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Abstract. Systolic architectures for Sanger and Rubner Neural Networks (NNs) 

are proposed, and the local stability of their learning rules is taken into account 

based on the indirect Lyapunov method. In addition, these learning rules are 

improved for applications based on Principal Component Analysis (PCA). The 

local stability analysis and the systolic architectures for Sanger NN and Rubner 

NN are presented in a common framework. 

1 Introduction 

This paper presents a type of systolic architecture for two types of hebbian NNs, 

Sanger NN and Rubner NN (with linearized hebbian training approach for direct 

connections) [1, 2, 4]. The proposed NNs and their architectures implement an on-line 

PCA from a sample sequence of a stationary vector stochastic process, their weights 

converging to the eigenvectors of the autocorrelation matrix associated with the input 

process. The main eigenvector, related to the largest eigenvalue, is approximated by 

the weights of the first neuron, and so on for the remaining eigenvectors. Hence, PCA 

finds the uncorrelated directions of maximum variance in the data space, as well as 

providing the optimal linear projection in the least square sense. PCA is a basic 

procedure for implementing the Karhunen-Loeve Transform (KLT), widely employed 

in signal processing systems. Since these NNs implement the KLT from the input data 

directly, they can perform real time signal processing tasks without explicit 

computation of the autocorrelation matrix, as well its eigenvalues and eigenvectors 

(image coding, component analysis of multispectral images, etc) [1, 2, 5, 7]. 

The implementations of hebbian NNs with a single processor have speed 

limitations, so they are not appropriate for real time applications being very 

demanding in computation, high volume data, etc. On the other hand, the systolic 

architectures with two or more processors are an alternative to the single processor 

implementations providing parallel processing, modular hardware implementation for 



 

 

VLSI, etc [4]. In fact, the architectures introduced by this paper are a practical 

hardware alternative for the real time adaptive calculation of the PCA. 

In section 2, Sanger NN and Rubner NN and their training algorithms are 

presented. In section 3, the local stability of these algorithms is enunciated taking into 

account the demonstration based on the indirect Lyapunov method. This analysis is 

appropriate for practical numerical or hardware implementations, where NNs are 

considered as discrete time dynamical systems. In section 4, these training algorithms 

are improved extending the PCA to the covariance matrix besides the autocorrelation 

matrix, Adaptive Learning Rate (ALR), etc. In sections 5 and 6, for both Sanger NN 

and linearized Rubner NN, some new systolic architectures are presented for 

hardware implementation. Concluding remarks are indicated in section 7. 

2 Sanger NN and Rubner NN Learning Rules and the KLT 

The Sanger NN structure and its learning rule, for M neurons with N inputs, are 

defined by: 
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where yi, xj, wij and i are the output, input, weights of the net, and learning rate, 

respectively. Direct weights are obtained by Sanger learning rule, a modified hebbian 

learning rule, since it incorporates a second term (Eq. 2). This learning rule leads to 

the weight vectors to approach the eigenvectors of the autocorrelation matrix of the 

input samples (patterns), C=E[xxT]. 

On the other hand, the Rubner NN structure and its learning rule, for M neurons 

with N inputs, are defined by:  
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where yi represents the output, xj is an input, wij are the direct weights, uij are the 

lateral weights between yj and yi, and i and i are the learning rates for the direct and 

lateral weights, respectively. The direct weights are adjusted upon normalized 

hebbian learning and the lateral weights, upon antihebbian learning (Eq. 4). The 

normalization of the direct weights of the Rubner learning rule can be avoided for 

small i, so that this learning rule for wij can be approximated by the linear term of the 



 

 

Taylor expansion [2] (Eq. 5). Also, this linear formulation reduces the complexity of 

the learning rule in terms of operations (processing time). 

For Rubner NN and its linearized version, the direct weights converge to the 

eigenvectors of the autocorrelation matrix of the input samples (patterns), C=E[xxT], 

and the lateral weights  converge to the null vector, 0. 

 ( )w w y x wij n ij n i i n j n i n
T

n ij n, , , , , ,( )+ = + −1  w x , i . (5) 

3 Local Stability for Sanger NN and Rubner NN Learning Rules 

The local stability of the Sanger and linearized Rubner learning rules is analytically 

proved via the indirect Lyapunov method [2]. Other studies to prove the local stability 

of Sanger and Rubner learning rules are based on their associated ODE (Ordinary 

Differential Equation) [4, 6]. However, in this paper the local stability study used 

maintains its discrete time evolution. Therefore, it allows to obtain the local stability 

conditions taking into account the learning rates. 

For the indirect Lyapunov method, the Sanger and linearized Rubner learning rules 

are expressed in terms of the weights, and the mean operator is applied to both sides 

of the learning equations which are transformed from the deterministic framework to 

the probabilistic one. Their fixed points are obtained assuming that input samples (x) 

and weights (wi and ui only for linearized Rubner learning rule) are statistically 

independent, and that there are different scales of time for the evolution of each 

weight. For Sanger, its fixed points take the form of vector ej (ij) and for Rubner, 

its fixed points are vector pairs (ej, 0) (ij), where ej is an eigenvector of C=E[xxT]. 

Applying Lyapunov method, for Sanger learning rule, the asymptotically stable fixed 

points are wi=ei if i<1/i and for linearized Rubner learning rule, they are (wi, 

ui)=(ei, 0) if i<1/i (assuming ii ). 

4 Improvements for Sanger NN and Rubner NN 

The performance of Sanger and Rubner learning algorithms can be improved [1, 3]: 

– The direct weights can converge to the eigenvectors of the covariance matrix of the 

input samples. This is accomplished by a dynamic computation of the time mean 

value of the input samples nx (Eq. 6) and subtracting this value to the input to the 

NN. nx converges to E[x] in probability, assuming xn are uniform random variables 

with finite variance. 
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– The dynamic evaluation of the eigenvalues in
~

 (Eq. 7) of the autocorrelation or 

covariance matrix of the input samples, whose magnitude and location (neuron i) 



 

 

provides information about the importance and the convergence of the weights 

(eigenvectors). ni,

~
  converges to E[yi

2]=i in probability, being yi
2 uniform 

random variables with finite variance (assuming the weights of the NN converge to 

their fixed points). 
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– The Adaptive Learning Rate (ALR) defined by Eq. 8 for each neuron accelerates 

and synchronises the training phase. This is only useful for the Sanger NN, since 

for the Rubner NN it amplifies the oscillation in each component of the weights 

[1]. The experimental simulations of Sanger and Rubner learning algorithms have 

proved that the ALR does not modify the convergence properties (fixed points and 

local stability) with respect to their initial algorithms (section 3). 
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5 Systolic Architectures for Hebbian Neural Networks 

In this section, we propose some new systolic architectures for the Sanger NN and the 

Rubner NN which implement the retrieving phase (input and output function of the 

NN) and training phase for both NN. The graphical representation of the systolic 

architecture is given by the Dependence Graph (DG). It shows the topology of the 

network, nodes, dependencies (input and output), flow of data, etc, and all of them 

define the function to implement. The systolic architecture is suitable for hebbian 

NNs and it is a 2-D array (Fig. 1). The number of rows and columns correspond to the 

number of output and inputs of the NN respectively. The operations of each node are 

basically multiply-accumulate and commutation. 

The projection of the DGs onto a linear array of processors defines the architecture. 

The vertical projection for the hebbian NNs, where each processor executes a row of 

the DG (neuron) is selected in this paper since it gives more simplicity than others 

(Fig. 2). The number of cycles to process one input sample for the Sanger NN linear 

arrays for both retrieving and training architectures is N+M-1, less than NM cycles 

required by classical architectures (one processor). For linearized Rubner NN 

architectures this situation also happens, namely the number of cycles for their linear 

arrays for both retrieving and training architectures is N+2M-1, less than NM+(M-

1)M/2 cycles required by classical architectures. The interconnection between 

retrieving and training linear arrays for linerized Rubner NN requires a 

synchronization for input/output data, unnecessary for Sanger NN. 

The processors, flow of data, etc, for these linear arrays are different and mainly 

they depend on the NN and the function to implement (retrieving or training): 

– Retrieving Linear Array of Sanger NN (Fig. 2). Its processor j has as serial 

inputs the weights of the neuron j (wj) stored in a circular register and the 



 

 

components of the input samples (x). After N cycles this processor provides the 

output of neuron j (yj). The processor j+1 receives x in serial with a delay of one 

cycle; then yj+1 is obtained one cycle later than yj. The cycle for these processors is 

determined mainly by the time needed to execute one multiplication and one 

addition in serial. 

Fig. 1. Dependence Graphs (DGs) of a systolic architectures for Sanger NN and Rubner NN. 

– Retrieving Linear Array of linearized Rubner NN (Fig. 2). Its processor j 

differs from the processor j of the retrieving linear array of the Sanger NN in 

several aspects for the processor j, its computing time to provide yj is N+j-1 cycles, 

the direct and lateral weights (wj and uj) are stored in a circular register (first wj), a 

new output for the scalar product wT
jx is incorporated, and processor j sends to 

processor j+1 x and yk (0<k<j) in serial. The cycle for this processor is determined 

mainly by the time needed to execute two multiplications and one addition in 

serial. 
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Fig. 2. Linear arrays of processors (vertical projection of the DG) and their processor schemes 

of a systolic architecture for Sanger NN and Rubner NN (retrieving and training phases). 

– Training Linear Array of Sanger NN (Fig. 2). Its processor j has as inputs the 

weights of the neuron j (wj) stored in a circular register, its associated output (yj) 



 

 

and the components of the weight increments of the previous neuron normalized by 

its output (wj-1/yj-1), except for the first processor where we have the components 

of the input samples (x). After N cycles this processor provides the weight 

increment wj (update wj next step). The processor j+1 receives wj/yj in serial 

with a delay of one cycle then wj+1 is obtained one cycle later than wj. The cycle 

for these processors is determined mainly by the time needed to execute two 

multiplications and one subtraction in serial. 

– Training Linear Array of linearized Rubner NN (Fig. 2). Its processor j differs 

from the processor j of the training linear array of the Sanger NN in the following 

aspects: the computing time to provide wj and uj for the neuron j are N+j-1 

(update wj and uj next step), the direct and null weights (wj and 0) are stored in a 

circular register (first wj), a new input for the scalar product wT
jx is incorporated, 

and the processor j sends to processor j+1 x and and yk (0<k<j) in serial. The cycle 

for this processor is determined mainly by the time needed to execute two 

multiplications and one subtraction in serial. This linear array is valid for APEX 

NN [4] if the null weights are replaced by uj. 

For the training phase there is an alternative to the Data Adaptive (DA) scheme 

described in the previous points, weights being updated before the next input pattern 

is processed (Fig. 2). This is the Block Adaptive (BA) scheme, the weight update 

being postponed until the end of each training data block. Note that the BA scheme 

requires less computation than the DA scheme since the weight updating is done less 

frequently according to the size of the blocks. On the other hand, the size of the 

blocks should affect minimally to the convergence speed versus the computing time. 

Fig. 3. Improving the features of the processors of the systolic architectures for Sanger NN and 

Rubner NN: (a) PCA with the covariance matrix, (b) ALR and (c) eigenvalue calculation. 

6 Improvements for the Hebbian NN Architectures 

The improvements for the Sanger NN and Rubner NN defined in section 4 can also be 

implemented by the systolic linear array architectures. 

These linear architectures can be adapted to support PCA with covariance matrix if 

the input for input samples incorporates a preprocessing input block. This block 

wji

yj

uj i      wji
y2

1

y2
j

y2
1

y2
1

uj i      wji
y2

1

y2
j

wji

yj

x

..

y2
1

y2
1

jyj

yj

x

j

(a) (b) (c)

..

‘1’

xn

xn

xn-xn

nx

xn

xn-xn



 

 

should have a dynamic time mean unit (Fig. 3.a) with circular registers (memory for 

each component) synchronized with the components of the input samples, then the 

input for the Sanger NN or Rubner NN is the output of the dynamic time mean unit 

minus the initial input. The cycle of this block is the time needed for two subtractions, 

one sum and one division in serial. As well, it is possible that these linear array 

architectures use ALR. Then, the weight increment outputs of each processor are 

treated by other processor which modulates the increments according to Eq. 8 (Fig. 

3.b). The cycle of this processor is the time needed for two multiplications, the time 

for one step of the dynamic mean value unit and one division in serial. The eigenvalue 

associated with each neuron can be calculated using a processor for each neuron 

whose input is the output of its associated neuron (retrieving array processor) and the 

output is the time mean value of its square input which converges to the eigenvalue of 

its associated neuron (Fig. 3.c). The cycle of this processor is the time for one 

multiplication and the time for one step of the dynamic mean value unit. 

7 Concluding Remarks 

The present work has focused on the study of Sanger NN and Rubner NN, as well as 

for Rubner NN its linearized formulation, and a new systolic architecture for their 

implementation. First of all, the presented NN has been introduced from their 

empirical formulation, some improvements of their algorithms have been addressed 

and their local stability has been enunciated. Finally, a systolic architecture for these 

NNs is described using its DG and projected on a linear array of processors including 

the improvements for their algorithms. 
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