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Abstract  

The estimated potential of landscape metrics as a surrogate for biodiversity is 

strongly dependent on the spatial analytical unit used for evaluation. We assessed the 

relationship between terrestrial vertebrate species richness (total and taxonomic) and 

structural landscape heterogeneity, testing the impact of using different spatial 5 

analytical units in three mountain systems in Spain. Landscape heterogeneity was 

quantified through an additive partitioning of the Shannon diversity index of landscape 

classes. Both landscape heterogeneity and species richness were calculated using two 

spatial analytical unit approaches: eco-geographic vs. arbitrary (i.e., watersheds vs. 

square windows of different sizes 20x20 km, 50x50 km, 100x100km). We predicted 10 

species richness on the basis of landscape heterogeneity by fitting separate linear 

models for each spatial analytical unit approach. The main results obtained showed that 

landscape heterogeneity influenced terrestrial vertebrate species richness. However, the 

emerging relationships were dependent on the spatial analytical unit approach. The eco-

geographic approach showed significant relationships between landscape heterogeneity 15 

and total and taxonomic species richness in almost all cases (except mammals). 

Considering the arbitrary approach, landscape heterogeneity appeared as a predictor of 

species richness only for mammals and breeding birds and at the coarsest spatial scales. 

Our results claim for further consideration of eco-geographical spatial analytical unit 

approaches in biodiversity studies and show that the methods of this study offer a 20 

valuable cost-effective framework for biodiversity management and spatial modeling, 

with potential to be adapted to national and global applications.  

Keywords: habitat diversity; mammals; birds; reptiles; terrestrial vertebrates; 

watersheds.
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1. Introduction  25 

Loss of biodiversity is one of the main impacts of land use change, and is associated 

with landscape fragmentation and habitat loss over recent decades (Lindenmayer et al 

2002; Herrando et al 2014). Knowledge of the factors driving biodiversity patterns has 

become a priority for researchers and conservation practitioners (Morelli et al 2013). 

Considerable efforts have been made to develop and improve methods for evaluating 30 

components of current biodiversity to enable the identification of priorities for 

conservation (Priego-Santander et al 2013). Conservation strategies require the 

quantification of biodiversity, although time and cost limitations of biodiversity data 

collection make this a challenging task (Ewers et al 2005). Thus, the development of 

biodiversity indicators that reduce the effort of biodiversity estimation, therefore 35 

speeding up the decision-making process, has become a priority for conservation 

biologists (Rossi and van Halder 2010; Laurila-Pant et al 2015). 

There is a large body of literature in which different environmental variables (e.g., 

climate, land cover (Kivinen et al 2007; Mehr et al 2011), topography (Krömer et al 

2013; Yu et al 2015), soil properties (Medinski et al 2010), human population density or 40 

habitat diversity (Moreno-Rueda and Pizarro 2007) have been used to make spatial 

predictions of species richness. Currently, there is increasing agreement about the 

consideration of landscape as the most pertinent level for biodiversity management 

actions (Walz 2011), since landscape-based evaluations provide a larger-scale 

perspective of ecological processes than traditional site-based ones (Pino et al 2000). 45 

The use of landscape metrics as a proxy of species richness has become a popular 

approach (Lindenmayer et al 2002; Rossi and van Halder 2010), made easier by the 

continuous development of remote sensing techniques and Geographic Information 

Systems (GIS) (Wagner and Fortin 1987). Amongst the large number of landscape 
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metrics used as biodiversity surrogates, landscape heterogeneity is gaining valuable 50 

recognition within conservation strategies (Walz 2011). It is generally accepted that 

landscape heterogeneity is positively related to ecological niche diversity (Katayama et 

al 2014). Furthermore, landscape heterogeneity plays an important role in population 

dynamics, as it may control dispersal rates, movement patterns or foraging strategies 

(Johnson et al 1992), which suggests some connection between landscape heterogeneity 55 

and species richness. Nevertheless, the estimation of biodiversity from landscape 

metrics is often affected by the methods employed to observe, analyse and process 

landscape patterns (Walz 2011). Since landscape metrics, including landscape 

heterogeneity, describe geometric and spatial properties of landscape (Gimona et al 

2009), the ecological response emerging from landscape analyses might be conditioned 60 

by the shape (i.e., delineated boundaries; Moser et al 2007; Cushman and Mc Garigal 

2008) or size (i.e., spatial scale) of the analytical unit used for landscape quantification 

(Weibull et al 2000; Plexida et al 2014; Ye et al 2015).  

The landscape is a continuum, but for practical reasons it must be split into spatial 

analytical units providing a frame for landscape metrics quantification. This is often 65 

rather arbitrary (Verberk et al 2006; Walz 2011). Difficulties arise as differently 

delineated spatial analytical units might provide different statistical relationships for the 

same ecological process, making the interpretation and applicability of landscape 

metrics estimations challenging (Saura and Martínez-Millán 2001). Most studies 

addressing landscape heterogeneity as a surrogate of species richness (e.g. Atauri and de 70 

Lucio 2001; Moreno-Rueda and Pizarro 2007; Schindler et al 2013) are based on a 

systematic partition of the landscape using arbitrarily defined spatial analytical units, 

such as UTM grids or circular buffers. However, the use of spatial analytical units with 

eco-geographic meaning could also provide a useful approach when predicting 
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biodiversity, as displayed by Priego-Santander et al (2013). This study showed the 75 

potential of landscape heterogeneity as a predictor of plant richness on the basis of land 

units defined from geomorphology, geology, relief, climate, soil and land cover 

features. Watersheds are increasingly being used in environmental modelling and 

management, as they represent integrated socio-ecological (Mayer et al 2014), 

geomorphological (Montgomery et al 1995) and multifunctional (Karadağ 2013) units 80 

with potential application for analyses at multiple scales (Tinker et al 1998). For 

example, watersheds have been considered as operational spatial units to assess the 

relationship between soil erosion and regional landscape change (Li and Zhou 2015), to 

identify and manage natural resources (Baloch and Tanik 2008) and to analyse land 

cover change (Mendoza et al 2011; Álvarez-Martínez et al 2014). However, the 85 

application of eco-geographical units, including watersheds, as spatial analytical units in 

biodiversity modelling is under-evaluated. There is a clear need to explore the role of 

eco-geographical spatial analytical unit approaches as an alternative to traditional 

arbitrary ones in biodiversity studies. 

Similarly, the influence of the size of the spatial analytical unit on the detection of 90 

relationships between landscape heterogeneity and species richness has been 

highlighted in different studies (e.g. Tews et al 2004; Morelli et al 2013; Schindler et al 

2013). Relationships emerging from the use of a particular spatial analytical-unit size 

are not necessarily consistent across different sizes. This is a consequence of the 

operational scale at which organisms interact with their environment (Tews et al 2004). 95 

Taxa with a higher mobility and a strong demand for space are expected to be more 

influenced by larger landscape surface areas than smaller or sedentary species (Suárez-

Seoane and Baudry 2002; Schindler et al 2013). Thus, multiscale analyses are required 
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to detect the scale at which ecological phenomena leave their biological signal (Lechner 

et al 2012).  100 

In comparison with other systems, the higher environmental variability found in 

mountains provides a large diversity of habitats, and therefore landscape heterogeneity 

(Jobbágy et al 1996), which allows for higher species richness (Dufour et al 2006). In 

fact, mountains have been largely recognized as important sources of biodiversity 

worldwide (La Sorte and Jetz 2010). Meanwhile, they are highly prone to biodiversity 105 

loss due to their susceptibility to human and natural disturbances (Martinelli et al 2007). 

Therefore, the need to explore potential biodiversity predictors, such as landscape 

heterogeneity, becomes particularly relevant in mountain systems. 

The main goal of this study was to evaluate the potential of landscape heterogeneity 

as an indicator of species richness, assessing the effect of different methodological 110 

choices on the detection of significant ecological relationships. Specifically, we 

assessed the impact of using analytical units of different shape and size, i.e. following 

an eco-geographic (watersheds) versus an arbitrary (square windows of different size) 

spatial analytical approach, to quantify species richness and landscape heterogeneity. As 

a study case, we evaluated the effect of the different choices on the relationship between 115 

landscape heterogeneity and species richness of vertebrates (total and per taxonomic 

group) in three mountain systems with different biogeographical influences in Spain. 

 

2. Material and methods 

2.1 Study area  120 

The study area includes three mountain ranges located across Spain (Figure 1): the 

Cantabrian Mountains (CM), the Central System (CS) and the Spanish Pyrenees (SP). 
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CM represent the transition between Atlantic and Mediterranean regions, CS is a typical 

example of the Mediterranean area and SP are located at the transition between the 

Mediterranean, Atlantic and Alpine regions (Rivas-Martínez et al 1987). All of them 125 

present a great diversity of climatic conditions. Annual rainfall ranges from 700 to 2400 

mm in CM, 500 to 1500 mm in CS and 600 to 1400 mm in SP. Mean annual 

temperature ranges from -2.5 to 22.5 °C in all cases. These mountain systems are of 

particular interest as they are partially or totally included in the Mediterranean Basin, 

often considered as a biodiversity hotspot (Myers et al 2000; Maiorano et al 2013), and 130 

they house a wide variety of ecosystems, habitats and endemic species. In particular, 

CM and SP represent the southern limit of a wide range of species of Euro-Siberian 

origin and the northern-most distribution of species of Iberian and Ibero-African origin 

(Martínez-Rica and Recoder 1990; Morán-Ordóñez 2012), while CS has been 

recognized as a migratory route and speciation centre (López-Sáez et al 2014).  135 

In CM, where altitude ranges from sea level up to 2650 m.a.s.l., dominant land 

covers are crop fields, in lowlands, and natural formations, such as heathlands, 

scrublands and deciduous forests (dominated by Fagus sylvatica, Betula pubescens, 

Quercus petraea and Q. robur, on northern slopes or by Q. pyrenaica and Q. ilex, on 

southern slopes), in mid-highlands (Morán-Ordóñez et al 2011). Natural grasslands 140 

mainly cover areas at the highest altitudes. In CS, altitude ranges from 280 to 2592 

m.a.s.l. The landscape is dominated by forests of Q. pyrenaica, Q. ilex  and Q. suber 

(especially in the western sector) and Pinus sylvestris and P. nigra eastwards (López-

Sáez et al 2014). Shrublands and heathlands of Cytisus oromediterraneus, 

Echinospartum ibericum, E. barnadesii or Erica australis constitute the main features 145 

of the landscape above 1600 m.a.s.l. (Rivas-Martínez et al 1987), while grasslands 

dominate in the areas at the highest altitudes (López-Sáez et al 2014). In SP, the altitude 
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ranges from 100 to 3404 m.a.s.l. The landscape mosaic is mainly dominated by natural 

formations such as Quercus pubescens and Q. ilex and Pinus sylvestris and Fagus 

sylvatica forests, covering, respectively, sunny and shaded slopes, while P. uncinata 150 

forests appear above 1800 m.a.s.l. (Lasanta-Martínez et al 2005; Roura-Pascual et al 

2005), along with scrublands and natural grasslands. Crop fields can be found in valley 

bottoms.  

 

 155 

Figure 1. Study area: The Cantabrian Mountains, the Central System and the Spanish 

Pyrenees. Information on biogeographic regions was obtained from the Spanish 

Ministry of Agriculture, Food and Environment (http://www.magrama.gob.es/). 

Additionally, total species richness in the three corresponding mountain systems. 

Information on species richness was obtained from the official database of vertebrates 160 

of Spain (Ministry of Agriculture, Food and Environment 2012; www.magrama.gob.es). 

http://www.magrama.gob.es/
http://www.magrama.gob.es/
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2.2Spatial analytical unit approaches 

To assess the influence of the spatial analytical unit chosen to evaluate the relationship 

between landscape heterogeneity and species richness, we considered two different 

approaches that consisted of splitting the study area according to either geographic-165 

ecological or arbitrary criteria (Figure 2). The first approach (the “eco-geographic 

approach”) involved the delineation of a set of watersheds that were derived from a 

Digital Elevation Model (DEM) at 25 m resolution (www.ign.es) using ArcGIS 10.2 

(Esri, 2014), for each mountain system. Only watersheds of the highest order (i.e., 

fourth order) were considered, since those of lower order were smaller than the 10x10 170 

km UTM square (the basic resolution of the analyses, constrained by species data 

availability). Watersheds covering only one 10x10 km UTM square were also excluded 

from the analyses since they did not allow for landscape heterogeneity quantification. 

As a result, we selected 76 watersheds for further analyses (39 in CM, 13 in SC and 24 

in SP); mean area size was 582±652 km
2
 (range 102.33-4227.79 km

2
).  175 

The second spatial analytical unit approach (the “arbitrary approach”) involved the 

definition of square windows of different size (20x20 km, 50x50 km, 100x100 km), 

which were obtained by successive aggregation of the original UTM grid system of 

10x10 km. The different sizes made it possible to assess the role of scale on the 

performance of spatial analytical units. The 20x20 km and 50x50 km window sizes 180 

were chosen as proximal sizes to the mean ± SD watershed area. Furthermore, 

conservation planning in Spain is often conducted at a regional or sub-regional scale, 

thus we selected the 100x100 km window size as a proximal size to a sub-regional 

spatial scale. The need of adapting square windows to the biogeographic limits of the 

mountain systems imply that coverage was not complete for some windows located 185 

across the borders of the study area. Incomplete windows are usually excluded from the 

http://www.ign.es/
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analyses (Li et al 2017) in order to avoid potential bias on species richness and 

landscape heterogeneity. However, aiming to include as much as possible of the area of 

the mountain systems, we only excluded from further analyses windows with a 

coverage lower than 75% (at 20x20 km and 50x50 km window size) and 45% (at 190 

100x100km window size).This resulted in 154 windows of 20x20 km (75 in CM, 28 in 

SC and 51 in SP), 20 of 50x50 km (10 in CM, 4 in SC and 6 in SP) and 12 of 100x100 

km (5 in CM, 3 in SC and 4 in SP). 

 

 195 

 

Figure 2. Spatial analytical units: watersheds on the left (a.1 to c.1) vs. square windows 

of different size (20x20 km, 50x50 km and 100x100 km) on the right (a.2 to c.2) in the 

three mountain systems studied: a) the Cantabrian Mountains; b) the Central System; c) 

the Spanish Pyrenees. 200 
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2.3 Vertebrate species data 

Distribution of terrestrial vertebrate species was obtained from the official database 

of vertebrates of Spain (Ministry of Agriculture, Food and Environment 2012; 

www.magrama.gob.es), which combines field records gathered by volunteers with 205 

information from published sources. The data consist of species presence and absence 

locations for the period 1980-2007, collected on the basis of direct observations and 

indirect methods (pellets, tracks, bed sites) and assembled in a regular UTM grid system 

of 10x10 km (Pleguezuelos et al 2002; Martí and del Moral 2003; Palomo et al 2007).  

Species richness was calculated for each 10x10 km UTM square as: (i) “total 210 

richness” or total number of species; and (ii) “taxonomic richness” or the number of 

species per taxonomic group (mammals, breeding birds, reptiles and amphibians). 

Similarly, we calculated the relative value of species richness (number of species per 

100km
2
), both total richness and species richness per taxonomic group for each 

mountain system (See Figure 1 and Table A1 from the appendix). Only squares with at 215 

least 75% coverage of their area included within the limits of each mountain system 

were considered for analyses, resulting in a set of 624 squares. Based on these squares, 

total and species richness per taxonomic group were also computed for both watersheds 

and square windows of different size, by aggregating the original information from the 

10x10 km UTM grid system. The 10x10 km squares intersecting boundaries between 220 

watersheds were fully considered as part of the watershed if they overlapped at least 

50% with the watershed area. 

 

 

 225 

 

http://www.magrama.gob.es/
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2.4 Estimators of landscape heterogeneity  

Landscape heterogeneity was calculated on the basis of a landscape classification 

elaborated by integrating variables accounting for topography, urban influence and land 

cover. Land cover was obtained from the categorical map CORINE Land Cover 2006 230 

(derived from LANDSAT at 30m; http://land.copernicus.eu/pan-european/corine-land-

cover), which had previously been converted into independent continuous variables by 

calculating the proportion covered by each class. Topographic variables consisted of 

elevation, solar radiation and slope. They were derived from a Digital Elevation Model 

(DEM) (25 m spatial resolution), obtained from the Spanish Geographic Institute 235 

(www.ign.es) and resampled at the resolution of the land cover variables (i.e. 30 m), by 

applying the nearest neighbor method. Urban influence was measured as the Euclidean 

distance from each 30 m pixel to the nearest settlement, using input data downloaded 

from the Spanish Geographic Institute site (www.ign.es) at 1:25000 and 1:200000 

spatial resolution. Landscape classification consisted of running a Principal Component 240 

Analysis (PCA) over the pool of variables, followed by an ISODATA unsupervised 

classification accomplished by using the Iso Cluster unsupervised classification function 

in ArcGis 10.2 (Esri. 2014); this aggregated pixels into coherent classes. The number of 

classes was defined aiming to represent at best the ecological framework of the study 

area according to our expert knowledge. To do this, classes resulting from the 245 

classification process were characterized by using thematic information related to 

topography, urban influence and land cover and when necessary, they were combined or 

reclassified. The classification process led to 11 landscape classes in the CM, 13 in the 

CS and 8 in the SP (Figure A1 and Table A2 from the appendix). The overall accuracy 

of classifications and user’s and producer’s accuracy per class were evaluated through 250 

confusion error matrices (Congalton, 2001) by using thematic information related to 

http://land.copernicus.eu/pan-european/corine-land-cover
http://land.copernicus.eu/pan-european/corine-land-cover
http://www.ign.es/
http://www.ign.es/


13 
 

topography, urban influence, land cover and ortho-photographs (years 2006 to 2009, 

scale 1:5000 to 1:10000). Overall accuracy was 88 % for the CM and the SP and 84 % 

for the CS (Table A3 from appendix). See García-Llamas et al (2016) for more 

technical details on the landscape classification method. 255 

Landscape heterogeneity was estimated as beta diversity (  
 ; Eq. 1) for each spatial 

analytical unit (watershed or regular window) using an additive model based on the 

comparison of both alpha and gamma diversity (Lande 1996; Tárrega et al 1997; Jost 

2006, 2007). 

  
    

  
    

  
   

 
                       (Eq. 1) 260 

 

where   
 

 is gamma diversity (i.e., the diversity of landscape classes at each spatial 

analytical unit) and    
  is alpha diversity (i.e., the diversity of landscape classes at each 

10x10 km UTM square within each spatial analytical unit). Both   
  and    

  were 

calculated using the Shannon diversity index (Shannon 1948) (Eq. 2),  265 

  

       
 
                                (Eq. 2) 

 

where pi is the proportion of each landscape class within the spatial analytical unit or 

the 10x10 km UTM square, respectively. 270 

All analyses were done in ArcGIS 10.2 (Esri, 2014) and by using the Patch Analyst 

extension (Rempel et al 2012). 

 

 

 275 
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2.5 Statistical analyses 

To analyse the relationship between landscape heterogeneity and absolute richness 

(total and species richness per taxonomic group) of terrestrial vertebrates, separate 

linear models were fitted for each of the considered spatial analytical unit approaches 280 

(eco-geographic approach vs. arbitrary approach). In the particular case of mammals 

and amphibians, richness data were transformed for normality by using the log (x) 

function.  

Species richness was considered in the models as the dependent variable and 

landscape heterogeneity (  
 ) as the predictor. For the arbitrary approach, in order to 285 

avoid potential bias due to the incomplete coverage of some windows across borders of 

mountain systems, we included the logarithm of the area of the square window (i.e. 

proportion of the square window included within the study area) as an additional 

predictor in models. For the eco-geographical approach, we included the logarithm of 

the watershed area as an additional predictor of landscape heterogeneity in order to 290 

partial-out the confounding effect of the different areas of individual watersheds (which 

is expected to affect both species richness and landscape heterogeneity per se). To 

control for intrinsic differences in species richness between the three study areas, 

"mountain system" was also included in both approaches as a predictor (Gelman and 

Hill 2006; Seoane 2014). In all cases, we checked model residuals to assess the 295 

appropriateness of the model and confirmed the absence of spatial autocorrelation by 

computing correlograms. Data analyses were carried out with the R 3.1.2 statistical 

programme (R Development Core Team 2014) using the 'lm' function (R Development 

Core Team 2014). Correlograms were computed with the 'correlog' function in the 'ncf' 

R package (Bjornstad 2013). 300 
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In addition, the relative effect of the explanatory variables in each model was also 

assessed by commonality analysis (Legendre and Legendre 2012; Ray-Mukherjee et al 

2014). This method, based on the normal R
2
 of partial and complete regression models, 

apportions the variation of the response (species richness) in several fractions: the pure 

effect of the singular predictors, the shared effect of each pair, triplet or any subset of 305 

predictors and the shared effect of the total set of predictors. For this, we used the 

'commonalityCoefficients' function in the R package 'Yhat' (Nimon and Oswald 2013). 

 

3. Results 

Landscape heterogeneity exerted a positive effect on species richness in all the fitted 310 

models. The magnitude and significance of its effects, however, varied according to the 

spatial analytical unit approach and the taxonomic group (Tables 1 and 2; Tables A4 

and A5 from appendix). For the case of the eco-geographic approach, models accounted 

for more than 53% of the variance of species richness (Table 1). Landscape 

heterogeneity was a significant predictor of species richness in all cases, except in 315 

mammals. It explained between 28% (mammals) and 50% (all taxa together) of the 

variance of species richness, although between 26% and 40% of this variation was 

shared with the logarithm of watershed area (Figure 3). Indeed, the logarithm of 

watershed area had a significant effect on species richness in all taxa considered, 

explaining between 37 % (reptiles) and 55 % (total richness) of the variance of species 320 

richness. The mountain system had a significant effect in all cases, except for both 

amphibians and for total species richness (Table 1). It explained between 3% (total 

richness) and 14 % (reptiles) of the total variance (Figure 3). 

 

 325 
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Table 1. Anova table including: the explained sum of squares (Sum. Sq.), F value, 

significance (Sig.) and normal coefficients of determination (R
2
) of regression linear 

models achieved when working with watersheds as spatial analytical units and 

landscape heterogeneity. 

 330 
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 340 

 

 

 

 

 345 

 

 

Hβ landscape heterogeneigy; log(A) logarithm of watershed area; ***significance at level <0.001; **significance at 

level 0.01; *significance at level 0.05; n.s. no significance. 

 350 

 Sum Sq F value Sig. R2 

Mammal richness    0.54 

Hβ 0.09 0.86 n.s.  

log(A) 3.54 32.13 *** 

Mountain system 0.95 4.29 * 

Breeding bird richness    0.65 

Hβ 1555.90 9.53 **  

log(A) 5167.20 31.64 ***  

Mountain system 1782.90 5.46 **  

Reptile richness    0.56 

Hβ 92.12 5.90 *  

log(A) 301.07 19.28 ***  

Mountain system 366.81 11.75 ***  

Amphibian richness    0.53 

Hβ 33.83 6.55 *  

log(A) 96.45 18.68 ***  

Mountain system 14.77 1.43 n.s.  

Total richness    0.65 

Hβ 7214.00 12.76 ***  

log(A) 17726.00 31.35 ***  

Mountain system 1694.00 1.50 n.s.  
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 355 

 

 

 

 

 360 

Figure 3. Variance partitioning of species richness in watersheds explained by the pure 

and combined effect of landscape heterogeneity (Hbeta), logarithm of watershed area 

(Larea) and mountain system (system). Total variance (pure and combined effect) 

explained by predictors is in bold. For example, for richness of mammals total variance 

of Hbeta = 0.01 (pure effect) + (0.24+0.02+0.01; shared effect) = 0.28. Negative effects 365 

arise from the presence of suppression among predictors due to correlation among 

variables (Ray-Mukherjee et al 2014) . 

 

The performance of the arbitrary approach was poorer than the eco-geographical one, 

with a clear influence of windows size on the significance of relationships. Models 370 

accounted for more than 24 % of the variance of species richness at 20x20 km, more 

than 46 % at 50x50 km and more than 71% at 100x100 km window size. Significant 

relationships between landscape heterogeneity and species richness were only found for 

mammals and breeding birds at the largest window size (100x100 km) (Table 2). The 

percentage of total variation explained by landscape heterogeneity was between 69% 375 
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(mammals) and 15% (breeding birds), although between 42% and 10% of this variance 

was shared with the logarithm of the area of the square window, and between 27% and -

28% with the mountain system (Figure 4). The significance of the effect and predictive 

power of landscape heterogeneity decreased for all taxa for the smallest window sizes 

(i.e. 50x50 and 20x20 km) (Table 2; Table A4 and Figures A2 and A3 from the 380 

appendix). 

Further, we found an influence of the mountain system and the logarithm of the area of 

the square windows, depending on the window size and taxonomic group. Mountain 

system and area had a significant effect on total richness and richness of all taxonomic 

groups, at 20x20 km window size, these variables mainly explaining total variance of 385 

models. At 50x50 km, only mountain system significantly influenced results, this 

accounting for most species richness total variance (Table 2, Table A5 and Figures A2 

and A3 from the appendix). At 100x100 km, the mountain system and the area 

significantly influenced breeding birds, reptiles and total species richness (only the area 

in this case). The mountain system accounted for between 15% (breeding birds) and 390 

59% (reptiles) and the area between 5% (reptiles) and 75% (total richness) of the total 

variance of models (Table 2; Figure 4 and Table A5 from the appendix). 

 

 

 395 

 

 

 

 

 400 
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Table 2. Anova table including: explained sum of squares (Sum. Sq.), F value, 

significance (Sig.) and normal coefficients of determination (R
2
) of linear models based 

on square windows of different sizes (20x20 km, 50x50 km and 100x100 km). 405 

 

Hβ landscape heterogeneity; ***significance at level <0.001; **significance at level 0.01; *significance at level 0.05; 

n.s. no significance. 

 

 20x20 50x50 100x100 

 Sum Sq F value Sig. R2 Sum Sq F value Sig. R                R2 Sum Sq F value Sig. R2 

Mammal richness    0.24    0.46    0.83 

Hβ 0.16 1.54 n.s.  0.004 0.53 n.s.  0.02 7.38 *  

log(A) 2.08 20.18 *** 0.001 0.21 n.s. 0.00 0.001 n.s.  

Mountain system 2.17 10.53 *** 0.05 2.72 n.s. 0.01 1.86 n.s.  

Breeding bird richness     0.35    0.47    0.95 

Hβ 98.50 0.47 n.s.  40.49 0.76 n.s.  163.01 11.14 *  

log(A) 11924.9 56.55 ***  142.63 2.68 n.s.  754.46 51.59 ***  

Mountain system 3291.1 7.80 ***  325.67 3.05 n.s.  410.50 14.04 **  

Reptile richness    0.35    0.85    0.82 

Hβ 52.77 3.36 n.s.  0.37 0.14 n.s.  0.35 0.16 n.s.  

log(A) 234.07 14.92 *** 2.09 0.76 n.s.  16.63 7.40 *  

Mountain system 922.96 2941 *** 221.53 40.44 ***  22.78 5.07 *  

Amphibian richness    0.27    0.64    0.71 

Hβ 24.83 3.36 n.s.  15.55 4.42 n.s  2.79 1.70 n.s.  

log(A) 107.20 7.24 ** 4.72 1.98 n.s  0.45 0.27 n.s.  

Mountain system 139.34 18.83 *** 29.21 6.12 *  11.86 3.61 n.s.  

Total richness    0.38    0.60    0.85 

Hβ 1675.00 2.96 n.s.  190.22 1.99 n.s.  115.82 0.91 n.s. 0 

log(A) 37761.00 66.83 ***  157.27 1.65 n.s.  2156.07 16.85 **  

Mountain system 5970.00 5.28 **  902.48 4.73 *  584.81 2.28 n.s.  
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Figure 4. Variance partitioning of species richness explained by pure and combined 420 

effects of landscape heterogeneity (Hbeta), logarithm of window area (Larea) and 

mountain system (system) for windows of 100x100 km (or less if they intersected the 

limits of the study area). Total variance (pure and combined effect) explained by 

predictors is in bold. For example, for richness of mammals total variance of Hbeta = 

0.19 (pure effect) + (0.23+0.19+0.08; combined effect) = 0.69. Negative effects arise 425 

from the presence of suppression among predictors due to correlation among variables 

(Ray-Mukherjee et al 2014). 

 

4. Discussion  

Landscape heterogeneity has been largely recognized as a cost-effective instrument 430 

to predict biodiversity (Ewers et al 2005), especially in large areas. However, as we 

demonstrated in this study, the predictive power of this indicator depends on the spatial 

analytical unit approach. Thus, the selection of an appropriate analytical framework for 

assessing landscape heterogeneity-species richness relationships requires careful 
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consideration in view of a practical implementation. In this sense, our study advocates 435 

the need to incorporate eco-geographically relevant spatial analytical units, based on 

linkages between physical and biological resources and processes (Montgomery et al 

1995), rather than arbitrarily delineated ones (typical of traditional approaches) within 

the framework of biodiversity studies. 

The eco-geographic spatial analytical unit approach, based on the use of watersheds, 440 

enabled the detection of significant relationships between landscape heterogeneity and 

species richness for almost all taxonomic groups. Generally, species richness depends 

on the presence of ‘keystone structures’ (i.e., distinct spatial landscape structures 

providing resources, shelter or goods crucial for species; Tews et al 2004), which are the 

result of interaction between biotic and abiotic features (e.g. climate, soil type, watering, 445 

human perturbations; Blasi et al 2008) and influence the use of territory by animals 

(Mazía et al 2006). In this context, watersheds may better reflect these keystone 

structures than arbitrary spatial analytical units, as they represent areas where climate, 

hydrology, geomorphology and land use history interact in predictable and repetitive 

ways, determining the composition and structure of landscapes and their biotic 450 

communities (Karadağ 2013). In fact, for example, watershed characteristics have been 

employed to effectively predict the existence of protected habitats (Baattrup-Pedersen et 

al 2012). 

Although watersheds might offer a good sampling scheme to analyze the 

relationships between landscape heterogeneity and species richness, variance 455 

partitioning analyses showed that the predictive capacity of the landscape heterogeneity 

was mainly associated with the watershed area. Two of the major mechanisms of 

increased species richness are the increase in both area (spatial analytical unit size) and 

variety of habitat types (here expressed as landscape heterogeneity) (Kohn and Walsh 
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1994). Both mechanisms are mutually complementary, thus one can act as a surrogate 460 

of the effect of the other, making it difficult to discern their direct effect on species 

richness patterns (Triantis et al 2003). Consequently, although both area and landscape 

heterogeneity partially contributed to explaining species richness separately, their large 

combined effect on species richness means that these two variables should be 

considered in conjunction (Kallimanis et al 2008) when working with eco-geographic 465 

spatial analytical units, in conservation planning. 

Despite being widely accepted in landscape analysis (e.g. Nogués-Bravo and 

Martínez-Rica 2004; Flick et al 2012) the arbitrary spatial analytical unit approach, 

based on the use of square windows, revealed some limitations with regards to 

modelling landscape heterogeneity-species richness relationships. Only two taxonomic 470 

groups (i.e. mammals and breeding birds) showed significant statistical effects of 

landscape heterogeneity. Further, the size of the spatial analytical unit also largely 

influenced the predictive capacity of landscape heterogeneity, as demonstrated in other 

studies (Morelli et al 2013, Schindler et al 2013; Chambers et al 2016). In our particular 

case we only found significant relationships between landscape heterogeneity and 475 

species richness at the 100x100 km window size. Such an outcome might be related to 

the fact that species attributes (e.g. mobility or dispersal capacity) widely rule the effect 

of landscape heterogeneity (Barbaro and Van Halder 2009; Perović et al 2015) and the 

spatial scale (i.e. size of the spatial analytical unit) at which this effect emerges (Miguet 

et al 2016). Consequently, it would be expected that the spatial scale at which landscape 480 

heterogeneity exerts its effect would be larger for taxa with greater mobility or demand 

for space (e.g. mammals or birds) than for less mobile ones (e.g. reptiles or 

amphibians), because they interact with the landscape over a larger spatial extent 

(Schindler et al 2013; Miguet et al 2016). As a result, the lack of explanation of 
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mammal richness within watersheds might suggest that the watersheds in this study are 485 

not large enough to efficiently capture the effect of landscape heterogeneity over species 

richness of this taxon. These results emphasise the need to consider the spatial scale 

appropriate for both the subject of study and the ecological question posed (Wu 2004), 

i.e., it might be associated with the scale at which organisms perceive the landscape. 

The arbitrariness of the spatial analytical unit influences both the size and shape of 490 

the selected spatial analytical units. Any change in these settings will provide a different 

description of the area of analysis, which is linked to the modifiable areal unit problem 

(MAUP); and which might affect results of statistical models (Dungan et al 2002; Dark 

and Bram 2007; Nouri et al 2017). We tried to minimize the usual bias associated to the 

scale problem of the MAUP (inflated correlation at higher levels of aggregation; Wong 495 

2009), by estimating both the response (species richness) and the explanatory variables 

(landscape heterogeneity) as cumulative figures obtained from the 10 x 10 km raw data, 

rather than as averages or any other measure of central tendency of smaller units. 

However, contrary to our results with watershed units, for arbitrary windows with a size 

close to the mean ± SD watershed area (i.e., 20x20 and 50x50 km window), no 500 

significant effects of landscape heterogeneity on vertebrate species richness were 

detected. This inconsistency when changing boundary delineation could be the result of 

the different description of the region leading to different analytical results, which is 

related to the zoning problem of the MAUP (Jelinski and Wu 1996). Further, when 

boundaries of spatial analytical units are arbitrarily set, they could not reflect the spatial 505 

structure of the environmental and biological components of the landscape (Wagner and 

Fortin 2005). Thus, arbitrary boundaries may mask relationships between landscape 

heterogeneity and species richness. As an example, amphibians are usually favored by 

landscape heterogeneity, as they use a complex landscape matrix of terrestrial and 
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aquatic habitats during different stages of their life cycles (Mawangi 2010). Further, 510 

different species of amphibians could require different aquatic environments from the 

headwater to the lower reaches. However, arbitrary spatial analytical units might not 

necessarily encompass both terrestrial and aquatic habitat patches, or all aquatic 

environments. Consequently, watershed might be a proper landscape approach to 

include amphibians breeding, foraging and overwintering habitat patches (Maxell 515 

2009). In the case of reptiles, some studies (e.g., Shipam et al 2004) have highlighted 

the importance of preserving watershed-level heterogeneous landscape conditions for 

preserving their diversity. In fact, the physiography of watersheds (i.e. slope, elevation 

or naturally-occurring aquatic habitats) determines the diversity of canopy covers and 

aquatic habitats that ultimately influence the variation of humidity and soil mixture, on 520 

which reptiles are highly dependent (Shipam et al 2004). Therefore, analyzing 

watersheds, rather than arbitrary spatial analytical units, might give ground for a better 

understanding of landscape heterogeneity-reptile richness relationships. 

Results on the performance of eco-geographical and arbitrary spatial analytical unit 

approaches have important implications from a practical perspective. Developing an 525 

eco-geographical approach based on watersheds is not a new approximation in analysis 

and conservation management. For example, the unit plan used by the U.S. Forest 

service until the mid-1970s was based on watershed delineation (Montgomery et al 

1995). Also in the mid-nineties, ecosystem management based on watershed analysis 

was implemented in the Pacific Northwest federal lands and, on a volunteer basis, on 530 

forested watersheds in Washington (WFPB 1992; 1993). In the case of Spain, 

conservation management is generally addressed independently by different regional 

autonomous administrations (Morillo and Gómez-Campo 2000), except for some 

protected areas (i.e. national parks covering different regions) for which collaborative 
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networks do exist. Consequently, management actions have usually been carried out 535 

according to varying arbitrary management units at regional or sub-regional scale, such 

as administrative boundaries. As our results show, the performance of arbitrary units 

could not be considered satisfactory. Even for the larger unit size considered (100 x 100 

km window), richness for some taxa (and total richness also) appeared unrelated to 

landscape heterogeneity so, at least with the sizes considered in our study, the arbitrary 540 

approach could not be considered an appropriate approximation to a sub-regional scale 

of management on the ground. On the contrary, our results showed that watersheds, i.e., 

eco-geographical rather than regular windows, or political or administrative boundaries, 

might provide a more rational basis for the management of biodiversity, based on 

potential indicators such as landscape heterogeneity. Thereby, this study revealed the 545 

major importance of adopting a trans-bordering and inter-regional management 

framework that advocates continuous and integrated engagement of all entities involved 

in decision-making.  

Notwithstanding the important role of landscape heterogeneity as an indicator of 

species richness, caution is urged as high landscape heterogeneity might lead to 550 

fragmentation and, may thus have negative effects on biodiversity (Duflot et al 2014). 

Further, it should be noted that the detected relationships between landscape 

heterogeneity and species richness depend on the landscape metrics used for analyses 

(Cale and Hobbs 1994). Although there is no consensus regarding the most appropriate 

and informative index for landscape heterogeneity, the Shannon diversity index has 555 

been successfully used in several studies (e.g. Pino et al 2000; Oindo et al 2003; Priego-

Santander et al 2013; Lee and Martin 2017), along with other metrics such as patch 

richness, Simpson’s diversity index or Simpson’s evenness (Schindler et al 2013). We 

are unaware of the use of a beta-diversity metric in landscape analyses, but its 
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performance in our study gives ground for further consideration in this field. Further, 560 

we claim for the convenience of using a landscape classification adapted to the study 

site (i.e. the mountain system), thus allowing the ecological meaning and reliability of 

landscape classification to be increased and therefore, the reliability of landscape 

indices (Shao and Wu 2008). Additionally, the influence of landscape heterogeneity on 

species richness may depend not only on the spatial analytical unit approach or the used 565 

landscape metrics, but also on the study site considered (Amano et al 2008; Oliver et al 

2010). In this context, the study site might condition the existing pool of species, due to 

differences in historical land-uses (Devictor et al 2010), environmental conditions and 

biogeographical history (Tamm et al 2016). Therefore, differences in the existing pool 

of species might determine disparities in the emerging ecological response among study 570 

sites. This might stem from the different ways in which species perceive the landscape 

(Farina 2001). In this sense, our analyses were performed in mountain areas, where high 

abiotic heterogeneity (i.e. climate or topography) would increase heterogeneity on the 

landscape scale, hence resulting in higher site species richness compared to flat areas 

(Jobbágy et al 1996). In mountain regions, the watershed is a basic eco-geographic unit 575 

that has been used for ecological management (Zhang et al 2014). However, as 

watersheds integrate biotic and abiotic processes determining landscape (Karadağ 

2013), we could expect the use of watersheds to also be useful for species richness 

modeling from landscape heterogeneity, in more homogeneous topographic areas. 

 580 

5. Conclusions  

Our study has shown how landscape heterogeneity, measured by a beta-diversity 

metric, could predict terrestrial vertebrate richness in mountain systems, although 

conditioned by the spatial analytical unit approach used for evaluation. This study 
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indicates the high potential of eco-geographical spatial analytical unit approaches, based 585 

on watersheds, in biodiversity studies. The arbitrary spatial analytical units approach 

reflects how limiting it could be to apply spatial analytical units unrelated to the 

phenomena under study. In connection with this, we corroborate the effect of the size of 

arbitrary spatial analytical units on predictive power of landscape heterogeneity, which 

is generally better at larger sizes. These findings have important practical implications 590 

as they underline the need to consider landscape heterogeneity in biodiversity 

conservation strategies. Furthermore, this study offers a valuable cost-effective 

framework for environmental management and spatial modeling, with potential to be 

adapted for national and global applications. Simultaneously, it makes visible important 

methodological issues that may affect biodiversity estimations and that should be 595 

considered in decision-making. 
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Table A1. Absolute (Sa; number of species) and relative (Sr; number of species per 

100 km
2
) values of species richness: total and taxonomic (mammals, breeding birds, 

reptiles and amphibians) richness for each mountain system (Cantabrian Mountains, 

Central System and the Spanish Pyrenees). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Cantabrian Mountains Central System Spanish Pyrenees 

 Sa Sr
 Sa Sr Sa Sr 

Mammals 88 0.27 85 0.07 64 0.29 

Breeding birds 198 0.62 188 0.10 166 0.74 

Reptiles 29 0.09 30 0.23 20 0.09 

Amphibians 19 0.06 17 0.13 15 0.07 

Total species 334 1.06 320 0.20 265 1.18 

Appendix



Figure A1. Landscape classifications based on CORINE, for a.1) the Cantabrian 

Mountains; b.1) the Central System; c.1) the Spanish Pyrenees. 
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Table A2. Description of landscape classes obtained from a set of variables accounting 

for topography, urban influence and land cover (CORINE). 

Class Description 

Cantabrian Mountains 

1 Forests covering coastal and middle-mountain areas at an average altitude of 688.16 ± 299.69 m.a.s.l., 

in areas with moderate to steep slope (mean value 20.73º ± 10.72º) and at mid-distance to settlements 

(mean value 3.65 ± 4.05 km) 

2 Forests covering central mountains and piedmont areas at an average altitude of 1267.14 ± 240.47 

m.a.s.l. with moderate slope (mean value 17.56 9 ± 9.77º), those being at mid-distance to settlements 

(mean distance 2.67 ± 2.48 km) 

3 Transitional to woodlands with low urban influence (mean distance to settlements 5.24 ± 4.92 km), 

covering mainly Atlantic and Sub-Atlantic mountains located at low altitudes (mean value 624 ± 

213.42 m.a.s.l.), with moderate to steep slope (mean value 24.08º ± 9.86º) 

4 Transitional woodlands from central and southern areas of the Cantabrian Mountains, with relatively 

low urban influence (mean distance to settlements 3.9 ± 4.11 km), those being located at an average 

altitude of 1207.40 ± 290.56 m.a.s.l., in areas with moderate slope (mean value 18.05º ± 10.30º) 

5 Pastures from mid-low Atlantic mountains and coastal areas (mean altitude 520.22 ± 263.10 m.a.s.l.), 

with moderate slope (mean value 15.87º ± 9.68º) and at mid-distance to settlements (mean value 3.66 ± 

4.69 km) 

6 Pastures covering bottom valleys and hillsides of the central Cantabrian Mountains, lying at an average 

altitude of 1216.65 ± 290.14 m.a.s.l., in areas with moderate slope (mean value 16.22º ± 10.51º) at 

mid-distance to settlements (average distance 2.8 ± 3.54 km) 

7 Shrub-herbaceous associations lying at an average altitude of 816.66 ± 378.43 m.a.s.l., in hillsides with 

moderate slope (mean value 19.27º ± 10.88º) and at mid-distance to settlements (mean distance 3.63 ± 

3.83 km) 

8 Croplands from depressions and coastal plains (average slope 8.84º ± 8.18º), lying at the lowest 

altitudes (mean value 605.05 ± 241.81 m.a.s.l.) and those being close to settlements (mean distance 

1.64 ± 1.80 km) 

9 Croplands (non-irrigated arable lands) from paramos and countryside (mean slope 5.70º ± 5.79º) lying 

at an average altitude of 977.27 ± 99.30 m.a.s.l. and those being the closest class to settlements (mean 

distance 1.26 ± 0.99 km) 

10 Water surfaces and artificial surfaces lying at an average altitude of 654.15 ± 393.13 m.a.s.l., in areas 

with moderate slope (mean slope 14.58º ± 11.05º) and at mid-distance to settlements (mean value 2.56 

± 3.54 km) 

11 Rocks and areas with little or no vegetation covering the highest altitudinal ranges (mean value 

1352.71± 485.47 m.a.s.l.), in areas with steep slope (mean value 25.94º ±12.54º), those being far from 

settlements (mean distance 4 ± 3.58 km) 

 

 

 

 

 

 

 

 

 

 



Table A2. (cont.) 

 Central System 

1 Forests covering lowlands and bottom valleys (mean slope 5.28º ± 2.47º), at an average altitude of 

1131.37±253.73 m.a.s.l. and at mid-distance to settlements (mean value 2.63 ± 1.38 km) 

2 Forests lying at an average altitude of 1226.79 ± 305.41 m.a.s.l. on hillsides with moderate slope (mean 

value13.32º ± 3º) and at mid-distance to settlements (mean value 28.55 ± 15.36 km) 

3 Forests lying at an average altitude of 1223.95 ± 336.03 m.a.s.l., on hillsides with moderate to steep 

slope (mean value 22.60º ± 6.25º) and at a mid-distance to settlements (mean value 28.62 ± 15.68 km)  

4 Transitional to woodlands covering lowlands (mean altitude 1252.28 ± 275.44 m.a.s.l.) and areas with 

slight slope (mean value 5.31º ± 2.37º), those being at mid-distance to settlements (mean value 2.50 ± 

14.51 km) 

5 Transitional to woodlands covering middle-hillsides (mean altitude 1352.24 ± 332.77 m.a.s.l.) with 

moderate slope (mean value 12.80º ± 2.79º), those being at mid-distance to settlements (mean value 

2.86 ± 1.66 km)  

6 Transitional to woodlands covering the highest altitudes (mean value 1436.55 ± 339.83 m.a.s.l.) with 

moderate to steep slope (mean value 24.69º ± 6.04º), those being at mid-distance to settlements (mean 

value 3.55 ± 1.84 km)  

7 Pastures covering valley bottoms (mean altitude 1181.78 ± 246.51 m.a.s.l.) and hillsides with a slight 

slope (mean value 5.16º ± 3.22º) and at mid-distance to settlements (mean 2.29 ± 1.70 km) 

8 Pastures covering middle mountain areas (mean value 1348.88 ± 314.95 m.a.s.l.) with moderate slope 

(mean value 14.62º ± 3.25º) and at mid-distance to settlement (mean value 2.60 ± 1.72 km) 

9 Shrub-herbaceous associations located at low altitudinal ranges (mean value 1177.51 ± 301.89 m.a.s.l.) 

on hillsides with moderate slope (mean value 13.17º ± 8.63º) and at mid-distance to settlements (mean 

value 2.75 ± 1.64 km) 

10 Croplands (herbaceous) covering valley bottoms and plains (mean slope 5.01º ± 4.70º) at an average 

altitude of 1028.33 ± 201.01 m.a.s.l., those being close to settlements (mean value 1.46 ± 0.9 km) 

11 Woody croplands covering valley bottoms and plains (mean slope 6.75º ± 5.40º) at an average 

altitudinal range of 962.96 ± 233.65 m.a.s.l., those being close to settlements (mean value 2.06 ± 1.34 

km) 

12 Water surfaces and artificial surfaces located at an average altitude of 1002.28 ± 229.45 m.a.s.l., in 

areas of slight slope (mean value 4.87º ± 4.22º), those being close to settlements (mean value 1.31 ± 

1.25 km) 

13 Rocks and areas with little or no vegetation covering the highest altitudes (mean value 1481.65 ± 

371.04 m.s.a.l.), in areas with moderate to steep slope (20.08º ± 10.21º) at mid-distance to settlements 

(mean distance 3.54 ± 2.17 km) 

Spanish Pyrenees 

1 Forests lying at an average altitude of 1000.49 ± 323.21 m.a.s.l., covering hillsides with moderate slope 

(mean value 14.28º ± 5.29º) at mid-distance to settlements (mean distance 2.95 ± 1.74 km)  

2 Forests lying at an average altitude of 1163.56 ± 368.78 m.a.s.l., covering hillsides with steep slope 

(mean value 27.97º ± 3.57º), those being at mid-distance to settlements (mean value 2.97 ± 1.77 km) 

3 Forests lying at an average altitude of 1313.67 ± 397.56 m.a.s.l., in areas with very steep slope (mean 

value 39.39º ± 4.23º), those being at mid-distance to settlements (mean value 2.98 ± 1.83 km) 

4 Mosaic of grasslands, rocks and areas with little or no vegetation and transitional to woodlands, 

covering the highest altitudinal rages (mean value 1547.19 ± 623.41 m.a.s.l.), in areas with moderate 

slopes (mean value 20.09º ± 9.55º) and at mid-distance to settlements (mean value 3.69 ± 2.61 km) 

5 Mosaic of grasslands, rocks and areas with little or no vegetation, covering the highest altitudinal 

ranges (mean value 1588.50 ± 653.16 m.a.s.l.), in areas with very steep slopes (mean value 44.02º ± 

9.07º) and relatively far from settlements (mean value 3.83 ± 2.64 km) 

6 Shrub-herbaceous associations lying at an average altitude of 1080.83 ± 414.27 m.a.s.l., covering 

hillsides with moderate slope (mean value 19.17º ± 9.36º) and at mid-distance to settlements (mean 

value 2.53 ± 1.58 km) 

7 Croplands covering valley bottoms lying at the lowest altitudinal ranges (mean value 775.08 ± 219.38 

m.a.s.l.) in areas with slight slope (mean value 10.56º ± 8.04º), those being close to settlements (mean 

value 1.89 ± 1.51 km) 

8 Water surfaces and artificial surfaces lying at an average altitude of 803.85 ± 395.78 m.a.s.l., in areas 

with moderate slope (mean value 14.21º ± 10.07º), those being close to settlements (mean distance 

2.05 ± 1.91 km) 

 



Table A3. Overall accuracy of landscape classifications and user’s and producer’s 

accuracy per class, obtained from topography, urban influence and CORINE (as a proxy 

of land cover) data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class User’s accuracy (%) 

Producer’s accuracy 

(%) 

Overall accuracy (%) 

C
an

ta
b

ri
an

 M
o

u
n

ta
in

s 

1 93.33 88.89  

2 85.29 78.38  

3 83.33 68.97  

4 86.49 96.97  

5 100.00 91.18 88.33 

6 94.12 94.12  

7 96.15 100.00  

8 89.47 85.00  

9 85.00 89.47  

10 50.00 100.00  

11 93.33 100.00  

C
en

tr
al

 S
y

st
em

 

1 50.00 100.00  

2 90.00 81.81  

3 100.00 84.62  

4 92.30 80.00  

5 69.23 75.00  

6 77.78 80.00  

7 88.00 91.66 84.39 

8 100.00 37.05  

9 92.30 100.00  

10 100.00 84.62  

 11 100.00 100.00  

 12 100.00 100.00  

 13 88.00 91.67  

S
p

an
is

h
 P

y
re

n
ee

s 

1 85.29 87.87  

2 95.23 66.67  

3 85.00 71.51  

4 80.49 97.05 88.00 

5 100.00 66.67  

6 100.00 100.00  

7 89.47 100.00  

8 50.00 100.00  



Table A4. Estimate, standard error (Std. error) and significance (Sig.) of regression 

linear models, achieved when working with watersheds as spatial analytical units and 

landscape heterogeneity calculated from landscape classifications. The intercept 

represents the Cantabrian Mountains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

log(A) logarithm of watershed area; Hβ landscape heterogeneity; ***significance at level <0.001; **significance at 

level 0.01; *significance at level 0.05; n.s. no significance. 

 Estimate Std. Error Sig. 

Mammal richness    

Intercept 2.03 0.26 *** 

Hβ 0.43 0.47 n.s. 

log(A) 0.23 0.05 *** 

Central System -0.08 0.11 n.s. 

Spanish Pyrenees -0.26 0.09 ** 

Breeding bird richness    

Intercept 37.18 9.93 *** 

Hβ 56.66 18.36 ** 

log(A) 11.18 1.99 *** 

Central System 12.74 4.23 * 

Spanish Pyrenees 7.20 3.47 ** 

Reptile richness    

Intercept -6.73 2.93 * 

Hβ 13.49 5.55 * 

log(A) 2.56 0.58 *** 

Central System 4.64 1.30 *** 

Spanish Pyrenees 4.31 1.05 *** 

Amphibian richness    

Intercept -0.22 1.69 n.s. 

Hβ 8.21 3.21 * 

log(A) 1.45 0.34 *** 

Central System -0.27 0.61 n.s. 

Spanish Pyrenees -1.04 0.75 n.s. 

Total richness    

Intercept 34.41 19.06 n.s. 

Hβ 120.18 33.65 *** 

log(A) 20.89 3.73 *** 

Central System 13.09 5.98 n.s. 

Spanish Pyrenees 5.98 13.09 n.s. 



Table A5. Estimate, standard error (Std. error) and significance (Sig.) of regression 

linear models, achieved when working with regular squared windows as spatial 

analytical units and landscape heterogeneity calculated from landscape classifications. 

The intercept represents the Cantabrian Mountains. 

Hβ landscape heterogeneity; log(A) logarithm of the area of the square window; ***significance at level <0.001; 

**significance at level 0.01; *significance at level 0.05; n.s. no significance. 

 20x20 km  50x50km   100x100km  

 Estimate Std. Error Sig. Estimate Std. Error Sig. Estimate Std. Error Sig. 

Mammal richness          

Intercept 1.98 0.40 *** 3.71 0.88 *** 3.52 0.31 *** 

Hβ 0.22 0.17 n.s. 0.23 0.32 n.s. 1.50 0.55 * 

log(A) 0.31 0.07 *** 0.06 0.12 n.s. 0.001 0.05 n.s. 

Central System -0.14 0.07 n.s. -0.08 0.06 n.s. 0.16 0.1 n.s. 

Spanish Pyrenees -0.26 0.06 *** -0.14 0.07 * 0.21 0.10 n.s. 

Breeding bird richness         

Intercept -31.34 18.11 n.s. 20.76 68.22 n.s. -81.54 23.43 * 

Hβ 5.40 7.90 n.s. 21.58 24.77 n.s. 114.42 34.47 * 

log(A) 23.16 3.08 *** 15.28 9.34 n.s. 20.90 2.91 *** 

Central System 5.42 2.64 * 9.84 4.32 * 36.14 7.05 ** 

Spanish Pyrenees 12.57 3.26 *** -1.54 5.10 n.s. 29.14 7.07 ** 

Reptile richness          

Intercept -9.99 4.94 * 28.08 15.46 n.s. -4.32 8.39 n.s. 

Hβ 3.95 2.15 n.s. 2.07 5.61 n.s. -5.22 13.18 n.s. 

log(A) 3.24 0.84 *** -1.85 2.11 n.s. 3.04 1.12 * 

Central System 6.27 0.89 *** 8.49 0.98 *** 5.32 2.59 n.s. 

Spanish Pyrenees 3.69 0.72 *** 5.44 1.16 *** 2.03 2.58 n.s. 

Amphibian richness         

Intercept -7.97 3.59 * 29.11 14.57 n.s. 3.22 7.16 n.s. 

Hβ 5.96 3.25 n.s. 11.10 5.28 n.s. 14.70 11.26 n.s. 

log(A) 2.65 0.61 *** -2.79 1.99 n.s. 0.50 0.95 n.s. 

Central System 2.04 0.63 ** 0.05 0.91 ** 2.82 2.21 n.s. 

Spanish Pyrenees -0.63 0.51 n.s. 3.10 1.13 n.s. 0.25 2.20 n.s. 

Total richness          

Intercept -75.40 29.65 * 100.99 91.30 n.s. -75.24 63.26 n.s. 

Hβ 22.26 12.93 n.s. 46.79 33.15 n.s. 94.61 99.46 n.s. 

log(A) 41.21 5.04 *** 16.05 12.51 n.s. 34.56 8.42 ** 

Central System 14.61 5.34 ** 14.71 5.79 * 29.82 0.72 n.s. 

Spanish Pyrenees -3.40 4.32 n.s. -6.62 6.83 n.s. 13.98 1.52 n.s. 



Figure A2. Variance partitioning among pure and combined effects of landscape 

heterogeneity (Hbeta), logarithm of watershed area (Larea) and mountain system 

(system), as explanatory variables explaining species richness of mammals, breeding 

birds, reptiles and amphibians and total species richness, based on squared windows of 

20x20 km as spatial units of analysis. Total effect of predictors (shared and pure) is in 

bold. 

 

 

 

 

 

 

 

 

 

 



Figure A3. Variance partitioning among pure and combined effects of landscape 

heterogeneity (Hbeta), logarithm of watershed area (Larea) and mountain system 

(system), as explanatory variables explaining species richness of mammals, breeding 

birds, reptiles and amphibians and total species richness, based on squared windows of 

50x50 km as spatial units of analysis. Total effect of predictors (shared and pure) is in 

bold. 

 

 




