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Cooperation and defection are social traits whose evolutionary origin is still unresolved. Recent
behavioral experiments with humans suggested that strategy changes are driven mainly by the
individuals’ expectations and not by imitation. This work theoretically analyzes and numerically
explores an aspiration-driven strategy updating in a well-mixed population playing games. The
payoffs of the game matrix and the aspiration are condensed into just two parameters that allow
a comprehensive description of the dynamics. We find continuous and abrupt transitions in the
cooperation density with excellent agreement between theory and the Gillespie simulations. Under
strong selection, the system can display several levels of steady cooperation or get trapped into
absorbing states. These states are still relevant for experiments even when irrational choices are
made due to their prolonged relaxation times. Finally, we show that for the particular case of
the Prisoner Dilemma, where defection is the dominant strategy under imitation mechanisms, the
self-evaluation update instead favors cooperation nonlinearly with the level of aspiration. Thus, our
work provides insights into the distinct role between imitation and self-evaluation with no learning
dynamics.

I. INTRODUCTION

Cooperation and defection are central to social dilem-
mas, where cooperative individuals contribute to the col-
lective welfare at a personal cost, while defectors choose
not to. A recent example is when someone decides to
undergo physical isolation during a pandemic. This deci-
sion carries personal costs but contributes to the overall
public health benefit.

Therefore, the evolutionary origin of social cooperation
presents a challenging paradox due to the lower individ-
ual fitness of cooperators, but it is frequently observed
in animal and human systems [1–3]. Evolutionary game
theory provides a theoretical framework to study cooper-
ation among individuals who interact according to prede-
fined game rules, strategies, and payoffs. Players revise
their strategies over time, leading to the emergence of an
evolutionary stable strategy.

The rationale behind the strategy choice has attracted
much interest lately in evolutionary dynamics as it may
significantly impact the outcomes of theoretical models
and the level of cooperation in social dilemmas [4]. There
is a large variety of rules for the strategy update found
in the game theory literature [5–8] depending on the par-
ticular application context, whether biological, social, or
economic. In many cases, individuals update their strate-
gies by copying the more successful strategy of a peer, the
one with the largest payoff [9]. Imitation rules may also
take into consideration a probability proportional to the
actual payoff difference between players as in the propor-
tional imitation rule or replicator dynamics [10–12] in
which the agent to imitate is chosen at random or within
the entire neighborhood instead, increasing the probabil-
ity of a strategy change [13, 14]. Another different kind
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of imitation rule is the Moran-like rule, also called death-
birth or birth-death updating, in which a player takes
over the strategy of one of her neighbors with a probabil-
ity proportional to their fitness [15–17]. This spreading
of successful strategies through payoff-dependent learn-
ing is considered a non-innovative dynamics since those
rules cannot revive an extinct strategy or introduce new
ones. In contrast, in the myopic best response rule, a
player selects the best possible strategy given the cur-
rent strategy distribution of the neighborhood, i.e., this
rule requires the individual to know not only her neigh-
bors’ strategies but also all the available strategy options
[18–20], closely resembling the dynamics used in the ki-
netic Ising models [21]. Traditionally, strategy updating
rules are designed to maximize the payoff or fitness of
rational and intelligent individuals irrespective of oth-
ers. However, inspired by social behaviors like mutual
help, charity, or fraternity, novel mechanisms involving a
collective pairwise strategy update rule were introduced
where two engaged players upgrade their strategies si-
multaneously to maximize their added payoffs [22, 23].
On the other hand, aspiration-driven updating involves
individuals adjusting their strategies based on their prof-
its compared to a value they aspire to achieve, known as
the aspiration level. This update does not rely on exter-
nal information about peers [24–32]. In aspiration-driven
dynamics, individuals are satisfied only if their obtained
payoff exceeds a fixed aspiration level. They reinforce
actions that have resulted in satisfactory outcomes and
discourage those yielding unsatisfactory outcomes as in
the deterministic dynamicsWin-Stay-Lose-Shift [33]. All
these updating rules may have a stochastic component to
consider boundedly rational decisions and control the in-
tensity of selection of the game [15]. Usually, the Fermi
rule is used to introduce an additional parameter that
can be understood as a temperature or noise in the up-
date rule to model scenarios of strong or weak selection,
where factors like irrationality, mistakes, personal free-
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dom,..., affect the strategy choice [19, 34, 35].

However, doubts have been raised about the actual
strategy updating mechanisms. The controversy arises
from experimental findings in both two-player and multi-
player games, where it has been observed that imita-
tion traits alone do not account for the observed strat-
egy changes or that these changes are not solely driven
by payoff comparison [4, 36–40]. Instead, individu-
als respond to cooperation reciprocally, being more in-
clined to contribute when their partners do so, a be-
havior known as conditional cooperation or moody con-
ditional cooperation if the reciprocal behavior depends
on the focal player’s previous action. These behavioral
patterns have been accounted for by models incorpo-
rating dynamical updating based on aspiration learning
[41–45]. Aspiration-driven strategy-update dynamics are
commonly observed in animals [46–48] and humans [49]
and have been considered as a single mechanism with a
global fixed aspiration level [30–32], heterogeneously dis-
tributed [27, 50–52] and degree correlated aspiration dis-
tributions [28], time-dependent aspiration learning rules
[24–26, 53], or combined with other updating strategy
imitation-driven players [29, 54–57].

The role of structured interactions in promoting co-
operation has sparked debate between experiments and
theory. While network reciprocity is recognized as a the-
oretical mechanism that promotes cooperation [6, 9, 58–
63], recent behavioral lab experiments with humans have
shown that the level of cooperation achieved is not af-
fected by the network topology [37, 39, 40, 64]. In con-
trast, other experiments using artificial social networks
replicating structures used in theoretical models have
demonstrated that a network structure can indeed sta-
bilize human cooperation [65, 66]. This suggests that
specific combinations of payoffs and network structure
are necessary for cooperation to succeed [67, 68].

In this study, we aim to examine how a basic
aspiration-driven strategy update affects the evolution of
cooperation in a well-mixed population. We investigate
this question in the whole spectrum of payoff possibil-
ities for interactions between two strategies and allow
for some uncertainty in the strategy adoption, which is
solely determined by a constant and uniform aspiration
level across the population. Despite the model’s sim-
plicity, we have identified various steady and metastable
states through analytical and numerical methods, de-
pending on aspiration and game parameters and whether
or not strategy choice is purely deterministic. While pre-
vious works have looked at deterministic [26] and im-
perfectly rational players [28, 30–32] with aspiration dy-
namics, their analyses were limited to a weak rational-
ity regime characterized by relatively high levels of noise
affecting the strategy adoption process in structured or
unstructured populations, obtaining in some cases, con-
tradictory results regarding the role of the network reci-
procity. Therefore, our motivation is to further under-
stand the baseline case by exploring analytically how the
aspiration-driven rule affects the evolution of cooperation

across a wider range of game, aspiration, and irrational-
ity parameters in the mean-field case.
In Section II, we present our model where the param-

eters of the game are rescaled in terms of the aspiration
enabling, in Section III, to perform an analytical inves-
tigation of the existence of stationary states, in good
agreement with simulations. The resulting model also
allows the analysis of the critical behavior in Sec. IV,
evidencing continuous and abrupt transitions of cooper-
ation with the aspiration and rationality levels. Finally,
in Sec. V, we discuss the classic Prisoner Dilemma within
our framework and present some conclusions in Sec. VI.

II. MODEL DEFINITION

We consider a well-mixed population of N agents hav-
ing two possible strategies, cooperation (C) or defection
(D). Agents play 2 × 2 games with all others and, as a
result, they receive a payoff according to the following
matrix:

C D
C R S
D T P

(1)

The parameters R, S, T , and P represent respectively
the rewards for mutual cooperation, the sucker’s payoff,
the temptation to defect, and the punishment for mutual
defection. Although these parameters take restricted val-
ues in evolutionary game theory, for this study, they are
considered without limitations. Hence, we do not pre-
clude any behavior to any of the strategies.
Provided a state of the system characterized by the co-

operation fraction ρ, after a play round, each cooperator
receives

gc = N

[
R

(
ρ− 1

N

)
+ S(1− ρ)

]
, (2)

and each defector

gd = N

[
Tρ+ P

(
1− ρ− 1

N

)]
. (3)

These payoffs determine the system’s evolution by set-
ting the probability of a player changing her strategy
from cooperation to defection (ρ → ρ − 1/N) or vice-
versa (ρ → ρ+1/N). The corresponding transition rates
(per time unit t0) are

π−(ρ) =
1

t0

ρ

1 + exp
(
sc
θ

) , (4)

π+(ρ) =
1

t0

1− ρ

1 + exp
(
sd
θ

) , (5)

where [25]:

sr =

gr
N−1 −m

Mr
, r ∈ {c, d}, (6)
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are proportional to the difference between the current
payoff of an agent and her aspiration or mood m, which is
assumed to take the same value for all agents. The payoff-
aspiration difference measures the level of the agent’s
dissatisfaction. The factor θ is a non-negative param-
eter playing the role of an effective temperature, and the
normalization factors Mr are:

Mc = max (|R−m|, |S −m|), (7)

Md = max (|T −m|, |P −m|). (8)

Therefore, our players follow a pure aspirational rule
without social imitation or reinforcement learning. It
is essentially the model introduced and studied in [26,
30, 31], wherein the normalization factors Mr are taken
as one, with restricted values of the game, temperature,
and aspiration parameters (typically P = 0, R = 1,
m ∈ (0, 1), and θ ≥ 0.1). Here, it is Mr ̸= 1 in gen-
eral, and we let the parameters take any possible value,
except for the effective temperature θ ≥ 0. In particu-
lar, the aspiration parameter m can be negative, which
includes social situations where agents are reluctant to
change their strategy even when the received payoffs are
negative (though above m). We will show that, upon re-
moving some restrictions, the system’s behavior becomes
much richer than previously reported.

It is important to notice that the model can be simpli-
fied in terms of only two parameters:

σ =
S −m

|R−m|
, τ =

T −m

|P −m|
, (9)

provided P ̸= m and R ̸= m. Then, the state functions
sr in Eq. (6) can be written as:

sc =
N

N − 1

σ(1− ρ) + kc
(
ρ− 1

N

)
max (1, |σ|)

, (10)

sd =
N

N − 1

τρ+ kd
(
1− ρ− 1

N

)
max (1, |τ |)

, (11)

where kc = R−m
|R−m| and kd = P−m

|P−m| . We distinguish the

following three cases:

- Case I: kc=kd = 1.

- Case II: kc=1, kd = −1.

- Case III: kc=kd = −1.

The case kc = −1, kd = 1 (case II’) can be reduced
to case II by interchanging the roles of cooperation and
defection: R ↔ P , σ ↔ τ , and ρ ↔ 1− ρ.

Notice that, for the typical values used in the literature
P = 0, R = 1, and m ∈ (0, 1), we are always in case II,
with kc = −kd = 1. Hence, all our results regarding cases
I and III are completely novel.

III. THEORY FOR LARGE POPULATION

For a large, well-mixed population, the evolution of the
fraction of cooperators ρ can be described by the mean-
field deterministic approximation:

dρ

dt
= F (ρ), (12)

where

F (ρ) = π+(ρ)− π−(ρ). (13)

Therefore, the fixed points F (ρ) = 0 correspond to the
steady states of the system, whose linear stability deter-
mines the reachable states.
It is readily seen that for any θ ≥ 0 the force satisfies

F (0) ≥ 0, F (1) ≤ 0, (14)

hence, when the effective force F (ρ) is continuous, there
is at least one steady state, as we carefully analyze in
the next Sections. First, we consider the case of zero ef-
fective temperature θ = 0, followed by the more general
situation θ > 0. We will compare our predictions with
numerical simulations of the master equation obtained by
means of the Gillespie algorithm. Unless otherwise spec-
ified, the simulations consider a population of N = 104

agents and t = 105t0 simulation time, while the theoret-
ical results are for N → ∞ and t = 200t0.

A. Zero effective temperature

When θ = 0, F (ρ) is a piece-wise function of ρ, since
the transition rates in Eqs. (4-5) take the form:

π−(ρ) =
ρ

t0
Θ

[
−σ(1− ρ)− kc

(
ρ− 1

N

)]
, (15)

π+(ρ) =
1− ρ

t0
Θ

[
−τρ− kd

(
1− ρ− 1

N

)]
, (16)

where Θ is the Heaviside step function [we take Θ(0) =
1/2]. We summarize the numerical results in Fig. 1,
where the final state of the cooperation fraction ρ is rep-
resented in the σ−τ space for the three previously distin-
guished cases depending on the values of the pair (kc, kd),
and for several initial conditions.
Our research identified several fixed points that possess

interesting properties, including consensus, coexistence,
absorbing, and discontinuous states. We have confirmed
this through numerical simulations, which we will discuss
in the following paragraphs. This analysis of the steady
states of F (ρ) = 0, will be further extended in Appendix
A.

1. Consensus states

Consensus refers to situations where everyone either
cooperates or defects. Full cooperation ρ = 1 is only
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F ρ
I

FIG. 1. Numerical results for the cooperation density for zero-
effective temperature θ = 0, N = 104 and t = 105t0. Rows
correspond to different initial conditions: ρ0 = 0.1 (top), 0.5
(middle), and 0.9 (bottom). Columns correspond to cases
I, II, and III. The black lines give (part of) the trajectory
determined by fixing P = 0, R = 1, S = − 1

2
, and T = 3

2
and

increasing m, from m = −∞ at point I = (1, 1) (first column)
to m = ∞ at point F = (−1,−1) (third column), following
the arrows.

linearly stable when kc = 1 and τ < 0 (cases I and II).
Similarly, full defection ρ = 0 is only linearly stable when
kd = 1 and σ < 0 (cases I and II’). It is worth noting that
the solution for case II’ can be obtained from case II using
the procedure described in the previous section.

This theoretical analysis agrees with the numerical re-
sults shown in Fig. 1, as long as the initial conditions
ρ0 are appropriate. This last point is better understood
in the example of Figure 2(a) where the solid black line
depicts F (ρ) vs ρ for θ = 0 and case I. We see that for
any initial cooperation fraction ρ0 < 1

3 the system tends

to full defection ρ = 0, while for ρ0 > 2
3 full cooperation

is reached.

2. Coexistence states

By coexistence, we refer to a state where ρ = 1
2 . After

imposing the steady-state condition, π−( 12 ) = π+( 12 ), we
conclude that coexistence is the only potential steady-
state solution when both strategies have payoffs larger or
equal than the aspiration or mood m. For the latter to

occur, we need

σ ≤ −N − 2

N
kc ≃ −kc, (17)

τ ≤ −N − 2

N
kd ≃ −kd. (18)

Assuming that the arguments of the Θ functions are pos-
itive, the coexistence solution is the sole linearly stable
option in these circumstances. Figure 2(a) (black line)
shows that coexistence occurs when the initial condition
falls within the range of ρ0 ∈

[
1
3 ,

2
3

]
. Otherwise, the

system will reach a consensus. This is a clear sign of
a discontinuous transition in the final cooperation level
depending on the initial condition, which will be further
examined later.
The middle panel of Fig. 1 shows the numerical solu-

tion for the coexistence states when ρ0 = 1
2 . Although

the solution ρ = 1
2 may also appear for other parameter

values that do not satisfy Eqs. (17) and (18), as seen in
Fig. 1, the nature of those solutions is different and will
be classified as absorbing states in the next section.

3. Absorbing states

All values of ρ that make the arguments of both Θ
functions in Eqs. (15) and (16) negative are marginally
stable solutions of Eq. (12). The conditions read:

σ(1− ρ) + kc

(
ρ− 1

N

)
> 0, (19)

τρ+ kd

(
1− ρ− 1

N

)
> 0. (20)

These solutions are absorbing states: the system be-
comes stuck once it reaches any of them (either from
another non-absorbing state or due to the initial condi-
tions). This occurs because all probability transitions are
zero, which is valid beyond the infinite-system approxi-
mation but only within the zero-temperature case. It is
important to note that, strictly speaking, the absorbing
states disappear for θ > 0 but, instead, the system may
reach a metastable state (with a large relaxation time),
as we show later.
We present Fig. 2(c) (black line) as an instance of a

force F (ρ) where the only steady states are absorbing,
and depending on the initial value ρ0, the system will
approach to or remain in the interval [ 13 ,

2
3 ]. In this case,

the coexistence state ρ = 1
2 is one of the absorbing states.

We show another example in Fig. 2(b), where the absorb-
ing states can only be attained from the initial state when
ρ0 ∈ [ 23 , 1]. The consensus state ρ = 1 is also absorbing
in this latter case.

4. Discontinuous states

Finally, the system can also reach another steady state,
which we call discontinuous due to its (eventual) appear-
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a) c)b)

FIG. 2. Force function F (ρ) given by Eq. (13) for several effective temperatures and (a) τ = σ = −2 of case I (kc = kd = 1),
(b) τ = −σ = 2 of case II (kc = −kd = 1) , and (c) τ = σ = 2 of case III (kc = kd = −1).

ance at a discontinuity of F (ρ). To describe the new
solutions, take as an example the function force F (ρ) de-
picted in Fig. 2(b) (black line) where the discontinuities
are at ρ = 1

3 and 2
3 . If initially ρ ∈ [0, 1

3 ] or ρ ∈ [ 13 ,
2
3 ], the

cooperation fraction tends to ρ∗ = 1
3 . This is a value for

which F (ρ∗) ̸= 0 but is still an attractor of the dynam-
ics. The other discontinuity at ρ = 2

3 does not have this
property. In general, in order for ρ∗ to represent a dis-
continuous state, we need F (ρ∗−) > 0 and F (ρ∗+) < 0.
Upon slightly increasing the effective temperature, the
discontinuous states become (conventional) stable fixed
points, as discussed below.

B. Positive effective temperature

We now consider positive effective temperature θ > 0.
In this case, the cooperation fraction ρ still obeys Eq. (12)
but now the rates are approximately (N ≫ 1) given by

π−(ρ) ≃ 1

t0

ρ

1 + exp
[
σ(1−ρ)+kcρ
θmax (1,|σ|)

] , (21)

π+(ρ) ≃ 1

t0

1− ρ

1 + exp
[
τρ+kd(1−ρ)
θmax (1,|τ |)

] . (22)

The temperature increase has a profound effect on the
dynamics and steady states of the system. First, for θ > 0
the force F (ρ) becomes a continuous function of ρ, which
means that the discontinuous states disappear. More-
over, there are no absorbing states since both rates π±

are positive (non-zero) functions for all ρ. Second, the
force satisfies F (0) > 0, F (1) < 0, that is, the consen-
sus states also disappear. Therefore, only the coexis-
tence state ρ = 1

2 may survive for θ > 0. Nevertheless,
new isolated steady states eventually emerge, with the
same mathematical properties as the coexistence state
but with possibly different cooperation fractions. Let us
now reconsider the specific examples given in Fig. 2.

We first focus on case I in Fig. 2(a). For weak selection
intensity θ > 0, the consensus states move to two nearby
stable states. Additionally, due to the continuity of F (ρ),
two unstable states arise near ρ = 1

3 and 2
3 . Upon further

increasing of θ, the former states approach ρ = 1
2 until

they suddenly disappear at θ ≃ 0.18. This is an instance
of a discontinuous transition induced by the effective tem-
perature. Finally, in the limit of high temperature, only
the coexistence state survives since F (ρ) = 1

2t0
(1 − 2ρ).

As far as we know, the eventual appearance of more than
one final state as the rationality of the agents in choosing
strategy diminishes has not been previously reported in
models of aspiration-driven dynamics since usually only
the regime of large temperature or weak-selection limit
has been considered so far.

For case III shown in Fig. 2(c), a positive temperature
causes the absorbing states to disappear and reduces it
to coexistence. In cases where θ is sufficiently small but
positive, the system’s relaxation process can be very slow,
resulting in states that are absorbing in practice. Finally,
for case II [Fig. 2(b)], we see an example where the in-
terval of absorbing states for ρ > 2

3 becomes a repulsive

region for θ > 0. Looking at the same figure for ρ ≃ 1
3 ,

we conclude that the discontinuous states become stable
steady states when θ increases.

In Fig. 3, we can see the final system’s state in the
(τ, σ) plane for two initial conditions, ρ0 = 0.1 (top row)
and 0.9 (bottom row), and for two temperatures, a mild
one θ = 0.02 [panels a)], and a moderate one θ = 0.5
[panels b)]. It is very informative to compare this figure
with the deterministic case shown in Fig. 1 for θ = 0.
When the temperature is low (θ = 0.02), the diagram
shows abrupt transitions but with a different topology
than θ = 0. There are large regions where the final state
still depends on the initial conditions. However, when the
temperature is moderate (θ = 0.5), the final state is inde-
pendent of the initial cooperation fraction and smoothly
depends on τ, σ in most regions. In this case, regions
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ρ
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FIG. 3. Simulation results for the cooperation density as a function of τ and σ in a system with N = 104 for an effective
temperature (a) θ = 0.02 and (b) θ = 0.5. Top row: initial condition ρ0 = 0.1, bottom row: ρ0 = 0.9.

are close to coexistence, which is the only possible state
when θ → ∞.

IV. TRANSITIONS IN COOPERATION

As shown in the previous section, this reduced game
scenario where the player’s strategy is determined solely
by their inner aspirations still presents a complex situa-
tion with multiple critical transitions. Here, we complete
the picture by paying close attention to the transitions as
a function of the main parameters of the system. Again,
we validate our analytical predictions (for N → ∞) with
simulations for large, well-mixed populations.

We first examine the relationship between the ini-
tial condition ρ0 and the final cooperation fraction ρ in
Fig. 4(a). We utilize the parameter values depicted in
Fig. 2 whenever applicable. We observe that, at low noise
levels (low irrationality), the sharp transitions seen for
θ=0 are maintained. The dependence of the final state
on the initial conditions was already recognized in previ-
ous works for θ = 0, see, for instance, Ref. [26]. Here we
show that this is also the case for small enough tempera-
tures and some values of the game and aspiration param-
eters. At moderate levels, the system becomes indifferent
to ρ0 and achieves a state near coexistence, irrespective
of the initial conditions. This behavior is consistent with
the known results in the so-called weak-selection limit
[30–32].

The system’s abrupt transitions, when analyzed as a
function of the game parameter σ in Fig. 4(b), are par-
ticularly interesting. These transitions persist through
moderate levels of noise (moderate irrationality), as pre-
viously observed in Fig. 3. However, there is a discrep-
ancy between theory and simulations for weak noise due
to the long transient times in regimes where F (ρ) is small,

which results in a relaxation period longer than the used
one, 200t0. However, this effect disappears in the mod-
erate and strong noise regime.
Finally, we have previously provided examples in

which, for a large part of the parameter space, the effect
of increasing θ pushes the system towards coexistence.
However, Fig. 4(c) shows an example of how weak noise
induces new abrupt transitions and/or non-monotonous
approaches to coexistence. .
As another example of a temperature-induced tran-

sition, in Fig. 5 we show how the cooperation density
ρ passes through two saddle-node bifurcations as the
temperature rises, depending on the initial conditions.
Namely, for temperature θ small enough, and for the ap-
propriate initial conditions, the system can be in a state
close to defection (left zero of the force function F in
Fig. 2(a), close to cooperation (right zero of F ), or at co-
existence (central zero of F ). As θ increases, the former
states continuously approach ρ = 1

2 until they suddenly
disappear (the extreme stable fixed points of F collide
with unstable ones). Just after these critical points, the
cooperation level jumps to coexistence ρ = 1

2 . We have
just described two instances of a hybrid phase transition,
a continuous one just after the critical point and a discon-
tinuous one just before it. Similar behaviors have been
observed in many other complex systems [69–72]. Inter-
estingly, the critical behavior is found here at the mean-
field level, without the need for any underlying complex
interaction structure.

V. THE PRISONER’S DILEMMA

Up to this point, we have demonstrated the useful-
ness of the scaled parameters τ and σ in simplifying the
description of the system. Nonetheless, to make com-
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a) b) c)

σ

FIG. 4. Cooperation density ρ in a system with N = 104 at t = 200t0 (theory-lines) and t ∼ 105t0 (simulations-symbols) as a
function of (a) the initial value ρ0 for different θ’s, (b) the game parameter σ for different θ’s and ρ0 = 0.1, and (c) the effective
temperature for different game parameters and ρ0 = 0.1.

FIG. 5. Steady cooperation level ρ for different initial con-
ditions as a function of the effective temperature θ, with the
other parameters taken as in Fig. 2(a).The number of players
is N = 104 and the simulation time is t0 = 104. Black lines
are from the mean-field theory and symbols from numerical
simulations.

parisons with prior findings [68] and others, in this Sec-
tion we will delve into the system dynamics in terms of
its intrinsic parameters, including the aspiration m. We
also take representative game parameters corresponding
to the Prisoner’s dilemma game: P = 0, R = 1, S = − 1

2 ,

and T = 3
2 which corresponds to the so-called donation

game with benefit 3/2 and cost 1/2. Similar qualitative
behavior is observed for closed game parameters of the
system. Results for other games can be found in Ap-
pendix B.

In the case of imitative strategies, a well-known re-
sult is that these parameters would yield full defection
in structureless populations unless the noise level (irra-

tionality) is high. In the present model, we illustrate the
dependence on m in Fig. 6. In this figure, we provide the
final state ρ after a transient time (200t0 for theory and
∼ 105t0 in simulations), for several values of the initial
condition ρ0 and effective temperature θ in a system with
N = 104.

We see in Fig. 6 that, in general, the system does not
decay to total defection. In the deterministic case θ = 0
[Fig. 6(a)], for small m any state of the system is absorb-
ing because any payoff is above the threshold required for
strategy changes. This cooperation level suddenly drops
at some mc(ρ0), where cooperators become unsatisfied
with their payoffs and change their strategies to defec-
tion. Finally, for very large m all agents change their
strategy at every time step, resulting in coexistence.

For larger values of m, larger than ∼ 0.8 in Fig. 6(a),
the system ends up having ρ = 1

2 . This cooperation value
has been identified in the mean-field description as coex-
istence (or eventually as absorbing when θ = 0). How-
ever, ρ = 1

2 does not necessarily mean that the same frac-
tion of the population has different strategies at a given
time. At the microscopic level, all agents are dissatisfied
with their payoffs, making them change their strategies
each game round. In our microscopic implementation of
the model using the Gillespie algorithm, which uses asyn-
chronous updates, the system reaches pure coexistence of
opinions (half of the population coexisting with different
opinions at a given time). However, with synchronous
updates, the system would change its initial cooperation
density ρ0 to 1−ρ0 after a game round, and then back to
ρ0, and so on. Upon time averaging, the density fraction
takes the value 1

2 .Both implementations of the mean-field
description are identical and the two microscopic scenar-
ios lead to the same macroscopic state.

For small values of noise [Fig. 6(b)], we notice that
the observed state of the system can be strongly depen-
dent on the evolution time, which can be very relevant in
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a) b)

c) d)

FIG. 6. Cooperation density ρ as a function of the mood
m for three initial values ρ0 = 0.1; 0.5; 0.9, N = 104, the
game parameters P = 0; R = 1; S = −0.5; T = 1.5, and (a)
θ = 0, (b) θ = 0.02, (c) θ = 0.1, and (d) θ = 0.5. Lines are
for theory (t = 200t0) and symbols for numerical simulations
(t ∼ 105t0).

experiments. For times of the order of 200t0 (compara-
ble to typical experimental time in social experiments),
the results are similar to θ = 0. In contrast, for longer
times, the system escapes to a lower cooperation level,
which is independent of ρ0. It is worth noting that as
the aspiration (m) increases, the cooperation density (ρ)
also increases. Therefore, we conclude that aspiration
promotes cooperation in Prisoner’s dilemma games dom-
inated by mainly rational choices. For higher noise lev-
els, the system evolves faster to a coexistence level that
shows a non-monotonous dependence on the aspiration
m [Figs. 6(c-d)].

VI. CONCLUSIONS

The behavior of introspective agents in the context
of mean-field evolutionary games has been studied theo-
retically and numerically. In the considered model, the
strategic choices are based only on the weighting of their
obtained payoff with her aspiration. An effective tem-
perature has also been introduced to tune the degree
of rationality in decision-making. Overall, the results
show a rich phenomenology, which includes continuous
and abrupt transitions and non-monotonous dependence
of the cooperation density as the game’s parameters, ef-
fective temperature, and aspiration change.

We have shown that the mean-field description, in

terms of the cooperation density, can be made using the
effective temperature and two global parameters, a com-
bination of the game and aspiration parameters. This
means that a change in the aspiration can be seen as
a change in the game parameters. Moreover, we have
shown that the dynamics mimics that of 1D overdamped
particles subject to an effective force, Eq. (13), which
encloses all the relevant information to determine the
steady-state and metastable states of the system. The
analysis of the external force reveals different steady-
states (consensus, coexistence, absorbing, and discontin-
uous) for rational decisions (zero effective temperature)
and states with an intermediate degree of cooperation
(similar to coexistence) with some degree of irrationality
(positive temperature). The rich behavior of the system
is also due to its dependence on the initial conditions,
since at given values of the parameters, several steady-
states may compete, as summarized in Figs. 1 and 3.
Our study emphasizes the importance of the absorb-

ing states when the dynamics is driven by rational deci-
sions. Absorbing states, where the system gets stacked,
are reached when players are satisfied with their payoffs
(states of satisfaction) and hold the same strategy all the
time. We stress that these states appear at the mean-
field level, i.e. without any complex interaction struc-
ture, as opposed to other models [68]. With some degree
of irrationality, the system may effectively get trapped in
(metastable) states of satisfaction since the time needed
to change its state is typically much larger than the rel-
evant ones in Sociology. This is closely related to the
eventual dependence on the system size, which will be
explored elsewhere.
The results of the present work stressed that to have

a complete picture of evolutionary game theory, in gen-
eral, and with aspiration-driven models, in particular,
one has to be careful with restricting parameter values.
In our case, we have identified two relevant parameters
that give rise to four possible cases where the system has
different behaviors. With the typical values of the game
parameters P = 0 and R = 1 and with the aspiration
parameter m ∈ (0, 1), only one of the four possible cases
can be covered. This leaves out relevant results.
To be precise, our results can only be directly applied

to well-mixed populations. A complete and systematic
analysis of the dynamics under structured interactions is
needed to assess the range of applicability of the mean-
field approach. Nevertheless, since neighbors’ payoffs do
not play a role in our dynamics, we expect many of the
conclusions obtained from our results to be general and
hold in the presence of more complex topologies, as some
previous studies seem to suggest [41, 73].
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Appendix A: Further results for θ = 0

Here we complement the results of Sec. III by providing
the values of the parameters where the different steady
states may appear for the zero-temperature case θ = 0.
The fundamental equation is

F (ρ) = 0, (A1)

where the effective force F is given by Eq. (13) and
Eqs.(15)–(16).

1. Consensus states

Plugging ρ = 1 into Eq. (A1) we obtain the condition

π−(1) = 0 ⇒ Θ

(
−kc

N − 1

N

)
= 0, (A2)

which is satisfied if and only if kc > 0, i.e. when R > m.
Disregarding border cases [i.e. assuming π−(ρ) = 0 for
ρ ∼ 1], the solution ρ = 1, provided it exists, can be
linearly stable or marginal. In the former case T < m ⇒
π+ = 1−ρ

t0
and d

dtρ = 1−ρ
t0

for ρ ∼ 1 which has a stable

fixed point at ρ = 1. In the other case, d
dtρ = 0 for ρ ∼ 1

and the stability of ρ = 1 is marginal.
Proceeding analogously with the defection consensus

ρ = 0, we find that it only exists when P > m. Moreover,
it is linearly stable for S < m and marginally stable
otherwise.

2. Coexistence states

As said in the main text, the coexistence state is the
only possible steady state when π+, π− > 0. For π+ =
π− = 0 the solution ρ = 1

2 may appear as an instance of
an absorbing state.

When π+, π− > 0 for some values of ρ, we need condi-
tions (17) and (18). In this case, d

dtρ = 1
t0
(1− 2ρ) which

has ρ = 1
2 as the only fixed point, which in turn is linearly

stable.

3. Absorbing states

The absorbing states appear for a ρ satisfying π+ =
π− = 0, which may include ρ = 0, 1

2 , 1 as special cases,
as already mentioned. The previous conditions are equiv-
alent to Eqs. (19)–(20) and give rise to the following re-
gions of parameters where the absorbing states can be
reached:

+ For R = m, S > m, P = m, and T > m for all
values of ρ.

+ Case I: R > m and P > m. Here there are four
possible regions:

- For τ ≥ 1/N, σ ≥ 1/N , and all ρ.

- For τ ≥ 1/N, σ < 1/N , and ρ > ρ−σ.

- For τ < 1/N, σ < 1/N , ρ−σ < ρ < 1 − ρ−τ

when τσ ≲ 1. In the border case τσ ≃ 1, there
is only one possible value of ρ.

- For τ < 1/N, σ ≥ 1/N , and ρ < 1− ρ−τ .

We have introduced the following notation

ρx ≡
1− 1

N

1 + x
(A3)

and used the approximate symbols when N → ∞
to alleviate the mathematical writing.

+ Case II: R > m, P < m with two regions:

- For τ > −1/N, σ ≥ 1/N when ρ > 1− ρτ .

- For τ > −1/N, σ < 1/N when ρ > max(1 −
ρτ , ρ−σ).

Case II’ follows immediately from this one.

+ Case III: R < m, P < m with only one region:

- for τ > −1/N, σ > −1/N when 1− ρτ < ρ <
ρσ, which requires τσ ≳ 1.

4. Discontinuous states

Let us identify a discontinuous state with ρ∗. As men-
tioned in the main text, it is characterized by the follow-
ing condition, which involves the effective force F :

F (ρ∗−) > 0, (A4)

F (ρ∗+) < 0. (A5)

In case of any of the two inequalities where and equality,
then ρ∗ would be also an absorbing state as well.
In order to identify the possible values ρ∗ ∈ (0, 1)

satisfying conditions (A4) and (A5), it is convenient to
distinguish between two possibilities: ρ∗ ∈ (0, 1

2 ) and

ρ∗ ∈ ( 12 , 1). After some algebra and taking N → ∞ for
simplicity, we identify different regions where discontin-
uous states are present:

+ For −kdτ > 1, kdτσ > kc, with ρ∗ ≃ 1
1−kdτ

.

+ For −kcσ > 1, kcτσ > kd, with ρ∗ ≃ 1− 1
1−kcσ

.
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Appendix B: Dependence of the games on the mood

In this Appendix, we study the effect of changing the
aspiration or mood parameter m in the Stag Hunt, Har-
mony, and Snowdrift games. The Prisoner’s dilemma was
already discussed in the main text.

1. Stag Hunt

For the Stag Hunt game, we choose as representative
parameters P = 0, R = 1, S = − 1

2 , and T = 1
2 . At

the mean-field level, according to the results in [68], in
the final state of the system with rational choices agents
either always defect or cooperate. The actual final state
is determined by the specific values of the parameters and
the initial condition. With a small degree of irrationality,
the behavior is very similar. Only when most decisions
are irrational, the system approaches coexistence.

a) b)

c) d)

FIG. 7. Cooperation density ρ as a function of the mood m
for the game parameters T = 0.5; S = −0.5; P = 0; R = 1
and the other parameters as in Fig. 6.

As for the Prisoner’s dilemma, our results predict a
much more complex behavior for the Stag Hunt model
than the model in [68], as Fig. 7 clearly shows. Again,
the final level of cooperation is strongly dependent on the
temperature, the initial conditions, the evolution time,
and specifically on the aspiration m. Moreover, for this
game, the system is more prone to suffer from abrupt
changes. Interestingly, for a relatively high temperature
θ = 0.1 there is an optimal value of m ≃ 0.5 that maxi-
mizes cooperation.

2. Harmony

The explicit dependence of the Harmony game onm for
the specific game parameters P = 0, R = 1, S = T = 1

2
and different temperatures and initial conditions are
given in Fig. 8. As can be seen, the game shows rich
behavior, with nontrivial dependence on the parameters.
The cooperation density can take any value for zero effec-
tive temperature (rational choices), provided the mood
is small enough, as in the previous games. Here, how-
ever, we found an intermediate interval of m for which
the system reaches complete cooperation. This optimal
behavior remains with some degree of irrationality (pos-
itive effective temperature). This interesting behavior is
in contrast with the usual one found when the dynamics
is driven by comparing payoffs, as in [68], where cooper-
ation consensus is the final state of the system for small
and moderate degree of irrationality (say θ ≤ 0.5).

a) b)

c) d)

FIG. 8. Cooperation density ρ as a function of the mood m
for the game parameters T = 0.5; S = 0.5; P = 0; R = 1 and
the other parameters as in Fig. 6.

3. Snowdrift

Once again, in the Snowdrift game, we observe im-
portant differences between the results obtained in this
work and that in Ref. [68]. Here, as it is apparent from
9 for the specific parameters P = 0, R = 1, S = 1

2 , and

T = 3
2 , the level of cooperation can take any value for

rational behavior (small temperature) and low aspiration
(small mood), while for larger effective temperatures the
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cooperation density is almost independent of the mood,
except for a small range around m = 3

4 .

a) b)

c) d)

FIG. 9. Cooperation density ρ as a function of the mood m
for the game parameters T = 1.5; S = 0.5; P = 0; R = 1 and
the other parameters as in Fig. 6.
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