
Chaos, Solitons and Fractals 162 (2022) 112448

Available online 19 August 2022
0960-0779/© 2022 Elsevier Ltd. All rights reserved.

Implementing and morphing Boolean gates with adaptive synchronization:
The case of spiking neurons

J. Yang a,b,1, E. Primo b,c,1, D. Aleja b,c,d,*, R. Criado b,c,d, S. Boccaletti b,c,e,f, K. Alfaro-Bittner b,c

a Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, PR China
b Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles 28933, Madrid, Spain
c Laboratory of Mathematical Computation on Complex Networks and their Applications, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles 28933, Madrid,
Spain
d Data, Complex Networks, and Cybersecurity Research Institute, Universidad Rey Juan Carlos, 28028, Madrid, Spain
e Moscow Institute of Physics and Technology, Dolgoprudny 141701, Moscow, Russian Federation
f CNR - Institute of Complex Systems, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy

A R T I C L E I N F O

Keywords:
Boolean logical gates
Synchronization
Dynamical systems
Spiking neurons

A B S T R A C T

Boolean logic is the paradigm through which modern computation is performed in silica. When nonlinear
dynamical systems are interacting in a directed graph, we show that computation abilities emerge spontaneously
from adaptive synchronization, which actually can emulate Boolean logic. Precisely, we demonstrate that a
single dynamical unit, a spiking neuron modeled by the Hodgkin-Huxley model, can be used as the basic
computational unit for realizing all the 16 Boolean logical gates with two inputs and one output, when it is
coupled adaptively in a way that depends on the synchronization level between the two input signals. This is
realized by means of a set of parameters, whose tuning offers even the possibility of constructing a morphing gate,
i.e., a logical gate able to switch efficiently from one to another of such 16 Boolean gates. Extensive simulations
demonstrate the efficiency and the accuracy of the proposed computational paradigm.

1. Introduction

Boolean logic is that branch of algebra that defines logical operations
on variables which may assume only a truth or false value, denoted
respectively as 1 and 0. Its fundamental concepts and main principles
were set already in 1847 by George Boole, in his book entitled “The
Mathematical Analysis of Logic” [1]. But it was only in the early 20th
century that the American mathematician and electrical engineer
Claude Shannon described (in his MIT master thesis) the equivalence of
Boolean logic to the binary properties of electrical switches performing
logic functions [2], which later became the foundation of digital circuit
design. Thanks to the successive, continuous, and progressive techno
logical advances in the miniaturization of electronic components (such
as high-speed circuits, or capacitive or ferromagnetic storage devices),
all Computer Processing Units (CPU’s) which are today equipping our
smart-phones, desktops and laptops perform their functions via Boolean
logic.

In more recent years, the interest shifted from Boolean computability

toward defining alternative paradigms of computation, in a trial to un
veil some mechanisms through which information processing takes
place, for instance, in human or animal brains, and to set new paradigms
for logical operations in bio-informatics and quantum computing. When
computation is investigated in connection with dynamical systems and
neural networks, a fertile approach which has been introduced is that of
reservoir computing. There, input signals are mapped into higher
dimensional spaces through the (transient) dynamics of a non-linear
system (the reservoir).The accuracy and efficiency of this technique in
performing computation has been demonstrated in several different
configurations and task resolving problems [3–7].

Another proposed method was that of showing that computation
abilities may emerge spontaneously from adaptive synchronization
[8–10], when nonlinear dynamical systems are interacting in a directed
graph via a coupling that adapts itself to the synchronization level be
tween two input signals. In this paper, we follow this latter approach,
and show how a single dynamical unit, a spiking neuron modeled by the
Hodgkin-Huxley model [11], can be used as the basic computational

* Corresponding author at: Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles 28933, Madrid, Spain.
E-mail address: david.aleja@urjc.es (D. Aleja).

1 J.Y and E.P. equally contributed to the Manuscript

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos

https://doi.org/10.1016/j.chaos.2022.112448
Received 17 June 2022; Accepted 11 July 2022

mailto:david.aleja@urjc.es
www.sciencedirect.com/science/journal/09600779
https://www.elsevier.com/locate/chaos
https://doi.org/10.1016/j.chaos.2022.112448
https://doi.org/10.1016/j.chaos.2022.112448
https://doi.org/10.1016/j.chaos.2022.112448
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2022.112448&domain=pdf

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 162 (2022) 112448

2

unit for realizing all the 16 Boolean logical gates with two inputs and
one output, and how a suitable tuning of a set of parameters provides
actually a morphing gate, i.e., a logical gate able to switch from one to
another of such 16 logical functions.

The paper is organized as follows: in Section 2 we describe the basic
model allowing to use the dynamics of a single spiking neuron as a
computational unit. In Section 3 we show how the 16 logical gates can
be implemented as a function of 8 morphing parameters, and give two
illustrative examples: the OR and the universal NAND gates. Finally,
Section 4 reports our discussions and conclusions.

2. The computational paradigm

Our basic computational unit is pictorially sketched in Fig. 1a). It
consists of two input ports A and B, one output port [O(t)], and a
dynamical system, namely a neuron whose internal dynamics [ID(t)]
evolves in time following the Hodgkin-Huxley model

Cm
dV
dt

= I − Gn − W(VA − V), (2.1)

where V stands for the membrane potential of the excitable neuron, Cm is
the membrane capacitance, and I is the ionic membrane current [11].

Let us assume to have a networked ensemble of such computational
units. We also assume that the input arriving to one of these units be
described by W = W(ΔVAB, μ), i.e., be a function of a coupling param
eter and depends on the difference of the membrane potentials entering
ports A and B. Furthermore, each neuron is under the influence of i) an
external source of Gaussian white noise Gn(t) that equally affects all
units of the ensemble and ii) the existence of a reference signal R(t). The
1-state is postulated to be that spiking dynamical state which is syn
chronous with R.

Notice that, in the absence of network interactions, each neuron
would evolve according to its own internal dynamics. However, due to
the very well-known phenomenon of noise induced synchronization in
spiking-like dynamics [12–14], the term Gn(t) will induce the internal
dynamics ID of all units to synchronize, after a suitable transient, to a
unique dynamical state S(t), which, from now on, will be associated to
the 0-state.

As for VA and VB (i.e., the input voltages entering from ports A and B),

they can be defined as linear combinations of I1(t), I2(t) (the two input
signals which will be actually processed by the computational unit), R
(t), and S(t), i.e.,

VA = a1I1(t) + a2I2(t) + a3R(t) + a4S(t),
VB = b1I1(t) + b2I2(t) + b3R(t) + b4S(t). (2.2)

On its turn, this leads to the introduction of eight morphing parameters
(a1,a2,a3,a4,b1,b2,b3,b4) which, as we will see momentarily, define the
logical operation that the unit is performing on the input signals I1 and
I2.

Finally, in the Hodgkin-Huxley model [11], the ionic membrane
current I comes from the contributions of sodium (Na), potassium (K)
and other (l) ions’ currencies, such that I = − (Il + IK + INa) where Il =

gl(V − Vl), and INa is defined as

INa = gNam3h(V − VNa),

dm
dt = αm(1 − m) − βmm,

dh
dt = αh(1 − h) − βhh,

αm =
0.1(V + 25)

e
V + 25

10 − 1

,

βm = 4e
V
18,

αh = 0.07e
V
20,

βh =
1

e
V + 30

10 + 1

,

and IK is given by

IK = gKn4h(V − VK),

dn
dt = αn(1 − n) − βnn,

αn =
0.01(V + 10)

e
V − 10

10 − 1

,

βn = 0.125e
V
80.

Additionally, the strength W of the coupling to the input signal that
enters from port A evolves as

Ẇ = − W(W − w1)(W − w2)+ k[ΔVAB − μ], (2.3)

where k is an adaptation speed, ΔVAB is a positive function that quan
tifies the synchronization error between the voltages or signals entering
from port A and B, and μ is a threshold used to filter small synchroni
zation errors coming from random sources of noise. Unless otherwise
specified, the parameters used in our study are μ = 0.25 and k = 0.3.

The stability properties of the equilibria of Eq. (2.3) depend on the
parameters w1,w2,k,μ, and ΔVAB. Panel (b) in Fig. 1 shows the stability
properties of such equilibria, by considering that Eq. (2.3) can be written
as Ẇ = − δF/δW with F = W4/4 − (w1 + w2)W3/3+ w1w2W2/2 −

k(ΔVAB − μ)W.
The adaptive dynamics of W(ΔVAB, μ) induces alternation of syn

chronization and desynchronization processes, in that it drives the
coupling strength toward zero (or close to zero) or to a positive value.
Precisely, if VA ≈ VB, then W ≈ 0 and the dynamics of the unit syn
chronizes to the state S(t) induced by influence of the Gaussian white
noise, i.e.,

O(t) = S(t), VA ≈ VB. (2.4)

Fig. 1. The computational unit. Schematic representation of the computa
tional unit. (a) The unit is constituted by 1) a neuron whose internal dynamics
(ID) follows Eq. (2.1), 2) two input ports A and B, and 3) the output port O(t).
The input voltage entering from port A(B) is given by a linear combination of
signals I1(t), I2(t), R(t), and S(t), as described in Eq. 2.2. (b) The stability of the
equilibria points of Eq. (2.3), for μ = 0.25, k = 0.3, w1 = 0.5, and w2 = 1. (c)
The outputs O(t) when i) VA ≈ VB and ii) VA≉VB.

J. Yang et al.

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 162 (2022) 112448

3

Instead, if VA≉VB, W will converge toward a positive value, and
therefore the dynamics of the unit will synchronize to that exhibited by
the voltage entering from port A, i.e.,

O(t) = VA(t),VA≉VB. (2.5)

It is worth mentioning that the latter condition can be rigorously
proven only when VA exhibits a dynamics which is compatible with the
Hodgkin-Huxley model, i.e. when either VA = R or VA = S. In the more
general case of Eqs. 2.2 i.e., when VA is a generic linear combination of
I1(t), I2(t), R(t), and S(t) the condition is not automatically guaranteed
and has to be checked numerically.

3. Implementation of the Boolean logical gates

3.1. The general procedure

The goal is to use the computational unit described in the previous
section for implementing all the 16 possible logic Boolean operations
(corresponding to two inputs and one output) whose truth table is re
ported in Table 1. Any of such logic operations returns 0 or 1 depending
on the values (also 0 or 1) that the two inputs (p, q) are featuring. In our
framework, the latter sentence means that the output of our neuron
dynamics will be S(t) (the 0-state) or R(t) (the 1-state), depending on the
signals I1(t) and I2(t) that, in this case, are playing the role of p and q. As
it can be seen from Eq. (2.2), there are eight unknown morphing pa
rameters, whose values actually define the specific gate that is being
implemented. The method for their determination can be described as
follows.

The first step is to consider the inputs I1 and I2 of the “true table”.
Both inputs are necessarily synchronized to either S (and therefore take
the value 0) or R (and therefore take the value 1). In addition, each pairs
(I1, I2) defines VA and VB: if (I1, I2) = (R,R) then VA = (a1 + a2 + a3)R +

a4S and VB = (b1 + b2 + b3)R+ b4S, see Table 2, which is valid
regardless on the specific logic gate to be implemented.

Once the expressions for the input voltages entering ports A and B
(VA and VB) are calculated, one immediately obtains a set of equations
by applying the condition (2.4) (when O(t) = S) or (2.5) (when O(t) =

VA) to each row of Table 2. To illustrate such a latter step, let us suppose

that the output signal for (I1, I2) = (R,R) is R. Then, condition (2.5) must
be satisfied, yielding

O(t) = VA = R → a1 + a2 + a3 = 1 ∧ a4 = 0
VA≉VB → b1 + b2 + b3 ∕= 1 ∨ b4 ∕= 0.

}

(3.1)

Eventually, the procedure leads to a set of equations whose solution
is, in principle, not unique. In other words, all the conditions on the
morphing coefficients defining the 16 possible Boolean logic cases are
satisfied for a family of solutions. Table 3 reports one of such possible
solutions for each of the 16 gates. For the sake of clarity and exempli
fication, in the next subsections we illustrate the family of solutions
corresponding to some specific case, starting from the logical disjunction
(OR) gate.

3.2. The OR Gate

The logical disjunction gate is that gate whose output O(t) is S (0-
state) when I1 = I2 = S(p = q = 0) and R otherwise. Application of the
method described in the previous subsection yields the following set of
equations

• (I1, I2) = (R,R)→O(t) = R,

a) O(t) = VA→a1 + a2 + a3 = 1 ∧ a4 = 0
b) VA≉VB→b1 + b2 + b3 ∕= 1 ∨ b4 ∕= 0.

}

(3.2)

• (I1, I2) = (R, S)→O(t) = R,

a) O(t) = VA→a1 + a3 = 1 ∧ a2 + a4 = 0
b) VA≉VB→b1 + b3 ∕= 1 ∨ b2 + b4 ∕= 0.

}

(3.3)

• (I1, I2) = (S,R)→O(t) = R,

a) O(t) = VA→a2 + a3 = 1 ∧ a1 + a4 = 0
b) VA≉VB→b2 + b3 ∕= 1 ∨ b1 + b4 ∕= 0.

}

(3.4)

Notice that Eqs. (3.2–3.4) are directly determined from Eq. (2.5). The
remaining logical operation ((I1, I2) = (S, S)→O(t) = S) leads to two

Table 1
The truth table for the 16 Boolean logic gates: contradiction ⊥, logical
conjunction AND, material no-implication ↛, converse no-implication ↚,
logical NOR, projection functions p and q, logical bi-conditional XNOR, tautol
ogy T, logical NAND, material implication p → q, converse implication p ← q,
logical disjunction OR, negations ¬ p and ¬ q, and exclusive disjunction XOR.

(p, q) ⊥ AND ↛ ↚

(1,1) 0 1 0 0
(1,0) 0 0 1 0
(0,1) 0 0 0 1
(0,0) 0 0 0 0

(p, q) NOR p q XNOR

(1, 1) 0 1 1 1
(1, 0) 0 1 0 0
(0, 1) 0 0 1 0
(0, 0) 1 0 0 1

(p, q) ⊺ NAND p→q p←q

(1, 1) 1 0 1 1
(1, 0) 1 1 0 1
(0, 1) 1 1 1 0
(0, 0) 1 1 1 1

(p, q) OR ¬p ¬ q XOR

(1, 1) 1 0 0 0
(1, 0) 1 0 1 1
(0, 1) 1 1 0 1
(0, 0) 0 1 1 0

Table 2
General expressions for the voltages VA and VB when the controllable signals I1

and I2 are R (1-state) or S (0-state).

(I1, I2) VA VB

(R, R) (a1 + a2 + a3)R+ a4S (b1 + b2 + b3)R+ b4S
(R, S) (a1 + a3)R+ (a2 + a4)S (b1 + b3)R+ (b2 + b4)S
(S, R) (a2 + a3)R+ (a1 + a4)S (b2 + b3)R+ (b1 + b4)S
(S, S) a3R+ (a1 + a2 + a4)S b3R+ (b1 + b2 + b4)S

Table 3
A possible choice of the morphing parameters realizing the different 16 Boolean
logic gates.

Gate a1 a2 a3 a4 b1 b2 b3 b4

⊥ 0 0 0 1 0 0 0 1
AND 0 1 0 0 − 1 1 0 1
↛ 1 0 0 0 0 1 0 0
↚ 0 1 0 0 1 0 0 0
NOR 0 − 1 1 1 1 0 0 0
p 1 0 0 0 0 0 0 1
q 0 1 0 0 0 0 0 1
XNOR − 1 1 1 0 0 0 2 − 1
⊺ 0 0 1 0 1 0 0 1
NAND 0 0 1 0 2 − 1 0 0
p → q 0 0 1 0 1 − 1 0 1
p ← q 0 0 1 0 − 1 1 0 1
OR 0 0 1 0 − 1 − 1 1 2
¬p 0 0 1 0 1 0 0 0
¬q 0 0 1 0 0 1 0 0
XOR − 1 − 1 2 1 0 0 2 − 1

J. Yang et al.

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 162 (2022) 112448

4

separate conditions

• Condition 2.4, VA ≈ VB

→a1 + a2 + a4 = b1 + b2 + b4 ∧ a3 = b3. (3.5)

• Condition 2.5

a) O(t) = VA→a1 + a2 + a4 = 1 ∧ a3 = 0.
b) VA≉VB→b1 + b2 + b4 ∕= 1 ∨ b3 ∕= 0.

}

(3.6)

Now, the morphing parameters ai and bi, i = 1,…,4 must satisfy Eqs.
(3.2–3.4) and either Eq. (3.5) or Eq. (3.6). In particular, one immediately
sees that the values of ai are completely determined by Eqs. (3.2a, 3.3a,
3.4a). After straightforward calculations, a possible choice is a1 = 0,
a2 = 0, a3 = 1, and a4 = 0. Notice furthermore that, for the chosen
values for ai, Eq. (3.6) has no solutions in that a3 ∕= 0. This implies that
the remaining parameters (b1, b2, b3, and b4), must satisfy Eqs. (3.2b,
3.3b, 3.4b) and Eq. (3.5), i.e., (b3 = 1 ∧ b1 + b2 + b4 = 0) ∧ (b4 ∕= 0 ∨
b1 + b2 ∕= 0) ∧ (b1 ∕= 0 ∨ b2 + b4 ∕= 0) ∧ (b2 ∕= 0 ∨ b1 + b4 ∕= 0).

Simple calculations lead one to deduce that the unknown parameters
have to lay on the plane π defined by b1 + b2 + b4 = 0 with b1 ∕= 0,
b2 ∕= 0, and b4 ∕= 0, as it is shown in Fig. 2(a), where the forbidden values
are marked by the blue, red, and black straight lines l1 − l3.

Panel (b) of Fig. 2 reports the numerical simulations of Eq. (2.1) with
the input voltages VA and VB obtained through the morphing parameters
a1 = a2 = a4 = 0, a3 = b3 = 1, b1 = b2 = − 1, b4 = 2 (i.e., the possible
solution discussed above). All our simulations have been performed
using the Euler integration method, with integration time step h = 0.01
unit time. The full simulation (2*106 integration time step’s units) is
actually divided in four equally long time intervals (each one made of
0.5*106 integration steps), which are separated with vertical dashed
lines. Each of such intervals corresponds to one of the four different
settings of the input signals ((I1, I2) = (R,R), (I1, I2) = (R, S), (I1, I2) =

(S,R), and (I1, I2) = (S, S)), as specified on top of the curve of O(t) (last
row of panel b). Furthermore, red and blue colors are used to refer to the
R (1-state) and S (0-state) signals, respectively. It is seen that the
computational unit correctly processes all logical operations, with a
rather little transient needed to pass from one state to the other (visible
in the two gray regions of the time evolution of O(t) located at the very
beginning of the simulation and after 1.5*106 integration steps), which
is the time needed by the system from desynchronizing from a dynam
ical state and to re-synchronize to the other.

In order to quantify the accuracy, or precision, with which the
computation task is performed, one can adopt the following procedure.
One first fixes an observation time window Δ1t (in our case Δ1t = 600
integration time steps), on which the accuracy measure 0 ≤ Δ(x, y, t) ≤
1 is defined in the interval [t, t + Δ1t]. On its turn, Δ(x, y, t) is calculated
as follows. Initially, the x signal is taken as a reference, and
num(x(t) , y(t)) is calculated as the number of spikes (in the interval
[t, t + Δ1t]) featured by the signal x (the local maxima in x(t) which
exceed a given threshold) that correspond also to spikes featured by the
signal y around the same spiking time (i.e., for each spike in x at time tj ∈
[t, t + Δ1t] one searches for the existence of a spike in y in the interval
[
tj − Δ2t, tj + Δ2t

]
, with Δ2t = 100 integration time steps in our case).

The same process is repeated, taking y as reference signal, for the
calculation of num(y(t) , x(t)). Let us furthermore denote with ns(x(t))
and ns(y(t)) the total number of spikes featured by the signals x and y,
respectively, within the interval [t, t + Δ1t]. Then, one has Δ(x, y, t) =
num(x(t) ,y(t))+num(y(t) ,x(t))

ns(x(t))+ns(y(t)) .
In our case, we consider

Sync(t) ≡ Δ(O(t) ,R, t), (3.7)

which implies Sync(t) ~ 1 when O(t) = R and Sync(t) ~ 0 when O(t) = S.
Fig. 2(c) reports Sync(t) for our simulations of the OR gate, from which

and one can see that the computation is indeed quite accurate.

3.3. The universal NAND Gate

The logical gate NAND is a gate of particular importance, since it has
the property (together with the NOR gate) of functional completeness,
and for this it is called universal. It is possible, indeed, to demonstrate
that any Boolean function can be implemented using only NAND gates
[15], and therefore implementing efficiently the NAND operation

Fig. 2. (Colour online) The OR gate. (a) Plot of the family of solutions avail
able for the coefficients b1, b2, and b4. Red, blue, and black straight lines rep
resents the forbidden values for {b1, b2, b4}, respectively, in particular b1 ∕= 0,
b2 ∕= 0, and b4 ∕= 0. (b) Numerical simulations of Eq. (2.1) for a1 = a2 = a4 =

0, a3 = b3 = 1, b1 = b2 = − 1, b4 = 2. The panel reports the time evolution of
the R(t) (first row), S(t) (second row), I1(t) (third row), I2(t) (fourth row), and O
(t) (fifth row) signals. Red and blue colors are used to plot the signals which are
synchronized to R(t) (1-state), and S(t) (0-state), respectively. The gray color is
used to plot the signal during the transition between the two states. The vertical
lines separate time intervals where different inputs are used, i.e., (I1, I2) =

(R,R), (I1, I2) = (R, S), (I1, I2) = (S,R), and (I1, I2) = (S, S). (c) The computa
tion accuracy measure [see Eq. (3.7)]. The red and blue background colors stays
for the R and S state featured by the signal O(t), respectively. Time is reported in
units of the integration step.

J. Yang et al.

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 162 (2022) 112448

5

corresponds, in practice, to being able of performing any computational
task, i.e., of constructing a universal Turing machine [16]. The NAND
gate produces an output signal O(t) which is S (0-state) for I1 = I2 = R
(p = q = 1) and R otherwise, as it can be seen in Table 1.

With the same procedure adopted in the previous subsection, the
following set of equations is obtained for the morphing coefficients:

• (I1, I2) = (S, S)→O(t) = R,

a) O(t) = VA→a3 = 1 ∧ a1 + a2 + a4 = 0
b) VA≉VB→b3 ∕= 1 ∨ b1 + b2 + b4 ∕= 0.

}

(3.8)

• (I1, I2) = (R, S)→O(t) = R,

a) O(t) = VA→a1 + a3 = 1 ∧ a2 + a4 = 0
b) VA≉VB→b1 + b3 ∕= 1 ∨ b2 + b4 ∕= 0.

}

(3.9)

• (I1, I2) = (S,R)→O(t) = R,

a) O(t) = VA→a2 + a3 = 1 ∧ a1 + a4 = 0

b) VA≉VB→b2 + b3 ∕= 1 ∨ b1 + b4 ∕= 0.

}

(3.10)

The remaining logical operation (I1, I2) = (R,R)→O(t) = S, is guar
anteed for either one of the two following conditions:

• Condition 2.4, VA ≈ VB

→a1 + a2 + a3 = b1 + b2 + b3 ∧ a4 = b4. (3.11)

• Condition 2.5,

a) O(t) = VA→a1 + a2 + a3 = 0 ∧ a4 = 1.
b) VA≉VB→b1 + b2 + b3 ∕= 0 ∨ b4 ∕= 1.

}

(3.12)

Therefore, the parameters ai and bi, i = 1,…,4, must satisfy Eqs.
(3.8–3.10) and no matter which one of Eqs. (3.11,3.12). Once again, the
coefficients of VA are completely determined by Eqs. (3.8a, 3.9a, 3.10a).
A possible choice is a1 = 0, a2 = 0, a3 = 1, and a4 = 0, which make Eq.
(3.12) impossible to be satisfied, since a4 ∕= 1. The remaining parameters
(b1, b2, b3, and b4) must therefore satisfy Eqs. (3.8b, 3.9b, 3.10b) and Eq.
(3.11), i.e., (b4 = 0 ∧ b1 + b2 + b3 = 1) ∧ (b3 ∕= 1 ∨ b1 + b2 ∕= 0) ∧ (b1 +

b3 ∕= 1 ∨ b2 ∕= 0) ∧ (b2 + b3 ∕= 1 ∨ b1 ∕= 0).
Straightforward calculations allow one to deduce that the parame

ters bi (i = 1,2, 3) must lay on the plane b1 + b2 + b3 = 1 with b1 ∕= 0,
b2 ∕= 0, and b3 ∕= 1. The results of our simulations are reported in Fig. 3
(a). The first two rows show the temporal evolution of the uncontrolled
signals R and S, respectively, while the third, fourth and fifth row report
the controlled inputs I1 and I2 and the output O(t), for a1 = a2 = a4 =

b3 = b4 = 0, a3 = 1, b1 = 2, and b2 = − 1. The same color stipulations
have been used as in Fig. 2. The synchronization level is shown in Fig. 3
(b).

3.4. The other logical gates

The procedure described in Section 3.1 can be straightforwardly
applied to implement all other Boolean logical gates. It should be
remarked that, in all cases, the resulting set of equations defines a family
of solutions for the morphing parameters. In Table 3 we have indicated
one of the possible solutions for each of the 16 gates. Furthermore, Fig. 4
reports the quality of computation [Eq. (3.7)] obtained in our simula
tions when the morphing parameters are set to the values reported in
Table 3, and one can see that, in all cases, the computation is performed
in a rather accurate way.

4. Conclusions

In summary, we have given evidence that computation abilities
emerge spontaneously from adaptive synchronization of dynamical
systems. Namely, we have considered an ensemble of spiking neurons
(each one obeying the Hodgkin-Huxley model) subjected to a common
source of noise and interacting in a directed graph via a coupling that
adapts itself to the synchronization level between two input signals.

We have demonstrated that such neurons can be used as the basic
computational units for realizing all the 16 Boolean logical gates with
two inputs and one output. This is realized by a suitable tuning of a set of
parameters which provide therefore a morphing gate, i.e., a logical gate
able to switch from one to another of such 16 logical functions.

Specifically, we have explicitly extracted a possible solution for the
NAND gate, which has the property of functional completeness. This
implies that our framework for computation is able to implement any
Boolean function and/or operation and to perform, in principle, any
computational task as a universal Turing machine.

Our results are of value, in that they potentially enlighten mecha
nisms at the basis of bio-computation processes. Moreover, it is impor
tant to remark that computation is, in our framework, an emergent
feature and as so it is not limited to only binary Boolean logic, but it can
be extended to a larger number of states (by having several reference
signals R, as it was demonstrated in Ref. [10]) in order to perform
multiple-input Boolean and even non-Boolean operations.

Fig. 3. (Colour online) The NAND gate. (a) Numerical simulations of Eq. (2.1)
with a1 = a2 = a4 = b3 = b4 = 0, a3 = 1, b1 = 2, and b2 = − 1. From the first
to the fifth row: time evolution of the R, S, I1, I2, and O(t) signals. Red and blue
colors indicate the R (1-state), S (0-state), and the gray color is used to plot the
output signal during the transition between R and S. The vertical lines separate
the different inputs, i.e., (I1, I2) = (R,R), (I1, I2) = (R, S), (I1, I2) = (S,R), and
(I1, I2) = (S, S). (b) The computation accuracy measure [see Eq. (3.7)]. Red and
blue background colors indicate R (1-state) and S (0-state), respectively. Time is
reported in units of the integration step.

J. Yang et al.

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 162 (2022) 112448

6

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

Authors would like to thank Massimiliano Zanin, David Papo, Irene
Sendiña-Nadal, and Zhang Shenggui for many inspiring discussions. J. Y.
acknowledges support from China Scholarship Council (No.
202106290085). Work partially supported by projects PGC2018-
101625-B-I00 (Spanish Ministry, AEI/FEDER, UE) and M1993 (URJC
Grant). The usage of the resources, technical expertise, and assistance
provided by the supercomputer facility CRESCO of ENEA in Portici
(Italy) is also acknowledged.

References

[1] Boole G. The mathematical analysis of logic. Philosophical Library; 1847.
[2] Shannon CE. A symbolic analysis of relay and switching circuits. Electr Eng 1938;

57(12):713–23.

[3] Vandoorne K, Mechet P, Van Vaerenbergh T, Fiers M, Morthier G, Verstraeten D,
Schrauwen B, Dambre J, Bienstman P. Experimental demonstration of reservoir
computing on a silicon photonics chip. Nat Commun 2014;5(1):1–6.

[4] Haynes ND, Soriano MC, Rosin DP, Fischer I, Gauthier DJ. Reservoir computing
with a single time-delay autonomous boolean node. Phys Rev E 2015;91(2):
020801.

[5] Du C, Cai F, Zidan MA, Ma W, Lee SH, Lu WD. Reservoir computing using dynamic
memristors for temporal information processing. Nat Commun 2017;8(1):1–10.

[6] Pathak J, Hunt B, Girvan M, Lu Z, Ott E. Model-free prediction of large
spatiotemporally chaotic systems from data: a reservoir computing approach. Phys
Rev Lett 2018;120(2):024102.

[7] Gauthier DJ, Bollt E, Griffith A, Barbosa WAS. Next generation reservoir
computing. Nat Commun 2021;12(1):1–8.

[8] Zanin M, Del Pozo F, Boccaletti S. Computation emerges from adaptive
synchronization of networking neurons. PLoS One 2011;6(11):e26467.

[9] Zanin M, Papo D, Sendiña-Nadal I, Boccaletti S. Computation as an emergent
feature of adaptive synchronization. Phys Rev E 2011;84(6):060102.

[10] Zanin M, Papo D, Boccaletti S. Computing with complex valued networks of phase
oscillators. EPL (Europhys Lett) 2013;102(4):40007.

[11] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its
application to conduction and excitation in nerve. J Physiol 1952;117(4):500.

[12] Zhou C, Kurths J. Noise-induced synchronization and coherence resonance of a
hodgkin–huxley model of thermally sensitive neurons. Chaos: an interdisciplinary
Journal of Nonlinear Science 2003;13(1):401–9.

[13] Zhou CS, Kurths J, Allaria E, Boccaletti S, Meucci R, Arecchi FT. Constructive
effects of noise in homoclinic chaotic systems. Phys Rev E 2003;67(6):066220.

[14] Lai YM, Porter MA. Noise-induced synchronization, desynchronization, and
clustering in globally coupled nonidentical oscillators. Phys Rev E 2013;88(1):
012905.

[15] Sheffer HM. A set of five independent postulates for boolean algebras, with
application to logical constants. Trans Am Math Soc 1913;14(4):481–8.

[16] Turing AM. On computable numbers, with an application to the
entscheidungsproblem. Proc Lond Math Soc 1937;s2-42(1):230–65.

Fig. 4. (Colour online) The 16 Boolean logic gates with two inputs and one output. The computation accuracy [Eq. (3.7)] for all the 16 Boolean logical gates. The
morphing parameters used in the simulations are reported in Table 3. Red and blue background colors indicate the R (1-state) and S (0-state) regions, respectively. In
all cases, vertical lines separate the different inputs, i.e., (I1, I2) = (R,R), (I1, I2) = (R, S), (I1, I2) = (S,R), and (I1, I2) = (S, S). If compared with the truth Table 1, one
sees that the computation is performed accurately in all cases. In all plots, time is reported in units of the integration step.

J. Yang et al.

http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150710090259
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712222012
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712222012
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150710120724
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150710120724
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150710120724
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712284810
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712284810
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712284810
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150710133521
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150710133521
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712296396
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712296396
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712296396
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150710269480
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150710269480
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712304784
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712304784
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712144994
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712144994
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712519231
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712519231
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712519075
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712519075
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150710582769
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150710582769
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150710582769
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf0005
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf0005
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712531557
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712531557
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150712531557
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150713061352
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150713061352
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150711454659
http://refhub.elsevier.com/S0960-0779(22)00658-0/rf202207150711454659

	Implementing and morphing Boolean gates with adaptive synchronization: The case of spiking neurons
	1 Introduction
	2 The computational paradigm
	3 Implementation of the Boolean logical gates
	3.1 The general procedure
	3.2 The OR Gate
	3.3 The universal NAND Gate
	3.4 The other logical gates

	4 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

