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Abstract: Nonisocyanate polyurethane materials with pending alcohol groups in the polymeric chain
were synthesized by polyaddition reaction of bis(cyclic carbonates) onto diamines. For the platform
molecule, 1,4-butanediol bis(glycidyl ether carbonate) (BGBC, 1) was used. The polyaddition reaction
of 1 onto a wide range of diamines with different electronic and physical properties was explored.
All PHUs were obtained quantitatively after 16 h at 80 ◦C temperature in MeCN as solvent. The
low nucleophilicity of L-lysine has proven unable to ring-open the cyclic carbonate and, thus, no
reaction occurred. The addition of DBU or TBD as the catalyst was tested and allows the obtention
of the desired PHU. However, the presence of strong bases also led to the formation of polyurea
fragments in the new PHU. The different poly(hydroxyurethane) materials were characterized using
a wide range of spectroscopic techniques such as NMR, IR, MALDI-ToF, and using GPC studies. The
thermal properties of the NIPUs were investigated by DSC and TGA analyses. Moreover, reactions
employing different monomer ratios were performed, obtaining novel hydroxycarbamate compounds.
Finally, sequential and one-pot experiments were also carried out to synthesize the PHUs polymers
in one-step reaction.

Keywords: non-isocyanate polyurethanes (NIPUs); poly(hydroxyurethanes) (PHUs); CO2; polyaddition
reaction; cyclic carbonates

1. Introduction

In the last 50 years, a compelling growth of interest has emerged within the scientific
community and plastic industry for the production of polyurethane (PU) materials due to
their versatility and wide range of applications. Thanks to their physical properties such as
hardness, elongation, strength, abrasion resistance, light weight, etc., they have been widely
used in biomedical, building and construction, automotive, textiles, adhesives, packaging,
and several other industries [1–7]. Traditionally, these materials have been prepared by the
polyaddition reaction of a diol (or polyol) onto a diisocyanate (or poly isocyanate), and
this method is still currently in use in industries [8]. However, isocyanate reagents are
hazardous for the environment and their production often requires the use of phosgene,
which is highly toxic for humans [9]. Therefore, alternative pathways for PU synthesis
involving greener intermediates and processes have become more and more attractive
for industrial and academic research. In this context, the synthesis of nonisocyanate
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polyurethanes can be achieved by the transurethanization polycondensation between a
biscarbamate and a diol [6,10–13], the copolymerization of azidirines and CO2 [14–16], and
the polyaddition reaction of bis(cyclic carbonates) and diamines (Scheme 1) [17–19].
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clic carbonates) and diamines since cyclic carbonates have gained much interest from 
many research groups and industry due to their applications as solvents [20,21], electro-
lytes for batteries [22,23], and precursors for the synthesis of polymers and fine chemicals 
[24]. This route exhibits several advantages such as the use of CO2 as a sustainable C1 
feedstock to synthesize the cyclic carbonate, which has been seen of vital environmental 
importance and as a synthetic challenge during the last few years [25–30]. Furthermore, 
the ring-opening reaction with diamines generates linear poly(hydroxyurethane)s, with 
pending primary or secondary alcohol groups within the main polymeric chain, which 
gives the polymer specific properties such as better adhesion, thermal stability, and chem-
ical resistance to nonpolar solvents (Scheme 2) [31]. In addition, the reactive hydroxyl 
groups enable the polymer to undergo postfunctionalization reactions with chemical and 
biological functionalities [32]. As reported in the literature, the secondary alcohols moie-
ties are mainly generated during the polymerization process with respect to their primary 
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Amongst them, most attention has been given to the polyaddition reaction of bis(cyclic
carbonates) and diamines since cyclic carbonates have gained much interest from many
research groups and industry due to their applications as solvents [20,21], electrolytes for
batteries [22,23], and precursors for the synthesis of polymers and fine chemicals [24]. This
route exhibits several advantages such as the use of CO2 as a sustainable C1 feedstock to
synthesize the cyclic carbonate, which has been seen of vital environmental importance and
as a synthetic challenge during the last few years [25–30]. Furthermore, the ring-opening
reaction with diamines generates linear poly(hydroxyurethane)s, with pending primary
or secondary alcohol groups within the main polymeric chain, which gives the polymer
specific properties such as better adhesion, thermal stability, and chemical resistance to non-
polar solvents (Scheme 2) [31]. In addition, the reactive hydroxyl groups enable the polymer
to undergo postfunctionalization reactions with chemical and biological functionalities [32].
As reported in the literature, the secondary alcohols moieties are mainly generated during
the polymerization process with respect to their primary counterparts [32–34].

Since the pioneer work of this synthetic route for the NIPUs in 1957 [35], several
reviews about the synthesis of polyurethanes have been reported by different research
groups [6,10,17–19,31,36]. In general, the ring-opening reaction of the cyclic carbonate
by the amine takes place without the use of a catalyst. However, the reaction rate can
be accelerated through activation of the monomers by using either weak Lewis acid or
oxophilic additives to increase the electrophilicity of the cyclic carbonate group or by the
addition of basic additives to increase the nucleophilicity of the amine or even deprotonate
it [37,38]. Generally, the polyaddition of cyclic carbonates onto diamines is carried out
in polar aprotic solvents such as dimethylformamide (DMF), dimethylsulfoxide (DMSO),
N,N-dimethylacetamide (DMAc), etc., due to the better solubility of the starting materi-
als [32,33,39]. The temperature also has an influence on the outcome of the polyaddition
reaction [40,41]. Thus, higher yields and reaction rates were obtained when the reaction
temperature was increased, which was explained by the decrease of the viscosity in the
reaction mixture [41].
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In this paper, we reported the synthesis of different NIPUs materials by polyaddition
reaction of CO2-based cyclic carbonate, 1,4-butanediol bis(glycidyl ether carbonate) 1
(BGBC), with a wide range of commercial diamines to afford the corresponding NIPUs
in quantitative yields, including a crosslinked one, which showed enhanced thermal
properties. The obtained PHUs were characterized by NMR, IR, MALDI-ToF, and GPC
studies. In addition, the synthesis of different carbamates was designed by varying the
ratio of the substrates. Finally, one-pot and sequential experiments were also performed to
obtain the corresponding PHU materials.

2. Experimental Details
2.1. Materials and Methods

All manipulations were performed under nitrogen, using standard Schlenk techniques.
1H and 13C NMR spectra were recorded on a Bruker Ascend TM-500/400 spectrome-
ters (Bruker Corporation, Billerica, MA, USA) and referenced to the residual deuterated
solvent. Gel permeation chromatography (GPC) measurements were performed on a Wa-
ters 1515 model (Waters Corporation, Milford, CT, USA), equipped with three different
columns: 1× PSS GRAM precolumn 10 µm 8 × 50 mm, 1× PSS GRAM column 10 µm
30 Å 8 × 300 mm, and 1× PSS GRAM column 10 µm 1000 Å 8 × 300 mm, and a refractive
index detector (Waters 2414). The GPC column was eluted using DMAc as solvent at
25 ◦C at 1 mL·min−1 and calibrated using eight monodisperse polystyrene standards in
the range of 580–50000 Da. TGA analysis was performed on a TA instruments TGA-Q50
(TA instruments, New Castle, DE, USA). The heating rate for the sample was 10 ◦C/min,
and the nitrogen flow rate was 60 mL/min. DSC curves were obtained under N2 atmo-
sphere on a TA instruments DSC-Q20 (TA instruments, New Castle, DE, USA). Samples
were weighed into aluminum crucibles with 5 mg of sample and subjected to two heat-
ing cycles at a heating rate of 10 ◦C/min. The MALDI-ToF spectra were acquired using
a Bruker Autoflex II TOF/TOF spectrometer (Bruker Corporation, Billerica, MA, USA)
using dithranol (1,8,9-trihydroxyanthracene) as matrix material and NaOAc as additive.
Commercially available chemicals were used as received.
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2.2. Materials and Reagents

Solvents, deuterated solvents, and all other reagents were purchased from common
commercial sources and used as received.

2.3. General Procedure for the Synthesis of 1,4-Butanediol bis(glycidyl ether carbonate) 1

The 1,4-butanediol bis-glycidyl ether (BGBE) (50.00 g, 0.25 mol) and the bifunctional
organocatalyst (0.99 g, 2.47 mmol) were placed in a 500 mL stainless steel reactor with
a magnetic stirrer bar. The reaction mixture was heated to 80 ◦C, then pressurised to
10 bar of carbon dioxide pressure and stirred for 2 h. The mixture was purified by flash
chromatography using a solvent system of first hexane, then hexane:EtOAc (9:1), then
hexane:EtOAc (3:1), then EtOAc to achieve the pure cyclic carbonate as a white solid in 90%
yield (65.31 g, 0.22 mol).

2.4. General Procedure for the Synthesis of Poly(hydroxyurethane)s 1a-e

In a 10 mL Schlenk flask equipped with a small stir bar, BGBC 1 (0.25 g, 0.86 mmol), the
corresponding diamine (0.86 mmol), and MeCN (2 mL) were added. The reaction mixture
was then warmed up at 80 ◦C and left stirring for 16 h. After that time, the solvent was
removed in vacuo and the residue was washed with methanol. The mixture was filtered,
and the solvent was dried in vacuo to afford the corresponding poly(hydroxyurethane) as
a rubbery material or a solid depending on the diamine used in 80–95% yield.

2.5. Synthesis of Poly(hydroxyurethane) 1f

The synthesis of PHU 1f was carried out in a similar manner to PHUs 1a–e, using BGBC
(1) (0.25 g, 0.86 mmol), L-lysine (0.13 g, 0.86 mmol), and 1,5,7-Triazabicyclo[4.4.0]dec-5-ene
(TBD) (0.12 g, 0.86 mmol) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.13 g, 0.86 mmol),
and 1f material was obtained as a white-yellowish solid in 93% yield after the appropriate
work-up procedure.

2.6. General Procedure for the Synthesis of Hydroxycarbamates 2 and 3

In a 10 mL Schlenck equipped with a small stir bar, 1,4-butanediol bis(glycidyl ether
carbonate) 1 (0.25 g, 0.86 mmol), 1,4-diaminobutane (43 µL, 0.43 mmol and 0.13 mL,
1.72 mmol for 2 and 3 respectively), and MeCN (2 mL) were added. The reaction mixture
was then warmed up at 80 ◦C and left stirring for 16 h. After that time, the solvent was
removed in vacuo, extracted with MeOH, and filtered off. Removal of the solvent under
vacuum afforded the corresponding hydroxycarbamate as a white solid in 95% yield.

2.7. General Procedure for the One-Pot Synthesis of Poly(hydroxyurethane)s 1a,c,d

The 1,4-butanediol bis-glycidyl ether (BGBE) (0.17 g, 0.86 mmol), bifunctional organocat-
alyst (3.44 mg, 8.6 µmol) and the corresponding diamine) (0.86 mmol), and MeCN (2 mL)
were placed in a 50 mL stainless steel reactor with a magnetic stirrer bar. The reaction
mixture was then warmed up at 80 ◦C, then pressurised to 10 bar of carbon dioxide pres-
sure, and left stirring for 16 h. After that time, CO2 was released, the solvent was removed
in vacuo and the residue was washed with methanol. The mixture was filtered, and the
solvent was dried in vacuo to afford a rubbery mixture composed of the corresponding
poly(hydroxyurethane) and polyaminoalcohol was obtained.

2.8. General Procedure for the Sequential Synthesis of Poly(hydroxyurethane)s 1a,c,d

The 1,4-butanediol bis-glycidyl ether (BGBE) (0.17 g, 0.86 mmol) and bifunctional
organocatalyst (3.44 mg, 8.6 µmol) were placed in a 50 mL stainless steel reactor with a
magnetic stirrer bar. The reaction mixture was then warmed up at 80 ◦C, then pressurised
to 10 bar of carbon dioxide pressure, and left stirring for 2 h. After that time, CO2 was
released, MeCN (2 mL) and the corresponding diamine (0.86 mmol) were added, and the
reaction mixture was stirred for 16 h. Then, the solvent was removed in vacuo and the
residue was washed with methanol. The mixture was filtered, and the solvent was dried
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in vacuo to afford the corresponding poly(hydroxyurethane) 1a, 1d and 1e as rubbery
materials in 85–90% yield.

3. Results and Discussion

Initially, the multigram scale preparation of 1,4-butanediol bis(glycidyl ether carbon-
ate) (1) from the commercially available 1,4-butanediol bis-glycidyl ether and CO2 was
carried using 1 mol% of the hydroxy-containing imidazole organocatalyst designed by
our group [42] at 10 bar of CO2 and 80 ◦C for 2 h under solvent-free conditions affording
compound 1 in 90% yield (Scheme 3).
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Bis(cyclic carbonate) (1) was used along with 1,4-diaminobutane (BDA) in a 1:1 molar
ratio to optimize the reaction conditions to synthesize the different NIPUs (Scheme 4).
Firstly, the solvent effect on the polyaddition process was investigated (Table 1, entries
1–4). As can be seen, all solvents afforded the formation of the desired PHU quantitatively.
However, MeCN was chosen as the optimal solvent to perform this reaction due to its
high polarity to increase the solubility of the starting materials and its easy accessibility.
Then, the effect of the reaction temperature was studied (Table 1, entries 5–9). As expected,
the conversion decreased as the temperature was decreased. Polyaddition of BGBC (1) to
BDA at room temperature afforded the corresponding PHU in 67% conversion after 16 h
of reaction (Table 1, entry 7). This fact has been previously observed for this process. This
is probably due to two factors. First, the low reactivity between five members of cyclic
carbonates and diamines, and, second, due to monomer diffusion during polymerization.
This is an important phenomenon in which are involved the hydrogen bonds created
with carbamate groups. The increase of the temperature allows to decrease the viscosity,
and to increase the mobility, and thus the advancement of the reaction and the molar
masses [17,36,43,44].

Once the optimal conditions for the polyaddition of BGBC (1) and BDA were deter-
mined (80 ◦C and MeCN as solvent for 16 h), several PHUs were prepared using a wide
range of commercial diamines (Scheme 5). The results are shown in Table 2. All PHUs were
obtained quantitatively after 16 h (Table 2, entries 1–6), except when L-lysine was used, in
which case, no reaction was observed (Table 2, entry 7). This result can be explained based
on the low nucleophilicity of L-lysine, which is not able to ring-open the cyclic carbonate,
and no polyaddition occurred. Since previous works confirmed that the presence of strong
bases catalyzed the process [45], the addition of DBU or TBD as catalyst was tested. The
addition of a catalyst resulted in the obtention of the desired PHU (Table 2, entries 8 and 9).
However, the presence of strong bases also led to the formation of polyurea fragments
(Figures 1 and S35), as has been previously reported in similar reactions [38].
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Table 1. Optimization of reaction conditions for the polyaddition of BGBC 1 and 1,4-diaminobutane.

Entry Solvent Time (h) T (◦C) Conversion (%) 1

1 DMF 16 80 100
2 MEK 16 80 100
3 EtOAc 16 80 100
4 MeCN 16 80 100
5 MeCN 16 60 93
6 MeCN 16 40 83
7 MeCN 16 r.t 67

1 Determined by NMR.
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Table 2. GPC data for selected PHUs 1.

Entry Diamine (PHU) Conversion (%) 2 Primary OH: Secondary OH Mn, exp
3 PDI 3

1 1,4-diaminobutane (1a) 100 32:68 14500 2.2
2 Isophorone diamine (1b) 100 36:64 13250 1.5

3 1,3-cyclohexanebis
(methanamine) (1c) 100 36:64 17800 1.6

4 m-Xylene diamine (1d) 100 38:62 9050 2.2
5 tris(2-aminoethyl)amine (1e) 100 28:72 17200 2.1

6 4 tris(2-aminoethyl)amine (1e) 100 - - -
7 L-lysine (1f) 0 - - -

8 5 L-lysine (1f) 88 - 39200 2.1
9 6 L-lysine (1f) 90 - 40325 2.2

1 Reactions were carried out at 80 ◦C in MeCN for 16 h. 2 Determined by NMR. 3 Determined by GPC. 4 0.66 eq.
of tris(2-aminoethyl)amine used. 5 1 eq. of DBU was used. 6 1 eq. of TBD was used.
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The synthesis of a crosslinked PHU was achieved by the reaction of BGBC (1) with
tris(2-aminoethyl)amine in a 3:2 molar ratio (Table 2, entry 6). The higher Tg value obtained
by differential scanning calorimetry for polymer 1e suggested the formation of a crosslinked
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PHU. This high glass transition temperature was attributed to the increased rigidity of the
resulting polymer (Table 3, entry 6).

Table 3. DSC and TGA analyses for selected PHUs.

Entry Diamine (PHU) Tg (◦C) 1 Td, 5% (◦C) 2

1 1,4-diaminobutane (1a) 11 252
2 Isophorone diamine (1b) 22 272
3 1,3-cyclohexanebis(methylamine) (1c) 22 263
4 m-Xylene diamine (1d) 22 231
5 tris(2-aminoethyl)amine (1e) −3 229

6 3 tris(2-aminoethyl)amine (1e) 43 261
7 L-lysine (1f) −13 128

1 Determined by differential scanning calorimetry. 2 Determined by thermogravimetric analysis. 3 0.66 eq. of
tris(2-aminoethyl)amine used.

The chemical structures of the PHUs were characterized by 1H-NMR and 13C-{1H}-
NMR (Figure 2 and Supplementary Information), diffusion ordered spectroscopy (DOSY)
NMR (Figure S35) and IR spectroscopy (Figure 1 and Supplementary Information), MALDI-
ToF analysis (Figure 3 and Supplementary Information), and gel permeation chromatogra-
phy (GPC) (See Supplementary Information). Figure 1 shows the FT-IR spectra of BGBC (1)
and PHUs (1c) and (1f). Bis(glycidyl ether carbonate) (1) exhibited two characteristic bands
at 1781 and 1050 cm−1 corresponding to the cyclic carbonate groups (Figure 1a). However,
those bands disappeared in the PHUs IR spectra, and two new bands were observed at
1695 cm−1 and 1538 cm−1, and 1699 cm−1 and 1537 cm−1 for PHUs (1c) and (1f), respec-
tively, confirming the formation of urethane groups (Figure 1b,c, respectively). In addition,
another band at 1646 cm−1 was observed for PHU (1f), which was assigned to the C=O
stretching vibration of the urea group, indicating the formation of polyurethane-polyurea
chains (Figure 1c) [38]. Analysis of the 1H-NMR spectra of the generated polymers also
confirmed the formation of the urethane moieties. Characteristic peaks at 7.11 ppm and
6.74 ppm were assigned to the protons of the urethane groups, confirming the urethane
structure of the final product (Figure 2). The pair of resonances at 2.96 ppm; 1.37 ppm and
3.39 ppm; 1.51 ppm were assigned to the methylene protons of the alkyl groups of the
diamine and the BGBC (1), respectively. As has been previously mentioned, it is known
that both primary and secondary hydroxyl groups can be formed in the PHU backbone
depending on the ring-opening pathway of the cyclic carbonate moiety. In Figure 2, two
signals are observed at 4.89 and 4.75 ppm, corresponding to the formation of the secondary
and primary hydroxyl groups, respectively. Following previously reported results [32–34],
the PHUs synthesized in this work exhibited a primary:secondary OH ratio ranging from
28:72 to 38:62 (Table 2, entries 1–5).

MALDI-ToF mass spectrometry was also used to determine the end groups of the
obtained PHUs. As an example, the MALDI-ToF spectrum for PHU 1b (Figure 3) shows
a major series of peaks with an m/z interval of 460 mass units, indicating a controlled
alternating microstructure, which is in good agreement with a polymeric chain with one
isophorone diamine group in one end and a protonated urethane group in the other end.

Polyhydroxyurethanes 1a–e exhibited molecular weights between 9050 and 17,800 g mol−1

with moderate polydispersity ranging from 1.5 to 2.2 (Table 2). This was attributed to the
fact that no catalyst was used during the polymerization process. Thus, there is not a good
control over the polyaddition reaction and multiple chains with different molecular weights
can be generated; hence, the PDI values obtained. On the other hand, molecular weight
increased notably for PHU 1f, since DBU or TBD were added to the polyaddition process,
with values of 39,200 g mol−1 and 40,325 g mol−1, respectively (Table 2, entries 8 and 9).
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Thermal properties of the NIPUs were investigated by DSC and TGA analyses (Table 3).
TGA showed that all PHUs were stable in the range of temperatures from 0 ◦C to 270 ◦C
(Table 3), except for the PHU (1f) derived from L-lysine (Table 3, entry 7), which was
found to be stable between 0 ◦C and 128 ◦C. DSC thermograms (Figure 4) revealed that
the glass temperature Tg of the PHUs ranged from −13 ◦C to 43 ◦C (Table 3, entries
1–7), depending on the chemical structure of the diamines used. Most studies agreed
that higher molecular flexibility between the hydroxyurethane groups led to lower Tg of
PHUs [46–48]. Thus, PHUs derived from rigid amines such as isophorone diamine (Table 3,
entry 2), 1,3-cyclohexanebis(methylamine) (Table 3, entry 3), or m-xylene diamine (Table 3,
entry 4) exhibited higher Tg values than PHUs derived from aliphatic diamines such as
BDA (Table 3, entry 1), tris(2-aminoethyl)amine (Table 3, entry 5), or L-lysine (Table 3,
entry 7). On the other hand, the crosslinked PHU derived from tris(2-aminoethyl)amine 1e
exhibited the highest Tg (Table 3, entry 6).
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Figure 4. DSC thermograms for selected poly(hydroxyurethanes) PHUs.

The effect of the [diamine]/[BGBC] ratio on the polyaddition reaction of 1 onto 1,4-
diaminobutane was also investigated (Scheme 6). Thus, when 0.5 eq. of 1,4-diaminobutane
was used (1:2 ratio [diamine]/[BGBC]), a hydroxycarbamate with two cyclic carbonate
ending groups was obtained (2). On the other hand, when 2 eq. of diamine was added
(2:1 ratio [diamine]/[BGBC]), a hydroxycarbamate with two amine ending groups was
obtained (3). The structures for compounds 2 and 3 were confirmed by NMR and IR
spectroscopy and MALDI-ToF analysis. The 1H-NMR spectrum for compound 2 exhibited
resonances at 4.92 ppm, 4.52 ppm, and 4.27 ppm which confirmed the presence of cyclic
carbonate groups, as well as a signal at 7.24 ppm, confirming the formation of the urethane
moieties (Figure S38). Additionally, the IR spectrum exhibited two bands at 1787 cm−1

and 1048 cm−1, which correspond to the cyclic carbonate groups, as well as two bands at
1692 cm−1 and 1525 cm−1, assigned to the urethane groups generated (Figure S40). The
MALDI-ToF spectrum showed single peak with a m/z of 691 mass units, which is in good
agreement with the molecular weight of hydroxycarbamate 2 and Na+ (Figure S41).
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The results obtained for the reaction of BGBC (1) with different diamines support
the general mechanism proposed for the polymerization process by polyaddition reaction
of bis(cyclic carbonates) and diamines [36,49]. Thus, a three-step reaction involving a
tetrahedral intermediate was proposed (Figure 5).
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bis(cyclic carbonates) and diamines.

After the successful multistep synthesis of PHUs 1a–f, their direct synthesis from
BGBE, CO2, and a diamine in a one-pot process was investigated (Scheme 7). For that
purpose, BDA, 1,3-cyclohexanebis(methylamine), and m-xylene diamines were used as
starting materials. In all cases, full conversion of BGBE to BGBC (1) and subsequent
polyaddition onto the corresponding diamine to generate the corresponding NIPU was
achieved when the reaction was carried out at 80 ◦C and 10 bar of CO2 for 16 h using
acetonitrile as solvent (Scheme 7). Additionally, to polymer 1a, 1c, and 1d, the formation
of crosslinked poly(aminoalcohols) from bis-epoxides and diamines was observed, these
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polymers were previously reported [50,51]. Moreover, a white precipitate was also obtained
and was identified as the corresponding carbamate salt from the diamine and CO2 reaction
(Scheme 7) [52].
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Scheme 7. One-pot synthesis of poly(hydroxyurethane)s 1a,c,d.

IR analysis of the resulting mixture confirmed the presence of poly(aminoalcohol),
carbamate salt and poly(hydroxyurethane). Figure 6 shows the comparison of the IR spectra
of a blank sample containing 1,4-diaminobutane and BGBE (Figure 6a), 1,4-diaminobutane
and CO2 (Figure 6b), and the one-pot reaction mixture (Figure 6c). As can be observed
from Figure 5, the one-pot reaction mixture (Figure 6c) shows a sharp band at 3315 cm−1

corresponding to the stretching frequency of the amino-end group from the carbamate salt
as well as bands at 1555 cm−1 and 1326 cm−1 which correspond to the N−H bending and C-
N stretching frequencies of the amine group. Similarly, the presence of poly(aminoalcohol)
was confirmed by the presence of two peaks at 1108 cm−1 and 1454 cm−1 corresponding to
the C-O stretching and O-H bending from the alcohol group. The obtention of the PHU was
confirmed by the presence of a band at 1699 cm−1 corresponding to the urethane moiety.

Finally, in an effort to minimize the formation of the carbamate salt and the poly
(aminoalcohol), a sequential one-pot method was developed for the synthesis of PHUs
1a,c,d (Scheme 8). Therefore, bis(cyclic carbonate) BGBC (1) was prepared from BGBE as
shown in Scheme 3. The subsequent addition of a solution of the diamine in MeCN to the
reaction mixture afforded the formation of the corresponding PHUs.
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4. Conclusions

Herein, we reported the synthesis of different nonisocyanate polyurethanes via the
polyaddition reaction of bis(butanediol glycidyl ether)carbonate (1) with different diamines
under mild reaction conditions. All PHUs were obtained quantitatively after 16 h at 80 ◦C
temperature in MeCN as solvent. The low nucleophilicity of L-lysine has proven unable
to ring-open the cyclic carbonate and no polyaddition occurred. The addition of DBU or
TBD as a catalyst was tested and allows the obtention of the desired PHU. However, the
presence of strong bases also led to the formation of polyurea fragments in the new PHU.
All polymers were thoroughly characterized by different spectroscopic techniques and
their thermal properties were also investigated by DSC and TGA. As expected, crosslinked
PHU (1e) exhibits the highest glass transition temperature of 43 ◦C due to its higher
rigidity. Under the optimized reaction conditions, molecular weights of the synthesized
poly(hydroxyurethane)s showed values up to 18.7 kg mol−1 and 40.1 kg mol−1 for PHU
(1f), when an external base was used as catalyst. In addition, the use of different cyclic
carbonate/diamines ratios was explored, which allowed the preparation of hydroxycar-
bamates 2 and 3 quantitatively. One-pot experiments led to the formation of different
compounds where CO2 carbamate salt and poly(aminoalcohol) products were identified as
byproducts. Thus, a sequential one-pot reaction, combining the synthesis of BGBC (1) and
subsequent polymerization, afforded the formation of the corresponding NIPUs without
further purification of the carbonate intermediate.
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10.3390/polym14132719/s1, Figure S1. 1H NMR spectrum of PHU 1a in DMSO-d6. Figure S2.
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thermogram of PHU 1a. Figure S5. TGA thermogram of PHU 1a. Figure S6. 1H NMR spectrum of
PHU 1b in DMSO-d6. Figure S7. C13{1H} NMR spectrum of PHU 1b in DMSO-d6. Figure S8. IR
spectrum of PHU 1b. Figure S9. MALDI-ToF spectrum of PHU 1b. Figure S10. DSC thermogram
of PHU 1b. Figure S11. TGA thermogram of PHU 1b. Figure S12. 1H NMR spectrum of PHU 1c in
DMSO-d6. Figure S13. C13{1H} NMR spectrum of PHU 1c in DMSO-d6. Figure S14. IR spectrum of
PHU 1c. Figure S15. DSC thermogram of PHU 1c. Figure S16. TGA thermogram of PHU 1c. Figure
S17. 1H NMR spectrum of PHU 1d in DMSO-d6. Figure S18. C13{1H} NMR spectrum of PHU 1d in
DMSO-d6. Figure S19. IR spectrum of PHU 1d. Figure S20. GPC trace of PHU 1d. Figure S21. DSC
thermogram of PHU 1d. Figure S22. TGA thermogram of PHU 1d. Figure S23. 1H NMR spectrum
of PHU 1e in DMSO-d6. Figure S24. C13{1H} NMR spectrum of PHU 1e in DMSO-d6. Figure S25.
IR spectrum of PHU 1e. Figure S26. DSC thermogram of PHU 1e. Figure S27. TGA thermogram of
PHU 1e. Figure S28. IR spectrum of PHU 1e crosslinked. Figure S29. DSC thermogram of PHU 1e
crosslinked. Figure S30. TGA thermogram of PHU 1e crosslinked. Figure S31. 1H NMR spectrum
of PHU 1f in DMSO-d6. Figure S32. C13{1H} NMR spectrum of PHU 1f in DMSO-d6. Figure S33.
IR spectrum of PHU 1f. Figure S34. GPC trace of PHU 1f. Figure S35. DOSY spectrum of PHU
1f. Figure S36. DSC thermogram of PHU 1f. Figure S37. TGA thermogram of PHU 1f. Figure
S38. 1H NMR spectrum of hydroxycarbamate 2 in DMSO-d6. Figure S39. C13{1H} NMR spectrum
of hydroxycarbamate 2 in DMSO-d6. Figure S40. IR spectrum of hydroxycarbamate 2. Figure S41.
MALDI-ToF spectrum of hydroxycarbamate 2. Figure S42. 1H NMR spectrum of hydroxycarbamate
3 in DMSO-d6. Figure S43. C13{1H} NMR spectrum of hydroxycarbamate 3 in DMSO-d6. Figure S44.
IR spectrum of hydroxycarbamate 3. Figure S45. MALDI-ToF spectrum of hydroxycarbamate 3.
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