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Spain 
d Data, Complex Networks, and Cybersecurity Research Institute, Universidad Rey Juan Carlos, 28028, Madrid, Spain 
e Moscow Institute of Physics and Technology, Dolgoprudny 141701, Moscow, Russian Federation 
f CNR - Institute of Complex Systems, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy   

A R T I C L E  I N F O   

Keywords: 
Boolean logical gates 
Synchronization 
Dynamical systems 
Spiking neurons 

A B S T R A C T   

Boolean logic is the paradigm through which modern computation is performed in silica. When nonlinear 
dynamical systems are interacting in a directed graph, we show that computation abilities emerge spontaneously 
from adaptive synchronization, which actually can emulate Boolean logic. Precisely, we demonstrate that a 
single dynamical unit, a spiking neuron modeled by the Hodgkin-Huxley model, can be used as the basic 
computational unit for realizing all the 16 Boolean logical gates with two inputs and one output, when it is 
coupled adaptively in a way that depends on the synchronization level between the two input signals. This is 
realized by means of a set of parameters, whose tuning offers even the possibility of constructing a morphing gate, 
i.e., a logical gate able to switch efficiently from one to another of such 16 Boolean gates. Extensive simulations 
demonstrate the efficiency and the accuracy of the proposed computational paradigm.   

1. Introduction 

Boolean logic is that branch of algebra that defines logical operations 
on variables which may assume only a truth or false value, denoted 
respectively as 1 and 0. Its fundamental concepts and main principles 
were set already in 1847 by George Boole, in his book entitled “The 
Mathematical Analysis of Logic” [1]. But it was only in the early 20th 
century that the American mathematician and electrical engineer 
Claude Shannon described (in his MIT master thesis) the equivalence of 
Boolean logic to the binary properties of electrical switches performing 
logic functions [2], which later became the foundation of digital circuit 
design. Thanks to the successive, continuous, and progressive techno
logical advances in the miniaturization of electronic components (such 
as high-speed circuits, or capacitive or ferromagnetic storage devices), 
all Computer Processing Units (CPU’s) which are today equipping our 
smart-phones, desktops and laptops perform their functions via Boolean 
logic. 

In more recent years, the interest shifted from Boolean computability 

toward defining alternative paradigms of computation, in a trial to un
veil some mechanisms through which information processing takes 
place, for instance, in human or animal brains, and to set new paradigms 
for logical operations in bio-informatics and quantum computing. When 
computation is investigated in connection with dynamical systems and 
neural networks, a fertile approach which has been introduced is that of 
reservoir computing. There, input signals are mapped into higher 
dimensional spaces through the (transient) dynamics of a non-linear 
system (the reservoir).The accuracy and efficiency of this technique in 
performing computation has been demonstrated in several different 
configurations and task resolving problems [3–7]. 

Another proposed method was that of showing that computation 
abilities may emerge spontaneously from adaptive synchronization 
[8–10], when nonlinear dynamical systems are interacting in a directed 
graph via a coupling that adapts itself to the synchronization level be
tween two input signals. In this paper, we follow this latter approach, 
and show how a single dynamical unit, a spiking neuron modeled by the 
Hodgkin-Huxley model [11], can be used as the basic computational 
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unit for realizing all the 16 Boolean logical gates with two inputs and 
one output, and how a suitable tuning of a set of parameters provides 
actually a morphing gate, i.e., a logical gate able to switch from one to 
another of such 16 logical functions. 

The paper is organized as follows: in Section 2 we describe the basic 
model allowing to use the dynamics of a single spiking neuron as a 
computational unit. In Section 3 we show how the 16 logical gates can 
be implemented as a function of 8 morphing parameters, and give two 
illustrative examples: the OR and the universal NAND gates. Finally, 
Section 4 reports our discussions and conclusions. 

2. The computational paradigm 

Our basic computational unit is pictorially sketched in Fig. 1a). It 
consists of two input ports A and B, one output port [O(t)], and a 
dynamical system, namely a neuron whose internal dynamics [ID(t)] 
evolves in time following the Hodgkin-Huxley model 

Cm
dV
dt

= I − Gn − W(VA − V), (2.1)  

where V stands for the membrane potential of the excitable neuron, Cm is 
the membrane capacitance, and I is the ionic membrane current [11]. 

Let us assume to have a networked ensemble of such computational 
units. We also assume that the input arriving to one of these units be 
described by W = W(ΔVAB, μ), i.e., be a function of a coupling param
eter and depends on the difference of the membrane potentials entering 
ports A and B. Furthermore, each neuron is under the influence of i) an 
external source of Gaussian white noise Gn(t) that equally affects all 
units of the ensemble and ii) the existence of a reference signal R(t). The 
1-state is postulated to be that spiking dynamical state which is syn
chronous with R. 

Notice that, in the absence of network interactions, each neuron 
would evolve according to its own internal dynamics. However, due to 
the very well-known phenomenon of noise induced synchronization in 
spiking-like dynamics [12–14], the term Gn(t) will induce the internal 
dynamics ID of all units to synchronize, after a suitable transient, to a 
unique dynamical state S(t), which, from now on, will be associated to 
the 0-state. 

As for VA and VB (i.e., the input voltages entering from ports A and B), 

they can be defined as linear combinations of I1(t), I2(t) (the two input 
signals which will be actually processed by the computational unit), R 
(t), and S(t), i.e., 

VA = a1I1(t) + a2I2(t) + a3R(t) + a4S(t),
VB = b1I1(t) + b2I2(t) + b3R(t) + b4S(t). (2.2) 

On its turn, this leads to the introduction of eight morphing parameters 
(a1,a2,a3,a4,b1,b2,b3,b4) which, as we will see momentarily, define the 
logical operation that the unit is performing on the input signals I1 and 
I2. 

Finally, in the Hodgkin-Huxley model [11], the ionic membrane 
current I comes from the contributions of sodium (Na), potassium (K) 
and other (l) ions’ currencies, such that I = − (Il + IK + INa) where Il =

gl(V − Vl), and INa is defined as 

INa = gNam3h(V − VNa),

dm
dt = αm(1 − m) − βmm,

dh
dt = αh(1 − h) − βhh,

αm =
0.1(V + 25)

e
V + 25

10 − 1

,

βm = 4e
V
18,

αh = 0.07e
V
20,

βh =
1

e
V + 30

10 + 1

,

and IK is given by 

IK = gKn4h(V − VK),

dn
dt = αn(1 − n) − βnn,

αn =
0.01(V + 10)

e
V − 10

10 − 1

,

βn = 0.125e
V
80.

Additionally, the strength W of the coupling to the input signal that 
enters from port A evolves as 

Ẇ = − W(W − w1)(W − w2)+ k[ΔVAB − μ], (2.3)  

where k is an adaptation speed, ΔVAB is a positive function that quan
tifies the synchronization error between the voltages or signals entering 
from port A and B, and μ is a threshold used to filter small synchroni
zation errors coming from random sources of noise. Unless otherwise 
specified, the parameters used in our study are μ = 0.25 and k = 0.3. 

The stability properties of the equilibria of Eq. (2.3) depend on the 
parameters w1,w2,k,μ, and ΔVAB. Panel (b) in Fig. 1 shows the stability 
properties of such equilibria, by considering that Eq. (2.3) can be written 
as Ẇ = − δF/δW with F = W4/4 − (w1 + w2)W3/3+ w1w2W2/2 −

k(ΔVAB − μ)W. 
The adaptive dynamics of W(ΔVAB, μ) induces alternation of syn

chronization and desynchronization processes, in that it drives the 
coupling strength toward zero (or close to zero) or to a positive value. 
Precisely, if VA ≈ VB, then W ≈ 0 and the dynamics of the unit syn
chronizes to the state S(t) induced by influence of the Gaussian white 
noise, i.e., 

O(t) = S(t), VA ≈ VB. (2.4) 

Fig. 1. The computational unit. Schematic representation of the computa
tional unit. (a) The unit is constituted by 1) a neuron whose internal dynamics 
(ID) follows Eq. (2.1), 2) two input ports A and B, and 3) the output port O(t). 
The input voltage entering from port A(B) is given by a linear combination of 
signals I1(t), I2(t), R(t), and S(t), as described in Eq. 2.2. (b) The stability of the 
equilibria points of Eq. (2.3), for μ = 0.25, k = 0.3, w1 = 0.5, and w2 = 1. (c) 
The outputs O(t) when i) VA ≈ VB and ii) VA≉VB. 
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Instead, if VA≉VB, W will converge toward a positive value, and 
therefore the dynamics of the unit will synchronize to that exhibited by 
the voltage entering from port A, i.e., 

O(t) = VA(t),VA≉VB. (2.5) 

It is worth mentioning that the latter condition can be rigorously 
proven only when VA exhibits a dynamics which is compatible with the 
Hodgkin-Huxley model, i.e. when either VA = R or VA = S. In the more 
general case of Eqs. 2.2 i.e., when VA is a generic linear combination of 
I1(t), I2(t), R(t), and S(t) the condition is not automatically guaranteed 
and has to be checked numerically. 

3. Implementation of the Boolean logical gates 

3.1. The general procedure 

The goal is to use the computational unit described in the previous 
section for implementing all the 16 possible logic Boolean operations 
(corresponding to two inputs and one output) whose truth table is re
ported in Table 1. Any of such logic operations returns 0 or 1 depending 
on the values (also 0 or 1) that the two inputs (p, q) are featuring. In our 
framework, the latter sentence means that the output of our neuron 
dynamics will be S(t) (the 0-state) or R(t) (the 1-state), depending on the 
signals I1(t) and I2(t) that, in this case, are playing the role of p and q. As 
it can be seen from Eq. (2.2), there are eight unknown morphing pa
rameters, whose values actually define the specific gate that is being 
implemented. The method for their determination can be described as 
follows. 

The first step is to consider the inputs I1 and I2 of the “true table”. 
Both inputs are necessarily synchronized to either S (and therefore take 
the value 0) or R (and therefore take the value 1). In addition, each pairs 
(I1, I2) defines VA and VB: if (I1, I2) = (R,R) then VA = (a1 + a2 + a3)R +

a4S and VB = (b1 + b2 + b3)R+ b4S, see Table 2, which is valid 
regardless on the specific logic gate to be implemented. 

Once the expressions for the input voltages entering ports A and B 
(VA and VB) are calculated, one immediately obtains a set of equations 
by applying the condition (2.4) (when O(t) = S) or (2.5) (when O(t) =

VA) to each row of Table 2. To illustrate such a latter step, let us suppose 

that the output signal for (I1, I2) = (R,R) is R. Then, condition (2.5) must 
be satisfied, yielding 

O(t) = VA = R → a1 + a2 + a3 = 1 ∧ a4 = 0
VA≉VB → b1 + b2 + b3 ∕= 1 ∨ b4 ∕= 0.

}

(3.1) 

Eventually, the procedure leads to a set of equations whose solution 
is, in principle, not unique. In other words, all the conditions on the 
morphing coefficients defining the 16 possible Boolean logic cases are 
satisfied for a family of solutions. Table 3 reports one of such possible 
solutions for each of the 16 gates. For the sake of clarity and exempli
fication, in the next subsections we illustrate the family of solutions 
corresponding to some specific case, starting from the logical disjunction 
(OR) gate. 

3.2. The OR Gate 

The logical disjunction gate is that gate whose output O(t) is S (0- 
state) when I1 = I2 = S(p = q = 0) and R otherwise. Application of the 
method described in the previous subsection yields the following set of 
equations  

• (I1, I2) = (R,R)→O(t) = R,

a) O(t) = VA→a1 + a2 + a3 = 1 ∧ a4 = 0
b) VA≉VB→b1 + b2 + b3 ∕= 1 ∨ b4 ∕= 0.

}

(3.2)    

• (I1, I2) = (R, S)→O(t) = R,

a) O(t) = VA→a1 + a3 = 1 ∧ a2 + a4 = 0
b) VA≉VB→b1 + b3 ∕= 1 ∨ b2 + b4 ∕= 0.

}

(3.3)    

• (I1, I2) = (S,R)→O(t) = R,

a) O(t) = VA→a2 + a3 = 1 ∧ a1 + a4 = 0
b) VA≉VB→b2 + b3 ∕= 1 ∨ b1 + b4 ∕= 0.

}

(3.4) 

Notice that Eqs. (3.2–3.4) are directly determined from Eq. (2.5). The 
remaining logical operation ((I1, I2) = (S, S)→O(t) = S) leads to two 

Table 1 
The truth table for the 16 Boolean logic gates: contradiction ⊥, logical 
conjunction AND, material no-implication ↛, converse no-implication ↚, 
logical NOR, projection functions p and q, logical bi-conditional XNOR, tautol
ogy T, logical NAND, material implication p → q, converse implication p ← q, 
logical disjunction OR, negations ¬ p and ¬ q, and exclusive disjunction XOR.  

(p, q) ⊥ AND ↛ ↚ 

(1,1) 0 1 0 0 
(1,0) 0 0 1 0 
(0,1) 0 0 0 1 
(0,0) 0 0 0 0 

(p, q) NOR p q XNOR 

(1, 1) 0 1 1 1 
(1, 0) 0 1 0 0 
(0, 1) 0 0 1 0 
(0, 0) 1 0 0 1 

(p, q) ⊺ NAND p→q p←q 

(1, 1) 1 0 1 1 
(1, 0) 1 1 0 1 
(0, 1) 1 1 1 0 
(0, 0) 1 1 1 1 

(p, q) OR ¬p ¬ q XOR 

(1, 1) 1 0 0 0 
(1, 0) 1 0 1 1 
(0, 1) 1 1 0 1 
(0, 0) 0 1 1 0  

Table 2 
General expressions for the voltages VA and VB when the controllable signals I1 

and I2 are R (1-state) or S (0-state).  

(I1, I2) VA VB 

(R, R) (a1 + a2 + a3)R+ a4S (b1 + b2 + b3)R+ b4S 
(R, S) (a1 + a3)R+ (a2 + a4)S (b1 + b3)R+ (b2 + b4)S 
(S, R) (a2 + a3)R+ (a1 + a4)S (b2 + b3)R+ (b1 + b4)S 
(S, S) a3R+ (a1 + a2 + a4)S b3R+ (b1 + b2 + b4)S  

Table 3 
A possible choice of the morphing parameters realizing the different 16 Boolean 
logic gates.  

Gate a1 a2 a3 a4 b1 b2 b3 b4 

⊥ 0 0 0 1 0 0 0 1 
AND 0 1 0 0 − 1 1 0 1 
↛ 1 0 0 0 0 1 0 0 
↚ 0 1 0 0 1 0 0 0 
NOR 0 − 1 1 1 1 0 0 0 
p 1 0 0 0 0 0 0 1 
q 0 1 0 0 0 0 0 1 
XNOR − 1 1 1 0 0 0 2 − 1 
⊺ 0 0 1 0 1 0 0 1 
NAND 0 0 1 0 2 − 1 0 0 
p → q 0 0 1 0 1 − 1 0 1 
p ← q 0 0 1 0 − 1 1 0 1 
OR 0 0 1 0 − 1 − 1 1 2 
¬p 0 0 1 0 1 0 0 0 
¬q 0 0 1 0 0 1 0 0 
XOR − 1 − 1 2 1 0 0 2 − 1  
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separate conditions  

• Condition 2.4, VA ≈ VB 

→a1 + a2 + a4 = b1 + b2 + b4 ∧ a3 = b3. (3.5)    

• Condition 2.5 

a) O(t) = VA→a1 + a2 + a4 = 1 ∧ a3 = 0.
b) VA≉VB→b1 + b2 + b4 ∕= 1 ∨ b3 ∕= 0.

}

(3.6) 

Now, the morphing parameters ai and bi, i = 1,…,4 must satisfy Eqs. 
(3.2–3.4) and either Eq. (3.5) or Eq. (3.6). In particular, one immediately 
sees that the values of ai are completely determined by Eqs. (3.2a, 3.3a, 
3.4a). After straightforward calculations, a possible choice is a1 = 0, 
a2 = 0, a3 = 1, and a4 = 0. Notice furthermore that, for the chosen 
values for ai, Eq. (3.6) has no solutions in that a3 ∕= 0. This implies that 
the remaining parameters (b1, b2, b3, and b4), must satisfy Eqs. (3.2b, 
3.3b, 3.4b) and Eq. (3.5), i.e., (b3 = 1 ∧ b1 + b2 + b4 = 0) ∧ (b4 ∕= 0 ∨
b1 + b2 ∕= 0) ∧ (b1 ∕= 0 ∨ b2 + b4 ∕= 0) ∧ (b2 ∕= 0 ∨ b1 + b4 ∕= 0). 

Simple calculations lead one to deduce that the unknown parameters 
have to lay on the plane π defined by b1 + b2 + b4 = 0 with b1 ∕= 0, 
b2 ∕= 0, and b4 ∕= 0, as it is shown in Fig. 2(a), where the forbidden values 
are marked by the blue, red, and black straight lines l1 − l3. 

Panel (b) of Fig. 2 reports the numerical simulations of Eq. (2.1) with 
the input voltages VA and VB obtained through the morphing parameters 
a1 = a2 = a4 = 0, a3 = b3 = 1, b1 = b2 = − 1, b4 = 2 (i.e., the possible 
solution discussed above). All our simulations have been performed 
using the Euler integration method, with integration time step h = 0.01 
unit time. The full simulation (2*106 integration time step’s units) is 
actually divided in four equally long time intervals (each one made of 
0.5*106 integration steps), which are separated with vertical dashed 
lines. Each of such intervals corresponds to one of the four different 
settings of the input signals ((I1, I2) = (R,R), (I1, I2) = (R, S), (I1, I2) =

(S,R), and (I1, I2) = (S, S)), as specified on top of the curve of O(t) (last 
row of panel b). Furthermore, red and blue colors are used to refer to the 
R (1-state) and S (0-state) signals, respectively. It is seen that the 
computational unit correctly processes all logical operations, with a 
rather little transient needed to pass from one state to the other (visible 
in the two gray regions of the time evolution of O(t) located at the very 
beginning of the simulation and after 1.5*106 integration steps), which 
is the time needed by the system from desynchronizing from a dynam
ical state and to re-synchronize to the other. 

In order to quantify the accuracy, or precision, with which the 
computation task is performed, one can adopt the following procedure. 
One first fixes an observation time window Δ1t (in our case Δ1t = 600 
integration time steps), on which the accuracy measure 0 ≤ Δ(x, y, t) ≤
1 is defined in the interval [t, t + Δ1t]. On its turn, Δ(x, y, t) is calculated 
as follows. Initially, the x signal is taken as a reference, and 
num(x(t) , y(t) ) is calculated as the number of spikes (in the interval 
[t, t + Δ1t]) featured by the signal x (the local maxima in x(t) which 
exceed a given threshold) that correspond also to spikes featured by the 
signal y around the same spiking time (i.e., for each spike in x at time tj ∈
[t, t + Δ1t] one searches for the existence of a spike in y in the interval 
[
tj − Δ2t, tj + Δ2t

]
, with Δ2t = 100 integration time steps in our case). 

The same process is repeated, taking y as reference signal, for the 
calculation of num(y(t) , x(t) ). Let us furthermore denote with ns(x(t) )
and ns(y(t) ) the total number of spikes featured by the signals x and y, 
respectively, within the interval [t, t + Δ1t]. Then, one has Δ(x, y, t) =
num(x(t) ,y(t) )+num(y(t) ,x(t) )

ns(x(t) )+ns(y(t) ) . 
In our case, we consider 

Sync(t) ≡ Δ(O(t) ,R, t), (3.7)  

which implies Sync(t) ~ 1 when O(t) = R and Sync(t) ~ 0 when O(t) = S. 
Fig. 2(c) reports Sync(t) for our simulations of the OR gate, from which 

and one can see that the computation is indeed quite accurate. 

3.3. The universal NAND Gate 

The logical gate NAND is a gate of particular importance, since it has 
the property (together with the NOR gate) of functional completeness, 
and for this it is called universal. It is possible, indeed, to demonstrate 
that any Boolean function can be implemented using only NAND gates 
[15], and therefore implementing efficiently the NAND operation 

Fig. 2. (Colour online) The OR gate. (a) Plot of the family of solutions avail
able for the coefficients b1, b2, and b4. Red, blue, and black straight lines rep
resents the forbidden values for {b1, b2, b4}, respectively, in particular b1 ∕= 0, 
b2 ∕= 0, and b4 ∕= 0. (b) Numerical simulations of Eq. (2.1) for a1 = a2 = a4 =

0, a3 = b3 = 1, b1 = b2 = − 1, b4 = 2. The panel reports the time evolution of 
the R(t) (first row), S(t) (second row), I1(t) (third row), I2(t) (fourth row), and O 
(t) (fifth row) signals. Red and blue colors are used to plot the signals which are 
synchronized to R(t) (1-state), and S(t) (0-state), respectively. The gray color is 
used to plot the signal during the transition between the two states. The vertical 
lines separate time intervals where different inputs are used, i.e., (I1, I2) =

(R,R), (I1, I2) = (R, S), (I1, I2) = (S,R), and (I1, I2) = (S, S). (c) The computa
tion accuracy measure [see Eq. (3.7)]. The red and blue background colors stays 
for the R and S state featured by the signal O(t), respectively. Time is reported in 
units of the integration step. 
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corresponds, in practice, to being able of performing any computational 
task, i.e., of constructing a universal Turing machine [16]. The NAND 
gate produces an output signal O(t) which is S (0-state) for I1 = I2 = R 
(p = q = 1) and R otherwise, as it can be seen in Table 1. 

With the same procedure adopted in the previous subsection, the 
following set of equations is obtained for the morphing coefficients:  

• (I1, I2) = (S, S)→O(t) = R,

a) O(t) = VA→a3 = 1 ∧ a1 + a2 + a4 = 0
b) VA≉VB→b3 ∕= 1 ∨ b1 + b2 + b4 ∕= 0.

}

(3.8)    

• (I1, I2) = (R, S)→O(t) = R,

a) O(t) = VA→a1 + a3 = 1 ∧ a2 + a4 = 0
b) VA≉VB→b1 + b3 ∕= 1 ∨ b2 + b4 ∕= 0.

}

(3.9)    

• (I1, I2) = (S,R)→O(t) = R,

a) O(t) = VA→a2 + a3 = 1 ∧ a1 + a4 = 0

b) VA≉VB→b2 + b3 ∕= 1 ∨ b1 + b4 ∕= 0.

}

(3.10) 

The remaining logical operation (I1, I2) = (R,R)→O(t) = S, is guar
anteed for either one of the two following conditions:  

• Condition 2.4, VA ≈ VB 

→a1 + a2 + a3 = b1 + b2 + b3 ∧ a4 = b4. (3.11)    

• Condition 2.5, 

a) O(t) = VA→a1 + a2 + a3 = 0 ∧ a4 = 1.
b) VA≉VB→b1 + b2 + b3 ∕= 0 ∨ b4 ∕= 1.

}

(3.12) 

Therefore, the parameters ai and bi, i = 1,…,4, must satisfy Eqs. 
(3.8–3.10) and no matter which one of Eqs. (3.11,3.12). Once again, the 
coefficients of VA are completely determined by Eqs. (3.8a, 3.9a, 3.10a). 
A possible choice is a1 = 0, a2 = 0, a3 = 1, and a4 = 0, which make Eq. 
(3.12) impossible to be satisfied, since a4 ∕= 1. The remaining parameters 
(b1, b2, b3, and b4) must therefore satisfy Eqs. (3.8b, 3.9b, 3.10b) and Eq. 
(3.11), i.e., ( b4 = 0 ∧ b1 + b2 + b3 = 1) ∧ (b3 ∕= 1 ∨ b1 + b2 ∕= 0 ) ∧ (b1 +

b3 ∕= 1 ∨ b2 ∕= 0) ∧ (b2 + b3 ∕= 1 ∨ b1 ∕= 0).
Straightforward calculations allow one to deduce that the parame

ters bi (i = 1,2, 3) must lay on the plane b1 + b2 + b3 = 1 with b1 ∕= 0, 
b2 ∕= 0, and b3 ∕= 1. The results of our simulations are reported in Fig. 3 
(a). The first two rows show the temporal evolution of the uncontrolled 
signals R and S, respectively, while the third, fourth and fifth row report 
the controlled inputs I1 and I2 and the output O(t), for a1 = a2 = a4 =

b3 = b4 = 0, a3 = 1, b1 = 2, and b2 = − 1. The same color stipulations 
have been used as in Fig. 2. The synchronization level is shown in Fig. 3 
(b). 

3.4. The other logical gates 

The procedure described in Section 3.1 can be straightforwardly 
applied to implement all other Boolean logical gates. It should be 
remarked that, in all cases, the resulting set of equations defines a family 
of solutions for the morphing parameters. In Table 3 we have indicated 
one of the possible solutions for each of the 16 gates. Furthermore, Fig. 4 
reports the quality of computation [Eq. (3.7)] obtained in our simula
tions when the morphing parameters are set to the values reported in 
Table 3, and one can see that, in all cases, the computation is performed 
in a rather accurate way. 

4. Conclusions 

In summary, we have given evidence that computation abilities 
emerge spontaneously from adaptive synchronization of dynamical 
systems. Namely, we have considered an ensemble of spiking neurons 
(each one obeying the Hodgkin-Huxley model) subjected to a common 
source of noise and interacting in a directed graph via a coupling that 
adapts itself to the synchronization level between two input signals. 

We have demonstrated that such neurons can be used as the basic 
computational units for realizing all the 16 Boolean logical gates with 
two inputs and one output. This is realized by a suitable tuning of a set of 
parameters which provide therefore a morphing gate, i.e., a logical gate 
able to switch from one to another of such 16 logical functions. 

Specifically, we have explicitly extracted a possible solution for the 
NAND gate, which has the property of functional completeness. This 
implies that our framework for computation is able to implement any 
Boolean function and/or operation and to perform, in principle, any 
computational task as a universal Turing machine. 

Our results are of value, in that they potentially enlighten mecha
nisms at the basis of bio-computation processes. Moreover, it is impor
tant to remark that computation is, in our framework, an emergent 
feature and as so it is not limited to only binary Boolean logic, but it can 
be extended to a larger number of states (by having several reference 
signals R, as it was demonstrated in Ref. [10]) in order to perform 
multiple-input Boolean and even non-Boolean operations. 

Fig. 3. (Colour online) The NAND gate. (a) Numerical simulations of Eq. (2.1) 
with a1 = a2 = a4 = b3 = b4 = 0, a3 = 1, b1 = 2, and b2 = − 1. From the first 
to the fifth row: time evolution of the R, S, I1, I2, and O(t) signals. Red and blue 
colors indicate the R (1-state), S (0-state), and the gray color is used to plot the 
output signal during the transition between R and S. The vertical lines separate 
the different inputs, i.e., (I1, I2) = (R,R), (I1, I2) = (R, S), (I1, I2) = (S,R), and 
(I1, I2) = (S, S). (b) The computation accuracy measure [see Eq. (3.7)]. Red and 
blue background colors indicate R (1-state) and S (0-state), respectively. Time is 
reported in units of the integration step. 
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