

ALGORITHMS AND IMPLEMENTATION

ARCHITECTURES FOR HEBBIAN NEURAL

NETWORKS

J. Andrés Berzal and Pedro J. Zufiria

Grupo de Redes Neuronales

Dpto. de Matemática Aplicada a las Tecnologías de la Información

E.T.S. Ingenieros de Telecomunicación, Universidad Politécnica de Madrid

Ciudad Universitaria S/N, E-28040 Madrid, SPAIN

{abf,pzz}@mat.upm.es

Abstract. Systolic architectures for Sanger and Rubner Neural Networks (NNs)

are proposed, and the local stability of their learning rules is taken into account

based on the indirect Lyapunov method. In addition, these learning rules are

improved for applications based on Principal Component Analysis (PCA). The

local stability analysis and the systolic architectures for Sanger NN and Rubner

NN are presented in a common framework.

1 Introduction

This paper presents a type of systolic architecture for two types of hebbian NNs,

Sanger NN and Rubner NN (with linearized hebbian training approach for direct

connections) [1, 2, 4]. The proposed NNs and their architectures implement an on-line

PCA from a sample sequence of a stationary vector stochastic process, their weights

converging to the eigenvectors of the autocorrelation matrix associated with the input

process. The main eigenvector, related to the largest eigenvalue, is approximated by

the weights of the first neuron, and so on for the remaining eigenvectors. Hence, PCA

finds the uncorrelated directions of maximum variance in the data space, as well as

providing the optimal linear projection in the least square sense. PCA is a basic

procedure for implementing the Karhunen-Loeve Transform (KLT), widely employed

in signal processing systems. Since these NNs implement the KLT from the input data

directly, they can perform real time signal processing tasks without explicit

computation of the autocorrelation matrix, as well its eigenvalues and eigenvectors

(image coding, component analysis of multispectral images, etc) [1, 2, 5, 7].

The implementations of hebbian NNs with a single processor have speed

limitations, so they are not appropriate for real time applications being very

demanding in computation, high volume data, etc. On the other hand, the systolic

architectures with two or more processors are an alternative to the single processor

implementations providing parallel processing, modular hardware implementation for

VLSI, etc [4]. In fact, the architectures introduced by this paper are a practical

hardware alternative for the real time adaptive calculation of the PCA.

In section 2, Sanger NN and Rubner NN and their training algorithms are

presented. In section 3, the local stability of these algorithms is enunciated taking into

account the demonstration based on the indirect Lyapunov method. This analysis is

appropriate for practical numerical or hardware implementations, where NNs are

considered as discrete time dynamical systems. In section 4, these training algorithms

are improved extending the PCA to the covariance matrix besides the autocorrelation

matrix, Adaptive Learning Rate (ALR), etc. In sections 5 and 6, for both Sanger NN

and linearized Rubner NN, some new systolic architectures are presented for

hardware implementation. Concluding remarks are indicated in section 7.

2 Sanger NN and Rubner NN Learning Rules and the KLT

The Sanger NN structure and its learning rule, for M neurons with N inputs, are

defined by:

 
=

=

N

j

jiji xwy

1

, NMMi  1,1 , (1)














−+= 

=

+

i

k

nkjkjiinijnij wyxyww

1

,,1,  , 
i

 , (2)

where yi, xj, wij and i are the output, input, weights of the net, and learning rate,

respectively. Direct weights are obtained by Sanger learning rule, a modified hebbian

learning rule, since it incorporates a second term (Eq. 2). This learning rule leads to

the weight vectors to approach the eigenvectors of the autocorrelation matrix of the

input samples (patterns), C=E[xxT].

On the other hand, the Rubner NN structure and its learning rule, for M neurons

with N inputs, are defined by:

  
=



=

+=

N

j

ij

j

jijjiji yuxwy

1 1

, NMMi  1,1 , (3)

njniinij

njniinij

nij
y

xyw
w

,,,

,,,

1,
xw 



+

+
=+ , njniinijnij yyuu ,,,1, −=+ , ii  , , (4)

where yi represents the output, xj is an input, wij are the direct weights, uij are the

lateral weights between yj and yi, and i and i are the learning rates for the direct and

lateral weights, respectively. The direct weights are adjusted upon normalized

hebbian learning and the lateral weights, upon antihebbian learning (Eq. 4). The

normalization of the direct weights of the Rubner learning rule can be avoided for

small i, so that this learning rule for wij can be approximated by the linear term of the

Taylor expansion [2] (Eq. 5). Also, this linear formulation reduces the complexity of

the learning rule in terms of operations (processing time).

For Rubner NN and its linearized version, the direct weights converge to the

eigenvectors of the autocorrelation matrix of the input samples (patterns), C=E[xxT],

and the lateral weights converge to the null vector, 0.

 ()w w y x wij n ij n i i n j n i n
T

n ij n, , , , , ,()+ = + −1  w x , i . (5)

3 Local Stability for Sanger NN and Rubner NN Learning Rules

The local stability of the Sanger and linearized Rubner learning rules is analytically

proved via the indirect Lyapunov method [2]. Other studies to prove the local stability

of Sanger and Rubner learning rules are based on their associated ODE (Ordinary

Differential Equation) [4, 6]. However, in this paper the local stability study used

maintains its discrete time evolution. Therefore, it allows to obtain the local stability

conditions taking into account the learning rates.

For the indirect Lyapunov method, the Sanger and linearized Rubner learning rules

are expressed in terms of the weights, and the mean operator is applied to both sides

of the learning equations which are transformed from the deterministic framework to

the probabilistic one. Their fixed points are obtained assuming that input samples (x)

and weights (wi and ui only for linearized Rubner learning rule) are statistically

independent, and that there are different scales of time for the evolution of each

weight. For Sanger, its fixed points take the form of vector ej (ij) and for Rubner,

its fixed points are vector pairs (ej, 0) (ij), where ej is an eigenvector of C=E[xxT].

Applying Lyapunov method, for Sanger learning rule, the asymptotically stable fixed

points are wi=ei if i<1/i and for linearized Rubner learning rule, they are (wi,

ui)=(ei, 0) if i<1/i (assuming ii).

4 Improvements for Sanger NN and Rubner NN

The performance of Sanger and Rubner learning algorithms can be improved [1, 3]:

– The direct weights can converge to the eigenvectors of the covariance matrix of the

input samples. This is accomplished by a dynamic computation of the time mean

value of the input samples nx (Eq. 6) and subtracting this value to the input to the

NN. nx converges to E[x] in probability, assuming xn are uniform random variables

with finite variance.

n

nn
nn

1
1

−
−

−
+=

xx
xx , 11 xx = . (6)

– The dynamic evaluation of the eigenvalues in
~

 (Eq. 7) of the autocorrelation or

covariance matrix of the input samples, whose magnitude and location (neuron i)

provides information about the importance and the convergence of the weights

(eigenvectors). ni,

~
 converges to E[yi

2]=i in probability, being yi
2 uniform

random variables with finite variance (assuming the weights of the NN converge to

their fixed points).

n

y nini

nini

1,
2
,

1,,

~
~~ −

−

−
+=


 ,

niniini yy 2
,

2
1,,

~
,

~
==  . (7)

– The Adaptive Learning Rate (ALR) defined by Eq. 8 for each neuron accelerates

and synchronises the training phase. This is only useful for the Sanger NN, since

for the Rubner NN it amplifies the oscillation in each component of the weights

[1]. The experimental simulations of Sanger and Rubner learning algorithms have

proved that the ALR does not modify the convergence properties (fixed points and

local stability) with respect to their initial algorithms (section 3).

ni

n
ni

,

,1
0, ~

~




 = , 0

~
, ni . (8)

5 Systolic Architectures for Hebbian Neural Networks

In this section, we propose some new systolic architectures for the Sanger NN and the

Rubner NN which implement the retrieving phase (input and output function of the

NN) and training phase for both NN. The graphical representation of the systolic

architecture is given by the Dependence Graph (DG). It shows the topology of the

network, nodes, dependencies (input and output), flow of data, etc, and all of them

define the function to implement. The systolic architecture is suitable for hebbian

NNs and it is a 2-D array (Fig. 1). The number of rows and columns correspond to the

number of output and inputs of the NN respectively. The operations of each node are

basically multiply-accumulate and commutation.

The projection of the DGs onto a linear array of processors defines the architecture.

The vertical projection for the hebbian NNs, where each processor executes a row of

the DG (neuron) is selected in this paper since it gives more simplicity than others

(Fig. 2). The number of cycles to process one input sample for the Sanger NN linear

arrays for both retrieving and training architectures is N+M-1, less than NM cycles

required by classical architectures (one processor). For linearized Rubner NN

architectures this situation also happens, namely the number of cycles for their linear

arrays for both retrieving and training architectures is N+2M-1, less than NM+(M-

1)M/2 cycles required by classical architectures. The interconnection between

retrieving and training linear arrays for linerized Rubner NN requires a

synchronization for input/output data, unnecessary for Sanger NN.

The processors, flow of data, etc, for these linear arrays are different and mainly

they depend on the NN and the function to implement (retrieving or training):

– Retrieving Linear Array of Sanger NN (Fig. 2). Its processor j has as serial

inputs the weights of the neuron j (wj) stored in a circular register and the

components of the input samples (x). After N cycles this processor provides the

output of neuron j (yj). The processor j+1 receives x in serial with a delay of one

cycle; then yj+1 is obtained one cycle later than yj. The cycle for these processors is

determined mainly by the time needed to execute one multiplication and one

addition in serial.

Fig. 1. Dependence Graphs (DGs) of a systolic architectures for Sanger NN and Rubner NN.

– Retrieving Linear Array of linearized Rubner NN (Fig. 2). Its processor j

differs from the processor j of the retrieving linear array of the Sanger NN in

several aspects for the processor j, its computing time to provide yj is N+j-1 cycles,

the direct and lateral weights (wj and uj) are stored in a circular register (first wj), a

new output for the scalar product wT
jx is incorporated, and processor j sends to

processor j+1 x and yk (0<k<j) in serial. The cycle for this processor is determined

mainly by the time needed to execute two multiplications and one addition in

serial.

wm1

w11

w21

w31

w12

w22

w32

w13

x1

w33

wm3

w1n

w2n

w3n

wmnwm2

x2 x3 xn

w23

j

i

y1

y2

y3

ym

0

0

0

0 wm1

w11

w21

w31

w12

w22

w32

w13

x1

w33

wm3

w1n

w2n

w3n

wmnwm2

x2 x3 xn

w23

Sanger NN
Retrieving Phase Training Phase

u21

u32

um1 um2

u31

y1

y2

umm-1

y3

ym

j

i

0

0

0

0 wm1

w11

w21

w31

w12

w22

w32

w13

x1

w33

wm3

w1n

w2n

w3n

wmnwm2

x2 x3 xn

w23

wT
1x

wT
2x

wT
3x

wT
mx

Rubner NN

Retrieving Phase

x1 x2 x3 xn

wm1

w11

w21

w31

w12

w22

w32

w13

w33

wm3

w1n

w2n

w3n

wmnwm2

w23

wT
1x

wT
2x

wT
3x

wT
mx

y1

y2

y3

ym

Training Phase

Fig. 2. Linear arrays of processors (vertical projection of the DG) and their processor schemes

of a systolic architecture for Sanger NN and Rubner NN (retrieving and training phases).

– Training Linear Array of Sanger NN (Fig. 2). Its processor j has as inputs the

weights of the neuron j (wj) stored in a circular register, its associated output (yj)

and the components of the weight increments of the previous neuron normalized by

its output (wj-1/yj-1), except for the first processor where we have the components

of the input samples (x). After N cycles this processor provides the weight

increment wj (update wj next step). The processor j+1 receives wj/yj in serial

with a delay of one cycle then wj+1 is obtained one cycle later than wj. The cycle

for these processors is determined mainly by the time needed to execute two

multiplications and one subtraction in serial.

– Training Linear Array of linearized Rubner NN (Fig. 2). Its processor j differs

from the processor j of the training linear array of the Sanger NN in the following

aspects: the computing time to provide wj and uj for the neuron j are N+j-1

(update wj and uj next step), the direct and null weights (wj and 0) are stored in a

circular register (first wj), a new input for the scalar product wT
jx is incorporated,

and the processor j sends to processor j+1 x and and yk (0<k<j) in serial. The cycle

for this processor is determined mainly by the time needed to execute two

multiplications and one subtraction in serial. This linear array is valid for APEX

NN [4] if the null weights are replaced by uj.

For the training phase there is an alternative to the Data Adaptive (DA) scheme

described in the previous points, weights being updated before the next input pattern

is processed (Fig. 2). This is the Block Adaptive (BA) scheme, the weight update

being postponed until the end of each training data block. Note that the BA scheme

requires less computation than the DA scheme since the weight updating is done less

frequently according to the size of the blocks. On the other hand, the size of the

blocks should affect minimally to the convergence speed versus the computing time.

Fig. 3. Improving the features of the processors of the systolic architectures for Sanger NN and

Rubner NN: (a) PCA with the covariance matrix, (b) ALR and (c) eigenvalue calculation.

6 Improvements for the Hebbian NN Architectures

The improvements for the Sanger NN and Rubner NN defined in section 4 can also be

implemented by the systolic linear array architectures.

These linear architectures can be adapted to support PCA with covariance matrix if

the input for input samples incorporates a preprocessing input block. This block

wji

yj

uj i  wji
y2

1

y2
j

y2
1

y2
1

uj i  wji
y2

1

y2
j

wji

yj

x

..

y2
1

y2
1

jyj

yj

x

j

(a) (b) (c)

..

‘1’

xn

xn

xn-xn

nx

xn

xn-xn

should have a dynamic time mean unit (Fig. 3.a) with circular registers (memory for

each component) synchronized with the components of the input samples, then the

input for the Sanger NN or Rubner NN is the output of the dynamic time mean unit

minus the initial input. The cycle of this block is the time needed for two subtractions,

one sum and one division in serial. As well, it is possible that these linear array

architectures use ALR. Then, the weight increment outputs of each processor are

treated by other processor which modulates the increments according to Eq. 8 (Fig.

3.b). The cycle of this processor is the time needed for two multiplications, the time

for one step of the dynamic mean value unit and one division in serial. The eigenvalue

associated with each neuron can be calculated using a processor for each neuron

whose input is the output of its associated neuron (retrieving array processor) and the

output is the time mean value of its square input which converges to the eigenvalue of

its associated neuron (Fig. 3.c). The cycle of this processor is the time for one

multiplication and the time for one step of the dynamic mean value unit.

7 Concluding Remarks

The present work has focused on the study of Sanger NN and Rubner NN, as well as

for Rubner NN its linearized formulation, and a new systolic architecture for their

implementation. First of all, the presented NN has been introduced from their

empirical formulation, some improvements of their algorithms have been addressed

and their local stability has been enunciated. Finally, a systolic architecture for these

NNs is described using its DG and projected on a linear array of processors including

the improvements for their algorithms.

References

1. Berzal, J.A., Zufiria, P.J. and Rodríguez, L.: Implementing the Karhunen-Loeve Transform

via Improved Neural Networks. Proceedings of the International Conference on Engineering

Applications of Neural Networks, London 15-17 June 1996, 375-378.

2. Berzal, J.A. and Zufiria, P.J.: Linearized Trainning of Hebbian Neural Networks, Aplication

to Multispectral Image Processing. Proceedings of the International Conference on

Engineering Applications of Neural Networks, Gibraltar 10-12 June 1998, 1-8.

3. Chen, L.H. and Chang, S.: An adaptive Learning Algorithm for Principal Component

Analysis. IEEE, Transactions on Neural Networks, September 1995, 1255-1263.

4. Diamantaras K.I. and Kung, S. Y.: Principal Component Neural Networks, Theory and

Applications. John Wiley & Sons, Inc, 1994.

5. Dony, R.D. and Haykin, S.: Neural Networks Approaches to Image Compression.

Proceedings of the IEEE, February 1995, 288-303.

6. Weingessel, A. and Hornik, K.: Local PCA Algorithms. IEEE, Transactions on Neural

Networks, November 2000, 1242-1250.

7. Zufiria, P.J., Berzal, J.A., Martínez, M.A. and Fernández Serdán, J.M.: Neural Network

Processing of Satellite Data for the Nowcasting and Very Short Range Forecasting.

Proceedings of the International Conference on Engineering Applications of Neural

Networks, Warsaw, 13-15 September 1999, 241-246.

