
Microprocessors and Microsystems 103 (2023) 104974

A
0
n

V
F
a

b

c

A

K
F
C
R
O

1

c
L
a
c
l

r
w
i

t
S
s
e
t
t
F

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

ision-based robotics using open FPGAs
elipe Machado a,b, Rubén Nieto a, Jesús Fernández-Conde a,∗, David Lobato c, José M. Cañas a

Rey Juan Carlos University, Spain
Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Spain
JdeRobot Organization, Spain

R T I C L E I N F O

eywords:
PGA
omputer vision
obotics
pen-source

A B S T R A C T

Robotics increasingly provides practical applications for society, such as manufacturing, autonomous driving,
robot vacuum cleaners, robots in logistics, drones for inspection, etc. Typical requirements in this field are fast
response time, low power consumption, parallelism, and flexibility. According to these features, FPGAs are a
suitable computing substrate for robots. A few vendors have dominated the FPGA market with their proprietary
tools and hardware devices, resulting in fragmented ecosystems with few standards and little interoperation.
New and complete open toolchains for FPGAs are emerging from the open-source community. This article
presents an open-source library of Verilog modules useful for vision-based robots, including reusable image
processing blocks for perception and reactive control blocks. This library has been developed using open tools,
but its Verilog modules are fully compatible with any proprietary toolchain. In addition, three applications
with a real robot and open FPGAs have been developed for experimental validation using this library. In
the last application, the mobile robot successfully follows a colored object using two low-cost cameras (to
increase the robot’s field of view) and includes a third camera on top of a servo-driven turret for tracking a
second independent object while following the first one in parallel. Resource consumption of all applications
has been measured and compared with state-of-the-art proprietary toolchains, revealing that reconfigurable
computing with open FPGAs using open tools is now an attractive alternative to designing and creating
intelligent vision-based robotic applications using vendor-dependent proprietary tools and FPGAs.
. Introduction

Robotics is an exciting engineering field with recent massive appli-
ations beyond the classic automotive and integrated circuit factories.
ogistics (such as Amazon robots at warehouses), food packaging,
utonomous driving cars, drones for inspection, and home vacuum
leaners are just a few examples. Robots have departed from research
abs and are increasingly entering people’s daily life environments.

Real-world robotics applications commonly require reliability and
eal-time operation. Robot behaviors must be robust and agile, even
hen using cameras as the main sensor input. Low power consumption

s also a requirement in most cases, as in drones or mobile robots.
Robots are composed of hardware and software. Sensors, actua-

ors, and a computation substrate are the main hardware components.
ensors provide information about the surroundings, such as laser
canners, LIDAR, cameras, battery sensors, Inertial Measurement Units,
ncoders, etc. Actuators allow the robot to perform actions, including
he robot’s physical movement. Electrical motors are the most ubiqui-
ous ones. Typically there are four computing substrates: CPUs, GPUs,
PGAs, and ASICs. The most widely used are microprocessors (CPUs)

∗ Corresponding author.
E-mail address: jesus.fernandez@urjc.es (J. Fernández-Conde).

or microcontrollers, which execute robotics software. Reconfigurable
computing, commonly implemented using FPGAs, is also an attractive
alternative, as their low price, fast execution speed, power efficiency,
and reconfigurability are clearly beneficial in robotics.

FPGAs have been used in many application fields [1], such as dig-
ital control, communication interfaces, networking, computer security,
cryptography techniques, machine learning, digital signal processing,
image and video processing, big data, and computer algorithms. Two
leading vendors dominate the FPGA market: AMD-Xilinx and Intel-
Altera, with more than 85% of the share. They provide FPGA circuits
and proprietary development tools (such as Vivado and Vitis from
AMD-Xilinx or Quartus-II from Intel-Altera). This closed market has
resulted in a fragmented ecosystem and low interoperation.

In the last few years, various open tools for development with FPGAs
have appeared [2–4], some of them based on reverse engineering of
the devices from the most extended providers [5,6]. New projects have
recently emerged to group these open tools in a single toolchain, such
as Apio [7], Icestudio [8], the OSS CAD Suite [9] and F4PGA [10]. The
latter is a representative case, in which the F4PGA Workgroup has been
vailable online 14 November 2023
141-9331/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

ttps://doi.org/10.1016/j.micpro.2023.104974
eceived 4 September 2022; Received in revised form 1 July 2023; Accepted 13 N
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ovember 2023

https://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:jesus.fernandez@urjc.es
https://doi.org/10.1016/j.micpro.2023.104974
https://doi.org/10.1016/j.micpro.2023.104974
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2023.104974&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Microprocessors and Microsystems 103 (2023) 104974F. Machado et al.
established by leading FPGA vendors, industrial FPGA users as well
as several prestigious universities to accelerate the adoption of open
source FPGA tools.

The intersection of robotics and reconfigurable computing is an
emerging field. FPGAs are increasingly used to accelerate parts of
standard robotics computations such as perception, localization, motion
planning, or control. For instance, inside the ROS ecosystem [11] (de
facto standard in robot programming), a Working Group has been
recently created on Hardware Acceleration [12]. Its mission is to drive
the creation, maintenance, and testing of acceleration kernels on top of
open standards (C++ and OpenCL) for optimized ROS 2 and Gazebo
interactions over different computation substrates (including FPGAs,
GPUs, and ASICs).

This paper presents FPGA-Robotics[13], an open library of Ver-
ilog modules available for vision-based robotics. Some image process-
ing, sensor, and motor control modules have been developed and are
ready to use. They have been assembled in several robotic and com-
puter vision applications (for instance, a robot following two colored
objects simultaneously by managing three cameras in parallel) using an
open toolchain for FPGAs based on Yosys [2] and nextpnr [14] tooling.

Open tools are cross-platform and therefore release developers from
being tied to a single vendor. Their developments may be easily mi-
grated from one hardware to another, even from different manufac-
turers. Besides, the Verilog modules of the FPGA-Robotics library
are fully compatible with different proprietary FPGA toolchains of the
prevalent FPGA vendors (Lattice/Xilinx(AMD)/Intel-Altera).

The resource consumption of the three developed applications has
been compared for the Lattice, Xilinx(AMD), Intel-Altera, and open
toolchain, using different FPGA boards. The performance of the open
toolchain is similar to that of the proprietary toolchain on the same
hardware, showing better results concerning the number of RAM mem-
ory blocks and performing worse regarding logic blocks. As the library’s
purpose is to build vision-based robotic applications, this behavior is
beneficial in most cases.

Experimental validation demonstrates that reconfigurable comput-
ing with recent open FPGA tools is a cost-effective and reliable approach
to developing reactive robot behaviors involving computer vision. The
present work is a step forward from previous ones implementing re-
active robot applications using open FPGAs based on simple robotic
sensors, such as inertial [15], or IR and sonars [16].

The remainder of this paper is organized as follows. Section 2
reviews related research works in the literature combining FPGAs and
robotics. Section 3 describes the open toolchain used and the devel-
oped Verilog modules, composing the proposed open FPGA developer
framework for vision-based robotics applications. Section 4 presents
the experimental validation with three vision-based robot reactive be-
haviors implemented utilizing the proposed framework, including a
quantitative comparison with state-of-the-art proprietary toolchains.
Finally, the main conclusions of this work are summarized in Section 5.

2. Related work

Robotics applications typically comprise two stacks connected to
the robot sensors and actuators: perception and decision-making. The
perception stack includes mapping, localization, object detection, and
tracking (among other tasks). The decision stack includes feedback
control, obstacle avoidance, and planning. The operation of sensors
and actuators requires the corresponding drivers. Those are the classic
robotics workloads, and FPGAs have been explored for their accelerated
execution and power efficiency in all of them. In this section, several
illustrative examples will be reviewed. A deeper and broader survey
can be found at Wan et al. [17].

FPGAs have been widely used for speeding up image processing
inside robot visual perception. Alabdo et al. [18] describe a complete
visual pipeline on FPGA, including thresholding, erosion, blob detec-
tion, and center calculation. FPGAs have also been used for more
2

elaborate image processing, such as Harris corner detector [19], and
extraction and matching of Scale-Invariant Feature Transform (SIFT)
keypoints [20]. In recent years, Deep Learning has greatly improved the
robustness of computer vision and made significant progress in solving
robot perception problems. FPGAs are also being explored to accelerate
Deep Learning based image processing. [21,22] are two good overviews
of neural network inference accelerators based on FPGA and the main
techniques used. The Xilinx Zynq platform has been used to speed up
the inference of Convolutional Neural Networks (CNNs), as in ZynqNet
Embedded CNN [23], which was designed for image classification on
ImageNet. It has also been used in [24], which describes an open-
source framework for designing and implementing a simple neural
network targeting edge computing platforms, and in the optimization of
Recurrent Neural Networks [25]. Zhang et al. [26] describe an OpenCL-
based FPGA accelerator that optimizes CNN classifier kernels. It was
tested on an Altera Arria 10 GX1150 board. A recent work [27] explores
the CNN kernel partition technique to reduce the repeated access to the
input feature maps and the kernels, speeding up the inference time on
FPGAs for real-time object recognition applications.

FPGAs have also been used for Simultaneous Localization and Map-
ping (SLAM), a key capability for mobile robots. Boikos et al. [28]
describe an FPGA accelerator architecture for depth estimation in SLAM
algorithms achieving a rate of more than 60 mapped fps, similar
performance to a high-end desktop CPU with an order of magnitude im-
proved power consumption. Liu et al. [29] proposed eSLAM, an FPGA
energy-efficient architecture for the well-known real-time ORB-SLAM
algorithm, by accelerating the most time-consuming visual feature
extraction and matching stages. They implemented it in the Xilinx Zynq
XCZ7045 SoC, achieving a ×3 speed up and a decrease of 1/80 in power
consumption.

Performance has also been improved with FPGAs in robot naviga-
tion and path planning algorithms. For instance, Murray et al. [30]
construct robot-specific circuitry for motion planning, capable of gener-
ating motion plans approximately three orders of magnitude faster than
traditional methods. Building a probabilistic roadmap is a common
approach for motion planning problems. Their proposal makes collision
detection circuits for the roadmap edges, which run entirely in parallel
to perform the path search. A second example [31] implements a
customized Genetic Algorithm for a mobile robot’s path planning. A
Xilinx FPGA device and a Pioneer 3DX platform were used in this work.

Alkhafaji et al. [32] review several relevant FPGA works in robot
control. For control in industrial robots, [33] is an illustrative example.
The authors developed an FPGA-based motion control system employ-
ing an open architecture and vendor-independent control system. It was
tested on a Fanuc S420F using Xilinx FPGAs. Another example with
industrial robots is described in [34] for Mitsubishi PA10, incorporating
a Xilinx board. A camera served as the primary sensor for servoing
control. In addition, Sharma et al. [35] compared several flight con-
trol approaches in small Unmanned Aerial Vehicles. FPGA/DSP-based
solutions are the best in this domain, as they run with low power,
fast response, and less volume and weight. An appealing example
is PynqCopter [36], an open-source control system implemented on
an FPGA-based board (Xilinx PYNQ-Z1) for a hexacopter. They used
High-Level Synthesis tools.

Open FPGA tools such as IceStudio [8] and Apio [7], and the open
iCE40 FPGA from Lattice have been used to design robot controllers.
Adopting this open FPGA approach, Cañas et al. [16] developed two
case-based reactive controllers for the classic FollowLine and Obsta-
cleAvoidance applications with a wheeled robot. Infrared and sonar
sensors were employed. Caro et al. [37] control a hexapod robot with
an approach inspired by the animal nervous system. It implements
the binomial Brain-Peripheral Nervous System (CNS-PNS), combining
microprocessors for the high-level control and FPGAs for the low-level
control. Central Pattern Generator signals coordinate the motion of all
the legs for robot walking.



Microprocessors and Microsystems 103 (2023) 104974F. Machado et al.

(
c
i
c
t
a
b
i

In real systems, robot computing is typically distributed among FP-
GAs, general-purpose CPUs, or even Graphics Processing Units (GPUs)
in a heterogeneous Hardware–Software co-design. A relevant work
showing this is [38], which combines regular software on an Intel Core
i5 CPU with FPGA accelerators for several tasks: SLAM, motion plan-
ning, and convolutional neural network inference. The OpenCL frame-
work was used for programming and executing programs across hetero-
geneous platforms. Utilizing FPGA acceleration, the SLAM and motion
planning tasks were performed 2-4 times faster than the fine-tuned
software implementation.

In recent years, several works have appeared combining the de
facto standard in robotics software, Robot Operating System (ROS) [11]
with FPGAs. In ROS, a typical robot application is an orchestra of
several concurrent nodes, possibly running on different processors,
and they interoperate by exchanging messages in the shape of ROS
topics/services. The primary approach is to implement some specific
ROS nodes inside FPGAs for accelerated execution [39,40], which
requires the implementation of the communication protocols of ROS
in the FPGA, besides the robotic task itself for those nodes. Another
approach is to implement RISC-V processors on FPGAs to run ROS
nodes inside them [41].

3. Open framework for reconfigurable computing in robotics

In this section, the framework used in this work will be described.
The framework is divided into two parts: first, the open toolchain used
for the development of the hardware designs; and second, the proposed
open library of hardware designs created to be reused in many differ-
ent robot applications. This library is available in the FPGA-Robotics
repository and it has been implemented using Verilog.

3.1. Open toolchain for FPGAs

The development process in reconfigurable computing includes sev-
eral steps [42–45] and tools. The hardware may be designed at varying
abstraction levels, usually gate level, register-transfer level (RTL), or
algorithmic level. Generally, when it comes to developing FPGA de-
signs, the proprietary software of the particular device is employed
because the binary format to configure the FPGA is not disclosed by
the manufacturer. However, thanks to the aforementioned open FPGA
reverse-engineering projects, some FPGA binary formats are available,
enabling the generation of the bitstream files to configure the FPGA
and thus, the development of complete open-source FPGA toolchains.

Next, we will summarize the general FPGA development process,
mentioning the specific open-source tools and methods used in this
work:

1. The digital circuit structure and behavior are formally described
in a Hardware Description Language (HDL), such as Verilog,
VHDL, or recent ones like SpinalHDL. These languages allow
for automated analysis and simulation, and their corresponding
text files can be seen as the source code of a particular applica-
tion in reconfigurable computing. We have used Verilog for the
proposed library and all the designs that will be detailed in the
following sections.

2. A logic synthesis tool synthesizes the HDL file into a netlist. The
netlist is a specification of the basic electronic components and
their interconnections. We have used the open-source synthesis
tool Yosys [2,46] to synthesize our Verilog designs.

3. The place-and-route stage maps the basic components of the pre-
viously generated netlist to the physical resources of the target
FPGA and then decides how to interconnect all the placed com-
ponents. As a result, the bitstream is generated, describing the
configuration to be loaded into the FPGA device. nextpnr [14]
has been used as an open-source place-and-route tool, obtaining
the specific FPGA device information from reverse-engineering
projects such as Project Icestorm [47] and Project Trellis [48].
3

4. Finally, once the bitstream is generated, it can be loaded into
the FPGA. There are various open-source tools for this purpose;
we have used OpenFPGALoader [49].

If every step has been performed correctly, once the bitstream has
been loaded, the FPGA will start functioning as described by the HDL.
The process just described involves the use of a set of different tools.
Nevertheless, various projects aim to ease the workflow by grouping
these tools into a single toolchain. For example, the project Apio [7] is
a Python-based tool that integrates all of them in a single command-
line interface. For those preferring a graphical interface, Icestudio [8]
provides a combination of Verilog and visual schematics for FPGA pro-
gramming. In addition, the OSS-CAD-Suite provides all these individual
tools through a single installation. The F4PGA toolchain [10] is another
powerful and illustrative example. The main purpose of F4PGA is to
provide an open cross-platform Verilog-bitstream tool for all FPGAs
available on the market.

3.2. Open verilog library for vision-based robotics

We have created FPGA-Robotics, a library of Verilog modules
easy to reuse and integrate into robotics applications. This library is
open-source and expandable with new blocks or modules from the
developer community.

Among the modules that have been created are a camera driver,
a VGA display driver, a driver for the GoPiGo robot [50], and other
blocks related to image processing, such as a color filter. Details of some
of the modules are listed below. Each module is explained following
the flow of image processing, starting with the image acquisition from
the camera, continuing with the image processing, and ending with the
image visualization or its application to the robotic platform.

All the modules are available in the repository [13] and can be used
in any other application. For example, the color processing module can
be used with a different camera, adjusting the size of the input image;
and the VGA interface module can be used to display any image stored
in memory.

3.2.1. Ov7670 camera modules
The ov7670 is a 3 V low-cost VGA camera that provides a max-

imum resolution of 640 × 480 pixels in different RGB configurations
RGB565/555/444) and 8-bit YUV 4:2:2 among others. The camera is
onfigured through Serial Camera Control Bus (SCCB), which is an I2C
nterface. The camera has more than a hundred registers, which allow
onfiguring several parameters such as AEC (Automatic Exposure Con-
rol), AGC (Automatic Gain Control), AWB (Automatic White Balance),
s well as color saturation, hue, gamma, among many others. It should
e noted that this configuration is only performed once when the device
s started. There are two modules developed for the ov7670 camera:

• Configuration module: It comprises two blocks, one to perform
the SCCB communication protocol and the other to configure the
camera registers.

• Image capture module: The ov7670 camera sends the image in 8-
bit synchronous parallel data. For this purpose, the image capture
module must provide a clock signal to the camera. In our case,
a frequency of 25 MHz has been selected to be able to provide
30 fps. The image acquisition protocol is similar to the VGA
protocol. The captured image is stored in a dual port memory
(frame buffer) to be able to read and write independently. Most
FPGAs have this type of memory, called Block RAM (BRAM). The
image capture module writes the originally captured image using
the first port, whereas the second port is used to read the stored
image to be processed. To reduce the BRAM usage, the image
resolution can be decreased.



Microprocessors and Microsystems 103 (2023) 104974F. Machado et al.
Fig. 1. Original frame and red-filtered frame resulting from the first step towards object detection. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
3.2.2. Color-based object detection module
This module shall detect a colored object for the robot to follow it.

For this purpose, it must detect the object and estimate its distance and
whether it is in the robot’s direction. The original image comes from
the frame buffer of the camera image capture module.

The color-based object detection module performs three tasks: color
filtering, proximity calculation, and horizontal localization.

1. Color filtering: All the original image’s pixels are filtered based
on a color that can be configured by an input port. The filtering
color is defined by a combination of the three RGB channels.
Hence the detected object could be red, green, blue, yellow,
cyan, magenta, or white.
When a pixel does not pass through the color filter, it is saved
as a black pixel in a second frame buffer, called processed frame
buffer. On the contrary, if the pixel passes the filter, it is saved
with its original color. We will call these pixels colored pixels (or
red pixels when the filter is red, which will be the case in most
of the examples). Therefore, the image saved in the processed
frame buffer will be black except for the colored pixels. Fig. 1
shows the original captured frame on the left and the filtered
image to detect the red ball on the right.
It is worthwhile mentioning that the object to be detected should
be of a different color than the background, and there should
not exist a second object with the same color. When these
assumptions do not hold, the results will not be reliable.

2. Proximity calculation: To calculate the object’s proximity, every
colored pixel of each frame is counted, and a proximity esti-
mation is calculated based on the object size in the image. The
fewer colored pixels found, the more distant the object will be.
On the other hand, if there were many colored pixels, it would
mean that the detected object is very close. Fig. 2 shows two
examples: one of a distant object (low proximity on the left) and
a closer object (high proximity on the right).
The count of all colored pixels is scaled down to a 3-bit un-
signed signal named 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦, whose value is proportional to
the nearness of the object. That is, a value of seven (‘‘111’’)
means that the object is very close; on the other hand, when the
object is far, it will be one (‘‘001’’). If no object is detected, its
value will be zero. The proximity values of Fig. 2 are an example
and could be changed depending on the object size. Moreover,
the resolution of this signal can be easily increased (although
for all the experiments carried out, three bits provide enough
accuracy).

3. Horizontal localization: the object’s horizontal localization must
be determined to steer the robot towards the object. For this
4

purpose, the frame is divided into eight vertical bins, and then
a histogram of the colored pixels is obtained. Fig. 3 shows an
example of the histogram obtained from a filtered frame. The
histogram’s most populated bin will determine the object’s esti-
mated horizontal localization. Although this is a simplification, if
the object is rounded, the histogram will be unimodal (i.e., it will
have just one peak); consequently, the most frequent bin will
correspond to the horizontal localization of the detected object.
We define the 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 as an 8-bit signal, having the value ‘‘one’’
for the bin number with the highest value and the value ‘‘zero’’
for the rest of the bins. In the example of Fig. 3, bin number
five is the most frequent, indicating that the object is on the
camera’s right side. In this case, the centroid will have its bit
number five to one and the rest of the bits to zero. Generally,
the centroid will only have one bit to one and the other bits to
zero, indicating where the object’s centroid is in the horizontal
plane. Nevertheless, there are two exceptions:

• When the object is completely centered (i.e., the third and
fourth bins have approximately the same frequency), the
centroid will have the central two bits (3rd and 4th bits) to
one.

• When no object is detected, that is, when the number of
colored pixels is below a minimum threshold, all the bits
of the centroid will be zero.

Due to the aforementioned simplifications (i.e., just one colored
object distinct from the background and rounded), this object detection
module is simple and provides results with almost no latency to the
frame reception. Furthermore, no additional memory is needed. Nev-
ertheless, the module would need to be refined in more challenging
environments.

3.2.3. Motor controller module
The GoPiGo robot used in these experiments is a differential wheeled

robot, that is, it has two wheels that can be independently powered
and controlled. For the robot to follow the colored object, the motor
controller needs to know the object’s proximity and its horizontal lo-
calization with respect to the robot (centroid), which is the information
provided by the previous module.

On the one hand, the lower the proximity is, the faster the robot
should go. On the other hand, when the object is near, the robot should
decrease its speed. Moreover, when the object is too close, the robot
should go backward. In addition, in the case that proximity is zero, it
means that no object is detected, and therefore the robot should not
move. In Fig. 2, the robot will go fast when proximity is 2 (left), but



Microprocessors and Microsystems 103 (2023) 104974F. Machado et al.
Fig. 2. Detection examples of a distant object (left) and a closer object (right). The ratio of red pixels determines the proximity. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Representation of the centroid calculation from the filtered image.
when proximity is 5 (right) it will stop, and for values of proximity
larger than 5, the robot will go backward.

If the object is centered, as in Fig. 4(A), both wheels will be turned
at equal speed. However, when the object is to the right (Fig. 4(B)),
in order to steer the robot towards the object, the left wheel should
be turned faster than the right one. Conversely, the right wheel should
move faster when the object is to the left, as shown in Fig. 4(C).

As mentioned in the previous subsection, the centroid is an 8-bit
signal, and the goal is to keep the object at the center, i.e., to maintain
the central two bits of the centroid high (3rd and 4th bits). In Fig. 4,
the robot will steer to the left when the centroid is ‘‘0100 0000’’ (object
to the left), when the centroid is ‘‘0001 1000’’ (centered object) it will
stop steering, and for a value of ‘‘0000 0010’’ (object to the right) of
the centroid, the robot will steer to the right.

For the sake of simplicity, we have implemented a proportional
control, which only considers the detection of the object at the present
5

time; further improvements and any other closed-loop control sys-
tem could be applied. The speed control is defined in Eqs. (1) and
(2), where 𝑣𝑙𝑒𝑓 𝑡 and 𝑣𝑟𝑖𝑔ℎ𝑡 represent the speeds of the left and right
wheel, respectively; 𝑘𝑚𝑎𝑔𝑛 is the proportional constant for the speed
magnitude (proximity); 𝑘𝑠𝑡𝑒𝑒𝑟 is the proportional constant for steering
the robot depending on the object horizontal localization (centroid).
The 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 is a number considered zero when the object is
centered (Fig. 4(A)), positive when the object is on the right (Fig. 4(B)),
and negative when on the left (Fig. 4(C)).

𝑣𝑙𝑒𝑓 𝑡 =

{

𝑘𝑚𝑎𝑔𝑛 ⋅ (5 − 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦) + 𝑘𝑠𝑡𝑒𝑒𝑟 ⋅ 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑖𝑓 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 > 0
0 𝑖𝑓 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 = 0

(1)

𝑣𝑟𝑖𝑔ℎ𝑡 =

{

𝑘𝑚𝑎𝑔𝑛 ⋅ (5 − 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦) − 𝑘𝑠𝑡𝑒𝑒𝑟 ⋅ 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑖𝑓 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 > 0
0 𝑖𝑓 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 = 0

(2)



Microprocessors and Microsystems 103 (2023) 104974F. Machado et al.
Fig. 4. Representation of the filtered frame, its histogram and centroid, and the motor control for the robot for different relative positions of the object. (A) when the object is
centered. (B) when the object is to the right. (C) when the object is to the left.
The adjustment of the constants 𝑘𝑚𝑎𝑔𝑛 and 𝑘𝑠𝑡𝑒𝑒𝑟 in (1) and (2) should
consider the robot’s characteristics and the object dimensions. In addi-
tion, a more complex control, such as proportional–integral–derivative
(PID) control, would not be difficult to implement.

3.2.4. GoPiGo SPI interface module
The motor controller detailed in the previous subsection generates

the desired speed values of the motors. If the robot moves on an even
horizontal surface with no slopes and no obstacles, the speed value
can be directly matched with the motor voltage through PWM (Pulse
Width Modulation). The PWM converter is a simple module that is also
available at the library. However, in order to use the power electronics
board of the robot, we have used the GoPiGo robot board, which allows
driving each motor through Serial Peripheral Interface (SPI). This board
can receive either the motor PWM duty cycle or the motor speed in
degrees per second. It should be noted that this module is also the
driver for the left and right motor of the robot, as well as for the servo
motor (control of the servo is explained in the next subsection).

This module implements the SPI communication protocol and a Fi-
nite State Machine for sending SPI commands to the GoPiGo controller.
6

Therefore, this interface also allows controlling the rest of the robot
peripherals, such as sensors, LEDs, and servos.

3.2.5. Pan servo controller module
This Verilog module controls a 180◦ servo motor for tracking an

object from a camera on a turret. The module receives the centroid from
the color-based object detection module (Section 3.2.2) and provides
the angular position of the servo. This is the format required for the
GoPiGo robot to be sent through SPI (Section 3.2.4), but it can be easily
mapped to any other format.

The controller makes the servo rotate at an angle proportional to
the perceived centroid position; however, since the servo has a 180◦

range, once it has reached one of the limits, it will have to stay at that
end even if the object continues moving away. As a result, when the
camera is mounted on a servo-driven turret, it will automatically pan
following the object until it goes beyond the servo limits (−90◦ to 90◦).

3.2.6. VGA display module
Finally, we have included a VGA interface in the library, which

is useful for debugging during development. The VGA interface can



Microprocessors and Microsystems 103 (2023) 104974F. Machado et al.
Fig. 5. Architecture of the monocular vision-based object follower robot.
simultaneously display up to three cameras. Since the object detection
module (Section 3.2.2) can be switched on and off, the original and
processed video can be visualized to check if the color processing mod-
ule is working as expected. Moreover, the display shows the centroid
and proximity bar graphs.

This module is composed of two sub-modules: the block in charge
of the VGA synchronization signals and the block in charge of reading
from the memory to display on the screen. The timing of the control
and data signals have been defined for a resolution of 640 × 480 at
approximately 60 Hz.

4. Experimental validation

In order to experimentally validate the proposed FPGA framework,
including both the open-source toolchain and the developed open
Verilog library, three robotics demo applications for a real vision-based
robot have been created and successfully tested.

The GoPiGo mobile robot has been used to perform the experimen-
tal validation. It includes an onboard Raspberry Pi and the GoPiGo
3 expansion board, which integrates a microcontroller (Atmega328)
to drive the robot sensors, servos and motors. This GoPiGo 3 board
provides an SPI interface that allows controlling the motors or checking
the status of the sensors, among other functions.

Instead of using the RaspberryPi CPU and programming the robot
with software, we have substituted them with open FPGA development
boards, Verilog HDL, and open development tools. We have used two
different FPGA boards: the Alhambra-II [51] and the ULX3S-03 [52],
which integrate Lattice FPGAs models of the iCE40 and the ECP5
family, respectively. The main difference between them lies in the
number of logic resources available, including the internal memory
blocks (BRAM) and the number of inputs/outputs.

In all the demo applications the robot’s brain is implemented on an
FPGA, instead of a microcontroller. This approach is not the classic one,
since the latter is based on software and the former on hardware. Fur-
thermore, the microcontroller processing is sequential, whereas each
block of an FPGA is executed simultaneously, allowing parallel process-
ing in each clock cycle.

4.1. Monocular vision-based object follower robot

The first experiment uses the Alhambra-II FPGA board in place
of the RaspberryPi of the GoPiGo robot. A fixed ov7670 camera for
tracking the colored object has been incorporated into the robot. Fig. 5
shows the block diagram that has been implemented on the FPGA. It
combines several modules of the proposed FPGA-Robotics Verilog
library.

As it can be observed, the information flows from left to right. First,
a frame is captured with the ov7670 camera. Second, the captured
image is filtered according to the selected color. Besides, the proximity
and centroid are computed. Third, based on the relative position of
the object and its proximity to the robot, the desired speeds of the
motors are calculated. Finally, the proper SPI commands are sent to
the robot. It should be noted that although the VGA display block has
been included, it is only used for debugging. It is worthwhile mention-
ing that the processing is done in parallel as each module processes
7

its information simultaneously. Therefore, there is no computational
overhead when adding new modules, and the processing is achieved a
few clock cycles after each frame is received. The limitation comes from
the usage of finite FPGA resources, mainly the internal memory blocks
of the FPGA. This is the reason why the frame size of this application
has been reduced to 80 × 60, since the Alhambra-II FPGA has limited
internal memory resources. The second limitation of this FPGA board
is the reduced availability of I/O ports.

A demonstration of the correct functioning of this experiment can
be seen in this video.1

4.2. Multi-camera object follower robot

Video processing is a computation-intensive activity; hence, per-
forming at high frame rates or spatial resolutions normally overwhelms
the processor capacity. The simultaneous video processing of two cam-
eras would be difficult to implement in the original RaspberryPi of the
robot even if it had a second camera port. However, the concurrent
nature of FPGA processing eliminates the computational overhead. As
mentioned in the previous subsection, this is possible as long as the
FPGA has enough resources.

We have added a second camera to the previous design to demon-
strate that an FPGA allows increasing the video processing capabilities
without diminishing the performance. The FPGA should have enough
resources for the task; therefore, we have replaced the Alhambra-II
board with the ULX3S-03 board. The Alhambra-II board does not have
enough I/O pins to connect a second ov7670 camera. In addition, the
ULX3S-03 FPGA has around 30 times more BRAM than the Alhambra-II.

Fig. 6 shows the architecture of the FPGA design to follow an object
using two cameras. The usage of two cameras increases the field of
view (FOV) of the robot. As can be observed, each camera’s capture
and image processing is performed independently in parallel. Once both
images have been processed with the color filter, unified values of the
centroid and proximity of both cameras are calculated. As these unified
values have the same format as with a single camera, the rest of the
modules can be reused since the received values are identical.

The centroid calculation module is slightly different from the one
explained in Section 3.2 since it requires combining the information
from both cameras. Fig. 7 shows an example of determining the cen-
troid with two cameras. The unified centroid is calculated from the
maximum value obtained in both histograms. Since both images are
oriented to increase the FOV, the cameras should not overlap. If the
object is located at the edges (left or right), the resulting centroid
activates the ending bit at the side where the object is detected.

4.3. Multicamera follower and tracker robot

To further prove the capabilities of parallel processing, we have
added a third camera to track an additional second object concurrently.
Therefore, two cameras are used to increase the FOV of the robotic
platform, such as in the previous example, and the third one is mounted
on a servo-driven turret at the rear of the robot to track another object

1 https://youtu.be/rbdQ36ZJ7Lo

https://youtu.be/rbdQ36ZJ7Lo


Microprocessors and Microsystems 103 (2023) 104974F. Machado et al.
Fig. 6. Architecture of the two-camera object follower robot.
Fig. 7. Centroid processing with two cameras.
simultaneously. Fig. 8 shows the FPGA design architecture for the
object follower and tracker application using three cameras.

In this case, three frame processing lines run simultaneously on the
FPGA. The two cameras used to increase the FOV have the same layout
used in the previous case. On the other hand, the third processing line
tracks the second object with a servomotor-driven camera turret at the
rear of the robot.
8

In this example, the only new block is the servo control. In this
case, the control is adapted for servo-driven pan object tracking. A
demonstration of the correct functioning of is experiment can be seen
in this video.2

2 https://youtu.be/6YHPovFdMn4

https://youtu.be/6YHPovFdMn4


Microprocessors and Microsystems 103 (2023) 104974F. Machado et al.
Fig. 8. Architecture of the three-camera object follower and tracking robot.
Table 1
FPGA resource consumption of the different experimental applications for the Lattice
ECP5 85F FPGA (ULX3S FPGA board) using the open toolchain for FPGAs.

Resource Single camera
(res. 320 × 240)

Two cameras
(res. 160 × 120)

Three cameras
(res. 160 × 120)

RAM 16K 114 (54%) 60 (28%) 90 (43%)
Logic Slice 1846 (4%) 3395 (8%) 4611 (11%)
IO Slice 43 (21%) 58 (28%) 69 (34%)

4.4. FPGA resource consumption

The FPGA resource consumption of the different experimental ap-
plications using the open toolchain for FPGAs is shown in Table 1. In
order to adequately compare the percentages of the resources used, this
comparison has been performed using the same physical FPGA. Since
the Alhambra board does not have enough I/O pins for the second and
third experiments, for this comparison, we have used the ULX3S-03
board, which includes a Lattice ECP5 85F FPGA.

Only non-zero resources are shown for all the resources available
on the FPGA. It is worth noting that the monocular object follower has
twice the resolution of the other scenarios. It can be observed how
the resolution increment affects the FPGA memory resources (RAM
16K). With a single camera, a 320 × 240 resolution results in 54.81%
of memory blocks. On the other hand, decreasing the resolution to
160 × 120 with two cameras uses only 28.85% of the memory blocks,
and with three cameras 43.27%. Finally, it should be noted that since
using three cameras only requires about 50%

4.5. Comparison with state-of-the-art FPGA toolchains

In order to validate and compare the used open toolchain for FPGA
development with other FPGA proprietary toolchains, the bitstreams of
the three presented robotics applications have also been generated with
the toolchain provided by Lattice. In addition, the experiments have
also been synthesized in FPGAs from other vendors, such as Xilinx and
Intel-Altera.

4.5.1. Results using lattice diamond
Table 2 shows the resource consumption of the different experi-

mental applications using the Lattice Diamond software. To adequately
compare with the open toolchain for FPGA, the experiments have been
implemented using the same FPGA (Lattice ECP5 85F). Only non-zero
resources are reported.

Fig. 9 shows graphically the percentage of resources required for
each of the experimental applications comparing the open-source
9

Table 2
FPGA resource consumption of the different experimental applications for the Lattice
ECP5 85F FPGA (ULX3S FPGA board) using the Lattice Diamond software.

Resource Single camera
(res. 320 × 240)

Two cameras
(res. 160 × 120)

Three cameras
(res. 160 × 120)

RAM 16K 192 (92%) 97 (46%) 133 (63%)
Logic Slice 437 (1%) 912 (2%) 2208 (5%)
IO Slice 43 (21%) 58 (28%) 69 (34%)

toolchain with Lattice Diamond. The results obtained with Lattice
software use the area optimization option for synthesis and place and
route. The used resources were considerably larger for other synthesis
strategies, such as balanced or speed optimization.

We can observe that there are considerable differences in how
internal memory (RAM 16K) and logic resources are used by both tools.
On the one hand, the total FPGA memory resources allocated by the
open source tool are less than 55% for all three experiments (first row of
Table 1). Conversely, the number of memory blocks allocated by Lattice
Diamond software is around 50% higher than in the open-source tool.
This is especially critical for the single-camera experiment, in which
92% of the FPGA memory blocks are used (see Table 2).

On the other hand, Diamond Lattice software uses considerably
fewer logic resources, between 25% and 50% of the resources used
in the open toolchain. Since the experiments are vision-based, the
reduced usage of memory blocks is a clear advantage of the open tool,
because larger frames can be processed, or even additional cameras
could be included. On the other hand, the implemented algorithms
do not entail high-complexity processing, and consequently, not many
logic resources are needed.

4.5.2. Results for other FPGA vendors
The three robotics applications have also been implemented with

both Vivado from Xilinx and Quartus from Intel-Altera. Since their
underlying technology is different, the results cannot be directly com-
pared.

For the Xilinx FPGAs, the development platforms used are Nexys 4
DDR, which has an Artix-7 FPGA; and the Zybo Z7-20, which has the
Zynq-7000 SoC. The consumed resources are shown in Table 3.

The structure of the Xilinx FPGA resources is different from those
of Lattice FPGAs. In this case, the capacity of the Xilinx FPGA memory
blocks is 36K, instead of the 16K of the Lattice FPGAs. In addition, the
Xilinx memory blocks can be used as one 36K memory block or two 18K
memory blocks. In addition, each Xilinx slice includes 4 Look-up Tables
(LUTs) and 8 Flip-Flops (FFs), whereas Lattice slices have 2 LUTs and
2 FFs. As a consequence, the resource consumption shown in Table 3 is



Microprocessors and Microsystems 103 (2023) 104974F. Machado et al.
Fig. 9. Comparative graph showing the percentage of resources used in the three experimental applications with the open-source toolchain and the Lattice Diamond software.
Table 3
FPGA resource consumption of the different experimental applications for the Xilinx Nexys4 DDR and Zybo Z7-20 development
platform using the Xilinx Vivado software.

N
ex

ys
4

DD
R Resource Single camera

(res. 320 × 240)
Two cameras
(res. 160 × 120)

Three cameras
(res. 160 × 120)

Slice LUTs 463 (0.87%) 463 (0.87%) 2066 (3.88%)
Slice Registers 370 (0.35%) 799 (0.75%) 1949 (1.83%)
BRAM 36K 72 (51.43%) 48 (34.29%) 66 (47.14%)
Bonded IOB 43 (34.40%) 58 (46.40%) 69 (55.2%)

Zy
bo

Z7
-2

0 Resource Single camera
(res. 320 × 240)

Two cameras
(res. 160 × 120)

Three cameras
(res. 160 × 120)

Slice LUTs 519 (0.98%) 973 (1.83%) 2066 (3.88%)
Slice Registers 426 (0.40%) 802 (0.75%) 1958 (1.84%)
BRAM 36K 72 (51.43%) 48 (34.29%) 66 (47.14%)
Bonded IOB 43 (34.40%) 58 (46.40%) 69 (55.2%)
Table 4
FPGA resource consumption of the different experimental applications for the Intel
Cyclone 10 LP (10CL080YF484I7G) using the Intel-Altera Quartus software.

Resource Single camera
(res. 320 × 240)

Two Cameras
(res. 160 × 120)

Three Cameras
(res. 160 × 120)

Memory bits 1 843 200 (66%) 921 600 (33%) 1 267 200 (45%)
Logic elements 861 (1%) 1598 (2%) 3840 (5%)
IO pins 43 (15%) 58 (20%) 69 (24%)

lower than those shown in Tables 1 and 2 because the resource capacity
of the individual blocks is higher. Therefore, a direct comparison would
not be sensible since the technologies are different.

Finally, the three robotics applications have also been synthesized
with the Quartus software from Intel-Altera. The development platform
used is the Intel Cyclone 10 LP (10CL-080YF484I7G) FPGA. The con-
sumed resources are shown in Table 4. It should be noted that the
resource consumption obtained for the memory is reported in bits and
not as the number of available elements as in the previous cases.

The number of logical elements represents a percentage of 5% in the
example of the three cameras. On the other hand, the FPGA memory
resources consumed is equal to 45%, corresponding to the number of
bits used in each frame buffer of the design, with 12 bits per pixel.
10
5. Conclusions

The actual situation of open reconfigurable computing is similar
to that of the open-source GNU Compiler Collection (GNU toolchain)
for software development decades ago. Its standardization, support of
different processor architectures, and adoption brought many open
source libraries (both general and field-specific), more reutilization,
and fostered software development in many application fields. The
standardization, the support of many FPGA boards, and the adoption
of an open reconfigurable computing toolchain (perhaps F4PGA) will
possibly bring similar benefits to the FPGA community.

The current main drawback of the open approach is that most
advanced hardware FPGA platforms are not supported yet; they are
only available for use in conjunction with the proprietary toolchains
of the manufacturers. Nevertheless, the number of supported boards
in the open FPGA ecosystem is continuously growing (currently, it
targets the Xilinx 7-Series, Lattice iCE40, Lattice ECP5 FPGAs, and
QuickLogic EOS S3). Besides, it is gradually being expanded to support
more high-performance platforms from several manufacturers.

In this context, the main contribution of this work is an open-source
Verilog library for vision-based robot applications, named FPGA-
Robotics, aiming to help developers to benefit from the fast exe-
cution speed, power efficiency, and reconfigurability of FPGAs when



Microprocessors and Microsystems 103 (2023) 104974F. Machado et al.
implementing vision-based robotic applications. It includes a sensor
driver (camera), an actuator driver (GoPiGo motors and servo), percep-
tion blocks (color filtering and image processing), control blocks (motor
controller, servo controller), and a debugging block (VGA display).

The usage of FPGA-Robotics shortens the development time
as some of their Verilog blocks may be integrated into the applica-
tions without developing them from scratch. It also helps to introduce
trustworthy source code in the applications, as the library code is
publicly available, may be inspected, and has been typically tested
widely by the community. In addition, FPGA-Robotics is open-
source, and its modules can also be freely used in combination with
popular proprietary FPGA toolchains of widespread FPGA vendors
(Lattice/Xilinx(AMD)/Intel-Altera).

All library blocks have been experimentally validated by the imple-
mentation of three vision-based reactive applications for a real robot,
making use of an open toolchain that is based on Verilog language,
YoSys synthesis, nextpnr place-and-route tool, and OpenFPGALoader
(all of them managed with the open-source APIO tool). In these appli-
cations, the GoPiGo robot is able to follow a moving colored ball using
one camera (or two cameras for a wider FOV). This behavior has been
easily extended to concurrently track a different colored object with a
third camera on top of a servo. The parallel nature of FPGAs facilitates
it. In all cases, the robot brain, with all the image processing and the
control decisions, is fully deployed at the onboard FPGA board. The
three applications are publicly available so that they may be replicated
and inspected.

A significant contribution of this work is the comparison of the
resource consumption of all the developed applications for several
open/Lattice/Xilinx(AMD)/Intel-Altera toolchains and boards, as shown
in Section 4.5. The experimental results show that, depending on the
nature of the application, the open toolchain has no disadvantage in
resource usage. Concretely, in the experiments presented, it performs
better on the same Lattice hardware than the proprietary toolchain
regarding the FPGA BRAM memory blocks while performing worse
concerning the logic blocks.

Since verifying FPGA vision-based systems for robotics is a slow and
challenging endeavor, as future lines, we are working to integrate fast
open simulators such as Verilator with the Gazebo robotic simulation
environment. This simulated environment will help set the different
parameters present in several library modules. In addition, we intend
to develop more complex robotics applications, such as those based
on Finite State Machines, including the enable-disable functionality in
the Verilog blocks of the FPGA-robotics library. Finally, we are
developing more blocks to support external memories, other sensors
(such as IR, US, or RPLIDAR), and other robots (such as the TurtleBot2).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This research was partially funded by the Community of Madrid in
the framework of the research project, Spain RoboCity2030-DIH-CM
(2019–2022): RoboCity2030-Madrid Robotics Digital Innovation Hub,
Spain, Programa de Actividades de I+D entre Grupos de investigación
de la Comunidad de Madrid en Tecnologías 2018 project, Spain ref.
11

S2018/NMT-4331.
References

[1] J. Ruiz-Rosero, G. Ramirez-Gonzalez, R. Khanna, Field programmable gate array
applications—A scientometric review, Computation 7 (4) (2019) 63.

[2] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist, M. Milanovic, Yosys+
nextpnr: an open source framework from verilog to bitstream for commercial FP-
GAs, in: 2019 IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines, FCCM, IEEE, 2019, pp. 1–4.

[3] A. Romanov, M. Romanov, A. Kharchenko, FPGA-based control system reconfig-
uration using open source software, in: 2017 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering, EIConRus, IEEE, 2017, pp.
976–981.

[4] H. Yu, H. Lee, S. Lee, Y. Kim, H.-M. Lee, Recent advances in FPGA reverse
engineering, Electronics 7 (10) (2018) 246.

[5] D. Celebucki, S. Graham, S. Gunawardena, Reversing a lattice ECP3 FPGA
for bitstream protection, in: International Conference on Critical Infrastructure
Protection, Springer, 2018, pp. 91–111.

[6] T. Zhang, J. Wang, S. Guo, Z. Chen, A comprehensive FPGA reverse engineering
tool-chain: From bitstream to RTL code, IEEE Access 7 (2019) 38379–38389.

[7] J. Arroyo, J. González, APIO open source ecosystem for open FPGA boards, 2016,
https://github.com/FPGAwars/apio.

[8] J. Arroyo, C. Venegas, J. González, IceStudio visual editor for open FPGA boards,
2017, https://github.com/FPGAwars/icestudio.

[9] YosysHQ, OSS CAD suite, 2022, URL https://github.com/YosysHQ/oss-cad-suite-
build.

[10] C. Alliance, FOSS flow for FPGA (F4PGA) work group, 2022, https://f4pga.org/.
[11] M. Quigley, B. Gerkey, W.D. Smart, Programming Robots with ROS: A Practical

Introduction To the Robot Operating System, O’Reilly Media, Inc., 2015.
[12] Open Robotics Foundation, ROS 2 hardware acceleration working group, 2021,

https://github.com/ros-acceleration.
[13] F. Machado, R. Nieto, F.-C. J., L. D., C.J. M., FPGA robotics, 2022, https:

//github.com/JdeRobot/FPGA-robotics.
[14] D. Shah, Nextpnr - a portable FPGA place and route tool, 2022, URL https:

//github.com/YosysHQ/nextpnr.
[15] J. Ordóñez Cerezo, E. Castillo Morales, J.M. Canas Plaza, Control system in

open-source FPGA for a self-balancing robot, Electronics 8 (2) (2019) 198.
[16] J.M. Cañas, J. Fernández-Conde, J. Vega, J. Ordóñez, Reconfigurable computing

for reactive robotics using open-source FPGAs, Electronics 11 (1) (2021) 8.
[17] Z. Wan, B. Yu, T.Y. Li, J. Tang, Y. Zhu, Y. Wang, A. Raychowdhury, S. Liu, A

survey of FPGA-based robotic computing, IEEE Circuits Syst. Mag. 21 (2) (2021)
48–74.

[18] A. Alabdo, J. Pérez, G.J. Garcia, J. Pomares, F. Torres, FPGA-based architecture
for direct visual control robotic systems, Mechatronics 39 (2016) 204–216.

[19] V.H. Schulz, F.G. Bombardelli, E. Todt, A harris corner detector implementation
in SoC-FPGA for visual SLAM, in: Robotics, Springer, 2016, pp. 57–71.

[20] J. Vourvoulakis, J. Kalomiros, J. Lygouras, Fpga-based architecture of a real-time
sift matcher and RANSAC algorithm for robotic vision applications, Multimedia
Tools Appl. 77 (8) (2018) 9393–9415.

[21] K. Guo, S. Zeng, J. Yu, Y. Wang, H. Yang, A survey of FPGA-based neural network
accelerator, 2017, arXiv preprint arXiv:1712.08934.

[22] T. Wang, C. Wang, X. Zhou, H. Chen, An overview of FPGA based deep learning
accelerators: challenges and opportunities, in: 2019 IEEE 21st International
Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on
Data Science and Systems, HPCC/SmartCity/DSS, IEEE, 2019, pp. 1674–1681.

[23] D. Gschwend, Zynqnet: An FPGA-accelerated embedded convolutional neural
network, 2020, arXiv preprint arXiv:2005.06892.

[24] N. Malle, E. Ebeid, Open-source educational platform for FPGA accelerated AI
in robotics, in: 2022 8th International Conference on Mechatronics and Robotics
Engineering, ICMRE, IEEE, 2022, pp. 112–115.

[25] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, T. Delbruck, DeltaRNN: A power-efficient
recurrent neural network accelerator, in: Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2018, pp. 21–30.

[26] J. Zhang, J. Li, Improving the performance of opencl-based FPGA accelerator
for convolutional neural network, in: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2017, pp. 25–34.

[27] J. Li, K.-F. Un, W.-H. Yu, P.-I. Mak, R.P. Martins, An FPGA-based energy-efficient
reconfigurable convolutional neural network accelerator for object recognition
applications, IEEE Trans. Circuits Syst. II 68 (9) (2021) 3143–3147.

[28] K. Boikos, C.-S. Bouganis, A scalable FPGA-based architecture for depth es-
timation in SLAM, in: International Symposium on Applied Reconfigurable
Computing, Springer, 2019, pp. 181–196.

[29] R. Liu, J. Yang, Y. Chen, W. Zhao, Eslam: An energy-efficient accelerator for
real-time orb-slam on FPGA platform, in: Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

[30] S. Murray, W. Floyd-Jones, Y. Qi, D.J. Sorin, G. Konidaris, Robot motion planning
on a chip., in: Robotics: Science and Systems, 2016.

[31] A. Tuncer, M. Yildirim, Design and implementation of a genetic algorithm IP core
on an FPGA for path planning of mobile robots, Turk. J. Electr. Eng. Comput.
Sci. 24 (6) (2016) 5055–5067.

http://refhub.elsevier.com/S0141-9331(23)00219-3/sb1
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb1
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb1
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb2
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb2
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb2
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb2
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb2
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb2
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb2
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb3
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb3
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb3
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb3
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb3
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb3
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb3
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb4
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb4
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb4
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb5
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb5
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb5
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb5
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb5
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb6
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb6
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb6
https://github.com/FPGAwars/apio
https://github.com/FPGAwars/icestudio
https://github.com/YosysHQ/oss-cad-suite-build
https://github.com/YosysHQ/oss-cad-suite-build
https://github.com/YosysHQ/oss-cad-suite-build
https://f4pga.org/
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb11
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb11
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb11
https://github.com/ros-acceleration
https://github.com/JdeRobot/FPGA-robotics
https://github.com/JdeRobot/FPGA-robotics
https://github.com/JdeRobot/FPGA-robotics
https://github.com/YosysHQ/nextpnr
https://github.com/YosysHQ/nextpnr
https://github.com/YosysHQ/nextpnr
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb15
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb15
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb15
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb16
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb16
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb16
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb17
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb17
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb17
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb17
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb17
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb18
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb18
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb18
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb19
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb19
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb19
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb20
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb20
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb20
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb20
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb20
http://arxiv.org/abs/1712.08934
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb22
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb22
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb22
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb22
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb22
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb22
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb22
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb22
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb22
http://arxiv.org/abs/2005.06892
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb24
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb24
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb24
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb24
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb24
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb25
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb25
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb25
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb25
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb25
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb26
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb26
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb26
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb26
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb26
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb27
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb27
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb27
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb27
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb27
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb28
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb28
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb28
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb28
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb28
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb29
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb29
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb29
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb29
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb29
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb30
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb30
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb30
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb31
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb31
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb31
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb31
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb31


Microprocessors and Microsystems 103 (2023) 104974F. Machado et al.
[32] F.S. Alkhafaji, W.Z. Hasan, M. Isa, N. Sulaiman, Robotic controller: ASIC versus
FPGA—A review, J. Comput. Theor. Nanosci. 15 (1) (2018) 1–25.

[33] M.-A. Martínez-Prado, J. Rodríguez-Reséndiz, R.-A. Gómez-Loenzo, G. Herrera-
Ruiz, L.-A. Franco-Gasca, An FPGA-based open architecture industrial robot
controller, IEEE Access 6 (2018) 13407–13417.

[34] J. Pérez, A. Alabdo, J. Pomares, G.J. García, F. Torres, FPGA-based visual control
system using dynamic perceptibility, Robot. Comput.-Integr. Manuf. 41 (2016)
13–22.

[35] B.L. Sharma, N. Khatri, A. Sharma, An analytical review on FPGA based au-
tonomous flight control system for small UAVs, in: 2016 International Conference
on Electrical, Electronics, and Optimization Techniques, ICEEOT, IEEE, 2016, pp.
1369–1372.

[36] B. Cain, Z. Merchant, I. Avendano, D. Richmond, R. Kastner, PynqCopter-an
open-source FPGA overlay for UAVs, in: 2018 IEEE International Conference on
Big Data, Big Data, IEEE, 2018, pp. 2491–2498.

[37] J. Caro, A. Barrientos, E. Mayas, Hybrid bio-inspired architectura for walking
robots through central patter generators using open source FPGAs, in: Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, IEEE,
2018.

[38] X. Shi, L. Cao, D. Wang, L. Liu, G. You, S. Liu, C. Wang, HERO: Accelerating au-
tonomous robotic tasks with FPGA, in: 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS, IEEE, 2018, pp. 7766–7772.

[39] A. Podlubne, D. Göhringer, FPGA-ROS: Methodology to augment the robot
operating system with FPGA designs, in: 2019 International Conference on
ReConFigurable Computing and FPGAs, ReConFig, IEEE, 2019, pp. 1–5.

[40] M. Eisoldt, S. Hinderink, M. Tassemeier, M. Flottmann, J. Vana, T. Wiemann, J.
Gaal, M. Rothmann, M. Porrmann, Reconfros: Running ROS on reconfigurable
SOCs, in: Proceedings of the 2021 Drone Systems Engineering and Rapid
Simulation and Performance Evaluation: Methods and Tools Proceedings, 2021,
pp. 16–21.

[41] J. Lee, H. Chen, J. Young, H. Kim, RISC-V FPGA platform toward
ROS-based robotics application, in: 2020 30th International Conference on
Field-Programmable Logic and Applications, FPL, IEEE, 2020, p. 370.

[42] D. Koch, D. Ziener, F. Hannig, FPGA versus software programming: Why, when,
and how? in: FPGAs for Software Programmers, Springer, 2016, pp. 1–21.

[43] E. Klingman, FPGA programming step by step, Embedded Syst. Program. 17 (4)
(2004) 29–37.

[44] N. Tredennick, B. Shimamoto, The inevitability of reconfigurable systems, Queue
1 (7) (2003) 34–43.

[45] N. Tredennick, The case for reconfigurable computing, Microprocess. Rep. 10
(10) (1996) 25–27.

[46] C. Wolf, Yosys open synthesis suite, 2016.
[47] C. Wolf, M. Lasser, Project icestorm, 2015, http://www.clifford.at/icestorm.
[48] D. Shah, Project trellis, 2022, URL https://github.com/YosysHQ/prjtrellis.
[49] G. Goavec-Merou, Open FPGA loader, 2022, URL https://github.com/trabucayre/

openFPGALoader.
[50] Modular Robotics Incorporated, GoPiGo robot, 2020, URL https://gopigo.io/.
[51] J. Arroyo, C. Venegas, J. González, Alhambra-II FPGA, 2018, https://github.com/

FPGAwars/Alhambra-II-FPGA.
[52] Radiona.org, ULX3S FPGA, 2022, https://radiona.org/ulx3s/#home.
12
Felipe Machado received Industrial Engineering degree in
1998, and a Ph.D. in 2008, both from the Universidad
Politécnica de Madrid. He has been assistant professor at
Universidad Rey Juan Carlos for more than ten years.
Currently he is a researcher with the Institute for Applied
Microelectronics at Universidad de Las Palmas de Gran
Canaria. His research interests include video coding systems,
reconfigurable architectures, robotics, and development of
open-source scientific equipment.

Rubén Nieto has received his Ph.D. degree (with honors)
in Electronics: Advanced Electronic Systems and Intelligent
Systems from the University of Alcalá (UAH), Spain, in
2020. Currently, he is working as Assistant Professor at
Electronics Technology Department, Rey Juan Carlos Uni-
versity. His areas of research interests are in Mobile Robots,
Multisensor Integration, Multiprocessor System-on-Chip and
Digital and Embedded Systems.

Jesús Fernández-Conde received the M.S. degree in
telecommunications engineering from the Universidad
Politécnica de Madrid, in 1994, and the Ph.D. degree in
computer science from the Universidad Complutense de
Madrid, in 2011. He is currently an Associate Professor with
the Department of Signal Theory and Communications, Uni-
versidad Rey Juan Carlos, Spain. His research interests
include real-time systems, artificial intelligence applications,
and robotics.

David Lobato received Computer Engineering degree in
2008 and Master of Science degree in 2010, both from
Universidad Rey Juan Carlos de Madrid. Currently he is a
Software Engineer at Turbine Kreuzberg Portugal developing
IoT systems. He also participates with Jderobot NGO in
robotics related projects. His interest includes robotics,
computer vision and reconfigurable computing.

José M. Cañas received the M.S. and Ph.D. degrees
in telecommunications engineering from the Universidad
Politécnica de Madrid. He has done research in robotics at
Carnegie Mellon University, USA, the Georgia Institute of
Technology, USA, the Instituto Nacional de Astrofísica, Óp-
tica y Electrónica, México, and the Instituto de Automática
Industrial (CSIC). His research interests include robotics,
computer vision, and the education of those disciplines.

http://refhub.elsevier.com/S0141-9331(23)00219-3/sb32
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb32
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb32
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb33
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb33
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb33
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb33
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb33
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb34
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb34
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb34
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb34
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb34
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb35
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb35
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb35
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb35
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb35
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb35
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb35
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb36
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb36
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb36
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb36
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb36
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb37
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb37
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb37
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb37
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb37
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb37
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb37
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb38
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb38
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb38
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb38
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb38
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb39
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb39
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb39
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb39
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb39
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb40
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb40
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb40
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb40
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb40
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb40
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb40
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb40
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb40
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb41
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb41
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb41
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb41
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb41
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb42
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb42
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb42
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb43
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb43
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb43
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb44
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb44
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb44
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb45
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb45
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb45
http://refhub.elsevier.com/S0141-9331(23)00219-3/sb46
http://www.clifford.at/icestorm
https://github.com/YosysHQ/prjtrellis
https://github.com/trabucayre/openFPGALoader
https://github.com/trabucayre/openFPGALoader
https://github.com/trabucayre/openFPGALoader
https://gopigo.io/
https://github.com/FPGAwars/Alhambra-II-FPGA
https://github.com/FPGAwars/Alhambra-II-FPGA
https://github.com/FPGAwars/Alhambra-II-FPGA
https://radiona.org/ulx3s/#home

	Vision-based robotics using open FPGAs
	Introduction
	Related work
	Open framework for reconfigurable computing in robotics
	Open toolchain for FPGAs
	Open Verilog library for vision-based robotics
	Ov7670 camera modules
	Color-based object detection module
	Motor controller module
	GoPiGo SPI interface module
	Pan servo controller module
	VGA display module


	Experimental validation
	Monocular vision-based object follower robot
	Multi-camera object follower robot
	Multicamera follower and tracker robot
	FPGA resource consumption
	Comparison with State-Of-The-Art FPGA toolchains
	Results using Lattice Diamond
	Results for other FPGA vendors


	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


