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Abstract

This paper introduces a problem that can be seen as a combination of the traveling salesman problem with
profits and the traveling repairman problem with profits, coined as the multi-objective traveling salesman—
repairman problem with profits (Mo-TSRPP). The objective of the Mo-TSRPP is to simultaneously optimize
three objectives: the total cost, total latency, and total profit. Indirectly, the number of nodes visited is also
considered although not as an objective itself since it is determined by the size of every efficient solution in
the Pareto front. The Mo-TSRPP emerges as a real-world problem in which a freelancer, which repairs ap-
pliances, wants to plan the daily route. Moreover, the daily plan does not require to visit all customers. To
solve the problem, first, a greedy randomized adaptive procedure is designed to generate a set of high-quality
nondominated solutions and then, a variable neighborhood descent algorithm is applied for further improv-
ing the initial set. This procedure allows us to attain a good approximation of the Pareto front. To prove
the performance of the proposal a comparison is done against three well-known evolutionary algorithms:
NSGA-II, SPEA-2, and MOEA/D. Finally, a realistic problem is shown and solved to illustrate the potential
of the algorithm.

Keywords: traveling salesman problem; traveling repairman problem; profit; multiobjective optimization problem; greedy
randomized adaptive search procedure; variable neighborhood descent
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1. Introduction

The traveling salesman problem (TSP) is one of the most widely studied combinatorial optimiza-
tion problem in the literature. Actually, more than 12, 000 works (according to ScienceDirect) have
been published from both theoretical and practical points of view, studying its complexity, its prop-
erties, or being solved using exact or approximate algorithms. The objective of the TSP is to find a
Hamiltonian cycle, which is a closed path that visits every node in the graph exactly once, except
the first and final nodes that coincide, with minimum total cost. In other words, it is needed to
determine an order in which each node should be visited such that each node is visited only once,
and the total cost incurred (distance traveled or travel time) is minimal. To study the TSP and its
variations, see Gutin and Punnen (2006) and, from a computational perspective, we refer the reader
to Applegate et al. (2007).

A more general problem than the TSP is the TSP with profits (TSPP), in which each node has
associated a profit and a feasible solution does not require to visit all nodes. Namely, one must
find a Hamiltonian cycle over a subset of nodes such that the collected profit is maximized while
the travel cost is minimized. As Angelelli et al. (2014) holds, the goal is to find an appropriate
trade-off between the total collected profit and the travel cost of the tour since the profit collec-
tion maximization implies that the salesman should visit a large number of nodes, while the cost
minimization implies that the salesman should visit a short number of nodes. Nevertheless, most of
the papers solve the TSPP by considering just one objective instead of those two. When this hap-
pens, several variants arise. The profitable tour problem, also known as the simple cycle problem
and introduced by Dell’ Amico et al. (1995), maximizes the difference between the total collected
profits and the total travel cost of the tour; the orienteering problem, also known as the selective
TSP or the maximum collection problem, introduced by Tsiligirides (1984), seeks to maximize the
total collected profit while maintaining a maximum traveling cost (a given fix value; see Laporte
and Martello, 1990); in the prize-collecting TSP (PCTSP), the salesman collects a profit of each
visited node and pays a penalty for each non-visited node being the goal the minimization of the
sum of the travel costs and penalties, but collecting a minimum preset amount of profits; and the
quota TSP, where the goal is to minimize the total travel cost but the salesman needs to fulfills a
quota. Note that the quota TSP is a particular case of the PCTSP where all penalties are zero (see
Silva et al., 2020, for further details).

As far as we know, the first attempt to address the TSPP from a multiobjective perspective was
done by Jozefowiez et al. (2008). They apply a hybrid metaheuristic to solve the problem using an
gjection chain process as local search combined with a multiobjective evolutionary algorithm that
generates a population of solutions. Specifically, the authors initialize the population by solving
the insert and shake procedure proposed by Gendreau et al. (1998) and by extending the tour until
no more nodes can be added without violating a length limit. Then, GENIUS by Gendreau et al.
(1992) is applied in an attempt to obtain a shorter tour on the nodes in the solution. If GENIUS
fails to produce a better tour, the procedure terminates. Then, all the nondominated solutions are
saved in the population and the procedure is repeated for a number of iterations. Two parents are
selected from the population and genetic operators are applied to obtain an offspring. Then, the
gjection chain process is applied with the offprints as the starting solution. The worst solution in
the population is replaced by the offprint or by a better solution found when applying the ejection
chain process. One year later, Bérubé¢ et al. (2009) solved the TSPP using an e-constraint method
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combined with two improvement heuristics to accelerate the convergence of the algorithm. The
e-constraint method turns a multiobjective optimization problem in single-objective subproblems
by transforming all objectives except one into constraints. The first improvement heuristic applies
cutting-plane algorithms in order to reduce the size of the relaxed solution space by adding cuts.
The second improvement heuristic uses the similarities between consecutive solutions obtained with
the e-constraint method since a better initial solution increases the upper bound on the optimal
solution value and prunes branches in advance allowing to reduce the number of explored nodes.

Another well-studied problem related to the TSP is the traveling repairman problem (TRP), also
called the minimum latency problem. The latency of a node is defined as the accumulated cost
(length or time) of the path from the depot to each node. Then, this problem seeks to find an open
Hamiltonian circuit starting from the depot, which minimizes the sum of path costs to all the nodes.
Note that this problem minimizes the total waiting time of all customers instead of the total trav-
eling time of the salesman such as is minimized in the TSP. See, for instance, Lucena (1990), where
an early exact algorithm can be found to solve the TRP; Silva et al. (2012) who proposed a sim-
ple metaheuristic, based on greedy randomized constructions coupled with random neighborhood
ordering for solution improvement to solve the TRP; or Pei et al. (2020) who proposed a general
variable neighborhood search (VNS) that uses as local search step five neighborhoods included in
a VND algorithm to deal with the TRP.

A problem related to the TRP is the TRP with profits (TRPP) whose objective is to find an open
Hamiltonian circuit such that the collected profit is maximized while the latency is minimized.
Most of the papers deal with the TRPP as a single-objective optimization problem instead of as
biobjective one. Specifically, they minimize the revenue that is defined as the difference between
the profit of a node and the number of times the edge preceding that node is counted in the total
latency. See, for example, Dewilde et al. (2013) whose authors proposed a mathematical model even
though they solve the problem using a metahuristic based on tabu search; Avci and Avci (2017) who
implemented a greedy randomized adaptive search procedure (GRASP) to build initial solutions
and an iterated local search with an adaptive perturbation mechanism to improve them. The only
attempt to solve this problem from a biobjective point of view without aggregating the functions
has been done by Bruni et al. (2020) whose authors proposed an iterated local search to that end.
A different biobjective variant was addressed by Arellano-Arriaga et al. (2019) whose objectives
are to minimize the total travel cost and the latency and the authors assume that the profit can be
viewed as opposite to the total travel cost. They implement an evolutionary algorithm based on an
intelligent local search based on the ideas followed by Molina et al. (2018).

The main contribution of this paper is to describe and solve an innovative problem coined as
the multiobjective traveling salesman-repairman problem with profits (Mo-TSRPP). This problem
can be seen as a generalization of the TSPP and the TSRP. The Mo-TSRPP determines the order
in which a subset of the set of nodes should be visited in order to minimize the total travel cost
(distance traveled or travel time needed), minimize the total latency, and maximize the total profit.
Given that this problem is motivated by a real-world application, it is interesting to consider routes
with all combinations of the number of nodes visited, therefore, we have opted to not include so-
lution size as an objective but to consider solutions with every possible number of visited nodes in
the set of nondominated solutions.

To solve the problem a VND algorithm is implemented since it has been proved to be very
effective when solving similar problems; see Mjirda et al. (2017) and Wang et al. (2017). From a
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multiobjective point of view, VND has been successfully applied to solve other difficult combinato-
rial optimization problems; see Issaoui et al. (2015), Lopez-Sanchez et al. (2018), and Hernandez-
Pérez et al. (2009), and given the versatility of this methodology we have found it appropriated
to solve the Mo-TSRPP. To generate an initial approximation of the Pareto front, we have opted
by implementing a greedy randomized adaptive (GRA) procedure that constructs solutions from
scratch using a greedy function and including randomization during the construction (more de-
tails are given in Section 3). To be more accurate, GRA procedure is the construction phase of the
GRASP algorithm but without applying the improvement phase; see Feo et al. (1994) and Feo and
Resende (1995). In fact, to strengthen the search and to enrich the Pareto front, every time a node
is included in the partial solution, it is sent to the nondominated set of solutions trying to explore
all kinds of solution. Next, all solutions will be improved using three neighborhoods, included in a
VND framework, keeping the solution size, to find a good approximation of the Pareto front.

Although the Mo-TSRPP arises to find the solution of a real situation in which a freelancer,
which repairs appliances, would like to plan the service planning to the customers, there are other
real-world applications that can be modeled through the Mo-TSRPP. Next, some examples are
briefly commented. The first example, unknown to many people, is the way in which some busi-
nesses work in emerging countries. The shortage of many commodities makes that a traveling sales-
man tries to sell them maximizing the total profit, minimizing the total travel cost, maximizing
the number of citizens who receive the commodity to be fair with the citizens, and minimizing the
latency since some products are perishable. Additionally, the latency affects to the shift duration
of the workers, which is a relevant aspect in a real-life scenario such as the one evaluated in this
research. Another interesting real-world application that can be modeled using the Mo-TSRPP is
related to the design of routes to nurses at rural health centers. In some health centers located in
small areas has assigned a nurse who every day must visit a set of patients in an area. The nurse must
visit the maximum number of patients in the minimum time possible. Furthermore, the patients are
waiting to receive the service and they prefer to wait the minimum possible time. Of course, the
nurse will obtain a hypothetical profit measure as the patient severity. In the ideal situation, all pa-
tients should be visited, but this usually does not happen and the nonvisited patients will be visited
the next day. To include a third real situation, suppose there are several populations (representing
as nodes in the problem) affected by a water cut and there is available just a tanker truck in an area
able to deliver drinking water. Each population requires a quantity of water proportional to the
number of inhabitants (representing the profit in the model). The objective of the delivery company
is to minimize the total distance traveled and maximize the profit, however the objective of the mu-
nicipalities is to obtain the supplies as soon as possible, which is optimized by minimizing the total
latency, and of course, it would be important to serve as many municipalities as possible to avoid
the dissatisfaction of the inhabitants.

Next, the main contributions of this work are highlighted.

* A GRA procedure based on the contribution of each node considering all the objectives is pro-
posed to generate high-quality initial solutions to approximate the initial Pareto front.

* Three different neighborhoods are implemented with the particularity that they do not modify
the size of every single solution to be improved. This allows us to simplify the difficulty of the
problem, but without reducing its performance.
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* The initial approximation of the Pareto front obtained with the GRA procedure is included in a
VND framework, resulting in an algorithm that is able to improve the initial approximation of
the Pareto front.

* The algorithm considers an improvement when a new solution strictly dominates the efficient
solution of the same size belonging to the Pareto front, in this way, on the one hand, it prevents
an unnecessary increment of the number of efficient solutions in the Pareto front, and on the
other hand, it sidesteps the issue of comparing the incumbent solution with all the solutions
belonging to the Pareto front.

+ Although in this paper we include and solve the real-world instance, we also address a more com-
plex dataset in which more challenging instances are considered in order to prove the performance
of the proposed algorithm.

The rest of the paper is organized as follows. Section 2 describes the Mo-TSRPP and some con-
cepts of multiobjective optimization. Section 3 presents the algorithm by explaining all the features
that have been considered to simplify the algorithm without reducing the overall performance. Sec-
tion 4 shows the fitting parameter to calibrate the algorithm, a comparison against three of the
most widely implemented multiobjective evolutionary algorithms to prove the performance and
furthermore, the resolution of the real-world application is included. Finally, Section 5 summarizes
the paper and discusses future work.

2. Problem definition

The Mo-TSRPP can be formally stated as follows. Let G = (V, A) be a complete graph, where
V ={1,...,n}is the node set and A = {(i, j) : i, j € V, i # j} is the arc set. Node 1 represents the
depot where the salesman starts and ends the route and N = {2, ..., n} is the set of customers
requiring a visit/service. Each arc (i, j) € 4 has an associated finite cost ¢;; > 0 (this cost could be
measured as a length or even as a time). Furthermore, each customer i € N pays a price p; > 0 when
receiving the service, or, in other words a profit is collected every time that a node is visited/served
(note that the depot has associated a null profit, p; = 0). The Mo-TSRPP seeks to plan a route by
visiting a subset of customers, S C N, in order to optimize the following objectives: the total travel
cost, the total latency, and the total profit, even though indirectly the number of customers served
is also considered.

The Mo-TSRPP is a multiobjective optimization problem since it involves to optimize more than
one objective function simultaneously and furthermore, they are in conflict which means that it is
not possible to improve one objective without deteriorating, at least, one of the remaining objec-
tives. Next, all the pairwise of objective functions are combined in order to see a possible conflict
among them; see Table 1. Note that at first glance, the total travel cost of the salesman (or total
travel time or total travel distance) is not in conflict with the total latency that the customers wait
to be served, but it could be a conflict depending on the considered instance, therefore in Table 1
is written “Sometimes.” However, those objectives are in conflict with the number of customers
served and with the profit. Of course, the number of customers that received the service and the
total profit obtained by the salesman are not in conflict.

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

85U8017 SUOLILLOD BANE81D 3ot jdde sy Ag peuenob afe seoiLe VO ‘88N Jo se|n. 10} AriqiT8uIIUO /8|1 UO (SUORIPUOD-pUR-SWIBIW0D A8 1M A1 Ul |UO//SdNL) SUORIPUOD PUe SWS 1| 8y} 89S *[202/20/82] Uo ARigiauluo A8|IM ‘(ouleAnde) sqnopesy Ag ZOVET 10)/TTTT OT/I0p/W00 A8 | g 1jeuljuo//Sdny woiy papeojumod ‘0 ‘S66ES.7T



6 R. Morante-Gonzalez et al. / Intl. Trans. in Op. Res. 0 (2023) 1-23

Table 1

Conflicting objectives

Conflict? Travel cost Latency Customers served Profit
Travel cost - Sometimes Yes, always Yes, always
Latency - - Yes, always Yes, always
Customers served - - - No, never
Profit - - - -

Fig. 1. Two feasible solutions with two nodes served.

In order to graphically illustrate the conflict among the objectives considered, a simple example
is included in Figures 1 and 2 where a feasible solution with two and three customers served are
represented, respectively. In those examples, the depot is located at (37,52) and four customers
require service N = {(49, 49), (52, 64), (20, 26), (40, 30)} by paying p = (23, 35, 56, 40).

Both figures represent two solutions that will be compared, one is represented in solid line and
the other one in dashed line.

Solutions in Figure 1 serve two customers. In the first solution, the route traveled by the traveler
first visits customer 2 and then customer 3, and the values of the objective functions are 46.88 (total
travel cost), 53.72 (total latency), 58 (total profit), and 2 (nodes served), meanwhile the second
solution performed by the traveler first visits customer 2 and then customer 5 with 55.60 (total
travel cost), 45.76 (total latency), 63 (total profit), and 2 (nodes served) as values of the objective
functions. Comparing both solutions, it can be observed that the first solution obtains a better
result for the total travel cost but the second solution is able to attain better results for the total
latency and the profit when serving the same number of customers.
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Fig. 2. Two feasible solutions with three nodes served.

Solutions in Figure 2 serve three customers. The first solution is the route that first serves cus-
tomer 4, then customer 5, and finally, customer 2, and the values of the objective functions are
84.85 (total travel cost), 115.01 (total latency), 119 (total profit), and 3 (nodes served), meanwhile
the second solution is the route that first of all visits customer 2, then customer 3, and finally cus-
tomer 5 with 85.93 (total travel cost), 103.76 (total latency), 98 (total profit), and 3 (nodes served)
as values of the objective functions. Comparing both solutions, it can be observed that the first
solution obtains a better result for total travel cost but the second solution is able to attain better
results for the total latency and the profit when serving the same number of customers.

Now, if we focus on both figures, solutions visiting two customers are better than solutions vis-
iting three customers for the total travel cost and the total latency, however, when visiting three
customers instead of two, the profit is better and so the satisfaction of the customers since more
customers are served. As consequence, it is said that the four solutions are efficient, non-dominated
or Pareto -optimal solutions. To formally define, this concept is needed to introduce the next con-
cepts.

Formally and without loss of generality, a multiobjective minimization problem can be defined
as follows:

min £(S) = {/1(S), 2(S). ... fm(S)},

where € is called the feasible set and the image of the feasible set is F(S) =
{(f1(S), f2(S), ..., fu(S) : S € Q} is named the objective space.
Therefore, given two feasible solutions S| € Q and S, € Q it is said that

» S| weakly dominates S,, denoted as S| < S, if and only if f;(S1) < fi(S2),Vi=1,...,m;
© 2023 The Authors.
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* S| dominates S,, denoted as S| < S», if and only if f;(S)) < fi(S>)Vi=1,...,m, and i, so that

fio(Sl) < ffo(S2);
o Sy strictly dominates S», denoted as 1 << S», if and only if f;(S1) < fi(S2),Vi=1, ..., m.

Henceforth, a solution is efficient, nondominated, or Pareto -optimal if there is no other solution
that dominates it. Hence, the Pareto front, also known as the efficient frontier, is the set of efficient
solutions. In this paper our objective is to find a good approximation of the Pareto front (PF) when
solving the Mo-TSRPP.

An important decision when designing a multiobjective optimization heuristic is the method to
generate solutions that needs a greedy function to that end (in our case, using a GRA procedure)
and the improvement method where it is needed to determine when a good movement must be per-
formed. As well as when solving single-objective optimization problems, an improvement is found
if the objective function value of the solution S; is better (smaller or larger) than the objective func-
tion value of S,, when solving multiobjective problems an improvement or a good node insertion
is not so easy.

The simplest way to consider an improvement is by means of the aggregation of all the objective
functions to deal the problem as single objective, that is, > .| B; - fi(S), where > 7", g = 1, and
Bi €]0,1]1Vi=1,..., mrepresenting the weight or importance of each objective function.

Another possibility to define an improvement was proposed by Marti et al. (2015) who defined
pure improvement (random or ordered) and combined improvement (sequential or weighed).

* Pure improvement focuses on considering one single objective until no more improvements can
be attained for such objective although permitting deterioration of the other objectives. The term
of random or ordered is related to the way of selecting the objective to improve.

* Combined improvement considers, at each step of the procedure, a different objective function
therefore, it does not permit deterioration of the other objectives since all of them can be applied.
The term of sequential indicates that at each step a different objective function is considered and
the weighted combine all objectives in a single objective.

Other authors use the most generalized way although time-consuming; see Pérez-Pelo et al.
(2019), Lopez-Sanchez et al. (2018), or Sanchez-Oro et al. (2020) who consider an improvement
if the Pareto front changes, that is, if a new efficient solution is obtained during the search even
though that means that other solutions in the Pareto front are now dominated and so they must be
removed from the Pareto front.

In this paper, we have considered that an improvement is reached if the new solution strictly
dominates the efficient solution of the same size belonging to the Pareto front. We have opted
by this strategy since it prevents an unnecessary increment of the number of efficient solutions in
the Pareto front, and also, it sidesteps the issue of comparing the incumbent solution with all the
solutions belonging to the Pareto front since this is the main reason why the previous proposals are
slower than ours.

To close this section, we would like to highlight the motivation that prompts us to address the
Mo-TSRPP. As was introduced in Section 1, the problem appears in a real-world situation in which
a freelancer has interest to satisfy not only his/her self-interest by minimizing the total travel cost
and maximizing the total profit but also the customers’ needs by minimizing the total latency. The
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freelancer would like also to obtain the maximum profit, of course, at the minimum cost (usually
measured as length or time) however, both objectives are in conflict since it is not possible to im-
prove one objective without deteriorating another one. Simultaneously, customers would like to be
served waiting the minimum possible time.

3. Algorithm proposal

In this section, we present the methodology considered to solve the Mo-TSRPP. To that end a
deterministic version of the VNS is implemented (Hansen and Mladenovi¢, 2001; Hansen et al.,
2017). This methodology is known as VND and it explores several neighborhoods iteratively to
improve the incumbent solution. To apply this methodology it is needed to define a set of neigh-
borhood structures. Every time a neighborhood is explored, it is analyzed if an improvement has
been found. If so, the search starts again with the first neighborhood. Otherwise, the search contin-
ues with the next neighborhood. VND has been successfully applied to solve other combinatorial
optimization problems; see, for example, Duarte et al. (2018) and Hertz and Mittaz (2001).

Two important decisions must be made to properly apply the VND algorithm: the selection of
neighborhoods and the order of their application. We consider three different neighborhoods for
the Mo-TSRPP.

The first neighborhood, named AN, is confirmed by all the solutions that can be reached by
applying the 2-exchange operator. This operator exchanges the position of any two nodes in a
given solution, and it has a complexity of O(1), since it requires only to evaluate the positions
interchanged, and the previous and next nodes.

The operator considered to generate the second neighborhood, N>, replaces a node in the solu-
tion by another one that is not still in it. The evaluation of this operator is similar to the previous
one, resulting in a complexity of O(1).

The third neighborhood, A3, is based on the well-known 2-opt operator, which basically replaces
two edges in the route by other two edges, resulting in a complexity of O(n?). In order to reduce the
computational effort, only the most promising nodes are considered, which are those located at a
distance smaller than a certain threshold y which will be analyzed in the computational results.

In the context of VND, the order in which the neighborhoods explored is usually related to their
complexity. In particular, the smallest and fastest to evaluate neighborhoods are first explored,
while the largest and slowest neighborhoods are the last ones to be explored. With the aim of
confirming or refuting this hypothesis, we have conducted an experiment to evaluate the effect of
this order in the final quality of the set of nondominated solutions (see Section 4 for a detailed
discussion).

Algorithm 1 shows the pseudo-code for the VND algorithm proposed in this paper, which re-
ceives as input parameters an initial approximation of the Pareto front, PF, and the neighborhoods,
Nifork=1,2,3.

The algorithm applies the VND methodology to every efficient solution S belonging to the ini-
tial approximation of the Pareto front, PF (steps 1-11). Every solution S is then improved with the
neighborhood k (step 3). If the resulting solution S’ is better than S, then the algorithm restarts
the search from the first neighborhood (steps 5 and 6). Since the concept of improvement is al-
ways controversial in a multiobjective context, we would like to highlight that, in this point, an
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Algorithm 1. Mo-VND (PF, N, fork =1, ..., Komar)

1: for S € PF do

2 while k < k,,,,, do

3 S < N(S)

4 if S’ is better than S then
5: S« 5

6: k=1

7 else

8: k=k+1
9: end if

10:  end while

11: end for returnPF

improvement is found when a solution is better in one or more objectives than the original one
without deteriorating the remaining objectives. Otherwise, the algorithm moves to the next neigh-
borhood (step 8). Note that every generated solution is evaluated to enter in the set of efficient
solutions but, for the sake of simplicity, we have not included that steps in the algorithm.

Having defined the proposed VND, it is necessary to describe how to generate the initial approxi-
mation of the Pareto front, PF, since this will be one of the inputs of VND. The original hypothesis
of VNS methodology (Hansen and Mladenovic, 2001) suggests that considering random initial so-
lutions does not affect to the performance of the algorithm, but it has been recently shown that
VNS performs better (in the context of multiobjective optimization, we consider that a solution is
better than another one if the new solution dominates the original one) when starting from promis-
ing regions of the search space, such as for the monitor placement problem (Casado et al., 2022a)
and for the multiobjective community detection problem (Pérez-Pelo et al., 2021). In this work, we
propose a constructive method based on the constructive part of GRASP, which includes a diver-
sification phase, namely GRA construction, useful in a multiobjective context such as this research
(Feo et al., 1994; Feo and Resende, 1995).

Our proposal starts from an empty solution, in which only the depot is included, S = {1}, thereby
the list of candidates nodes is initialized as CL = V' \ S. The greedy method selects the node v € CL
with the largest value of ¢;,/p, for all v € CL to be added into the solution. Then, once that node
v has been added to the solution, S = {1, v} and removed from CL, the method iterates until all
nodes have been assigned to the solution under construction. In each iteration of the construction
phase, all nodes u € CL are evaluated considering the greedy function g(S, v) = mlclz Cyu/ pu. This

ueC.

greedy function evaluates the objective function value if the node u were added to the solution
under construction, attempting to reach a compromise between more than one objective function:
the cost (distance or time) and the profit. In this way, we are not only considering good values for
one objective but for more than one simultaneously, allowing a compromise among them.

Note that implementing a GRA construction is similar with the only particularity that is needed
to keep the best and worst values of the greedy function, g,,;, and g, respectively. These values
are considered since it is needed to calculate a threshold, u < g,in + ®(2pmax — &min), tO create a
restricted candidate list, RCL. The RCL contains the most promising candidate nodes to be added
to the solution under construction and not only the most promising as it will be done in greedy
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Algorithm 2. GRA construction (G = (V, E), «)

l: PF <@

2: S« 1

3 CL < N\{l}

4: while |S| < ndo

5: RCL < {v e CL : g(S,v) < th}
6 V' < SelectRandom(RCL)

7 S <« Su{v}

8 CL < CL\ {v}

9 PF < S

10: end while returnPF

constructions or all the nodes as will be done in random constructions. Finally, the method ran-
domly selects a node u from the RCL, and adds it to the solution S, then, updating the CL by
removing the selected node. The method ends by returning the constructed solution when no more
nodes can be added at the solution under construction. The constructive procedure is implemented
following the details given in Casado et al. (2022b) to reduce the computational effort. The most rel-
evant part is considering an implicit RCL instead of explicitly creating it, which drastically reduces
the computational complexity of the method.

It is important to emphasize that in each iteration of the construction phase, we are generating
one efficient solution since we are adding one new node to the solution. Therefore, every time that
a node is added to the solution under construction, a new efficient solution will be obtained and,
therefore, included in the initial approximation of the Pareto front, PF having a total of |PF| =
n — 1 efficient solutions since this is the total number of customers.

Algorithm 2 shows the pseudo-code for the GRA construction used in this paper, which receives
as input parameters the graph G = (V, E), and the parameter « that controls the size of the re-
stricted candidate list. As it was previously mentioned, « = 0 and @ = 1 makes the construction
completely greedy and random, respectively. It is worth mentioning that as a multiobjective opti-
mization problem is being addressed, the output of the constructive procedure is a set of efficient
solutions that will be the initial approximation of PF (step 10).

The algorithm starts with an empty initial approximation of the Pareto front where no efficient
solutions are included, PF (stepl). Then, the depot is forced to be in the solution, S, since the
traveler will start the route at that node (step 2). The method will select new nodes until all nodes
are included (steps 4 —10). Node v’ is added to the solution S after being randomly selected from
the RCL (step 6) previously computed (step 5). Then, the selected node is included in the solution
S (step 7), removed from the candidate list (step 8) and also the solution is included in PF.

4. Computational results

This section shows and discusses the computational results obtained when solving the Mo-TSRPP
using the VND algorithm. To generate instances we have considered the TSPLIB library with 77
instances properly transformed as proposed by Bérubé et al. (2009). For those TSP instances, the
euclidean distance between every two points is computed (note that the value is rounded upward)
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and furthermore, the profits p; for all i € V' are generated in three different ways to eliminate the
bias that may be produced by the distribution of profits in the results.

* Set 1. p; =1, for all i € V. In these instances all profits are same and fixed to 1. Note that in this
set the maximization of the profit and the maximization of the total number of customers are
equivalent.

e Set2. p; =14 (7141i + 73) mod 100, for all i € V. Set 2 generates instances with pseudo-random
profits between 1 and 100.

* Set3. pi=1+4[99%], foralli € V" where 6 = r}jeal/); c1j. Set 3 produces more complex instances

in which larger profits are associated with nodes that are further from the depot.

The instances have a size that varies from 51 nodes to 18,512 nodes and a total of 77 - 3 = 231
instances were solved on an AMD Ryzen 9 5950x 16 cores (3.4 GHz) with 128 GB RAM, and the
algorithms were implemented using Java 11. The complete source code of the proposed algorithm
will be available, as well as the complete results https://grafo.etsii.urjc.es/ Mo-TSRPP.

Results presented in this section are divided into three subsections. The first subsection is devoted
to fit the parameters of the algorithm and find the best configuration. In the second subsection,
a comparison against other well-known multiobjective evolutionary algorithms is performed in
order to prove the performance of our proposal. Finally, a subsection where the case of study that
motivates this paper is shown and discussed.

Before moving on to the next subsection is needed to briefly describe the multiobjective per-
formance indicators considered to measure the quality of the different algorithms. Thus, we have
selected some of the most commonly used multiobjective indicators according to Durillo and Ne-
bro (2011) or Li and Yao (2019). Those indicators will allow us to measure the cardinality of the
Pareto front obtained by each algorithm, the proximity of the obtained efficient solutions to the
Reference Pareto front, and the diversity of the efficient solutions.

First of all, it is needed to define R, the Reference Pareto front, that is an estimation of the optimal
Pareto front computed by merging all solutions found by all the different procedures. The reference
set is calculated because in this problem, the Mo-TSRPP, the optimal Pareto front is unknown and
we have followed this reasoning widely known to estimate the Pareto front.

Then, the following multiobjective performance indicators are considered.

« The number of efficient solutions, | PF|, found by the algorithm to measure the cardinality.

* The coverage metric, denoted by CV, evaluates the proportion of solutions of the Reference Pareto
front R that weakly dominates the solutions from the Pareto front obtained by the algorithm A.
Note that the evaluation of this metric is performed as CV (R, 4), where R is the reference front
and A is the front under evaluation. Therefore, the smaller the value, the better. For deeply details,
see Zitzler (1999).

* The spread, represented as A, measures the distance from a given solution to its nearest neighbor.
A = 0 indicates a perfect spread of the points in the Reference Pareto front, that is, an ideal
distribution. See Li and Yao (2019).

» The hypervolume, hereinafter HV', evaluates the volume in the objective space which is covered
by the Pareto front obtained with the algorithm 4. Then, the larger the HV value, the better the
Pareto front obtained by the algorithm. We refer the reader to Zitzler and Thiele (1998).
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* The e-indicator, e, measures the smallest distance € to translate the approximation of Pareto front
obtained by algorithm A to dominate every solution in the Reference Pareto front. See Zitzler
et al. (2003) for further details.

» The generated distance, GD, measures how far are the efficient solutions in the Pareto front ob-
tained by the algorithm A4 from those efficient solution in the Reference Pareto front. If this
indicator reaches the value 0, all the solutions are in the Reference Pareto front. We refer the
reader to Menchaca-Mendez and Coello Coello (2015).

» The inverted generational distance, IGD is an inversion of the generational distance metric with
the aim of measuring the distance from the Reference Pareto front to the efficient solutions ob-
tained by the algorithm A. The smallest the value of IGD, the better. Note that the only different
between GD and IGD is that while comparing, the IGD does not miss any part of Reference
Pareto front. See Bezerra et al. (2017) for further details.

* The CPU time, denoted as Time, required (in seconds) to obtain the set of efficient solutions by
each algorithm.

4.1. Algorithm fitting parameter

A previously mentioned, in this subsection the parameters of our algorithm will be fitting. To that
end, instead of using the total set of 231 instances, and in order to avoid overfitting, a representative
subset with 25% of the instances with different characteristics has been randomly selected. Note
that values are averaged among the set of considered instances.

The first experiment is devoted to check if every neighborhood structure applied separately is
able to improve the initial set of efficient solutions being part of the Pareto front. To make that
experiment, we have started with an initial approximation of the Pareto front that has been built
using a totally greedy algorithm. The local search will start from every efficient solution being
part of the initial approximation of the Pareto and it will progressively improve it. The algorithm
follows a first improvement strategy, that is, it performs the first move that produces an improve-
ment in the incumbent solution. Here, we bring out again the fact that we have considered an
improvement if and only if the new solution found strictly dominates the incumbent solution. In
this way, instead of comparing the new solution found with all the efficient solutions of the Pareto
front, the comparison is just done between pairs of solutions and that is less time-consuming. Of
course, when the local search finishes and all pairs of solutions with the same size have been com-
pared to check if an improvement is found (in the sense of strict domination), a final step will be
performed. This step consists on checking if all the solutions the Pareto front are nondominated
solution.

According to the results of Table 2 all neighborhoods by separate are able to improve the ini-
tial approximation of the obtained Pareto front starting from the same totally greedy constructive
method denoted as GRE in the table. In the experiment, the VND is executed during a single it-
eration until reaching the maximum neighborhood. Of course, the larger the complexity of the
neighborhoods, the more time-consuming the VND algorithm. As we can see the 2-opt operator
(V5 shown in the last row) is the most time-consuming and furthermore, the one that is able to get
better results in almost all the metrics, except in the spread and the number of efficient solutions in
the Pareto front. However, the other two neighborhoods, V| and N, are also able to improve the
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Table 2
Contribution of the neighborhoods (the best value for each metric is highlighted in bold type)

|PF| Ccv A HV € GD IGD Time
GRE 573.7333 0.9785 0.2957 0.2516 0.0881 0.0048 0.0456 0.0362
M 571.3778 0.6562 0.2703 0.2654 0.0751 0.0030 0.0335 80.1547
N> 573.1556 0.7162 0.2861 0.2512 0.0892 0.0049 0.0453 55.3366
N; 546.2000 0.1293 0.2928 0.2904 0.0593 0.0009 0.0121 942.0975

Table 3
Order of the neighborhoods in the VND framework (the best value for each metric is highlighted in bold type)

|PF| 6\% A HV € GD IGD Time

M4+MN+ N5 523.3111 0.6079 0.3395 0.2827 0.0723 0.0020 0.0270 643.0006
M+ N5+ N, 527.2444 0.5688 0.3216 0.2831 0.0718 0.0022 0.0263 734.4080
Ny + N+ N3 527.4444 0.5916 0.3283 0.2842 0.0734 0.0021 0.0248 719.8058
No+ N3+ N, 529.7111 0.6008 0.3097 0.2831 0.0672 0.0018 0.0248 704.8509
N+ N+ N> 527.7333 0.5722 0.3003 0.2861 0.0639 0.0018 0.0238 499.8112
Ni+ M+ N 527.0222 0.5722 0.3113 0.2853 0.0648 0.0019 0.0246 474.2296

initial approximation of the Pareto front obtained by the GRE since all performance metrics are
better. In particular, the coverage of GRE is almost 1, which indicates that most of the initial solu-
tions have been improved by any of the neighborhoods and they are now dominated, highlighting
the performance of the neighborhood exploration. It is worth mentioning that even though in most
indicators V] and N, are not as good as N3, the computing time needed to get those results is too
long in comparison with the time consumed by N; and N>.

Another important decision is related to settle the order in which the neighborhoods will be
applied. To carry out this experiment, we have started again with the approximation of the Pareto
front obtained with the totally greedy algorithm, GRE. According to the results shown in Table 3,
we can affirm, first, that the results are very similar in all indicators no matter which order is chosen,
but second, the order N5 + N + N is getting the best results. Specifically, first, the 2-opt operator
is applied, which is denoted by A3, followed by the removal and insertion of one node, that is, NV,
ending with the 2-exchange operator, that is, the N> neighborhood. Thus, the order in which the
neighborhoods are explored is inverse related to their complexity, on contrary to the hypothesis
that many authors maintain. In particular, the largest and slowest one is first explored, while the
smallest and fastest to evaluate are the last one to be explored, as happened in Lopez-Sanchez et al.
(2018).

Once come to this point, we would like to check if the initial approximation of the Pareto front
will have an impact on the final approximation of the Pareto front. To that end, we have constructed
six different initial Pareto fronts using different « parameters of the GRA constructive algorithm.
To be more accurate in the definition of the algorithm, this methodology can be viewed as an
hybrid combination of GRASP with VND and it has been applied to solve similar problems by
Lopez-Sanchez et al. (2018). Table 4 includes o = 0, a totally greedy constructive method since the
size of the candidate list is restricted just to the most promising node to include in the solution,
previously denoted by GRE, and a totally random constructive method with & = 1 since the size
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Table 4
GRA construction combined with VND algorithm (the best value for each metric is highlighted in bold type)
o |PF| Ccv A HV € GD IGD Time
0.00 527.7333 0.0622 0.2856 0.2949 0.0341 0.0004 0.0041 499.8112
0.25 401.1556 0.8942 0.5094 0.1805 0.2729 0.2056 0.1339 1706.6703
0.50 406.0444 0.9060 0.5181 0.1743 0.2873 0.2459 0.1447 1752.7561
0.75 411.6222 0.9229 0.5192 0.1712 0.3020 0.2764 0.1508 1759.8881
1.00 411.2667 0.9131 0.5121 0.1699 0.3030 0.2980 0.1531 1769.9987
RND 401.9778 0.8806 0.5291 0.1812 0.2778 0.2039 0.1356 1738.4523
Table 5
Percentage limitation of the neighborhoods (the best value for each metric is highlighted in bold type)
y |PF| CV A HV € GD IGD Time
0.25 531.0667 0.5406 0.2922 0.2778 0.0627 0.0016 0.0205 191.8928
0.50 520.6667 0.5459 0.3189 0.2735 0.0696 0.0020 0.0244 365.8388
0.75 537.9333 0.3827 0.2985 0.2785 0.0642 0.0017 0.0197 452.0900
1.00 527.7333 0.4792 0.3020 0.2804 0.0624 0.0016 0.0194 499.8112

of the restricted candidate list is not restricted at all, but furthermore, « values 0.25, 0.50, 0.75, and
RN D, which means that the restricted candidate list is limited the selection to the 25%, 50%, 75%,
and a random value of the most promising nodes according to the greedy function. To perform this
experiment, we have fixed as order to explore the different neighborhoods N3 + Nj + A>. Then,
thanks to the greedy function defined in Section 3, the totally greedy construction (inserting always
the best node in the candidate list) find a high-quality approximation of the Pareto front, finishing
first and being unbeatable.

To close this section, we have devoted a last experimentation to limit the percentage of nodes that
will be candidate to move. Usually, when exploring a neighborhood, all nodes are usually checked to
perform the best movement. However, sometimes it is not worth it because some nodes are far away
from others it is a very costly task to explore all possible moves. As a measure to reduce the comput-
ing time of the overall algorithm, we have limited the number of nodes in the search, of course, the
movements will be performed only with a proportion y of the closest ones, 0.25, 0.50, 0.75, 1.00.
Results are depicted in Table 5. As expected, when y = 1, that is, when all nodes in the neighbor-
hood are considered in the search, better results are reached regarding almost all the metrics, mean-
ing that the approximation of the Pareto front is better. However, we realize that when we restrict to
the 25% of the nodes in the search, the quality does not change in a significant way and the comput-
ing time is considerable reduced (—61, 61%). Therefore, we may risk losing some quality in the solu-
tion in exchange for being faster. This decision could be made when the size of the problem is large,
however, for a small problem, it would not make sense to make this decision. In conclusion, it is not
always advisable to narrow down the search. Note that this parameter has not been included in the
explanation of the algorithm, since as mentioned, it is just a strategy to reduce the computing time if
needed.
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4.2. Comparison against other algorithms

Once all the parameters have been set, this section presents and discusses the results of
the computational testing conducted when our algorithmic proposal is compared against
three of the most widely used multiobjective evolutionary algorithms that will be briefly de-
scribed: elitist nondominated sorting genetic algorithm (NSGA-IT), multiobjective evolutionary
algorithm based on decomposition (MOEA/D), and strength Pareto evolutionary algorithm
(SPEA2). These genetic algorithms have been solved using an open software MOEA Framework
(http://moeaframework.org).

* NSGA-II, proposed by Deb et al. (2002), generates an initial population of solutions that will
be sorted based on nondomination by means of the allocation of a rank value. Once the sort-
ing is complete, a crowding distance value is calculated to each solution and is measured as the
density of solutions around each solution, that is, how close a solution is to its neighbors being
the less dense solutions, the preferred to mantain diversity. Next, the selection of every individ-
ual solution is carried out using a binary tournament selection with crowded-comparison oper-
ator. The codification is done using simulated binary crossover and polynomial mutation. The
selected population generates offsprings using crossover and mutation operators. The offsprings
are sorted again based on nondomination and only the best V individuals are selected, being N
the population size. The selection is based on rank and on crowding distance on the last front.

* MOEA/D, proposed by Zhang and Li (2007), decomposes the multiobjective optimization prob-
lem into a number of scalar single-objective optimization subproblems using a set of spread
weight vectors. All these single-objective optimization problems are simultaneously solved to ap-
proximate the set of efficient solutions. Diversity among these subproblems will naturally lead
to diversity in the population. This can be performed using a uniform distribution of efficient
solutions. The optimal solutions of two neighboring subproblems should be very similar and the
offspring should hopefully be a good solution of such subproblem as well. The process is repeated
until a stopping criteria is reached.

* SPEA2, proposed by Zitzler et al. (2001), is another genetic algorithm based on the concept of
Pareto domination for fitness allocation and selection operations. SPEA2 uses external archiving
elite retention mechanism. The algorithm starts by generating an initial population of solutions
and an empty archive set. Next, all efficient solutions are included into the archive and any domi-
nated solutions or any solution that is duplicated are removed from the archive without exceeding
the limit size of the updated archive. Next, fitness values are assigned to the archive and to the
population members and again individual solutions are selected using a binary tournament se-
lection. The selected population generates offsprings using conventional crossover and mutation
operators.

Next, the computational results are shown in a similar way that all results in the previous section.
As the literature instances have a wide range of sizes we have considered all instances (231 instances)
where the smallest one has 51 nodes and the larger one 18,512 nodes as previously introduced.

As can be observed in Table 6, on average our algorithm proposal consumes 875 seconds ap-
proximately. To obtain a fair comparison, we have included a similar limit of time as the stopping
criteria for the multiobjective evolutionary algorithms. In all indicators, VND is able to outperform

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

85U8017 SUOLILLOD BANE81D 3ot jdde sy Ag peuenob afe seoiLe VO ‘88N Jo se|n. 10} AriqiT8uIIUO /8|1 UO (SUORIPUOD-pUR-SWIBIW0D A8 1M A1 Ul |UO//SdNL) SUORIPUOD PUe SWS 1| 8y} 89S *[202/20/82] Uo ARigiauluo A8|IM ‘(ouleAnde) sqnopesy Ag ZOVET 10)/TTTT OT/I0p/W00 A8 | g 1jeuljuo//Sdny woiy papeojumod ‘0 ‘S66ES.7T



R. Morante-Gonzdlez et al. / Intl. Trans. in Op. Res. 0 (2023) 1-23 17

Table 6
Comparison of VND with the most widely used multi-objective evolutionary algorithms (the best value for each metric
is highlighted in bold type)

Algorithm |PF| Ccv A HV € GD IGD Time

VND 736.4848 0.0594 0.5038 0.4912 0.3607 0.0005 0.0806 875.4405
MOEA/D 664.8268 0.5705 0.7572 0.3859 0.3847 0.0009 0.1713 754.0176
NSGA-II 675.7446 0.5979 0.7599 0.3829 0.3874 0.0010 0.1723 757.6662
SPEA2 453.5065 0.6884 0.7607 0.2795 0.4539 0.0085 0.2361 752.8614

the multiobjective evolutionary algorithms. It is important to highlight that the number of efficient
solutions obtained are significantly larger when using the VND, but also the quality shown by the
remaining indicators is able to confirm the high performance of our proposal. Even though if we
increase the stopping criteria for the multiobjective evolutionary algorithms, the performance is
very similar. Obviously, our algorithm has been specifically designed to solve the problem under
consideration and the evolutionary algorithms are more generic algorithms valid to solve many
different variants of multiobjective problems.

4.3. Case of study: real-world problem

Once the performance of our proposal has been shown in the previous section, we move on to solve
the real-world application using the proposed algorithm where 103 customers require a service.

As previously explained, the problem appears in a real-world situation in which a freelancer, that
repairs appliances, has interest to plan the sequence in which all the customers or a subset of it need
to be served. To that end, the freelancer provides a list with information about the customers such
as the location, to measure distances and travel times, an estimation of the service time according
to the incidence, that is, the time to repair the damage, and finally, and the profit obtained once the
repair is finished. To show the performance of the proposal we have randomly selected one of the
workdays provided by the freelancer with more requests. The freelancer needs an algorithm to plan
the daily service in few seconds and therefore, our proposal is a good tool to that end.

The freelancer would like to obtain the maximum profit at the minimum distance, and on the
other hand, the customers would like to be served waiting the minimum possible, so the objectives
are in conflict.

The algorithm is able to obtain the Pareto front in 0.204 seconds. Moreover, the algorithm reports
103 efficient solutions with every possible solution size (visiting from just one customer to a solution
with all customers). Next, 4 of 103 solutions are depicted. It has been selected according to four
possible and realistic scenarios according to the four possible total latencies (that can be seen as the
working day duration).

* Figure 3 shows the planning when 43 customers are served since its total latency is close to 24
hours, that is, the time that the last customer will wait to be served. On the other hand, the
freelancer will obtain a total profit of 2331 monetary units traveling 24.603 kilometers.

* Figure 4 shows the planning when 25 customers are served. The freelancer will require to work
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Fig. 4. Planning of a 12-hour shift.

for 12 hours. The distance traveler would be 20.496 kilometers, obtaining a total profit of 1337
monetary units.

 For a full-time day, that is, eight-hour shift, Figure 5 shows the planning visiting 20 customers.
In that case, the distance would be 19.192 kilometers and the total profit 1029 monetary units.

* For a partial-time day, that is, four-hour shift, Figure 6 shows the planning in such situation
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visiting 13 customers, traveling 18.638 kilometers and getting a more reduced profit, 720 mone-

tary units.

To close this section, we have included Table 7 to show how our VND algorithm outperforms
the greedy algorithm when solving the real-world problem. In view of the results obtained and as
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Table 7

VND algorithm versus greedy algorithm

Algorithm Travel cost (kilometers) Latency (hours) Customers served Profit

VND algorithm 18.638 4 13 720
19.192 8 20 1029
20.496 12 25 1337
18.638 24 43 2331

Greedy algorithm 18.638 4 13 720
19.512 8 20 1029
21.306 12 25 1327
24.091 24 37 1988

expected, the larger the number of customers served, the more difficult it is to solve the considered
problem and therefore, the better our VND algorithm works. In all cases, VND algorithm strictly
dominates the greedy algorithm except when the latency is four hours that both algorithms get
exactly the same solution.

5. Conclusions

This paper introduces an interesting problem, the Mo-TSRPP, in which a subset of nodes must be
served optimizing three different objective functions: the total cost (total distance or total working
time), the total latency, and the profit. To address the Mo-TSRPP a VND algorithm is proposed.
Details to design the VND are carefully considered in order to simplify its implementation. First
of all, three neighborhoods have been considered to improve the solutions, with the particularity
that they do not change the size of the solutions, controlling in this way the number of customers
served. This issue also allows us to define and simplify the concept of an improvement to determine
when a solutions is better than other solution. To that end, the algorithm considers an improvement
if a solution strictly dominates another solution of the same size, avoiding a meaningless increment
of the Pareto front and furthermore, simplifying the way to check when a new solution becomes
part of the Pareto front.

Our computational results indicate that the VND algorithm is able to find a good set of efficient
solutions within short computational time and is able to solve a real case of study in few seconds
providing the possibility to the freelancer of deciding the most appropriate solution of the Pareto
front according to their preferences (the maximum working time, the latency, the profit he wants to
earn, or even the number of customers to visit).

As future work, we could merge the proposed algorithm with an interactive method in order to
provide a more realistic solution to the repairman. Furthermore, it would be interesting to solve a
reasonable extension of the Mo-TSRPP that is more realistic, the k-Mo-TSRPP. In this extension,
instead of having just one salesman, k salesmen are available to give the service.
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