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Abstract 15 

Most work on plant community ecology has been performed aboveground, neglecting 16 

the processes that occur in the soil. DNA metabarcoding, where multiple species are 17 

computationally identified in bulk samples, can help overcome the logistical limitations 18 

involved in sampling plant communities belowground. A major limitation of this 19 

methodology is, however, the quantification of species’ abundances based on the 20 

percentage of sequences assigned to each taxon. Using root tissues of the five dominant 21 

species in a semiarid Mediterranean shrubland (Bupleurum fruticescens, Helianthemum 22 

cinereum, Linum suffruticosum, Stipa pennata and Thymus vulgaris), we built pairwise 23 

mixtures of relative abundance (20, 50 and 80% biomass), and implemented two 24 

methods (linear models fits and correction indices) to improve root biomass estimates. 25 

We validated both methods with multispecies mixtures that simulate field-collected 26 

samples. For all species, we found a positive and highly significant relationship between 27 

the percentage of sequences and biomass in the mixtures (R2 = 0.44-0.66), but the 28 

equations for each species (slope and intercept) differed among them, and two species 29 

were consistently over- and under-estimated. The correction indices greatly improved 30 

the estimates of biomass percentage for all five species in the multispecies mixtures, 31 

and reduced the overall error from 17% to 6%. Our results show that, through the use of 32 

post-sequencing quantification methods on mock communities, DNA metabarcoding 33 

can be effectively used to determine not only species’ presence but also their relative 34 

abundance in field samples of root mixtures. Importantly, knowledge on these aspects 35 

will allow to study key, yet poorly understood, belowground processes.  36 

 37 
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1. INTRODUCTION 40 

A critical question in plant ecology is how communities are structured in space and 41 

time. In this still-unresolved debate, community ecologists attempt to disentangle the 42 

relative role of key stochastic and deterministic processes, such as niche differentiation, 43 

biotic interactions, and environmental filtering to determine plant species coexistence 44 

(Chase & Leibold 2003; Götzenberger et al. 2012; Gravel et al. 2006; HilleRisLambers 45 

et al. 2012; Vellend 2010). A major limitation is the fact that our understanding on the 46 

structure of plant diversity stems from data collected almost entirely aboveground. 47 

However, a large proportion of the community biomass can be located belowground 48 

(Hilbert & Canadell 1995; Poorter et al. 2012; Schenk & Jackson 2002), particularly in 49 

stressful habitats, and as such, both plant-soil and plant-plant interactions may have 50 

important implications for community-level processes (Bardgett et al. 2014; Bever et al. 51 

2010; Casper & Jackson 1997; Philippot et al. 2013; Wardle et al. 2004). 52 

 The main constraint to sampling plant communities belowground is that reliable 53 

species identification in natural conditions based solely on morphological root traits is 54 

extremely difficult or simply unfeasible in many cases (Silva & Rego 2003). In this 55 

context, the development of molecular methods such as DNA metabarcoding, spurred 56 

by the emergence of next-generation sequencing, has had a significant impact on 57 

biodiversity assessments (Schuster 2007; Taberlet et al. 2012). DNA metabarcoding 58 

involves the simultaneous identification of multiple species based on the amplification 59 

and sequencing of a common target DNA region from an environmental or community 60 

bulk sample (Deiner et al. 2017; Hollingsworth et al. 2009; Kress et al. 2005; Taberlet 61 

et al. 2012). For instance, for plant communities, DNA metabarcoding has been 62 

successfully used to recreate their current and past composition from soil-derived DNA 63 

(Fahner et al. 2016; Jørgensen et al. 2012; Porter et al. 2016; Yoccoz et al. 2012) or to 64 
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identify the floral composition of honey (Hawkins et al. 2015). Going belowground, a 65 

few studies have also assessed the richness and composition of temperate and tropical 66 

plant communities using root mixtures or individual root fragments (Hiiesalu et al. 67 

2012; Jones et al. 2011; Kesanakurti et al. 2011).  68 

 There is mounting evidence that DNA metabarcoding is a robust method to 69 

assess biodiversity. Indeed, some studies even found higher DNA-based diversity 70 

compared to traditional sampling methods (reviewed in Deiner et al. 2017). However, 71 

there is currently an intense debate on the use of read number to quantify DNA 72 

metabarcoding results, with some authors limiting its use to strictly detect occurrence, 73 

whilst others advocate a quantitative approach (see discussion on e.g. Bell et al.  2019; 74 

Deiner et al. 2017; Fonseca 2018; Porter & Hajibabaei 2018). Ideally, the percentage of 75 

sequences assigned to each taxa during DNA metabarcoding would closely reflect the 76 

species’ abundance (biomass, number of individuals, etc.) in the bulk sample. Building 77 

on this simple assumption, several studies have attempted the direct use of the observed 78 

percentage of DNA sequences to estimate species’ abundances in communities of 79 

microbes (Amend et al. 2010), stoneflies (Elbrecht & Leese 2015), fish and amphibians 80 

(Evans et al. 2016; Pont et al. 2018), zooplankton (Harvey et al. 2017) and fungi 81 

(Merges et al. 2018). However, many factors operating during DNA extraction, 82 

amplification and sequencing as well as the inherently compositional nature of the data 83 

can alter the correspondence between the percentage of reads retrieved and the species’ 84 

abundance (Cristescu 2014; Deiner et al. 2017; Elbrecht & Leese 2015; Gloor, 85 

Macklaim, Pawlowsky-Glahn, & Egozcue, 2017; Pawlak et al. 2015; Polz & Cavanaugh 86 

1998; Porter & Hajibabaei 2018). Indeed, studies where such correspondence is lacking 87 

suggest that the use of uncorrected, observed percentages may render strongly biased 88 

estimates of abundance (see e.g. Bell et al. 2019; Deagle et al. 2013; Lim et al. 2016), 89 
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and effort is now being devoted to the improvement of quantification methods (Thomas 90 

et al. 2016 and references therein; McLaren et al. 2019; Nichols et al. 2018; Piñol et al. 91 

2015). In this context, the use of mock communities, i.e. a defined mixture of tissues 92 

with known species composition and relative abundance (biomass), can be a useful tool 93 

to improve biomass estimates in DNA metabarcoding studies (see e.g. Thomas et al. 94 

2016 for a comprehensive example using prey fish mixtures).  95 

 Quantification of species’ biomass through DNA metabarcoding can be critical 96 

in the study of belowground community structure. Compared to other plant 97 

communities, Mediterranean shrublands are highly diverse, and up to 80% biomass can 98 

appear belowground (Hilbert & Canadell 1995). In these water-limited systems, 99 

belowground plant-plant interactions can be equally important, or even more, than those 100 

occurring aboveground (Casper & Jackson 1997). However, experimental evidence on 101 

their direction, strength and correspondence to the interactions occurring aboveground 102 

is scarce (but see Armas & Pugnaire 2011). Furthermore, because species’ abundances 103 

are markedly heterogeneous and leptokurtic, with a few very abundant species and 104 

many rare ones (Chacón‐Labella et al. 2017; Chacón‐Labella et al. 2016; McGill et al. 105 

2007), presence-absence data fails to accuretaly reflect the structure of the plant 106 

community. Therefore, in order to gain insights on the mechanisms that determine plant 107 

community structure and to build a global coexistence theory, we should expand our 108 

focus belowground and compare these patterns to those aboveground. To do this, we 109 

need robust information not only on the presence of species in the soil but also on their 110 

relative abundance across space.  111 

 In this study, we built mock communities with varying composition and 112 

abundance of five selected species from Mediterranean shrublands, and used a DNA 113 

metabarcoding approach on these root mixtures, to move beyond species detection and 114 
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estimate species’ relative biomass. We implement two post-sequencing quantification 115 

methods. First, we fit linear models to assess whether the percentage of reads (DNA 116 

sequences) can be used to robustly estimate percentage of root biomass, and second, we 117 

compute correction indices that control for potential biases and improve the relationship 118 

between sequences and biomass percentages (see Thomas et al. 2016). In addition, to 119 

determine the possibility to apply our results to field-collected samples, we validate 120 

both methods with multispecies realistic samples. To our knowledge, this is the first 121 

study aimed at the improvement of a quantitative DNA metabarcoding approach in 122 

plants. 123 

 124 

2. MATERIALS AND METHODS 125 

2.1 Plant community and species selection 126 

The study plant community is a species-rich semiarid Mediterranean shrubland 127 

established in limestone and gypsum soil in the central Iberian Peninsula. Perennial 128 

cover ranges from 40 to 60%, and is mainly dominated by small chamaephytes and 129 

grasses. It is a highly diverse community, with around 50 perennial species found at the 130 

local scale (e.g. ≈8000 individuals from 48 species in 60  m2; Chacón‐Labella et al. 131 

2016). The distribution of individuals across species is highly heterogeneous, with a few 132 

species accounting for a high proportion of the total number of individuals. Given the 133 

disproportionate influence of the most abundant species, we selected the five most 134 

common species in the community for our study (Fig. 1): Thymus vulgaris L. 135 

(Lamiaceae), Helianthemum cinereum (Cav.) Pers. (Cistaceae), Linum suffruticosum L. 136 

(Linaceae), Bupleurum fruticescens L. (Apiaceae), and Stipa pennata L. (Poaceae). The 137 

selected species have different phylogenetic origins, life forms, and can account for as 138 

much as 65% of the total number of individuals in the community (data not shown).  139 
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 140 

2.2 Sampling material and creation of root mixture mock communities 141 

We collected root samples in the shrublands near Orusco de Tajuña (Madrid, Spain, 142 

40°17'17.5"N 3°12'19.4"W). For each selected species, we uprooted 5-10 adult 143 

individuals with unequivocal taxonomic identification. All individuals were collected 144 

within 24h, bagged separately, stored in a cooler and immediately transferred to the lab 145 

at Universidad Rey Juan Carlos. Upon arrival, their root system was thoroughly washed 146 

and separated from the soil, and roots from all individuals of the same species were 147 

pooled and maintained in cool water until sample preparation. We created mock 148 

communities (hereafter mixtures) based on mixtures of root biomass, varying both the 149 

species composition, richness and the percentage of biomass of each species in each 150 

sample. Note that the use of root mixtures (community DNA) rather than DNA 151 

extracted from soil samples (environmental DNA sensu Deiner et al. 2017) allowed to 152 

quantify biomass of actively growing plants, avoiding the presence of persistent DNA 153 

from long-dead individuals (Baird & Hajibabaei, 2012). 154 

The communities were created by cutting small pieces of roots (removed of 155 

excess water by patting them with paper towel) and weighing them in a Mettler Toledo 156 

MX5microbalance (1 µg precision; Mettler Toledo, Columbus, OH, USA) the same day 157 

of collection in the field. All mock communities contained 100 mg of fresh root 158 

biomass, and were immediately frozen at -80ºC for later DNA metabarcoding analyses. 159 

We created two different types of mock communities:  160 

1) Pairwise mixtures, with two species present in different proportions (20:80, 161 

50:50, or 80:20; all pairwise combinations with three replicates per type of community, 162 

N = 90 samples; Fig. 1). The pairwise mixtures were used to: i) determine the match 163 

between the percentage of biomass and the percentage of DNA sequences (hereafter 164 
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reads) obtained via linear model fits, and ii) calculate the correction indices (see section 165 

on statistical analyses).  166 

2) Multispecies mixtures, with the five selected species. We first combined them 167 

at the same proportion (20:20:20:20:20; one mixture with three replicates, N = 3) and 168 

then we created communities where the percentage of one species (either Helianthemum 169 

cinereum or Stipa pennata) was progressively increased and that of the other four was 170 

maintained equal (10.0:22.5:22.5:22.5:22.5, 40:15:15:15:15, 60:10:10:10:10, and 171 

80:5:5:5:5; eight types of mixtures with three replicates, N = 24). These two species 172 

were chosen because they had shown either relatively lower or higher amplification in a 173 

previous pilot study (data not shown). The multispecies mixtures were used to validate 174 

the calculated linear fit parameters and correction indices. See Table S1 for details on 175 

the composition of each type of mixture.  176 

 177 

2.3 DNA metabarcoding on root mixtures mock communities 178 

DNA was extracted from each mixture (and four isolation blanks) in the lab at 179 

Universidad Rey Juan Carlos using the DNEasy Plant Minikit (Qiagen, CA, USA) and 180 

shipped to the AllGenetics laboratories (AllGenetics & Biology SL, A Coruña, Spain). 181 

For library preparation, we amplified a fragment of the rbcL chloroplast gene (550 bp) 182 

using primers rbcLa-F (5' ATGTCACCACAAACAGAGACTAAAGC3'; Levin et al. 183 

2003 and rbcLa-R (5' GTAAAATCAAGTCCACCRCG 3'; Kress et al. 2009), to which 184 

the Illumina sequencing primer sequences were attached at the 5' ends.  We selected the 185 

rbcL region because it has repeatedly been shown to be a robust barcode for plants 186 

(Hollingsworth et al. 2009; Kress et al. 2009), and because it allowed the taxonomic 187 

identification of most members of the entire study community at the species level. A 188 

series of two PCRs were carried out, the first to amplify the selected region and the 189 
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second to attach the index sequences required for multiplexing different libraries in the 190 

same sequencing pool. PCRs were carried out in a final volume of 25 µl, containing 2.5 191 

µl of template DNA, 0.5 µM of the primers, 12.5 µl of Supreme NZYTaq 2x Green 192 

Master Mix (NZYTech, Lisboa, Portugal), and ultrapure water up to 25 µl. The reaction 193 

mixture consisted of an initial denaturation at 95 ºC for 5 min, followed by 30 cycles of 194 

95 ºC for 30 s, 52 ºC for 30 s, 72 ºC for 30 s, and a final extension step at 72 ºC for 10 195 

minutes. The second PCR had identical conditions but only 5 cycles and 60 ºC as the 196 

annealing temperature. Two negative controls with no DNA were included to check for 197 

contamination during library preparation. Portugal), The libraries were run on agarose 198 

gels stained with GreenSafe (NZYTech, Lisboa, and their size visualized under UV 199 

light. They were then purified using the Mag-Bind RXNPure Plus magnetic beads 200 

(Omega Biotek, GA, USA), pooled in equimolar amounts and sequenced in a run of the 201 

MiSeq PE300 (Illumina, CA, USA). 202 

The quality of the Illumina paired-end raw data was checked using FastQC 203 

(www.bioinformatics.babraham.ac.uk/projects/fastqc), and the raw reads were quality-204 

filtered using Geneious 11.1.2 (www.geneious.com). The PCR primers were removed 205 

and a region at the 3' end of each file was trimmed according to the average Phred score 206 

(minimum Phred quality score of 20). Since the amplicons were too long to allow for 207 

the overlap of forward and reverse reads, R1 and R2 reads were concatenated using the 208 

fuse.sh script implemented in the BBmap package (Bushnell 2014). The sequences were 209 

labelled (demultiplexed) using the script multiple split libraries.py implemented in 210 

Qiime (Caporaso et al. 2010). The label is added to the headers of the FASTQ file in 211 

order to identify each sample when sequences are combined to perform downstream 212 

analysis. The resulting FASTA file was processed using the VSEARCH bioinformatic 213 

tool (Rognes et al. 2016). Sequences were dereplicated (-derep fullength), clustered at a 214 
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similarity threshold of 100 % (-cluster fast,--centroids option), and sorted (-sortbysize). 215 

Artifacts (such as point mutations and chimeras) that may be generated during PCR and 216 

sequencing were filtered during the bioinformatic pipeline. De novo chimera detection 217 

was carried out using the UCHIME algorithm (Edgar et al. 2011) implemented in 218 

VSEARCH. 219 

The taxonomic identification was performed using an in-house constructed 220 

reference database containing the representative rbcL sequences (553bp) of 45 species 221 

from 18 families of plants from the study community that had been collected in the 222 

same study site and individually sequenced (see sequences in XX). Since the query 223 

sequences mapped only to the 5' and 3' ends of the reference sequences, the central 224 

region of the reference sequences was previously deleted to perfectly match the query 225 

sequences, resulting in a final length of 517bp (see a similar approach in Vizcaíno et al. 226 

2018). The taxonomic identification was performed by querying the clustered 227 

representative sequences against our reference database using the -usearch global option 228 

of VSEARCH with a 99% similarity threshold. Finally, the script mesas-uc2clust.py 229 

was used to obtain an OTU table listing the number of sequences from each OTU found 230 

in each sample. Based on the results of this table, a quality-filtering was applied to 231 

remove the OTUs with a number of sequences lower than 0.005% of the total number of 232 

sequences (Bokulich et al. 2013; Edgar 2013).  233 

In DNA metabarcoding studies, it has been observed that a low percentage of the 234 

reads of a library can be assigned to another library. This phenomenon, known as 235 

mistagging or index jumping is the result of the misassignment of the indices during 236 

library preparation, sequencing, and/or demultiplexing steps (Esling, Lejzerowicz & 237 

Pawlowski 2015; Bartram et al. 2016). To correct for this, the low abundance OTUs of 238 

each sample (0.1% threshold) were removed. Finally, only the OTUs that matched any 239 
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reference sequence in the database at a similarity of 99% were kept in the OTU table. 240 

The unidentified OTUs were removed from the OTU table for downstream analysis. 241 

These unidentified OTUs only accounted for an average 0.90% of the total reads before 242 

filtering.  243 

 244 

2.4 Statistical analyses 245 

All the OTUs assigned to the same species were combined before analysis. For each 246 

sample, we calculated the percentage of DNA reads assigned to each species, as the 247 

number of reads for each species divided by the total number of reads in the sample. To 248 

check whether the percentage of reads reflected the species-specific percentage of 249 

biomass in each mixture, and to improve our inference ability in the cases where there 250 

was not a reliable match between both aspects, we used two different methods: 1) linear 251 

model fits and 2) creation of correction indices (relative correction factors sensu 252 

Thomas et al. 2016).  253 

 1. Linear model fits and match to the identity function: for each species, we used 254 

the pairwise mixtures where it was present (N = 36) to compute the best linear fit 255 

(𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 in intercept-slope form, where a is the slope of the line and b is the 256 

intercept) between the percentage of retrieved reads (y) and the percentage of biomass 257 

(x; 20, 50 or 80%), using the lm function in R (R Core Team 2017). In order for the 258 

percentage of reads to be used directly as an estimate of the species’ biomass percentage 259 

in a sample, the equation obtained for a given species would have to closely match the 260 

identity function, i.e. a linear equation where the intercept is not significantly different 261 

from zero and the slope is not significantly different from one (𝑦𝑦 = 𝑎𝑎). If this is the 262 

case, the percentage of reads found after sequencing and filtering could be directly used 263 

to estimate the original percentage of biomass in the sample. Therefore, we used the 264 
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parameter estimates from the equations fitted to the data of each species to verify the 265 

significance of the test on the intercept (b = 0), and performed a two-tailed t-test to 266 

compare the slope of the fit to a slope of one (a = 1)(see a similar approach on Diaz-267 

Real et al. 2015).  268 

 To assess whether the inclusion of other species affected the relationship 269 

between the percentage of biomass of each species in the samples and the percentage of 270 

retrieved reads, we fitted linear equations to the data including the multispecies 271 

mixtures (N = 63 for each species). Again, we tested whether the intercept was different 272 

from zero and whether the slope of the equation was significantly different from one. 273 

We finally compared the slope of both fits (only pairwise mixtures vs. all mixtures), 274 

performing an analysis of covariance (ANCOVA) for each species with type of 275 

community (pairwise vs. all) as predictor, percentage of biomass as covariate and 276 

percentage of reads as dependent variable. A significant interaction between the 277 

predictor and the covariate indicates that the slope fitted to the different communities is 278 

not the same. Different intercepts and/or slopes in both equations would indicate that the 279 

fits are affected by the species richness and composition of the samples, and therefore 280 

that employing the percentage of sequences of DNA as estimation of biomass in 281 

communities of different richness would be severely biased, even for the same species.  282 

2. Correction indices: for each species, we calculated a percentage-specific 283 

correction index using the pairwise mixtures, based on the percentage of biomass in the 284 

sample and the percentage of reads retrieved (relative correction factors presented in 285 

Thomas et al. 2016). Specifically, the correction index for a species A at percentage p 286 

was calculated as: 287 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝑎𝑎𝐴𝐴𝑝𝑝 =
𝐵𝐵𝐶𝐶𝐶𝐶𝐵𝐵 𝑠𝑠𝑝𝑝𝐴𝐴𝑝𝑝

100 − 𝐵𝐵𝐶𝐶𝐶𝐶𝐵𝐵 𝑠𝑠𝑝𝑝𝐴𝐴𝑝𝑝
∗
∑ ∑ 𝑅𝑅𝐶𝐶𝑎𝑎𝑖𝑖𝑠𝑠 𝑠𝑠𝑝𝑝𝐶𝐶𝑖𝑖𝐶𝐶

𝑖𝑖=1
𝑠𝑠
𝐶𝐶≠𝐴𝐴

∑ ∑ 𝑅𝑅𝐶𝐶𝑎𝑎𝑖𝑖𝑠𝑠 𝑠𝑠𝑝𝑝𝐴𝐴𝐶𝐶𝑖𝑖𝐶𝐶
𝑖𝑖=1

𝑠𝑠
𝐶𝐶≠𝐴𝐴
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Where r is the number of replicates for each type of community (i.e., r = 3), s is the 288 

number of species considered (i.e., s = 5), 𝐵𝐵𝐶𝐶𝐶𝐶𝐵𝐵 𝑠𝑠𝑝𝑝𝐴𝐴𝑝𝑝  is the percentage of biomass of 289 

the species A, 𝑅𝑅𝐶𝐶𝑎𝑎𝑖𝑖𝑠𝑠 𝑠𝑠𝑝𝑝𝐴𝐴𝐶𝐶𝑖𝑖  is the number of reads obtained for species A in combination 290 

with species i in each replicate j, and 𝑅𝑅𝐶𝐶𝑎𝑎𝑖𝑖𝑠𝑠 𝑠𝑠𝑝𝑝𝐶𝐶𝑖𝑖  is the number of reads obtained for 291 

each of the other species i in replicate j. A correction index was computed for each 292 

species and percentage by averaging the number of reads in all the mixtures where it 293 

was combined with the all the other species at a specific percentage. For instance, the 294 

20% correction index for Thymus vulgaris was computed using all the samples where 295 

the percentage of biomass of Thymus vulgaris was 20% and that of the second species 296 

(either one of the other four) was 80%. When the correction index is ≈1, the percentage 297 

of reads retrieved robustly reflects the percentage of biomass on the sample. When the 298 

correction index is well above or below 1, the percentage of reads obtained is 299 

underestimated or overestimated compared to the percentage of biomass, respectively. 300 

We computed a 20, 50, 80% correction index and an average index (average of the 301 

three) for each species.  302 

The correction indices computed for each species were used to recalculate the 303 

number of reads of each species in the multispecies mixtures (by multiplying the index 304 

by the retrieved number of reads), and subsequently transform these numbers to 305 

percentage of reads. This was performed for all indices of each species (20, 50, 80% and 306 

average). Then, these corrected percentages were compared to the actual percentage of 307 

biomass of each species in the multispecies mixtures. To assess the correction ability of 308 

the computed indices, we calculated the error for each type of community (averaging 309 

the three replicates). For each species and percentage of biomass, we computed the 310 

average absolute difference between the actual percentage of biomass and the corrected 311 

percentage of reads. We also computed the average absolute differences for the original, 312 
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uncorrected estimates. To assess the effect of the correction and whether it was similar 313 

for all species, we used a two-way ANOVA, with correction (corrected vs. uncorrected) 314 

and species as predictors, and absolute error as the dependent variable. This was 315 

followed by species-specific one-way ANOVAs to test the effect of the correction on 316 

each species individually. Lower average error in the corrected percentages would 317 

indicate that the correction indices based on the pairwise mixtures could improve the 318 

estimates in field-collected samples of different species richness and composition.  319 

An alternative method to compute correction indices is the use of a control 320 

species (see details in Thomas et al. 2016). In this approach, the correction index for 321 

each target species is computed using only the pairwise mixtures where the target and 322 

the control species are present. We computed species-specific correction indices using 323 

the 50% pairwise mixtures with three different control species: L. suffruticosum, H. 324 

cinereum and S. pennata. To assess whether the use of control-based correction indices 325 

also improved the percentages of biomass, we again used these indices to correct the 326 

percentage of reads of each species in the multispecies mixtures. Finally, for each 327 

species and multispecies mixture, we computed the average error (as defined above) of 328 

the corrections using the different control-based indices.  329 

 330 

3. RESULTS 331 

3.1 Performance of DNA metabarcoding with root mixture mock communities 332 

For most samples (> 94%), DNA metabarcoding successfully recreated the species 333 

composition of the mixtures (mock communities), i.e. all the species added to a mixture 334 

were found during sequencing. Only for a few samples where the percentage of biomass 335 

of Stipa pennata was low (≤ 20%), no sequences for this species were recovered 336 

(Supporting Information Table S1). Five species from the study plant community that 337 

were not added to the root mixtures were also detected in a few samples (N = 16), but 338 
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were always found at low percentages (range: 0.13-15.06%, average: 2.65%; see Table 339 

S1 for details on retrieved compositions and percentage of reads of each species and 340 

sample). Specifically, in more than 90% of the samples, more than 95% of the retrieved 341 

sequences were assigned exclusively to the species added to each mixture (Supporting 342 

Information Fig. S1).  343 

 344 

3.2 Evaluation of linear model fits and match to the identity function 345 

For the five selected species, the linear models fitted to the data were highly significant 346 

and had a positive slope, i.e. the percentage of reads of each species increased when the 347 

percentage of biomass of the species in the sample also increased (adjusted R2 = 0.32-348 

0.50; Fig. 2, Supporting Information Table S2). However, both the slope and the 349 

intercept of the fitted models differed among species. Specifically, the data obtained 350 

from the pairwise mixtures of B. fruticescens, L. suffruticosum and T. vulgaris could be 351 

fitted to a linear equation with an intercept not significantly different from zero (b = 0, 352 

Table S2). Similarly, the t-tests showed that the slopes of the lines for these species 353 

were not significantly different from one (P > 0.34 in all cases; Table S2). This 354 

indicates that the percentage of reads retrieved for these three species may be used 355 

directly to estimate the percentage of biomass on the samples. Conversely, the lines 356 

fitted to H. cinereum and S. pennata had intercepts significantly different from zero 357 

(significantly higher/lower than zero for H. cinereum and S. pennata, respectively; 358 

Table S2). Similarly, the slopes were significantly different from one for both species (P 359 

= 0.02 and P < 0.001 for H. cinereum and S. pennata, respectively), indicating that the 360 

percentage of reads was consistently higher (H. cinereum) or lower (S. pennata) than 361 

the percentage of biomass in the sample.  362 
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The models including all mixtures showed similar results to those fitted only 363 

with the pairwise mixtures (Table S2). Indeed, for all species except S. pennata, the 364 

slopes of both equations (only pairwise vs. all mixtures) were not significantly different 365 

(not significant interaction ‘percentage of biomass × type of community’ in ANCOVA). 366 

For B. fruticescens, L. suffruticosum and T. vulgaris, the intercept and the slope of the 367 

lines fitted to all the mixtures were not significantly different from zero and one, 368 

respectively, matching again the identity function, and the fit improved for all species 369 

(adjusted R2 = 0.56-0.66; Fig. 2, Table S2). This indicates that species richness and 370 

composition did not significantly alter the fits for these three species. Conversely, when 371 

the multispecies mixtures were added to the data of the remaining species (H. cinereum 372 

and S. pennata), the equations had again intercepts significantly different from zero and 373 

slopes significantly higher/lower than one (P < 0.001for both H. cinereum and S. 374 

pennata; Fig. 2).  375 

 376 

3.3 Evaluation of correction indices 377 

We found a wide variation among species for the correction indices computed with all 378 

the pairwise mixtures and a control species (Fig. 3 and Supporting Information Table 379 

S3). Using all pairwise mixtures, the correction indices for B. fruticescens, L. 380 

suffruticosum and T. vulgaris were close to one, and slightly increased when the 381 

percentage of biomass in the sample increased. However, for the remaining species, the 382 

correction indices were much lower (H. cinereum) or much higher (S. pennata) than one 383 

(Fig. 3, lower panels), indicating a consistent overestimation and underestimation of the 384 

percentage of reads compared to biomass percentages.  385 

When the number of reads of the multispecies mixtures were recalculated using 386 

the 50% correction indices, the recalculated percentage of reads closely matched the 387 
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actual biomass percentage in the multispecies samples (Fig. 4), and the average absolute 388 

error (absolute difference between the actual percentage of biomass and the percentages 389 

of reads) was significantly reduced (Fig. 5, significant differences in the average 390 

absolute error between corrected and uncorrected percentage of reads, P < 0.0001). This 391 

error reduction was not equal among species (significant ‘species × correction’ 392 

interaction, P < 0.001), and was especially relevant for H. cinereum and S. pennata, 393 

where their overestimation and underestimation in the uncorrected percentage of reads 394 

were significantly improved when the correction indices were applied (e.g. Fig. 4 c and 395 

d). For these species, the error between reads and biomass was significantly reduced 396 

after correction (Fig. 5). For B. fruticescens, L. suffruticosum and T. vulgaris, the 397 

recalculation of reads with the correction indices also improved the match between the 398 

percentage of reads and biomass (e.g. Fig. 4 g and i), although the reduction of the error 399 

was not significant for these species (Fig. 5). The use of the 50%, 80% and average 400 

correction indices rendered very similar results (from ≈17% error in the uncorrected 401 

samples to ≈6% in the corrected percentages), but the correction of the proportions was 402 

lower when the 20% correction indices were used (≈9% overall error in the corrected 403 

percentages).  404 

Similarly, the use of a control species to calculate the correction indices 405 

improved the estimation of percentages of biomass in most cases (Supporting 406 

Information Table S4), but the correction of the proportions varied depending on the 407 

choice of control species (Table S4), and the error reduction was on average lower than 408 

when all pairwise mixtures were used to calculate the correction indices (Supporting 409 

Information Fig. 2).   410 

 411 

4. DISCUSSION 412 
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Our study provides a straightforward and simple protocol to overcome one of the main 413 

shortcomings in DNA metabarcoding studies, the estimation of species’ relative 414 

abundance based on the percentage of DNA sequences (reads) recovered. Through the 415 

use of purposefully-designed root mock communities, we test the efficacy of two 416 

complementary and easy-to-implement methods and provide robust estimates of plant 417 

biomass percentages in realistic multispecies samples. This is, to the best of our 418 

knowledge, the first study to validate a quantitative DNA metabarcoding in plant 419 

communities using root mixtures.  420 

The use of metabarcoding is revolutionizing plant ecology studies, since 421 

detection of the so-called hidden diversity provides new insights to open questions in 422 

this field (see e.g. Yoccoz et al. 2012). However, the possibility of using DNA 423 

metabarcoding results to estimate species’ abundances has been a subject of debate 424 

since the onset of this methodology. Due to reported inconsistencies in past attempts, 425 

recent revisions suggest that a conservative approach may be to treat metabarcoding 426 

results as presence-absence data (Deiner et al. 2017; Porter & Hajibabaei 2018). 427 

However, our study suggests that accurate quantification of species roots’ biomass may 428 

be robustly done, provided that previous quantification studies using mock communities 429 

with target species are performed. Importantly, results from mock communities of root 430 

mixtures (both fitted models and corrected read percentages) can be then safely used to 431 

robustly estimate root biomass in field-collected samples, since estimated biomass 432 

percentages (using both methods) were not significantly altered by species composition, 433 

richness and species’ relative abundance in the samples.  434 

Our results have important implications for plant community ecology. 435 

Understanding how and to what extent stochastic and deterministic processes determine 436 

plant coexistence and community assemblages in plant communities remains an 437 
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unresolved question, despite the intense research effort devoted to this topic over the 438 

last decades (Götzenberger et al. 2012; Gravel et al. 2006; HilleRisLambers et al. 2012). 439 

A few authors have recognized that part of this knowledge gap could be filled if we 440 

complement our current framework, mainly based on characterization of aboveground 441 

processes, expanding our focus belowground (Bever et al. 2010; Wardle et al. 2004). In 442 

this context, DNA metabarcoding has successfully been used in a few instances to 443 

describe patterns of species richness and its distribution belowground (Hiiesalu et al. 444 

2012; Jones et al. 2011; Kesanakurti et al. 2011), but quantification attempts were 445 

lacking. The prospect of using DNA metabarcoding on root mixtures to detect not only 446 

the presence of species but also to estimate species’ abundances constitutes a step 447 

further towards a deeper understanding of plant coexistence and community 448 

assemblages, especially at the fine scales where roots interact. Knowledge on the 449 

patterns of root biomass distribution will provide insights on the correspondence 450 

between above- and belowground distributions, plant-plant interactions and plant-soil 451 

feedbacks (Brandt et al. 2013; Kulmatiski et al. 2008).  452 

An ideal scenario for DNA metabarcoding studies would be that the proportion 453 

of DNA sequences obtained after high-throughput sequencing closely reflected the 454 

percentage of biomass of each species in the bulk sample, irrespective of the sample 455 

composition and the relative occurrence of each species. If this was true for our plant 456 

community, the percentage of DNA sequences assigned to each species could be readily 457 

used to estimate the percentage of root biomass in field-collected samples. For the five 458 

study species, we indeed found a positive and highly significant relationship between 459 

the percentage of biomass in the pairwise mixtures and the percentage of reads 460 

recovered for each species (Fig. 2). However, the parameters of the statistical 461 

relationship (slope and intercept) widely varied among species, and for two of them (H. 462 
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cinereum and S. pennata), the best fit rendered biased estimates of biomass percentages, 463 

despite the observed positive correlation. For instance, for H. cinereum, the estimated 464 

percentage of biomass using the fitted equation for the pairwise communities with 20, 465 

50 or 80% biomass rendered 60, 75 and 90% biomass estimates, respectively, due to the 466 

high intercept of the fitted line (the opposite, i.e. a sharp underestimation of biomass 467 

proportions, occurred for S. pennata). These results point out that a significant positive 468 

relationship between percentage of biomass and percentage of reads is not sufficient to 469 

transform presence-absence data into quantitative estimates (despite its current wide 470 

use). To robustly achieve the latter, the line fitted for a given species would need to be 471 

statistically equivalent to the identity function. For three of our study species (T. 472 

vulgaris, B. fruticescens and L. suffruticosum), we found such equivalence between 473 

biomass and reads percentages. This match was not altered when the data from the 474 

pairwise mixtures was combined to the multispecies samples, suggesting that, at least 475 

for these three species, the relationship between root biomass and reads percentages is 476 

maintained regardless of the number of species (two versus five) and the species’ 477 

biomass percentage (from 5 to 80%). However, even when the fit is equivalent to the 478 

identity function, the predicted abundance estimated by the linear model may be poor 479 

(e.g. fitting with a large residual error). Overall, our results call for caution on the direct 480 

use of sequence percentages to approximate relative biomass or abundance based on the 481 

existence of a positive relationship between both aspects (see e.g. Elbrecht & Leese 482 

2015; Hiiesalu et al. 2012; Pont et al. 2018) or on the mere assumption that such 483 

relationship exists (see e.g. Merges et al. 2018), and highlight the need to test the 484 

properties (statistical parameters) rather than just the existence of a significant 485 

relationship between percentage of reads and abundance for each species individually. 486 
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Our second approach involved the use of species-specific correction indices 487 

(based on the relative correction factors recently proposed by Thomas et al. 2016) 488 

obtained from either all the pairwise mixtures or using a control species, which were 489 

then used to correct the percentage of sequences in the multispecies samples. 490 

Importantly, these recalculated read percentages generally improved the match between 491 

the percentage of reads and the actual biomass in the multispecies mock communities 492 

(Fig. 4 and Table S4), and reduced the overall error compared to the uncorrected 493 

percentages (Figs. 5 and S2). The best results, i.e. the lowest error, was obtained when 494 

the percentage of reads were recalculated using the indices computed with all pairwise 495 

mixtures, as they closely mirrored the biomass percentages in each multispecies mock 496 

community (Fig. 4). This indicates that the use of such correction indices represents a 497 

successful way to obtain quantitative estimates in plant DNA metabarcoding studies. 498 

Several pieces of evidence support this claim. First, reliable estimates of biomass 499 

percentages were obtained for all five species after adjusting the percentages of reads, 500 

which suggests that this method can be generalized to other species in the community. 501 

This was the case even for the two species that significantly deviated from the identity 502 

function due to consistent over- and underestimation (H. cinereum and S. pennata). 503 

Indeed, the bias reduction –calculated as the difference between sequence and actual 504 

biomass percentages– between the observed and corrected percentages was higher for 505 

these two species (note that the lower bias reduction in the other three species was due 506 

to the fact that their correction indices were in all cases very close to one, i.e. no strong 507 

deviation between biomass and uncorrected reads percentages). Second, the correction 508 

index calculated for each species was computed based on pairwise mixtures of different 509 

compositions (each species combined with the other four) and then applied to 510 

multispecies samples, which highlights that these indices are robust to changes both in 511 
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species richness and composition. And third, the indices calculated from pairwise 512 

mixtures where the species were found at different proportions remained relatively 513 

constant (only when percentages were low, i.e. 20%, did the indices substantially 514 

differed; Fig. 3), and efficiently corrected samples where biomass percentages varied 515 

widely. This indicates that these correction indices are also relatively robust to varying 516 

species’ biomass percentages. Our results concur with those by Thomas et al. (2016), 517 

the only other existing implementing correction indices, who found that control-based 518 

correction of reads proportion greatly improved relative abundances in fish mixtures.  519 

This study also allowed to compare the correction ability of differently-520 

computed indices. Although those based on all pairwise mixtures outperformed 521 

correction indices based on the use of a control species, the latter also resulted in 522 

improved biomass estimates compared to uncorrected ones. The use of a control species 523 

to compute correction indices has the advantage that the number of pairwise mixtures 524 

needed is significantly lower (e.g. in a five-species study, only four pairwise mixtures 525 

are needed if the fifth species is the control, but 10 pairwise mixtures are needed to 526 

compute indices from all pairwise mixtures), which can significantly reduce the 527 

complexity and cost of the study. However, the reduction of error widely varied 528 

depending on the choice of control species (Fig. S2), which introduces a source of 529 

uncertainty since the control species needs to be chosen a priori. In practice, the 530 

decision of how to compute correction indices will depend on a variety of factors, 531 

including the species richness of the study community, existing knowledge of the 532 

performance of species during metabarcoding, etc. 533 

Our study also helped to validate the effectiveness of DNA metabarcoding using 534 

the rbcL region for the simultaneous identification and quantification of multiple taxa in 535 

root mixtures from Mediterranean shrublands. For most samples, the species that 536 
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formed each mock community were successfully recovered during sequencing. For a 537 

few samples, however, our approach recovered species –either the study species or other 538 

species from our plant community– that had not been included in those specific 539 

mixtures, although in general they accounted for a very small percentage of the DNA 540 

sequences in each sample (Fig. S1). These infrequent mismatches between the created 541 

(prepared root mixtures) and recreated (after sequencing) species composition can be 542 

due to species cross-contamination during root sampling and mock community 543 

preparation, or due to mistagging (i.e. index/tag jumping) during the DNA 544 

metabarcoding pipeline (Coissac et al. 2012; Schnell et al. 2015). Importantly, they help 545 

to identify aspects for improvement in metabarcoding studies (Deiner et al. 2017; Porter 546 

& Hajibabaei 2018). Furthermore, it is worth to note that the choice of the appropriate 547 

barcode may depend on the type of plant community and the source of DNA samples 548 

(community DNA, environmental DNA, etc.). Future studies should also incorporate 549 

several markers to determine the consistency of the correction indices across different 550 

barcodes (Hollingsworth et al. 2009).  551 

 In conclusion, we propose that the use of mock communities varying in species 552 

composition and biomass structure may be a useful first step for the reliable 553 

quantification of DNA metabarcoding results in other plant communities, implementing 554 

a combined approach where linear fits and correction indices are used. However, the 555 

substantial differences observed among the study species –both in the linear fits and the 556 

correction indices– indicates that quantification methods need to be applied on a 557 

species-level basis. Different sources of bias may occur during DNA extraction (e.g. 558 

differential DNA concentration per tissue biomass across species; see also Haling et al. 559 

2011) or PCR amplification (e.g. differential primer specificity; Cristescu 2014; Deiner 560 

et al. 2017; Elbrecht & Leese 2015; Pawluczyk et al. 2015; Porter & Hajibabaei 2018), 561 
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leading to some species being consistently under- or over-estimated during sequencing. 562 

Therefore, it is highly unlikely that biomass percentages can be estimated for all species 563 

in a community using the same linear fit or correction index. Furthermore, the ability to 564 

perform quantitative DNA metabarcoding will largely depend on the number of species 565 

in the study community, which in turn determines the amount of mock communities 566 

needed to implement corrections. In this context, prior knowledge on the species 567 

composition of the community (i.e. the existence of a robust reference library) and the 568 

selection of study species (e.g. dominant, keystone species) are critical for the 569 

successful implementation of reliable quantification methods. Finally, our results also 570 

suggest that the indiscriminate use of uncorrected percentages of sequences as a proxy 571 

for species’ biomass without previous quantification tests such as the one presented here 572 

may render strongly biased results for many species.  573 
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Figure 1. Workflow implemented to validate DNA metabarcoding quantification 768 
methods. 1) Selection of the most dominant species in the study plant community 769 
(based on the number of individuals). 2) Creation of the pairwise and multispecies 770 
mixtures, i.e. root mock communities of known composition and varying percentage of 771 
biomass proportion (see Table S1 for detailed information on composition of all mock 772 
communities). 3) DNA metabarcoding and bioinformatics pipeline: DNA extraction, 773 
PCR (rbcL gene), next-generation-sequencing and taxonomic assignment. 4) 774 
Quantification methods and validation: calculation of the percentage of reads (DNA 775 
sequences) assigned to each species in each mixture and comparison to the actual 776 
percentage of biomass in the sample via linear fits and correction indices. Validation of 777 
both methods with multispecies mixtures.  778 
 779 
 780 
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Figure 2. Percentage of DNA reads recovered as a function of the percentage of 782 
biomass in each mixture (mock community). Each panel presents all the mixtures where 783 
each species was present. Mean ± standard error of three replicates of each mixture are 784 
shown. Different colors of the symbols reflect the accompanying species in the pairwise 785 
mixtures (i.e. they correspond to colors of scientific names in each panel; e.g. pink 786 
circles in the top left panel represent pairwise mixtures of B. fruticescens with S. 787 
pennata). Grey diamond shapes represent the proportion of DNA reads obtained for 788 
each species in the multispecies mixtures. The best linear fit (colored line), adjusted R2, 789 
intercept (b) and slope (a) estimates are also shown for each species (pairwise and 790 
multispecies samples combined). A significant intercept and/or slope indicate 791 
significant differences from zero and one, respectively. The grey dashed line represents 792 
the intercept = 0 and slope = 1 fit (identity function). *** P < 0.001; ** P < 0.01; * P < 793 
0.05; ns, not significant. 794 
 795 
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Figure 3. Correction indices for each species calculated from the pairwise mixtures, 797 
based on the number of reads retrieved after sequencing and the percentage of biomass 798 
proportion in each mixture. For each species, a correction index was calculated using 799 
the mixtures where the species was at 20, 50 and 80% of biomass. Avg. refers to the 800 
average correction index. The dashed grey line in the top panels represents a correction 801 
index = 1. Note that the Y axes for the species in the top panels is the same.  802 
 803 
 804 
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Figure 4. Comparison of the percentage of biomass of each species in the multispecies 807 
mixtures (left bars) to the observed (uncorrected; central bars) and the corrected (after 808 
recalculation of the number of reads with the 50% correction indices; right bars) 809 
percentage of reads. Panels a) to i) show a specific type of multispecies mixture 810 
(defined by the left column), and each color represents the percentage of biomass/reads 811 
proportion of each species, averaged for the three replicate samples of each mixture. 812 
Gray stacks in the uncorrected bars represent the proportion of sequences retrieved from 813 
species other than those included in the mixtures.  814 
 815 
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Figure 5. Average error (average absolute difference between the real percentage of 818 
biomass and the corrected/uncorrected percentages of reads) for each species. Filled 819 
bars: error for uncorrected reads. Striped bars: error for corrected reads. Lines represent 820 
1 s.e. Significant differences between corrected and uncorrected deviations (one-way 821 
ANOVA) are indicated by asterisks (*** P < 0.001; ** P < 0.01; * P < 0.05).  822 
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Table S1. Species composition and biomass proportion of each mock community (left). The 
right section of the table shows the positive identification of the species after sequencing (in 
green), and the detection of species during sequencing that were not added in the community 
(in red). Comm.: Community; B_s: Bupleurum fruticescens; H_c: Helianthemum cinereum; L_s: 
Linum suffruticosum; S_p: Stipa pennata; T_v: Thymus vulgaris; S_l: Salvia lavandulifolia; C_m: 
Coris monspeliensis; Q_sp: Quercus sp; T_d: Thesium divaricatum; L_c: Leuzea conifera.  
 
Sample B_s H_c L_s S_p T_v   B_s H_c L_s S_p T_v S_l C_m Q_sp T_d L_c 

A_01 50%  50%     38.50  61.50         

A_02 50%  50%     14.80  85.20         

A_03 50%  50%     36.50  63.50         

A_04 50%    50%  17.70  1.00  81.30       

A_05 50%    50%  53.22 1.81 1.31  37.61    6.05   

A_06 50%    50%  53.80  3.00  43.30       

A_07 50% 50%      45.40 54.60          

A_08 50% 50%      49.80 50.20          

A_09 50% 50%      52.20 47.80          

A_10  50% 50%       89.01 10.99         

A_11  50% 50%       78.63 21.37         

A_12  50% 50%       88.38 11.62         

A_13  50%   50%    94.54   5.46       

A_14  50%   50%    92.57   7.43       

A_15  50%   50%    91.65   8.35       

A_16 50%   50%    83.41 0.23 10.34 5.41 0.28     0.33 

A_17 50%   50%    83.05  0.45 10.44     3.58 2.49 

A_18 50%   50%    57.55  19.48 17.12 0.22     5.62 

A_19  50%  50%      99.00  0.57 0.43       

A_20  50%  50%      98.55  1.45        

A_21  50%  50%      100.00  0.00        

A_22   50% 50%        95.54 3.99 0.47      

A_23   50% 50%        94.56 3.50 1.94      

A_24   50% 50%        93.25 5.62 1.12      

A_25    50% 50%    0.86  3.37 95.77       

A_26    50% 50%      0.87 99.13       

A_27    50% 50%    11.73  1.77 86.49       

A_28   50%  50%     25.05  74.95       

A_29   50%  50%     56.79  43.21       

A_30   50%  50%     44.12  55.88       

B_01 20% 20% 20% 20% 20%  24.47 26.03 37.22 1.09 10.90 0.29      

B_02 20% 20% 20% 20% 20%  6.08 29.47 42.08 0.51 21.85       
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B_03 20% 20% 20% 20% 20%  24.06 46.81 20.95 1.07 6.53  0.57     

C_01 22.50% 22.50% 22.50% 10% 22.50%  8.50 71.34 13.49 0.37 6.31       

C_02 22.50% 22.50% 22.50% 10% 22.50%  12.01 39.26 27.45 1.21 20.07       

C_03 22.50% 22.50% 22.50% 10% 22.50%  11.25 63.55 14.63 1.22 9.34       

C_04 15% 15% 15% 40% 15%  5.36 67.53 15.80 1.30 10.01       

C_05 15% 15% 15% 40% 15%  2.06 80.96 5.48 0.94 10.56       

C_06 15% 15% 15% 40% 15%  4.59 56.00 4.69 1.16 33.56       

C_07 10% 10% 10% 60% 10%  1.11 80.74 10.42 3.45 4.27       

C_08 10% 10% 10% 60% 10%  2.96 64.82 9.47 3.24 16.01   3.50    

C_09 10% 10% 10% 60% 10%  0.94 92.01 2.18 0.74 4.13       

C_10 5% 5% 5% 80% 5%  8.36 45.86 15.03 24.78 5.98       

C_11 5% 5% 5% 80% 5%  45.49 37.77 4.31 6.64 5.79       

C_12 5% 5% 5% 80% 5%  29.00 57.31 3.93 7.03 2.74       

C_13 22.50% 10% 22.50% 22.50% 22.50%  5.80 73.96 15.00 1.70 3.54       

C_14 22.50% 10% 22.50% 22.50% 22.50%  11.34 42.99 35.24 3.34 6.93  0.16     

C_15 22.50% 10% 22.50% 22.50% 22.50%  11.63 38.64 34.84 2.33 11.87  0.70     

C_16 40% 15% 15% 15% 15%  16.22 80.97 1.19 0.17 1.45       

C_17 40% 15% 15% 15% 15%  1.92 85.79 4.64 0.00 7.65       

C_18 40% 15% 15% 15% 15%  1.01 91.79 1.50 0.37 5.33       

C_19 60% 10% 10% 10% 10%  0.66 95.64 1.97 0.00 1.73       

C_20 60% 10% 10% 10% 10%  11.02 84.38 1.79 0.63 2.18       

C_21 60% 10% 10% 10% 10%  0.78 92.76 3.84 0.33 2.30       

C_22 80% 5% 5% 5% 5%  0.95 95.81 1.58 0.00 1.66       

C_23 80% 5% 5% 5% 5%  1.58 96.05 1.45 0.15 0.77       

C_24 80% 5% 5% 5% 5%  0.19 98.69 0.73 0.00 0.39       

D_01 20%  80%     31.85  68.15         

D_02 20%  80%     24.08  75.92         

D_03 20%  80%     10.81  89.19         

D_04 20%    80%  15.67    84.33       

D_05 20%    80%  2.52  7.76  89.72       

D_06 20%    80%  10.09 0.25 1.65  88.00       

D_07 20% 80%      43.58 56.42          

D_08 20% 80%      87.10 12.90          

D_09 20% 80%      68.52 31.48          

D_10  20% 80%       36.90 63.10         

D_11  20% 80%       54.20 45.80         

D_12  20% 80%       53.61 46.39         

D_13  20%   80%    61.34   38.66       

D_14  20%   80%    46.93   53.07       

D_15  20%   80%    50.61   49.39       
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D_16 20%   80%    0.13   84.80     15.06   

D_17 20%   80%    99.48   0.52        

D_18 20%   80%    99.60   0.40        

D_19  80%  20%      100.00  0.00        

D_20  80%  20%      100.00  0.00        

D_21  80%  20%      99.52  0.48        

D_22   80% 20%       99.22 0.78        

D_23   80% 20%       99.70 0.30        

D_24   80% 20%       99.38 0.62        

D_25    20% 80%      0.99 99.01       

D_26    20% 80%    6.24  0.28 93.48       

D_27    20% 80%      0.67 99.20 0.13      

D_28   80%  20%     89.89  10.11       

D_29   80%  20%     83.55  16.45       

D_30   80%  20%    15.27 64.53  20.20       

D_31 80%  20%     95.52  4.48         

D_32 80%  20%     90.68  9.32         

D_33 80%  20%     94.97  5.03         

D_34 80%    20%  94.55  0.96  4.49       

D_35 80%    20%  90.30    9.70       

D_36 80%    20%  96.52    3.48       

D_37 20% 80%      0.89 99.11          

D_38 20% 80%      0.70 99.30          

D_39 20% 80%      4.08 95.92          

D_40  80% 20%       97.60 2.40         

D_41  80% 20%       90.19 9.81         

D_42  80% 20%       96.11 3.89         

D_43  80%   20%    94.57   5.43       

D_44  80%   20%    96.56   3.44       

D_45  80%   20%    97.62   2.38       

D_46 20%   80%    87.56 0.17  8.85 3.42       

D_47 20%   80%    73.63  0.41 25.74 0.22       

D_48 20%   80%    72.32   27.68        

D_49  20%  80%      84.98  6.74 7.74  0.54     

D_50  20%  80%      96.30  3.70        

D_51  20%  80%      96.66  2.73 0.61       

D_52   20% 80%      0.11 90.35 8.62 0.92       

D_53   20% 80%       66.11 29.72 2.42     1.75 

D_54   20% 80%      0.33 92.41 7.25        

D_55    80% 20%      36.12 63.88       
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D_56    80% 20%     0.94 16.62 82.44       

D_57    80% 20%      23.54 76.46       

D_58   20%  80%    0.94 15.81  83.26       

D_59   20%  80%     9.79  90.21       

D_60     20%   80%       6.85   93.15           
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Figure S1. Proportion of samples according to the proportion of sequences assigned to the 
species added in each mock community.  

 
 
 

  



 
 

7 
 

Table S2. Intercept, slope, p-values for t-tests (hypotheses: intercept = 0 and slope = 1) and 
adjusted R2 of the fit between the percentage of biomass in the samples and the percentage of 
reads (DNA sequences).  
 

Pairwise samples Intercept 
P-value 

Intercept test Slope 
P-value 

Slope test Adj. R2 
Bupleurum fruticescens 5.224 0.576 0.9873 0.940 0.501 
Helianthemum cinereum 44.6472 <0.00001 0.666924 0.020 0.411 
Linum suffruticosum 10.6417 0.346 0.8453 0.444 0.325 
Stipa pennata -6.32159 0.039 0.26837 <0.00001 0.427 
Thymus vulgaris 6.6994 0.543 0.9209 0.688 0.377 

      All samples 
     Bupleurum fruticescens -2.44947 0.566 1.08932 0.941 0.660 

Helianthemum cinereum 48.1151 <0.00001 0.6336 0.012 0.470 
Linum suffruticosum 1.3135 0.786 0.9898 0.442 0.560 
Stipa pennata -3.59539 0.018 0.21154 <0.00001 0.442 
Thymus vulgaris -3.0526 0.518 1.0597 0.687 0.603 
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Table S3. Correction factors for each species using one control species (three first columns, 
following Thomas et al. 2016 Mol. Ecol. Resources 16), and using all species mixtures (last 
column).  
 
 

Species 
Correction index using 

Linum as control 
species 

Correction index 
using Stipa as 

control species 

Correction index using 
Helianthemum as 

control species 

Correction index 
based on all pairwise 

mixtures 

Bupleurum fruticescens 2.4 0.192 1.026 0.817 

Helianthemum cinereum 0.056 0.011 -- 0.188 

Stipa pennata 3.22 -- 88.053 15.506 

Linum suffruticosum -- 0.047 5.845 0.904 

Thymus vulgaris 0.728 0.021 13.116 0.985 

  
  



 
 

9 
 

Table S4. Comparison of the percentage of biomass of each species in the multispecies mixtures 
(actual biomass) to the observed (uncorrected) and the corrected (after recalculation of the 
number of reads with correction indices) percentage of reads. Correction indices were 
computed using correction indices calculated with one control species (Linum, Stipa or 
Helianthemum, see Table S3), or using all species. The average error is calculated for the three 
replicates of each multispecies mixture as the absolute difference between the corrected and 
uncorrected biomass percentages for each species.  
 

Species B. fruticescens H. cinereum L. suffruticosum S. pennata Th. vulgaris Average error 

Mixture 1. Actual Biomass (%) 5.00 5.00 5.00 80.00 5.00  
Uncorrected biomass (%) 27.62 46.98 7.76 12.82 4.84 26.94 
Corrected biomass (Linum as 
control sp.) 54.15 2.27 6.42 34.32 2.84 20.23 

Corrected biomass (Stipa as 
control sp.) 33.75 3.12 1.71 60.86 0.56 11.50 

Corrected biomass (Helianthemum 
as control sp.) 3.44 4.77 3.31 82.55 5.94 1.40 

Corrected biomass (using all spp.) 13.72 4.58 2.94 76.66 2.09 3.49 

       Mixture 2. Actual Biomass (%) 22.50 22.50 22.50 10.00 22.50  
Uncorrected biomass (%) 10.59 58.05 18.53 0.93 11.91 14.22 
Corrected biomass (Linum as 
control sp.) 44.14 6.16 30.90 4.92 13.88 12.02 

Corrected biomass (Stipa as 
control sp.) 43.23 15.00 17.98 18.67 5.12 11.76 

Corrected biomass (Helianthemum 
as control sp.) 2.75 16.36 26.09 19.19 35.61 10.35 

Corrected biomass (using all spp.) 14.05 19.27 28.60 21.93 16.15 7.21 

       Mixture 3. Actual Biomass (%) 20.00 20.00 20.00 20.00 20.00  
Uncorrected biomass (%) 18.21 34.11 33.42 0.89 13.09 11.07 
Corrected biomass (Linum as 
control sp.) 45.90 2.16 37.67 3.08 11.18 17.43 

Corrected biomass (Stipa as 
control sp.) 49.19 6.14 26.36 13.21 5.10 14.22 

Corrected biomass (Helianthemum 
as control sp.) 4.19 7.48 38.56 17.17 32.59 12.46 

Corrected biomass (using all spp.) 18.78 8.25 40.80 17.45 14.73 8.32 

       Mixture 4. Actual Biomass (%) 15.00 15.00 15.00 40.00 15.00  
Uncorrected biomass (%) 4.00 68.16 8.66 1.13 18.04 22.48 
Corrected biomass (Linum as 
control sp.) 23.98 11.04 22.41 9.74 32.82 13.69 
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Corrected biomass (Stipa as 
control sp.) 21.43 23.38 11.22 32.84 11.14 5.92 

Corrected biomass (Helianthemum 
as control sp.) 0.90 16.46 12.11 22.88 47.65 13.64 

Corrected biomass (using all spp.) 5.43 22.96 14.56 30.26 26.79 7.90 

 
       

Mixture 5. Actual Biomass (%) 10.00 10.00 10.00 60.00 10.00  
Uncorrected biomass (%) 1.67 79.19 7.36 2.48 8.14 27.91 
Corrected biomass (Linum as 
control sp.) 13.40 19.16 23.21 25.13 19.10 13.95 

Corrected biomass (Stipa as 
control sp.) 7.73 26.70 7.49 53.99 4.10 6.68 

Corrected biomass (Helianthemum 
as control sp.) 0.38 22.49 8.91 45.17 23.05 10.21 

Corrected biomass (using all spp.) 2.00 26.88 9.62 51.01 10.50 6.95 

       Mixture 6. Actual Biomass (%) 22.50 10.00 22.50 22.50 22.50  
Uncorrected biomass (%) 9.59 51.86 28.36 2.46 7.45 19.15 
Corrected biomass (Linum as 
control sp.) 34.00 5.27 41.04 11.97 7.72 12.01 

Corrected biomass (Stipa as 
control sp.) 28.50 10.52 20.19 38.35 2.43 8.95 

Corrected biomass (Helianthemum 
as control sp.) 1.79 11.09 29.71 40.04 17.38 10.33 

Corrected biomass (using all spp.) 8.55 12.25 30.02 41.95 7.24 11.69 

       Mixture 7. Actual Biomass (%) 15.00 40.00 15.00 15.00 15.00  
Uncorrected biomass (%) 6.38 86.18 2.44 0.18 4.81 18.47 
Corrected biomass (Linum as 
control sp.) 41.56 23.66 12.26 3.20 19.33 12.35 

Corrected biomass (Stipa as 
control sp.) 34.95 45.37 5.93 8.22 5.53 10.13 

Corrected biomass (Helianthemum 
as control sp.) 4.48 47.75 7.31 8.93 31.52 9.71 

Corrected biomass (using all spp.) 15.87 52.56 8.03 8.99 14.55 5.37 

       Mixture 8. Actual Biomass (%) 10.00 60.00 10.00 10.00 10.00  
Uncorrected biomass (%) 4.15 90.93 2.53 0.32 2.07 12.37 
Corrected biomass (Linum as 
control sp.) 33.85 34.69 17.44 4.40 9.63 12.51 

Corrected biomass (Stipa as 
control sp.) 24.42 55.27 6.42 11.63 2.26 6.42 

Corrected biomass (Helianthemum 
as control sp.) 2.31 56.92 9.06 15.16 16.55 4.68 

Corrected biomass (using all spp.) 9.39 61.01 8.84 14.28 6.47 2.12 
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       Mixture 9. Actual Biomass (%) 5.00 80.00 5.00 5.00 5.00  
Uncorrected biomass (%) 0.91 96.85 1.26 0.05 0.94 6.74 
Corrected biomass (Linum as 
control sp.) 20.27 58.97 12.65 1.34 6.78 9.88 

Corrected biomass (Stipa as 
control sp.) 11.67 79.79 4.13 2.99 1.43 2.67 

Corrected biomass (Helianthemum 
as control sp.) 0.73 80.19 5.92 3.31 9.85 2.38 

Corrected biomass (using all spp.) 3.27 84.08 5.61 3.17 3.86 1.88 
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Figure S2. Average error (average absolute difference between the actual percentage of biomass and the corrected/uncorrected 
percentages of reads) for each multispecies mixture (averaged across species). Corrections were performed based on different 
correction indices (see Table S3). Species-specific corrected biomass can be found on Table S4. The composition and relative 
abundance of each multispecies mixture (code numbers in the X axis match those on Table S4).  

 


