in ≫, bits that are shifted out on
the right, are then shifted in on the left. Left shift (�) and left rotation (≪)
operators works exactly the same but in the opposite direction.

Table 1: Operators used by some state-of-the-art non cryptographic hashes.

+ − ∗ / shifts rotations ∧ & | ¬
APartow

√
-
√

-
√

-
√

- -
√

DJBX33A
√

- - -
√

- - - - -
BKDR

√
-
√

- - - - - - -
lookup3

√ √
- -

√ √ √
- - -

BuzHash - - - - -
√ √

- - -
FNV - -

√
- - -

√
- - -

MurmurHash2 - -
√

-
√

-
√

- - -
DEK - -

√
- - -

√
- - -

SuperFastHash
√

- - -
√

-
√

- - -

We observe in Table 1 that almost every non cryptographic hash functions
uses a combination of some of the following operators: { +, −, ∗, �, �, ≫,
≪, ∧, ¬ }.

Operators /, &, | are not used by any hash. That is not a surprise given
that those operators are not reversible. We say that an operator (•) is reversible
when the operation x •C = y (with C constant) can be reversed, this means, the

8This list was obtained from [Caldwell, 1994-2009]
9Except for the division, which is protected to avoid divide-by-zero errors and respect the

closure property as defined in [Koza, 1992]
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value of x can be deduced from the value of y. Using only reversible operators
guarantees that the mixing function is reversible, which means that inputs of
the function can be calculated out of the outputs. In other words, there is
a one-to-one mapping between inputs and outputs, so the mixing function is
collision-free. If the function is not reversible, then at least two different inputs
must be producing the same output, which means that the mixing function is
introducing totally avoidable collisions which will finally propagate to the hash
function. See [Mulvey, 2007] for more information about reversible operators
and mixing functions.

Multiplication is reversible only in some circumstances and could be slow in
some architectures, but it is often used because it introduces a lot of disorder.

Bit shifts are very popular because they are highly entropic and also be-
cause they are extremely efficient (only 1 CPU cycle latency on most modern
microprocessors). However, they are not reversible unless they are combined
with other operators (e.g. h �= constant is not reversible, but h ∧= h
� constant is reversible), so they must be used with care. We cannot ex-
pect the GP to be careful when putting building blocks together, so given that
bit rotations have a very similar behavior (and efficiency), and that they are
always reversible, we tend to prefer rotations in our function set rather than
shifts. Furthermore, right rotation and left rotation are completely equivalent
(i.e. (x≫ n) = (x≪ 32−n)), so when using rotations we arbitrarily discarded
left rotation and keep only right rotation.

Apart from shifts and rotations, the most frequent operators are clearly
addition, multiplication and exclusive-or. Thus, we can define a basic function
set for GP-hash based on the popularity of the operators:

Basic Function Set = {+, ∗,≫, ∧}

5.2.4 Validation of the Terminal and Function Set

Combining the selected functions and terminals we create the basic terminal and
function set for GP-hash. Then, following an approach similar to [Wang and
Soule, 2004], we carried out a battery of experiments to test whether this set is
complete and minimum, and whether our hypothesis about the functions were
correct. We include a summary of the results in Table 2. Each row represents
the average fitness obtained with different terminal and function sets over 50
runs10. Terminal and function sets are labeled as F1,F2 . . . F10. Row labeled
as BTFS represents the average fitness obtained with the Basic Terminal and
Function Set defined above, and it is used as reference. In the last column there
is a symbol that encodes the statistical significance: ↓ means that results are
statistically significant, and = means that there is not significant differences
between row average fitness and the BTFS average fitness. It is important to
note that we are minimizing fitness values, so the lower the fitness, the better the
individual is. We used Shapiro-Wilk test for normality, and t-test and Wilcoxon
significance tests for normal, and non-normal distributions respectively (with
significance level α = 0.05).

Conclusions obtained from the results:

10For this experiments we used the avalanche fitness based on avalanche matrices and RMSE
explained in Section 5.1.1 and the standard parameters shown in Section 5.3

18



Table 2: Average results of 50 GP-hash runs with different Terminal and Func-
tion Sets. Standard deviation is also shown in parenthesis.

Label Terminal and Function Set Avg. Fit. (std dev) Significance
BTFS {+, ∗,≫,∧ , hval, a0,PrimesERC} 0.05026 (0.00084) n/a

F1 {+, ∗,≫,∧ ,&, |, hval, a0,PrimesERC} 0.05134 (0.00167) =
F2 {+, ∗,≫,∧ ,�,�, hval, a0,PrimesERC} 0.05206 (0.00550) =
F3 {+, ∗,≪,∧ , hval, a0,PrimesERC} 0.05015 (0.00112) =
F4 {∗,≫,∧ , hval, a0,PrimesERC} 0.05113 (0.00158) =
F5 {+,≫,∧ , hval, a0,PrimesERC} 0.23917 (0.00874) ↓
F6 {+, ∗,≫, hval, a0,PrimesERC} 0.0508 (0.00206) =
F7 {+, ∗,∧ , hval, a0,PrimesERC} 0.1739 (0.00060) ↓
F8 {+, ∗,≫,∧ , a0,PrimesERC} 0.43425 (0.00017) ↓
F9 {+, ∗,≫,∧ , hval, a0} 0.05113 (0.00315) =
F10 {∗,≫, hval, a0,PrimesERC} 0.43416 (0.00011) ↓

• F1 and F2: Including & and | does not improve the average fitness of
GP-hash. The & operator was never selected for being part of the best
individual of a GP-hash run. The | operator was selected only in around
30% of the runs. This is probably related with the non reversibility of those
operators, and it is interesting to see that operators which are unpopular
among hashing experts are also unpopular in GP-hash solutions. Including
bit shifts does not have any effect on the average fitness of GP-hash runs
either. Hash functions generated with F2 contains shifts, so shifts are used
in the evolution even though they do not improve the performance of just
having rotations. These results support our decision of excluding &, | and
shifts operators from the BTFS.

• F3: As expected, replacing right rotation with left rotation does not have
any effect on the average fitness of GP-hash. As we already predicted,
both operators are completely equivalent.

• F4 and F6: Surprisingly, removing either addition or xor operators from
BTFS has no effect on the average fitness. This was completely unex-
pected: these operators are very popular in the hashing literature, but
GP-hash seems to work fine without them. We want to stress that we
are talking about two separated experiments: in the first one, we remove
addition, in the second one, we remove xor. The lack of impact on the
fitness could be explained if this two apparently important functions be-
longs to a function group as defined in [Wang and Soule, 2004]. We tested
this possibility with function set F10.

• F5 and F7: On the other hand, removing either the multiplication or
the rotation, does have a drastic impact on the average fitness. Both
changes produces a significant worsening of GP-hash performance. These
operators are clearly needed.

• F8 and F9: We also tested hval and PrimesERC impact on the average
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fitness. Results show that the hval terminal is definitely needed for a
correct evolution. That was totaly expected. What was unexpected is
that PirmesERC seems not to be needed. Removing it from the BFTS
does not affect the average fitness.

• F10: Removing both addition and xor operators produces an important
worsening of average fitness. As we suspected from the results of F4 and
F6, xor and addition form a function group. In other words, at least one
of these operators must appear in the function set, but it does not matter
which one. This explains the apparent lack of effect over the fitness of
these so popular operators observed in F4 and F6. Is interesting to note
that every hash function in Table 1 that does not use addition uses xor,
and vice versa. According to [Wang and Soule, 2004] the optimal solution
is to choose only one of those operators for the function set. Since we
already have an arithmetical operator (∗), but we do not have any boolean
operator, we arbitrarily decide to include xor and remove addition from
the BTFS.

Finally we have defined the terminal and function set for GP-hash:

Terminal and Function Set = {∗,≫,∧ , hval, a0}

5.3 Parameter Tuning

We made an extensive experimental work to find the best parameter set. We
followed a similar approach to that of Section 5.2.4: starts with an initial arbi-
trary configuration based on our knowledge about the problem and our experi-
ence working with GP; then, using this basic configuration as a reference, try
different changes on the parameters, looking for fitness improvements.

We started our experiments with the basic configuration shown in Table 3,
and we progressively introduced changes in all the important parameters: ge-
netic operators rates (±30% to each one), tournament sizes (±5), population
size (100, 200, 500 and 1000), initialization method (grow, full, and half and
half) , init depth interval (2-4, 2-6, 3-6 and 4-6) and size limitations (25, 50 and
75 nodes). We could not find any configuration which significantly improved the
average fitness over the basic tableau. Furthermore, we found out that GP-hash
system is very robust: With a large number of different parameter configura-
tions GP-hash keeps working fine, obtaining approximately the same average
fitness, and very similar best individuals. Only when using extreme values the
average fitness is significantly deteriorated. This is not surprising, since the GP
is well known to be a very robust technique in general [Poli et al., 2008, Section
3.4].

We were specially careful in tuning the maximum number of generations:
we started from 50 generations and tried rising this parameter. We found out
that in GP-hash, evolution curves show very large fitness improvements in ear-
lier generations, and very small improvements later on. This is a very typical
behavior of GP populations, as stated on [Luke, 2001]. The improvements ob-
tained with long runs are not proportional to the amount of extra CPU time
needed. Therefore we prefer the initial value of 50 generations per run.

The conclusion is that, in the light of our experimental results, we can keep
the basic tableau of Table 3 as the default parameters for GP-hash.
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Table 3: Basic Tableau for GP-hash.

GP-hash Tableau
Max Generations 50

Pop. Size 100
Max Nodes 25

Terminal and function set {∗,≫,∧ , hval, a0}
Fitness Avalanche Matrices (RMSE)

Crossover
Rate = 0.8

Selection = Tournament
Tournament Size = 4

Point Mutation
Rate = 0.1

Selection = Tournament
Tournament Size = 4

Reproduction
Rate = 0.1
Selection =

Fitness Proportional
Elitism NO

Initialization Half and half, init depth 2-4

6 Experimental results

The main hypothesis of this work is to show that evolutionary techniques such
as GP can substitute human experts in the challenging task of designing high
quality NCHF. In order to prove that, we created GP-hash, a GP based system
for the evolution of general purpose NCHF that uses avalanche effect as the
global quality estimator for evolved hashes. In this section, we show how GP-
hash can be used to generate families of NCHF that are able to compete with
a selection of the most widely-used NCHF of the literature. First, we describe
the methodology followed to carry on the experiments. Then we present the
results, and finally we discuss them.

6.1 Methodology

The experiments we carried out in order to prove the practical utility of GP-
hash are divided in two different stages. In the first stage, we use the GP-system
described in previous section to evolve a family of NCHF: we use the avalanche
effect fitness function, and all the parameters previously specified to perform 50
independent GP-hash runs. This generates 50 NCHF.

In the second stage, we select the best five NCHF produced in previous
stage, and compare those functions with a selection of ten of the most widely-
used, general-purpose NCHF of the literature: FNV (both versions FNV-1 and
FNV-1a), lookup3, SuperFastHash, MurmurHash2, DJBX33A, BuzHash, DEK,
BKDR, and APartow (we already described these functions in Section 2.2). The
comparison is made in terms of global performance. This mean that we compare
our evolved functions with the state of the art in terms of the most important
quality criteria for NCHF: avalanche effect, distribution of outputs, and collision
resistance (already introduced in detail in Section 2.1). Two of those criteria
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(collisions resistance and distribution of outputs) are data-dependent. This
means that collisions and distribution measurements can only be calculated with
relation to a particular key set. Thus, in order to perform reliable comparisons
we must compile a collection of key sets that represents the general features of
most common hashing problems.

In the remainder of this section, we describe the metrics used to compare
NCHF under each criterion, and the key sets we designed for the data-dependent
benchmarks.

6.1.1 Metrics

These are the metrics used to compare the performance of each NCHF under
the different quality criteria:

• Distribution of outputs: We use Bhattacharyya distance as a measure
of how close the outputs of a NCHF are to the ideal uniform distribu-
tion. Bhattacharyya distance is a similarity measure that can be used
to determinate the degree of coincidence of two statistical distributions.
It is closely related to χ2 statistic. In fact, in Aherne et al. [1998], au-
thors deduce that the Bhattacharyya coefficient approximates χ2 statistic,
avoiding in addition some drawbacks that the later is vulnerable to.

To obtain the Bhattacharyya distance, we calculate first the frequency
vector of the NCHF over a key set K, defined as: X = {x0, x1, . . . xn−1},
where n is the number of possible outputs of the hash function, xi is the
number of times that the hash value hi was generated, and p(xi) is the
probability of xi (i.e. p(xi) = xi/|K|). Then, we calculate the Bhat-
tacharyya distance between the frequency vector and the ideal uniform
distribution using Equation 2:

DB(X) = − ln

(
n∑

i=1

√
p(xi)

1

n

)
(2)

• Collision Resistance: We measure the collision rate of each NCHF, calcu-
lated as the ratio of the number of generated collisions to the total number
of hashed keys.

• Avalanche effect: We use avalanche matrices (see Mulvey [2007] or Ap-
pleby [2008]) in which the probability of a change in each input-output
pair of bits deviates from the ideal probability (0.5). We also use error
measures (in terms of RMSE) of the complete avalanche matrices with
respect to the ideal avalanche matrix.

• Speed: In this work the speed is considered as a requisite of NCHF, instead
of a feature, so we do not perform speed comparisons. As we already stated
in Section 5.1, individuals evolved by GP-hash have a limitation on the
number of operations they can perform on each mixing cycle. This way,
we only allow GP-hash to evolve efficient NCHF whose executions times
are below a given threshold. The idea idea is to focus on evolving NCHF
with good distribution, collisions, and avalanche properties, which are the
real important properties, while keeping the execution time bounded.
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6.1.2 Key sets

Jenkins Jenkins [1997] identified four patterns that usually appear in key sets.
These patterns can be summarized as follows :

• Keys consist of common substrings arranged in different orders.

• Keys often differ with respect to only a few bits.

• The only difference between keys is that their lengths are different, i.e.,
“aaaa” vs. “aa”.

• Keys are nearly all zeroes, and only a few bits are set to 1.

According to Jenkins’ experience, most key sets, both human-selected and
computer-generated, match at least one of these patterns.

Another interesting report on how to construct key sets for NCHF evaluation
is Fai [1996], where the author T.C. Fai divides key sets into two classes: real
sets, like those used in McKenzie et al. [1990], and synthetic sets. Inspired by
a 1953 memorandum written by H. P. Luhn for IBM (which is considered by
Donald E. Knuth to be the first hashing publication ever), Fai points out that
the purpose of an NCHF is to disrupt any order or pattern that the keys could
contain to generate the most random possible output. Thus, Fai deduces that
the most difficult key sets should be those that are more compressible; i.e., those
that contain the minimum amount of information, or the maximum amount of
order.

Inspired by the ideas of Jenkins and Fai, we designed eight different key sets
for our experiments: four real, and four generated synthetically for this work:

1. Real key sets:

• NAMES: This set is a list issued by the government of the city of
Buenos Aires, Argentina, which contains all of the names allowed for
newborn babies. In addition to the HTML labels, each line contains
a name, gender, the number of the act that regulates the name, and
some optional information about its origin and meaning. Most of the
characters in each line are HTML labels, which are almost the same
in every line, and thus this set contains keys that are very similar
(i.e., it contains very little information).

• PASSWD: This is a huge text file (41Mb) that contains 3,721,256
common passwords, including alphanumeric combinations and words
in 13 different languages. It is useful for testing the performance of
NCHF against short alphanumeric strings, which are very common
in hashing applications.

• MEGATAB: This key set was extracted from an 18Gb MySQL
table with 100,000,000 rows, each of which contains 26 different data
points for a person: complete name, id number, gender, age, etc.
To construct our key set, we randomly extracted 2000 rows from
the table, and only used the following columns: first name, middle
name, last name, nationality, gender and age. Key sets of this type
that are comprised of aggregations of personal data are quite common
in hashing applications.
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• LCC: This set contains all of the compilation symbols that were
created while compiling the source code of lcc, a retargetable compiler
for ANSI C [Fraser et al., 1995]. Symbol tables for compilers and
lexical analyzers are a paradigmatic application of NCHF.

2. Synthetic key sets:

• SPARSE: This set contains 1000 bit strings of 128 bits each. The
main feature of these keys is that they are almost all zeroes, and only
a few bits are set to 1. They are created from a statistical distribution
that sets the probability of a bit containing a 1 to less than an upper
limit λ = 0.1.

• RANDOM: This set contains 1000 strings of 128 bits. Each bit
has a fixed probability of being set. The probability distribution is
generated randomly in a previous stage, and used to produce all of
the keys. This means that most of the bits are biased toward 1 or 0.

• REPEAT: This set contains 1000 strings of 512 bits each. Keys
of this set are strings composed of a set of substrings arranged in
different orders. To create them, we selected 16 common English
words and created a master string with them. All of the keys of this
set are different permutations of this master string .

• LENGTH: Keys of this set contain only ’a’ characters and blank
spaces in a 90:10 proportion, respectively . The set consists of 1000
keys of between 80 and 512 bits. Keys of this set only differ in length
and the position of the spaces, which is consistent with the third
pattern described by Jenkins. This presents a very difficult test for
NCHF, which are expected to generate different hash values for very
similar strings, like “aaaa” and “aa”, or “aaaa aa” and “aa aaaa”.

6.2 Results

First we show the results of GP-hash with the basic configuration. Then, we
show how the sample size of the Monte Carlo simulation used in the avalanche
fitness calculation can be raised to solve particular problems with special key
sets.

6.2.1 Basic configuration

In the first place we examine the results of the stage 1, including the 50 GP-
hash independent runs and the selection of the 5 best runs. Then, in stage 2,
we compare the selected hashes with the state of the art in non cryptographic
hashing.

Stage 1: Table 4 and Figure 6 summarize the results of the 50 GP-hash runs
with the basic configuration obtained in the experiments of previous sections.
All the 50 executions achieved very good fitness values, between 0.0448 and
0.0523. Differences between executions are very small. This suggest GP-hash is
a very robust system: once the parameters have been correctly set, it is able to
find NCHF with very good avalanche properties almost on every execution. We
already observed this feature during the parameter tuning in Section 5.3. Figure
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7 shows the evolution curves of the 50 GP-hash runs. Gray circles represent the
fitness of the best individual of each run on each generation. The black curve
represents the average of those fitnesses on each generation. As we already
observed during the parameter tuning, GP-hash usually perform most of the
fitness improvements during the earlier generations. In fact, we observe that
around generation 20 all the runs already founded the basic structure of their
best individuals. From generation 20 to the end of the run the computational
effort is only devoted to fine grain adjustments.

Min Average Var (std. dev.) Max
Fitness 0.0448 0.0459 9.2× 10−7 (0.0009) 0.0523
Nodes 16 21 7.6734 (2.7701) 25
Depth 9 12 4.8412 (2.2002) 17

Table 4: Summary of minimum, maximum, average, variance, and standard
deviation values of fitness, number of nodes, and depth.
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Figure 6: Boxplot of the fitness values of the 50 independent runs of GP-hash.

We select the best five GP-hash runs, and extract their best individuals. By
wrapping these individuals into Merkle–Damg̊ard constructions we obtain five
fully functional NCHF. We label these hashes as gp-hash601, gp-hash602, gp-
hash603, gp-hash604, and gp-hash605. We call this five NCHF the gp-hash600
family. The simplified pseudocode of their mixing functions is the following:

//gp-hash601:

(Integer.rotateRight((hval * A0), 10) ^ (A0 * (hval ^ A0)));

//gp-hash602:

(Integer.rotateRight(((hval ^ hval) ^ (A0 * hval)), 10)

^ ((hval ^ A0) * A0));

//gp-hash603:

(((A0 ^ hval) * A0) ^ Integer.rotateRight((hval * A0), 8));

//gp-hash604:

(Integer.rotateRight((A0 ^ (A0 * hval)), 7) ^ (A0 ^ (A0 * hval)));

//gp-hash605:

(Integer.rotateRight((Integer.rotateRight((hval * A0), 4) ^ hval), 3)

^ ((hval ^ A0) * A0));
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Figure 7: Evolution curve of the experiments with the basic configuration. Gray
circles represent the fitness of the best individual of each GP-hash run on each
generation, and black curve is the average of those fitness values.

Stage 2: Next step is to compare gp-hash600 hashes with the ten NCHF
selected as benchmarking. We performed the avalanche, distribution, and colli-
sions tests specified in Section 6.1, and results are very clear: hashes belonging
to gp-hash600 family have outstanding avalanche properties, only comparable
to the best NCHF of the state of the art (Figure 8 shows the avalanche error
of each NCHF), but they are also highly competitive in terms of distribution
of outputs and collisions resistance with all the specified key sets, with only
one single exception: the SPARSE key set. Figure 9 show the Bhattacharyya
distances of the distributions of outputs generated by each NCHF with each key
set. With the SPARSE set most of the gp-hash600 hashes have serious prob-
lems, and generate very poorly distributed outputs. Results of the collisions
tests (not shown here due to space limitations) are consistent with this observa-
tion: except for gp-hash605, all the other hashes of gp-hash600 family produce
four times more collisions than the reference NCHF and, which is worst, they
generate their most probable hash value for up to 487 different keys, when the
average of the reference NCHF is only 4, 3 (more than 100 times better).

In the remainder of this section we focus on the problems with the SPARSE
key set instead of analyzing in detail the complete results of gp-hash600 family.
We are more interested in understanding and solving this problem before.

Problems with the SPARSE key set: Figure 10 shows the frequency of
the hash values generated by lookup3 and gp-hash601. The differences are ob-
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Figure 8: RMSE error between the avalanche matrices of each NCHF and the
ideal avalanche matrix (that contains only 0.5 values). Hashes of the gp-hash600
family obtain avalanche scores only comparable to those obtained by Super-
FastHash, lookup3, and MurmurHash2.

vious: while lookup3 generates very few times most of the possible hash values
(four times maximum), gp-hash601 follows exactly the opposite approach: it
generates most of the times a few oversampled hash values. More precisely,
gp-hash601 generates 487 times the hash value 0x0, and 70% of the input keys
hashed to only five different hash values. It is significative that the most prob-
able hash value is 0x0 when we are hashing a key set like SPARSE in which all
the keys contains almost only zeroes (we already explained the construction of
the key sets in Section 6.1.2).

The reason of this behavior is that the mixing function of most gp-hash600
hashes relies in a multiplication by the input byte of each step. If the last byte
of a key is 0x0, then the last step of the hash function multiplies the internal
state by zero, and the result is always 0x0. When dealing with a key set in
which there are mostly only zeroes, this happens very often.

By design, the avalanche fitness function has the power to detect this kind
of behaviors, penalizing them with poor scores. The problem is that the fitness
function is not calculating the real avalanche error of the individuals, which
will require to sample all the possible 32-bit input values. Instead, it estimates
this error using a Monte Carlo simulation with a sample size that we initially
set to N = 100 in Section 5.1.1. Considering that here are 232 possible input
bit strings, and only 224 of them have only zeros on the last byte, when we
randomly select 100 bit strings, in average we are only sampling 0.37 of zero-
ended strings. This means that most of the times not even one of those bit
strings has influence on the fitness calculation, and this avoids GP-hash to
detect and penalize sensible hashes.

The solution we propose here is to increase the sample size to N = 1000, so
the average number of zero-ended keys sampled raises to 3.7, which should be
more than enough to detect and eliminate the problematic hashes. We analyze
the results obtained with this configuration in next section.
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Figure 9: Bhattacharyya distance between the output distribution generated by
each NCHF for each key set and the ideal uniform distribution (lower distances
are better).
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6.2.2 Raising the sample size to N = 1000

In this experiments we use the same basic configuration than in previous section,
but with two important differences: First, the sample size of the Monte Carlo
simulation used to estimate avalanche fitness is raised to N = 1000. Second,
in order to shorten the execution time of each experiment (the new sample size
means that fitness calculations are 10 times slower) we reduced the number
of generations to 50. This helps maintaining the efficiency of GP-hash while
preserving most of its exploitation capabilities (the most important evolution
always happens before generation 50, as we show in figures 7 and 12).

Stage 1: Table 5, and figures 11 and 12 summarize the results of the 50 GP-
hash runs with the extended sample size. In this case, the evolution curve
is even more abrupt, with most of the fitness improvements happening before
generation 15. Furthermore, the variance of the fitness values is lower than with
N = 100 (1.21×10−8 vs. 9,2×10−7). This is a logical consequence of the greater
sample size. Finally, we notice that the fitness values obtained with this new
fitness configuration are considerably better than with the smaller sample size:
average avalanche fitness is 0.0146 in this case, way better than the previous
value of 0.0459.

Min Average Var (std. dev.) Max
Fitness 0.01431 0.0146 1.21× 10−8 (0.0001) 0.01475
Nodes 18 22.56 3.84 (1.9596) 25
Depth 9 12.64 3.3233 (1.8230) 16

Table 5: Summary of minimum, maximum, average, variance, and standard
deviation values of fitness, number of nodes, and depth.
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Figure 11: Boxplot of the fitness values of the 50 independent runs of GP-hash
with N = 1000 and G = 50.
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Figure 12: Evolution curve of the experiments with N = 1000 and G = 50.
Gray circles represent the fitness of the best individual of each GP-hash run on
each generation, and black curve is the average of those fitness values.
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We select the best five GP-hash runs, and extract their best individuals. By
wrapping these individuals into Merkle–Damg̊ard constructions we obtain five
fully functional NCHF. We label these hashes as gp-hash611, gp-hash612, gp-
hash613, gp-hash614, and gp-hash615. We call this five NCHF the gp-hash610
family. The simplified pseudocode of their mixing functions is the following:

//gp-hash611:

(Integer.rotateRight((hval ^ Integer.rotateRight(((hval ^ (hval ^ A0))

* Integer.rotateRight(hval, 1)), 4)), 3) ^ (A0 * (hval ^ A0)));

//gp-hash612:

(((A0 ^ hval) * hval) ^ (Integer.rotateRight((hval * A0), 13) ^ A0));

//gp-hash613:

(Integer.rotateRight(((A0 * hval) ^ Integer.rotateRight(hval, 1)), 7)

^ (A0 * (A0 ^ hval)));

//gp-hash614:

(((hval ^ A0) * (A0 ^ hval)) ^ Integer.rotateRight((A0 * hval), 7));

//gp-hash615:

((A0 * (hval ^ A0)) ^ Integer.rotateRight((hval * (hval ^ A0)), 10));

Stage 2: The gp-hash610 family obtains even better results in the avalanche
tests than gp-hash600. The avalanche matrices of the gp-hash610 hashes (Figure
13) are almost perfect, with all the squares close to pure white. In fact, the total
error (in terms of RMSE) of their avalanche matrices are between 0.0022 and
0.0011 (see Figure 14). Only MurmurHash2, the most powerful NCHF in terms
of avalanche effect, is able to outperform gp-hash610 functions in the avalanche
tests.

5 10 15 20 25 30

5
10

15
20

25
30

gp−hash611  Avalanche Matrix
Total RMSE =  0.00227483476434622

Input Bits

O
ut

pu
t B

its

5 10 15 20 25 30

5
10

15
20

25
30

gp−hash612  Avalanche Matrix
Total RMSE =  0.00118068060598935

Input Bits

O
ut

pu
t B

its

5 10 15 20 25 30

5
10

15
20

25
30

gp−hash613  Avalanche Matrix
Total RMSE =  0.00183117773001592

Input Bits

O
ut

pu
t B

its

5 10 15 20 25 30

5
10

15
20

25
30

gp−hash614  Avalanche Matrix
Total RMSE =  0.00175241915993559

Input Bits

O
ut

pu
t B

its

5 10 15 20 25 30

5
10

15
20

25
30

gp−hash615  Avalanche Matrix
Total RMSE =  0.00133374287134927

Input Bits

O
ut

pu
t B

its

Figure 13: Avalanche matrices of functions gp-hash611, gp-hash612, gp-
hash613, gp-hash614 y gp-hash615.

Furthermore, the results of the Bhattacharyya distance tests (Figure 15)
show that gp-hash610 functions are also competitive in terms of distribution of
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Figure 14: RMSE error between the avalanche matrices of each NCHF and the
ideal avalanche matrix (that contains only 0.5 values). Hashes of the gp-hash610
family obtain avalanche scores only comparable to those of MurmurHash2, the
NCHF with the best avalanche properties.

outputs: gp-hash612 is the best function to hash the key sets LCC, NAMES,
and RANDOM, while gp-hash611 is the best NCHF available for the key set
SPARSE. Other functions like gp-hash615 or gp-hash614 also deliver very decent
distributions on some key sets, in which they are the second best NCHF. On
the other hand, some gp-hash610 functions perform poorly in some sets. This
is the case of gp-hash615 on MEGATAB and VARIABLE sets, or gp-hash613
on LCC.

It is also important to note that the larger sample size used to evolve
gp-hash610 family obviously improves the performance os GP-hash with the
SPARSE key set. Although gp-hash614 still have problems with zero-ended
strings, gp-hash613 obtains competitive results, and there is even one hash, gp-
hash611, that achieves in this set the best distribution among all the NCHF
tested.

Results of the collisions tests (shown in Figure 16) are even better: on seven
of the eight key sets tested, a function belonging to the gp-hash610 family is the
best in terms of collisions rate. The only key set in which gp-hash610 does not
win is RANDOM, but in this case, gp-hash612, gp-hash614, and gp-hash613 are
the second, third, and fourth best function respectively.

6.2.3 Discussion

Functions of the gp-hash600 family obtain interesting results. They show very
high levels of avalanche effect, only comparable to those obtained by lookup3,
SuperFastHash, and MurmurHash2. They also obtain competitive results in
the distribution and collisions tests. However, they have a flaw that greatly
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Figure 15: Bhattacharyya distance between the output distribution generated
by each NCHF for each key set and the ideal uniform distribution (lower dis-
tances are better).
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Figure 16: Collisions rate of each NCHF for each key set (lower collisions rates
are better).
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affects their performance with the SPARSE key set, which contains a very high
proportion of zero-ended keys. This flaw is a consequence of the reduced sample
size (N = 100) used in the Monte Carlo simulation that estimates the avalanche
fitness. With N = 100, it is very unlikely that any zero-ended string is sampled
during the fitness evaluation, so the GP-hash system is unable to exert an
evolutionary pressure towards unflawed individuals.

Increasing this sample size to N = 1000 has proven to be effective: the
gp-hash610 family is not generally affected by this problem, and in fact, gp-
hash611 has proven to be a very good choice for hashing the SPARSE key set.
From a practical point of view, the sample size should be adjusted according
to the probability of the patterns contained in the key sets of our particular
application.

Finally, we want to stress that, in general, gp-hash610 functions are com-
petitive with the state of the art in non cryptographic hashing, delivering out-
standing avalanche properties, competitive results in the distribution of outputs
tests, and exceptional collisions resistances. We want to stress that this func-
tions were automatically designed by GP-hash, and we can safely claim that
they are at least as good as a selection of the best NCHF created by human
experts.

7 Conclusions

Hashing is of capital importance in the software industry. The possibility of
finding objects in a set in constantO(1) time, independently of the size of the set,
is essential for software engineers. However, very often they do not pay enough
attention to the critical process of designing appropriate hash functions for their
particular problems. This is understandable: designing good hash functions is
a difficult process due to the extremely nonlinear constructions they use. Hash
functions are designed in such a way that humans can not easily invert them,
so it is perfectly natural that these expressions are difficult to design.

However, the same design principles that makes this process difficult for
humans, also seems to make it very suitable for GP: Highly non-linear domains,
in which the interrelationships among the relevant variables is unknown or not
completely understood, are precisely the most adequate for GP, as stated in
[Poli et al., 2008].

Surprisingly, there is not much research about the application of GP, Evolu-
tionary Computation, or Artificial Intelligence to the design of good NCHF. In
section 4, we reviewed the most interesting papers on this topic that we know
of. The approaches of those works have some merit, but we still think that this
topic really worths a lot more research.

The central claim of this work is that it is possible to use GP to substitute
human experts in the challenging task of designing high-quality, general purpose
NCHF. For this task, we created the GP-hash system, and we learned some
important facts in the process.

The most important difference with other works on the application of Evo-
lutionary Computation to the automatic design of hashes is the fitness function.
Previous approaches invariably use fitness functions based on the collisions re-
sistance of the evolved hashes, which is a problem, because collisions properties
are data dependent: we can only measure the collisions resistance of a hash
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with relation to a specific key set. This lack of generality is a major drawback
when evolving general purpose NCHF, which are expected to deliver a proper
performance with a great number of very different key sets. On the other hand,
avalanche effect is a statistical measure of an intrinsic property of the mixing
function, and thus, it is completely independent of the hashed key set. Further-
more, this property is also a measure of the ability of the hash to disrupt the
input patterns, and to efficiently spread the input bits over the internal state,
producing an apparently unpredictable output. These concepts are closely re-
lated to a good distribution of outputs (the more random the output looks, the
more evenly the outputs distribute) and thus with the collisions rate (biased
distributions generate more collisions than pure uniform distributions). Based
on this, we hypothesize that avalanche effect could be a very good estimator
of the overall quality of a NCHF. And the results shown in Section 6.2 seem
to support this claim: hashes evolved with avalanche fitness have outstanding
avalanche properties, and they also perform very well in the distribution and
collisions tests.

Concerning the terminals and functions set, we gathered together ten of the
most important functions of the hashing literature and of the software industry.
We studied the operators and variables they use to generate a basic terminal and
function set, and then we applied a methodology similar to [Wang and Soule,
2004] to refine this set. We discovered some interesting facts: First, that magic
constants are not needed to evolve hashes with high avalanche effect; Second,
that two very popular operators like addition and xor form a group, and only one
of them is needed (this is intuitively supported by the fact that hash functions
that do not use addition, always use xor, and vice versa). These two discovers
could help other researchers that want to apply Evolutionary Algorithms to
hashing, but they also suggest hashing experts that magic constants may not
be necessary in the construction of non cryptographic hashes.

We also found out that GP-hash system is highly robust, and can work well
with very different parameter configurations. This also supports the accepted
idea that GP is a very robust technique in general.

Finally, we experimentally demonstrate the utility of GP-hash by generating
a set of new general purpose NCHF that are competitive with the state of the
art in non cryptographic hashing. We used GP-hash to generate two different
families of NCHF. We call them gp-hash600 and gp-hash610. The functions
of the former have a weakness that makes them fail when hashing zero-ended
keys, but this flaw was addressed and solved in the gp-hash610 family. Functions
belonging to this family have outstanding avalanche properties, only surpassed
by MurmurHash2, the NCHF with the best avalanche properties of the state
of the art. Furthermore, gp-hash610 hashes are competitive as well in terms
of collisions resistance and distribution of outputs with a selection of the ten
most widely-used NCHF of the literature. All these facts supports the central
claim of this work: that GP, when using the avalanche fitness and an appropriate
functions and terminals set, is able to generate non cryptographic hash functions
that are similar to those generated by hashing experts with years of experience.
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