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COMPUTER VISION SYSTEMS AND in pixel space from the image ( s ) . The system can then create 
METHODS FOR MODELING ROOFS OF 2D line segment geometries in pixels space from the 2D 

STRUCTURES USING TWO - DIMENSIONAL outputs . Next , the system can construct a line segment graph 
AND PARTIAL THREE - DIMENSIONAL DATA from the 2D line segment geometries along with raw 3D 

5 information . Finally , the system can generate 3D line seg 
RELATED APPLICATIONS ment geometries in world space from the line graph and 

image metadata . 
This application claims priority to U.S. Provisional Appli 

cation Ser . No. 62 / 685,415 filed on Jun . 15 , 2018 , the entire BRIEF DESCRIPTION OF THE DRAWINGS 
disclosure of which is hereby expressly incorporated by 10 
reference . The foregoing features of the invention will be apparent 

from the following Detailed Description of the Invention , 
BACKGROUND taken in connection with the accompanying drawings , in 

which : 
Technical Field FIG . 1 is a flowchart illustrating overall process steps 

carried out by the system of the present disclosure ; The present disclosure relates generally to the field of FIG . 2 is a diagram illustrating the overall process steps computer modeling of structures and property . More spe 
cifically , the present disclosure relates to systems and meth of FIG . 1 in greater detail ; 
ods for reconstructing a three dimensional ( “ 3D ” ) structure 20 FIG . 3 is a flowchart illustrating step 12 of FIG . 1 in 
in world coordinates from one or more two dimensional greater detail ; 
( " 20 " ) images . FIG . 4 is a flowchart illustrating step 14 of FIG . 1 in 

greater detail ; 
Related Art FIGS . 5A - 5D are diagrams illustrating assignment of 

25 labels by the system to roof structures in images ; 
Accurate and rapid identification and depiction of objects FIG . 6 is a flowchart illustrating step 16 of FIG . 1 in 

from digital images ( e.g. , aerial images , satellite images , greater detail ; 
ground - based images , etc. ) is increasingly important for a FIG . 7 is a diagram illustrating how the system generates 
variety of applications . For example , information related to a central contour mask ; 
the roofs of buildings is often used by construction profes- 30 FIG . 8 is a diagram illustrating how the system determines 
sionals to specify materials and associated costs for both the longest line segment in an image and generates refined 
newly - constructed buildings , as well as for replacing and gradients ; 
upgrading existing structures . Further , in the insurance FIG . 9 is a flowchart illustrating step 60 of FIG . 6 in industry , accurate information about structures may be used greater detail ; to determine the proper costs for insuring buildings / struc- 35 FIG . 10 is a diagram illustrating extraction by the system tures . Still further , government entities can use information 
about the known objects in a specified area for planning of primary line segments in an image ; 

FIG . 11 is a flowchart illustrating step 18 of FIG . 1 in projects such as zoning , construction , parks and recreation , 
housing projects , etc. greater detail ; 

Various software systems have been implemented to 40 FIG . 12 is a diagram illustrating attachment by the system 
process aerial images to identify a set of 2D segments and of the line segments to gradient contours ; 
generate a 3D model of a structure . However , these systems FIG . 13 is a diagram illustrating different line segment 
may have drawbacks , such as an inability to accurately connections capable of being generated by the system ; 
depict elevation or detect internal line segments . This may FIG . 14 is a diagram illustrating generation by the system 
result in an inaccurate or an incomplete 3D model of the 45 of an inference that a rake line segment and an eave line 
structure . As such , the ability to generate an accurate and segment should be connected to each other ; 
complete 3D model from 2D images is a powerful tool . FIG . 15 is a diagram illustrating the system splitting an 
Accordingly , the computer vision systems and methods eave line segment because of a elevation discontinuity ; 
disclosed herein solve these and other needs by providing FIG . 16 is a diagram illustrating eave line segments being 
robust line extraction , line graph construction , and 3D 50 clustered together ; 
reconstruction methods using two - dimensional , as well as FIG . 17 is a flowchart illustrating step 20 of FIG . 1 in 
partial three - dimensional , data . greater detail ; 

FIG . 18 is a diagram illustrating a 3D reconstruction SUMMARY workflow performed by the system ; 
This present disclosure relates to systems and methods for FIG . 19 is a diagram illustrating a sample input image and 

modeling roofs of structures using two - dimensional and the resulting completed contour generated by the system ; 
partial three - dimensional data . The two dimension sources FIG . 20A is a diagram illustrating interior line segments 
can be image sources which include , but are not limited to , of a structure model generated by the system ; 
aerial imagery , satellite imagery , ground - based imagery , 60 FIG . 20B is a diagram illustrating application of a straight 
imagery taken from unmanned aerial vehicles ( UAVs ) , skeleton algorithm by the system ; 
mobile device imagery , etc. The three - dimensional data can FIG . 21 is a diagram illustrating the straight skeleton 
include , but is not limited to , light detection and ranging algorithm implemented by the system using a sweeping 
( “ LIDAR ” ) , point cloud , feature triangulation , etc. The plane simulation ; 
disclosed system can retrieve one or more images and 65 FIG . 22A is a diagram illustrating a general intersection 
metadata for the one or more images based on a geospatial event ; 
region of interest . The system can then generate 2D outputs FIG . 22B is a diagram illustrating a user - generated event ; 

55 
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FIG . 23 is a diagram illustrating sample hardware com- FIG . 3 shows a flowchart illustrating step 12 of FIG . 1 in 
ponents on which the system of the present disclosure could greater detail . In particular , FIG . 3 illustrates process steps 
be implemented . performed during the imagery selection phase . In step 22 , 

the system receives a geospatial region of interest ( “ ROI ” ) . 
DETAILED DESCRIPTION 5 For example , a user inputs latitude and longitude coordi 

nates of a region . The region can be of interest to the user 
The present disclosure relates to computer modeling because the region may contain one or more buildings . In an 

systems and methods for modeling roofs of structures using embodiment , the geospatial ROI can be represented as a 
two - dimensional and partial three - dimensional data as polygon bounded by latitude and longitude coordinates . A 
described in detail below in connection with FIGS . 1-23 . 10 bound for the polygon can be predetermined or determined 

The embodiments below will be related to reconstructing during the imagery selection phase . In a first example , the 
a 3D roof geometry in world coordinates and will refer to a bound can be a rectangle or any other shape centered on a 
roof of a structure in one or more images . It should be postal address . In a second example , the bound can be 
understood that any reference to the roof of the structure is determined from survey data of property parcel boundaries . 
only by way of example and that the systems , methods and 15 In a third example , the bound can be determined from a 
embodiments discussed throughout this disclosure may be selection of the user ( e.g. , in a geospatial mapping interface ) . 
applied to any structure , including but not limited to , roofs , Those skilled in the art would understand that other methods 
walls , buildings , awnings , houses , decks , pools , temporary can be used to determine the bound of the polygon . The ROI 
structures such as tents , motor vehicles , foundations , etc. may be represented in any computer format , such as , for 
FIG . 1 shows a flowchart illustrating the overall process 20 example , well - known text ( “ WKT " ) data , TeX data , Lamp 

steps being carried out by the system , indicated generally at ort TeX ( “ LaTeX ” ) data , HTML data , XML data , etc. 
method 10. In step 12 , the system 10 performs an imagery In step 24 , the system selects and retrieve one or more 
selection phase . The imagery selection phase retrieves one images based on the geospatial ROI . For example , after the 
or more images and metadata of the retrieved images based user selects the geospatial ROI , one or more images asso 
on a geospatial region of interest ( “ ROI ” ) . In step 14 , the 25 ciated with the geospatial ROI are selected and retrieved 
system 10 performs a neural network inference phase . The from a database . As mentioned above , the images can be 
neural network inference phase produces 2D outputs in pixel digital images such as aerial images , satellite images , ground 
space , such as surface gradients , line gradients , line types , based images , etc. However , those skilled in the art would 
corners , etc. , for one or more structures in the retrieved understand that any type of images ( e.g. , photograph , scan , 
image ( s ) . In step 16 , the system 10 performs a line extraction 30 etc. ) can be used . It should be understood that multiple 
selection phase . The line extraction phase processes the images can overlap all or a portion of the geospatial ROI . A 
neural network inference outputs to create 2D line segment single image or multiple images can be selected depending 
geometries in the pixel space . In step 18 , the system 10 on the size of the geospatial ROI and whether later phases 
performs a line graph construction phase . The line graph ( e.g. , the line extraction phase , the line graph phase and the 
construction phase processes the 2D line segment geom- 35 3D reconstruction phase ) require multiple images or whether 
etries along with raw 3D information to group segments into the single image is sufficient for the processes of the later 
directed contour graphs of various heights . In step 20 , the phases . In an embodiment , nadir image captures , where the 
system 10 performs a 3D reconstruction phase . The 3D camera is above the objects or structures and is pointed 
reconstruction phase processes the output from the line straight down towards the ground , can be used when using 
graph construction phase and the metadata from the image 40 a single image . Oblique image captures can be used for , 
( s ) to transform the line data into 3D line segment geom- among other things , determining an elevation of property 
etries in world space . Each step of FIG . 1 will be described features . However , it should be understood that images 
in greater detail below . FIG . 2 illustrates the method 10. As which cover the geospatial ROI and in which the geospatial 
shown in FIG . 2 , the image selection phase 12 can also ROI is close to the center of the image can be preferred for 
receive data from an imagery storage 13 and the line graph 45 detecting property features of the roof . This is because 
construction phase 18 can also receive 3D data from a 3D camera distortion is more pronounced along the image edges 
data storage 17 . than in the center . The selected image can be cropped around 

It should be understood that FIG . 1 is only one potential the geospatial ROI . Further , padding or margin can be added 
configuration , and the system of the present disclosure can to provide context . It is noted that the discussion herein 
be implemented using a number of different configurations . 50 makes reference to a single image being selected . However , 
The process steps of the invention disclosed herein could be as indicated above , multiple images can also be used by the 
embodied as computer - readable software code executed by methods and systems of this disclosure . 
one or more computer systems , and could be programmed In step 26 , the system retrieves metadata for the selected 
using any suitable programming languages including , but image . The metadata can include data about the camera used 
not limited to , C , C ++ , C # , Java , Python or any other suitable 55 to capture each selected image , such as but not limited to , 
language . Additionally , the computer system ( s ) on which the intrinsic and extrinsic parameters of the camera . The intrin 
present disclosure may be embodied includes , but is not sic parameters can include the internal structure and speci 
limited to , one or more personal computers , servers , mobile fications of the camera , such as a focal length and an internal 
devices , cloud - based computing platforms , etc. , each having translation of the camera . The extrinsic parameters can 
one or more suitably powerful microprocessors and associ- 60 include a location and an orientation of the camera at the 
ated operating system ( s ) such as Linux , UNIX , Microsoft time the image was captured . It should be understood that 
Windows , MacOS , etc. Still further , the invention could be the intrinsic parameters can be shared among multiple 
embodied as a customized hardware component such as a images captured with the same camera and the extrinsic 
field - programmable gate array ( “ FPGA " ) , application - spe- parameters can be unique to each image . 
cific integrated circuit ( “ ASIC ” ) , embedded system , or other 65 FIG . 4 shows a flowchart illustrating step 14 of FIG . 1 in 
customized hardware component without departing from the greater detail . Specifically , FIG . 4 illustrates the process 
spirit or scope of the present disclosure . steps performed during the neural network inference phase . 



US 10,909,757 B2 
5 6 

More specifically , the neural network inference phase crickets , terraces , etc , so that the pixels can be removed from 
includes a neural network ( or another computer vision consideration . The face type labels can also be assigned to 
system ) which generates annotations of the roof in the regular roof faces and walls . 
images retrieved in the imagery selection phase . As dis- In step 40 , the system assigns corner labels to the roof 
cussed above , the roof is merely an embodiment , and the 5 detected in the retrieved images . The corner labels indicate 
annotations , or any other process discussed throughout this intersections between line segments . The corner labels can 
disclosure , can be applied to any structure . The annotations aid in identifying line segments that may have been missed 
can be pixel - level annotations which include , but are not in a first pass of identifying the line segments in the images . 
limited to , roof line types , roof line directions , roof gradient , For example , the corner label can identify the missed line 
corner locations , face types , etc. 10 segments by adding constraints to the regions in which line 

segment intersections can happen . In an embodiment , the In step 32 , the system assigns line type labels to the roof 
detected in the retrieved image . The line type labels indicate corners are assigned labels describing the type of segments 

that caused the corner to form . For example , the assigned a type of line identified . For example , the line type labels can 
include eaves , rakes , hips , valleys , flat valleys , and ridges . 15 a rake corner etc. FIG . 5D illustrates assignment of the label can identify an eave and eave corner , a flat ridge and 
FIG . 5A illustrates the system assigning the line type labels . system of the corner labels . 

In step 34 , the system assigns line direction labels to the The assignments performed by the system in FIG . 4 can 
roof detected in the retrieved image . The line directions be referred to as neural network outputs . In more specific 
labels indicate a primary orientation of each line labeled in situations , the assignments performed in each step in FIG . 4 
step 32. In an embodiment , the direction for each line can be 20 can be referred to as an output of the type of assignment in 
defined as an uphill direction in pixel space . The direction of that step . For example , the result of assigning the line 
the rakes , valleys , and hips can then be oriented with the line direction labels can be referred to as the line direction 
( e.g. , the direction of a rake line is oriented along the rake outputs . It should be understood that the neural network 
line ) . The directions of the eaves and flat valleys may be phase may assign additional labels to the structure in the 
oriented perpendicular to the line ( e.g. , the direction of an 25 image . Furthermore , it may be sufficient to use only one 
eave line is perpendicular to the eave line ) . It should be labeling process or any combination of the above discussed 
noted that flat ridges may not have an uphill direction . FIG . labeling processes during the neural network inference 
5B illustrates the system assigning the line direction labels . phase . 

Each pixel can be assigned a label representing a vector . FIG . 6 shows a flowchart illustrating step 16 of FIG . 1 in 
In a first example , flat ridges are assigned a label represent- 30 greater detail . Specifically , FIG . 6 illustrates process steps 
ing a vector of [ 0 , 0 , 1 ] as their direction , where an performed during the line extraction phase . It should first be 
assignment of 1 indicates a vertical direction . In a second noted that the building in the image may have a primary 
example , non - line pixels are assigned a label representing a orientation . The orientation of the building can be used 
vector of [ 0 , 0 , -1 ] . The non - line pixel can , for example , be refine the neural network outputs from the neural network 
a background pixel . Labels ( e.g. , 0-9 ) can be used to 35 inference phase . However , prior to determining the orienta 
represent vectors such that a classifier is applied . For tion of the building , it can be desirable to isolate the building 
example , a label O can represent the background , a label 1 first . In step 42 , the system uses the neural network outputs 
can represent that a line direction is vertical , and labels 2-9 to extract contours from the non - background labels . Prefer 
can represent a direction . More specifically , the labels 2-9 ably , the face type outputs ( e.g. , the walls ) are used . In step 
can represent vectors spaced equidistant around a unit circle 40 44 , the system excludes contours that touch the edge of the 
in pixel space starting with the positive x direction . The image . In step 46 , the system selects the outer hull of a most 
classifiers will be discussed in more detail below . The centered remaining contour ( the centered contour ) , as illus 
vectors corresponding to the line labels can be reconstituted trated in FIG . 7. The selected outer hull can be used as a filter 
via a weighted average . The weighted average can be based to remove non - relevant neural network outputs . It should be 
on , for example , “ softmax " probabilities and corresponding 45 understood that by removing the non - relevant neural net 
direction vectors . It should be understood that the line type work outputs , the amount of work to be required in pro 
label and the direction vector can be used to segment out line cessing the remaining neural network outputs and the chance 
instances in a later phase ( e.g. , the line extraction phase ) . of choosing an incorrect primary orientation can be reduced . 

In step 36 , the system assigns roof gradient labels to the In step 48 , the system determines the primary orientation . 
roof detected in the retrieved image . The roof gradient labels 50 As discussed above , the primary orientation can be the 
indicate a unit vector of each pixel representing a direction orientation of the building in the image . To determine the 
in which the roof is sloping . The direction is indicated in primary orientation , a line detection algorithm is applied to 
pixel space . The roof gradient labels will be used in the line the neural network outputs of the centered contour . The line 
graph construction phase to reconstruct connected line seg- detection algorithm can be applied to the flat ridge and eave 
ments . For example , a valley line segment may be attached 55 line type neural network outputs of the central contour . The 
to the gradients on the left and right side of the slope . From flat ridge output and the eave line output are preferred 
the attachment , eaves and / or rake line segments on each side because they correspond to a flat line . In step 50 , the system 
of the valley may be identified , connecting all the edges selects the longest line from the line segments detected in the 
together . The direction the roof is sloping may allow for the step 48. For example , as illustrated in FIG . 8 , the flat line 
application of the constraints over possible configurations of 60 segments are detected 72 from the input image 72 during the 
a final line graph . FIG . 5C illustrates assignment by the neural network inference phase , and the longest line seg 
system of the roof gradient labels . ment is selected 76 from the flat line segments . The longest 

In step 38 , system assigns face type labels to the roof line segment selected can be defined as a roof basis function . 
detected in the retrieved image . The face type labels indicate In step 52 , the system defines primary orientation vectors 
special roof subsections that are to be handled by special 65 from the roof basis function . As noted above , the line 
rules . For example , the face type label can be assigned to detection phase can define eight primary orientation vectors 
pixels that include extensions ( e.g. , a carport ) , chimneys , and the primary orientation vectors can be spaced at equi 
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distant angles around a unit circle . The unit circle can be in FIG . 9 shows a flowchart illustrating step 60 of FIG . 6 in 
pixel space . Those skilled in the art would understand that greater detail . In step 92 , the system combines each of the 
eight primary orientation vectors being spaced at equidistant neural network outputs of each line type with each line 
angles is only an example , and that any number of orienta- direction output . The system sets the pixels of a first line 
tion vectors can be used and spaced at any angle . 5 type to a first threshold value on a line type mask , such as 

In step 54 , system assigns a bucket to each pixel . For an eight - bit mask , and the pixels of a second line type to a 
example , the roof gradient outputs are assigned to a first second threshold value . For example , the pixels with the 
bucket ( e.g. , a gradient bucket ) based on the primary orien eave label can be set to the first threshold value ( e.g. , 255 ) 
tation vectors , the flat roof faces are assigned to a second on the line type mask and the non - eave labels may be set to 
bucket ( e.g. , a flat roof face bucket ) and the non - line pixels 10 the second threshold value ( e.g. , 0 ) . The system extracts a 

line direction to create a line direction mask where values of ( e.g. , the background pixels ) are assigned to a third bucket the line directions are also set to the first and / or second ( e.g. , a non - line pixels bucket ) . As illustrated in FIG . 8 , the threshold value . gradient buckets 78 can be used to generate refined gradients In step 94 , the system performs a bitwise AND of the line 82 from raw gradients 80. Those skilled in the art would 15 type mask and the line direction mask to create an output understand that any number of buckets can be used for any mask . The output mask corresponds to a pixel label of eave 
number of the neural network outputs and the buckets can be line segments in a specific direction . In step 96 , the system 
assigned to the neural network outputs based on any char- extracts contours from the output mask and fits a minimum 
acteristic of the neural network outputs . In step 56 , the bounding rectangle around each extracted contour . The 
system extracts contours for one or more of the neural 20 minimum bounding rectangle extracts a candidate line seg 
network outputs . The extracted contours are used to recon- ment which passes through a center of the minimum bound 
struct a graph containing the roof edges in the line graph ing rectangle aligned with a major axis . In cases where the 
construction phase . major axis and a minor axis are close , for example , with 

In step 58 , the system renormalizes the line direction short line segments , the direction can be used to determine 
outputs . First , it should be noted that the roof may not be 25 an orientation of the candidate segment . The system can 
oriented with the image . Second , it should also be noted that , determine that the major axis and the minor axis are close 
as discussed above , the line direction outputs may have been when they are within a predetermined distance of each other . 
assigned a label of classification ranging from 0-9 , where the In step 98 , the system uses the candidate line segment to 
classification 0 indicates a non - line pixel , the classification produce multiple further candidates via small translations 
1 indicates a vertical line pixel , and the classification 2-9 30 and rotations . Each candidate line segment can receive a 
indicating the equidistant vectors . The line direction classi- score based on how well it lines up with the line type mask . 
fication can have a format of [ classification 0 , classification The highest score line segment can be retained as a single 
1 , classification 2 , classification 3 , classification 4 , classifi- output for the contour . It should be understood that com 
cation 5 , classification 6 , classification 7 , classification 8 , bining a direction with a line type can help create better line 
classification 9 ] . The value for each classification can rep- 35 segment instances . For example , two eave line segments in 
resent a probability that the pixel is of a type designated by the image may not be connected but appear to be in pixel 
the classification . For example , a direction label for a pixel space . Without the line directions , an output may combine 
may be [ 0.0 , 0.0 0.1 , 0.01 , 0.6 , 0.4 , 0.1 , 0.01 , 0.01 , 0.0 ] . The the eaves , when in reality they are pointing different direc 
classifications of the direction label would , therefore , indi- tions . 
cate a 0 % probability that the pixel is the background in the 40 FIG . 10 is an illustration of the system performing the 
image , a 0 % probability that the pixel is a vertical pixel , a primary line segment extraction . It is noted that there are no 
10 % probability that the pixel is in the direction of vector 1 , connections between the line segments . For example , a first 
a 1 % probability that the pixel is in the direction of vector line segment , such as an eave line segment , is not connected 
2 , a 60 % probability that the vector is in the direction of to a second line segment , such as another eave line segment 
vector 3 , a 40 % probability that the vector is in the direction 45 or a rake line segment . As such , a line graph of connected 
of vector 4 , a 10 % probability that the vector is in the segments will be used to connect the line segments . The line 
direction of vector 5 , a 1 % probability that the vector is in graph of connected segments can also be used to further 
the direction of vector 6 , a 1 % probability that the vector is refine the line segments detected in the image by using 
in the direction of vector 7 , and a 0 % probability that the intersections between adjacent line segments to refine the 
vector is in the direction of vector 8 . 50 endpoints , identify locations where there may be a missing 

Since the roof may not be oriented with the image , to line segment due to , for example , a noisy or missing neural 
renormalize the line direction outputs , the 0-9 label can be network output , or determine further missing line segments 
adjusted so the first angle offset ( the angle corresponding to from newly available constraints . 
classification 2 ) is in the same direction as a basis vector . In FIG . 11 shows a flowchart illustrating step 18 of FIG . 1 in 
an embodiment , the 0-9 label can be adjusted by reconsti- 55 greater detail . Specifically , FIG . 11 illustrates process steps 
tuting a vector form of the classification by computing the performed during the line graph construction phase . In step 
weighted average of the direction and re - normalizing the 112 , system attaches the line segments to gradient contours . 
vector for each pixel . Pixels with the classification of 0 or 1 Specifically , one or more gradient contours may be assigned 
( e.g. the background pixels and the vertical pixels ) can keep to one or more line segments based on a set of predetermined 
their original labels . Pixels with the classification of 2-9 60 rules . In a first example , an edge segment ( e.g. , an eave 
( e.g. , the eight cardinal vectors ) can be phase shifted so that segment or a rake segment ) and a flat valley segment may 
the first vector lines up with the roof basis function . Next , each be assigned a gradient contour . In a second example , 
each pixel is reassigned to the cardinal vector it is closest to . each left and right side of each hip segment and valley 
It should be understood that refining the directions , as segment may be assigned a gradient contour . In a first 
discussed in step 58 , may allow for an application of tighter 65 example , a flat ridge segment may be assigned to multiple 
orientation constraints for extracted line segments . In step gradient contours . In flat ridge segments where two ridges 
60 , the system performs a primary line segment extraction . intersect , each side of the flat ridge segment may be assigned 
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a gradient contour . It should be understood that when FIG . 14 is an illustration of a valley segment that is 
assigning the gradient contours to the line segments , the attached to a rake segment and an eave segment being used 
direction of the contour is considered so the assignment is to infer that the rake segment and eave segment should also 
self - consistent . FIG . 12 is an illustration of step 112 . be connected to each other . The output can be referred to an 

In an example , to attach an eave segment to a gradient 5 edge graph . Connecting the edges to the interior line seg 
contour , the system determines a midpoint for the eave ments can be a first pass of the line graph construction phase . 
segment and searches for a matching gradient group that is However , line segments can be missing due to noise from 
a number of pixels to the left of the eave segment . The the neural network outputs or from other sources . As such , 
gradient group can be oriented so the slope of the roof is at a second pass ( e.g. , a secondary line extraction ) can be 
a right angle or within a tolerance of a right angle . The 10 performed . The second pass focuses on locations where our 
tolerance can be used when the image is not nadir . In another graph is incomplete . The second pass can verify whether a 
example , to attach a hip segment or a valley segment , the candidate line matches enough of a network output to be 
system can search for gradient groups to the left side and the added to the graph . 
right side of the hip segment or the valley segment . In an Referring back to FIG . 11 , in step 116 , the system 
embodiment , it can be assumed the gradients will be at or 15 performs a secondary line extraction , where interior line 
near 45 degrees to the hip segment or the valley segment segments are used to find missing edges . In a scenario where 
when the image is nadir . Tolerances can be used when the there are two interior line segments ( e.g. , a hip segment 
image is not nadir or to allow for possible deviations . Flat and / or a valley segment ) connected to a same gradient 
ridge segments can be attached to every gradient that is contour , the system can create a candidate line segment 
perpendicular to a flat ridge segment along a length of the 20 between bottom ends of the line segments . The system can 
flat ridge segment . By attaching each line segment to a then compute a score for the candidate line segment by using 
gradient group , the system can perform a refined search for the neural network outputs . In an example , it can be required 
connecting adjacent line segments , as will be discussed in that intersections lie inside of the corner outputs . If the score 
more detail in step 114 . is higher than a threshold value , the candidate line segment 

In step 114 , the system resolves open line segment end- 25 is added to the line graph . Similarly , the system can search 
points . A rule based algorithm can be used to iteratively for missing eave segments between interior segments and 
connect open line segment endpoints ( e.g. , eave and rake rake segment . This process can be repeated until the system 
endpoints that don't have all ‘ next ' or ' previous ' segment no longer detects new segments . It is noted that the line 
reference ) in the line graph . For example , a contour rule graph may still have incomplete connections after step 116 , 
based algorithm can search the line segments for remaining 30 but the line graph should be consistent with the neural 
open endpoints . The focus of the search can be to connect network outputs . 
the endpoints of eave and rake segments with interior line In step 118 , the system performs a line segment refine 
segments which can act as evidence for correct connections ment . Specifically , the system uses the line graph to refine 
between eave and rake segments . It should be understood the endpoints of line segments by extending or clipping the 
that the focus on eaves and rakes segments may be because 35 line segments using intersections between next , adjacent , 
these segments , when combined with elevation information and interior line segments . The system can also use the basis 
and roof slope information , can be used as input parameters vector to calculate primary orientations for horizontal line 
during the 3D reconstruction phase . segments in world space using the camera parameters . Eave 
FIG . 13 is an illustration of different line segment con- segments can then be connected to the horizontal line 

nections performed by the system . Specifically , FIG . 13 40 segments . Additionally , an eave segment or a rake segment 
shows examples of different types of connection resolutions can be split because of discontinuities in world space 
that can be performed to infer missing connections . The elevation , even though a single line segment in pixel space 
process may begin , for example , by resolving missing matches the line segment . The system may identify these 
connections between rake segments and valley segments . It embodiments by searching for rake segments that intersect 
should be understood that other types of connection reso- 45 in the middle of eave segments , and eave segments that 
lution can be performed to infer missing connections . intersect in the middle of rake segments . The system can 

Returning to step 114 , in another embodiment , gradient then split the line segments at the intersect points . FIG . 15 
groups can be used when attaching edge line segments ( e.g. , is an illustration splitting an eave segment because of an 
eaves and rakes ) to interior line segments ( e.g. , hips , valleys , elevation discontinuity by identifying a rake segment . 
and ridges ) . By using the gradient groups , a search to reduce 50 In step 120 , the system performs a contour elevation 
incorrect connections may be narrowed . In yet another clustering . Specifically , the system adds elevation informa 
embodiment , intersections between connected line segments tion onto the edges of the line segments . The system can use 
can lie inside of a corner according to a corner mask . If , for elevation data from 3D data to add the elevation informa 
example , multiple line segments satisfy a set of constraints tion , generate the elevation data from one or more images 
for a given connection , the line segment which minimizes a 55 and / or the 3D data , or any combination thereof . The 3D data 
distance to the intersection point from the considered line can include include , but is not limited to , light detection and 
segments can be selected . When a line segment , such as an ranging ( “ LIDAR ” ) , point cloud , feature triangulation , etc. 
interior line segment , is attached to another line segment , In an embodiment , for flat line segments , such as eave 
such as to an eave segment or a rake segment , the side of the segments , flat valley segments , and ridge segments , the 
attachment ( e.g. , left , right , etc. ) is recorded . 60 system can use elevation data of the flat line segment and / or 
Once the edges are connected to the interior line seg- the camera metadata to transform the flat line segment into 

ments , attached left and right edges of the interior line world space . For sloped line segments , such as rake seg 
segments can be used to transitively connect the edges . For ments and valley segments , the system can transform the 
example , if a rake segment is attached to the left of a valley sloped line segment into world space using an elevation of 
segment and an eave segment is attached to the right of the 65 any two pixels in the sloped line segment , or alternatively , 
same valley segment , then the next edge of the left rake using a single pixel and a slope of the sloped line segment 
segment can be set as the right eave segment . in world space . 
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The system can determine the elevation information using skilled in the art would understand that these principles can 
multiple images . In a first embodiment , the system generates be used with other line segments . 
a disparity map using the camera metadata and generating a The system can then build a refined edge graph using the 
point cloud . The point cloud is then projected onto views to rules described to generate the edge graph , but with added 
infer elevations for the line segments . In a second embodi- 5 constraints that connected edges come from the same eleva 
ment , the system matches line segments between multiple tion cluster . Line segments belonging to the unknown eleva 
views from multiple images and uses this correspondence to tion group can be connected to any line segment . Once an 
generate a set of line segments in world space . The system edge connection is made , a line segment ( s ) belonging to an 
then projects the line segments back onto an image to add unknown elevation group is assigned to the group of a line 
the elevation information onto three dimensional ( “ 3D ” ) line 10 segment it is connected to . Traversing the roof edge types 
segments . This process can introduce noise . For example , ( e.g. , the eave segments and rake segments ) , the system can 
when matching line segments between multiple views , there construct a list of connected edge sequences , with every 
can be line segments for which a match cannot be found , an edge in each sequence having a same elevation . 
incorrect match is found , or other issues , such as inaccura- FIG . 17 shows a flowchart illustrating step 20 of FIG . 1 
cies from a level of precision of the image metadata and 15 in greater detail . Specifically , FIG . 17 illustrates process 
from the accuracy of line segments recovered from the steps performed during the 3D reconstruction phase . More 
neural network outputs . These embodiments can attach all of specifically , the 3D reconstruction phase generates a 3D 
some of the line segment with elevation and / or slope infor- representation of the roof in world space . In step 132 , the 
mation . The system can then minimize inaccuracies of the system transforms the line segments from pixel space into 
added elevation and add missing data using constraints 20 world space . The system can use the edge sequence eleva 
relevant to the geometry of the roof . tion to construct a horizontal plane and project each eave 

The first constraint is that roofs can have grouped contour segment from the pixel space to the world space . For rake 
elevations , including when the individual contours are spa- segments , the system can use the elevation and the slope 
tially separated . For example , for a gable roof with two constraints to project the rake segment into the world space . 
eaves that are close to the same elevation according to the 25 Connections between the line segments are maintained 
3D data , the system can assume that the two eaves are at the during the projection from pixel space to world space . 
same elevation . As such , if the system determined that the In step 134 , the system applies additional constraints to 
two eaves have different elevations , the system can deem the line segments . The additional constraints can include 
that determination to be inaccurate . The system can apply rectifying parallel , perpendicular , and collinear line seg 
this principle to the entire roof by , for example , clustering all 30 ments . It should be noted that the 3D representation may be 
distinct elevation values and into distinct elevation groups . missing some information to reconstruct a complete valid 
For example , the system can use a clustering method such as roof . However , the system can proceed with the assumption 
a density - based spatial clustering of applications with noise that while the roof may be incomplete , the 3D edge 
( “ DBSCAN ” ) algorithm . However , those skilled in the art sequences produced are valid . Although the assumption can 
would understand that any clustering method can be used . 35 be inaccurate , the assumption allows the system to proceed 
For each elevation group , the system can set all segments in with the 3D reconstruction over a much more constrained 
a cluster to a height of a cluster centroid . FIG . 16 illustrates search space for a final roof configuration . FIG . 18 shows an 
clustering eave segments with other eave segments to set a example of 3D reconstruction work flow . In this 
consistent elevation . the 3C reconstruction phase begins by completing any open 

Rake segments can be assigned to a cluster based on an 40 endpoints in the line graph . Once the line graph is com 
elevation of their lowest point . It should be noted that rake pleted , the line graph can be used as input into a straight 
segment elevations can have more uncertainty since rake skeleton algorithm . The straight skeleton algorithm can infer 
segments only have a single point at a given elevation . As any remaining interior roof line segments . 
such , the rake segments may not be used to determine In step 136 , the system performs a contour inference . 
clusters , but , rather , once the clusters are calculated , the 45 Specifically , the system infers the exterior contours at each 
system can assign the rake segments to a cluster . Line elevation from the line graph . FIG . 19 is an illustration 
segments for which an elevation is not determined can be showing a sample input and resulting completed contours . 
assigned to an unknown elevation group . As shown in FIG . 19 , a starting contour is a closed polygon 

In an embodiment , slope information can be added to rake that represents the lowest elevation on the structure , which 
segments using the elevation information attached onto each 50 can be a base of the walls of the structure . The starting 
rake segment . The system can apply a constraint that slopes contour is generated by lowering all line segments in the line 
that are close to each other are the same slope . To group the graph to a ground elevation and inferring missing sections of 
slopes , the system can round each slope to a predetermined the resulting polygon . It should be understood that there may 
rounding value . For example , the system can round each be no missing sections . The first contour change shows 
slope to the nearest inch over a 12 - inch value . The system 55 where the roof structure starts being tied into a straight 
can then generate a histogram of the values . In an embodi- skeleton . The second contour change is used to tie in an 
ment , hip line segment , valley segment , and rake segment upper structure of the roof . In each of the contour groups 
slopes are used as inputs with the hip slopes and valley there may be missing segments that can be inferred by 
slopes adjusted to consider that they do not run parallel to a searching the line graph for open connections . The output 
gradient of roof face slopes . The maximum value in the 60 from the contour inference is a set of contours that can be 
histogram can be used as the default slope . Rake segments used as a starting point for the next algorithm which infers 
that are within a predetermined value , ( for example , 1 inch the interior roof line segments of the structure . 
over 12 inches of the default slope ) are set to have the default In step 138 , the system performs a straight skeleton 
slope . Additional slope constraints can be added based on reconstruction . Specifically , the system can take the closed 
valid roof configurations . For example , if two rakes are 65 exterior roof contours at different elevations and determine 
attached to the same eave , they can be considered to have the their interior line segments . Different types of interior line 
same slope because they belong to the same roof face . Those segments are determined , which can include hip line seg 

example , 
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ments , valley line segments , ridge segment , etc. FIG . 20A is Using the straight skeleton algorithm , the system can 
an illustration showing the interior line segments . FIG . 20B produce multiple complete candidate roofs which are con 
is an illustration showing a situation where the straight sistent with the extracted line graph . Each roof candidate 
skeleton reconstruction can be utilized . may then be projected back into pixel space of the multiple 
The straight skeleton reconstruction can be performed via 5 views and compared with the neural network outputs to 

a straight skeleton algorithm . The straight skeleton algo- determine how well the 3D reconstructed output matches the 
rithm is a method of creating a topological representation of neural network outputs . This can be used to generate a a given polygon . A straight skeleton of a polygon is gener confidence score for each 3D reconstruction candidate and ated by shrinking an exterior contour along angular bisectors 
at vertices by using plane intersections . A directional plane 10 roof . The system can also use additional data , such as point select the highest scoring reconstruction as a final candidate 
originates from each edge of the input polygon . The shrink 
ing is simulated with a flat sweeping plane that moves clouds or additional neural networks in calculating the 

confidence score . The output of the system can be a single upwards in a Z direction , intersecting with each directional 
plane . By progressively moving a sweeping plane upwards candidate roof reconstruction along with its confidence 
and intersecting directional planes originating from each 15 
polygon edge , a straight - line interior structure of the input FIG . 23 is a diagram illustrating computer hardware and 
polygon can be inferred . Final roof faces can be recon network components on which the system of the present 
structed from the interior line segments generated by the disclosure could be implemented . The system can include a 
sweeping plane simulation . FIG . 21 is an illustration of the plurality of internal servers 224a - 224n having at least one 
straight skeleton algorithm using sweeping plane simulation . 20 processor and memory for executing the computer instruc 
As seen in FIG . 21 , the polygon shrinks as the sweeping tions and methods described above ( which could be embod 
plane moves up intersecting the directional planes from each ied as computer software 222 illustrated in the diagram ) . The 
polygon edge . system can also include a plurality of image storage servers 

Each input edge can contain a weight that determines the 226a - 226n for receiving the image data and video data . The 
slope of its directional plane . For example , the weight can be 25 system can also include a plurality of camera devices 
any value between -1.0 and 1.0 . A negative weight indicates 228a - 228n for capturing image data and video data . These 
the directional plane slopes outward , away from a contour . systems can communicate over a communication network 
A weight of 0.0 indicates the directional plane is vertical , 230. The 3D reconstruction system 222 or engine can be creating a rake segment . A positive weight indicates the stored on the internal servers 224a - 224n or on an external directional plane is pointing inwards toward the center of the 30 server ( s ) . Of course , the system of the present disclosure contour . The weighted approach discussed in the embodi need not be implemented on multiple devices , and indeed , ment above is known as Mixed Weight Straight Skeleton the system could be implemented on a single computer ( MWSS ) and enables interior line segments to be properly 
determined . However , those skilled in the art would under system ( e.g. , a personal computer , server , mobile computer , 
stand that other approaches may be used to determine 35 smart phone , etc. ) without departing from the spirit or scope 
interior line segments . of the present disclosure . 

Multiple planes can meet in intersections . This may be Having thus described the system and method in detail , it 
referred to as “ events ” . A first example type of an event is is to be understood that the foregoing description is not 
a general intersection event . The general intersection event intended to limit the spirit or scope thereof . It will be 
is an event caused by three or more directional planes 40 understood that the embodiments of the present disclosure 
intersecting . Depending on which edges participate in the described herein are merely exemplary and that a person 
event , the event is handled differently . Chains of edges are skilled in the art can make any variations and modification 
created and processing using the intra - chain resolution fol- without departing from the spirit and scope of the disclosure . 
lowed by the inter - chain resolution . General intersection All such variations and modifications , including those dis 
events result in interior line segments being added . cussed above , are intended to be included within the scope 
A second example of an event is a user events . The user of the disclosure . What is desired to be protected by Letters 

event modifies behavior of a simulation while it is running . Patent is set forth in the appended claims . 
The user event can occur at a given 3D location and modify 
the behavior of the simulation starting at the 3D location . What is claimed is : 
The user event can change the directional plane of an input 50 1. A system for modeling a roof of a structure , comprising : 
edge , or insert a new shape into an existing contour . These a first database ; 
events are used to generate a wide variety of roof types and a second database ; and 
configurations . FIG . 22A is an illustration showing a general a processor in communication with the first database and 
intersection event . FIG . 22B is an illustration showing a user the second database , the processor : 
event . The user event in FIG . 22B changes the directional 55 selecting at least one image and metadata of the image 
planes of all of the edges once a given elevation has been from the first database based on a geospatial region 
reached during a simulation . of interest ; 

In an embodiment , the straight skeleton algorithm can generating two - dimensional outputs in pixel space of at 
start by computing general intersection events for each set of least one roof structure present in the selected at least 
3 adjacent planes and adding the intersection events to a 60 one image ; 
priority queue sorted by a lowest Z. User events are specified generating two - dimensional line segment geometries in 
at initialization and added to the queue . While there are the pixel space based on the generated two - dimen 
events in the queue , the straight skeleton algorithm takes the sional outputs ; 
top event from the queue and processes it . When all the classifying the generated two - dimensional line segment 
events are processed , the roof faces are recovered by tra- 65 geometries into at least one contour graph based on 
versing the edges that participated in the straight skeleton three - dimensional data received from the second 
algorithm . database ; 

45 



US 10,909,757 B2 
15 16 

generating a three - dimensional representation of the at correlation with the generated two - dimensional outputs 
least one roof structure based on the at least one in pixel space of the at least one roof structure , and 
contour graph and the received three - dimensional determines the three - dimensional representation of the at 
data ; least one roof structure among the plurality of trans 

transforming the classified two - dimensional line seg- 5 formed candidate three - dimensional representations 
ment geometries into three - dimensional line segment based on the confidence score . 
geometries in world space based on the at least one 10. A method for modeling a roof of a structure , com contour graph ; prising : 

applying at least one constraint to the three - dimen receiving a geospatial region of interest ; sional line segment geometries , the at least one 10 selecting at least one image and metadata of the image constraint being indicative of a rectification of at from a first database based on the received geospatial least one of parallel , perpendicular and collinear 
three - dimensional line segment geometries ; region of interest ; 

generating a plurality of exterior contours based on the generating two - dimensional outputs in pixel space of at 
rectified three - dimensional line segment geometries , 15 least one roof structure present in the selected at least 
each exterior contour corresponding to a different one image ; 
elevation of the at least one roof structure ; generating two - dimensional line segment geometries in 

determining interior line segments of each exterior the pixel space based on the generated two - dimensional 
contour via a straight skeleton algorithm ; and outputs ; 

generating the three - dimensional representation of the 20 classifying the generated two - dimensional line segment 
at least one roof structure based on the determined geometries into at least one contour graph based on 
interior line segments . three - dimensional data received from a second data 

2. The system of claim 1 , wherein the geospatial region of base ; 
interest comprises one of latitudinal and longitudinal coor- generating a three - dimensional representation of the at 
dinates of a region , a shape bounding a postal address and 25 least one roof structure based on the at least one contour 
a user defined region input via a geospatial mapping inter- graph and the received three - dimensional data ; 
face . transforming the classified two - dimensional line segment 

3. The system of claim 1 , wherein the metadata comprises geometries into three - dimensional line segment geometries 
data of a camera utilized to capture the at least one image , in world space based on the at least one contour graph ; 
the data including intrinsic parameters of the camera and 30 applying at least one constraint to the three - dimensional 
extrinsic parameters of the camera . line segment geometries , the at least one constraint 

4. The system of claim 1 , wherein the at least one image being indicative of a rectification of at least one of 
is an aerial image , a satellite image , a ground based image , parallel , perpendicular and collinear three - dimensional 
or a photograph . line segment geometries ; 

5. The system of claim 1 , wherein a neural network 35 generating a plurality of exterior contours based on the 
generates the two - dimensional outputs , the two - dimensional rectified three - dimensional line segment geometries , 
outputs being indicative of features of the at least one roof each exterior contour corresponding to a different 
structure present in the selected at least one image . elevation of the at least one roof structure ; 

6. The system of claim 5 , wherein the features of the at determining interior line segments of each exterior con 
least one roof structure comprise one or more of : tour via a straight skeleton algorithm ; and 

a line type indicative of an eave , a rake , a hip , a valley , a generating the three - dimensional representation of the at 
flat valley , and a ridge , least one roof structure based on the determined interior 

a line direction indicative of an orientation of each line line segments . 
type , , 11. The method of claim 10 , further comprising generat 

a gradient indicative of a slope of the at least one roof 45 ing , by a neural network , the two - dimensional outputs , the 
structure , two - dimensional outputs being indicative of features of the 

a face type indicative of at least one of an extension of , a at least one roof structure present in the selected at least one 
protrusion from , and a wall of the at least one roof image . 
structure , and 12. The method of claim 10 , further comprising : 

a corner indicative of an intersection between two line 50 generating , by a neural network , the two - dimensional 
types . outputs , and 

7. The system of claim 1 , wherein a neural network generating the two - dimensional line segment geometries 
generates the two - dimensional outputs and the processor in the pixel space based on the generated two - dimen 
generates the two - dimensional line segment geometries in sional outputs and an orientation of a structure corre 
the pixel space based on the generated two - dimensional 55 sponding to the at least one roof structure . 
outputs and an orientation of a structure corresponding to the 13. The method of claim 10 , further comprising : 
at least one roof structure . generating a plurality of candidate three - dimensional rep 

8. The system of claim 1 , wherein the three - dimensional resentations of the at least one roof structure , 
data is one of light detection and ranging data , point cloud transforming the plurality of candidate three - dimensional 
data and feature triangulation data . representations into pixel space , 

9. The system of claim 1 , wherein the processor : determining a confidence score for each of the trans 
generates a plurality of candidate three - dimensional rep- formed candidate three - dimensional representations 

resentations of the at least one roof structure , based on a correlation with the generated two - dimen 
transforms the plurality of candidate three - dimensional sional outputs in pixel space of the at least one roof 

representations into pixel space , structure , and 
determines a confidence score for each of the transformed determining the three - dimensional representation of the at 

candidate three - dimensional representations based on a least one roof structure among the plurality of trans 
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formed candidate three - dimensional representations determining interior line segments of each exterior con 
based on the confidence score . tour via a straight skeleton algorithm ; and 

14. A non - transitory computer readable medium having generating the three - dimensional representation of the at 
instructions stored thereon for modeling a roof of a structure least one roof structure based on the determined interior line 
which , when executed by a processor , causes the processor 5 segments . 

15. The non - transitory computer - readable medium of to carry out the steps of : claim 14 , the processor further carrying out the steps of selecting at least one image and metadata of the image generating , by a neural network , the two - dimensional out from a first database based on a received geospatial puts , the two - dimensional outputs being indicative of fea region of interest ; tures of the at least one roof structure present in the selected 
generating two - dimensional outputs in pixel space of at at least one image . 

least one roof structure present in the selected at least 16. The non - transitory computer - readable medium of 
one image ; claim 14 , the processor further carrying out the steps of : 

generating two - dimensional line segment geometries in generating , by a neural network , the two - dimensional 
the pixel space based on the generated two - dimensional outputs , and 
outputs ; generating the two - dimensional line segment geometries 

classifying the generated two - dimensional line segment in the pixel space based on the generated two - dimen 
geometries into at least one contour graph based on sional outputs and an orientation of a structure corre 
three - dimensional data received from second data sponding to the at least one roof structure . 
base ; 17. The non - transitory computer - readable medium of 

generating a three - dimensional representation of the at claim 14 , the processor further carrying out the steps of : 
least one roof structure based on the at least one contour generating a plurality of candidate three - dimensional rep 

resentations of the at least one roof structure , graph and the received three - dimensional data ; 
transforming the classified two - dimensional line segment transforming the plurality of candidate three - dimensional 
geometries into three - dimensional line segment geometries representations into pixel space , 
in world space based on the at least one contour graph ; determining a confidence score for each of the trans 

formed candidate three - dimensional representations applying at least one constraint to the three - dimensional 
line segment geometries , the at least one constraint based on a correlation with the generated two - dimen 
being indicative of a rectification of at least one of sional outputs in pixel space of the at least one roof 
parallel , perpendicular and collinear three - dimensional structure , and 
line segment geometries ; determining the three - dimensional representation of the at 

generating a plurality of exterior contours based on the least one roof structure among the plurality of trans 
rectified three - dimensional line segment geometries , formed candidate three - dimensional representations 

based on the confidence score . each exterior contour corresponding to a different 
elevation of the at least one roof structure ; 
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