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In ourmore andmore interconnectedworld, a specific risk is that of a cyber-epidemic (or cyber-pandemic), pro-
duced either accidentally or intentionally, where a cyber virus propagates from device to device up to
undermining the global Internet systemwith devastating consequences in terms of economic costs and societal
harms related to the shutdown of essential services. We introduce a compartmental model for studying the
spreading of a malware and of the awareness of its incidence through different waves which are evolving on
top of the same graph structure (the global network of connected devices). This is realized by considering vecto-
rial compartments made of two components, the first being descriptive of the state of the device with respect to
the new malware's propagation, and the second accounting for the awareness of the device's user about the
presence of the cyber threat. By introducing suitable transition rates between such compartments, one can
then follow the evolution of a cyber-epidemic from the moment at which a new virus is seeded in the network,
up to when a given user realizes that his/her device has suffered a damage and consequently starts a wave of
awareness which eventually ends up with the development of a proper antivirus software. We then compare
the overall damage that a malware is able to produce in Erdős-Rényi and scale-free network architectures for
both the case in which the virus is causing a fixed damage on each device and the case where, instead, the
virus is engineered tomutate while replicating from device to device. Our result constitutes actually the attempt
to build a specific compartmental model whose variables and parameters are entirely customized for describing
cyber-epidemics.

© 2022 Elsevier Ltd. All rights reserved.
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The study of compartmentalmodels started already at the beginning
of the 20th century [1–4], and soon became a subject of great, recent, in-
terest that has attracted the attention of many epidemiologists. In anal-
ogy with cellular automata [5], these models consider a networked
population of individuals, each one of them described by a state
whose discrete values are labeled by compartments. Individuals may
then progress between compartments through given transition proba-
bilities, which allow the time-discrete evolution of the population dur-
ing, for instance, the spreading of infectious diseases and/or rumors
and social contagion. Physicists became interested in these models
when itwas pointed out that epidemiological processes can be regarded
as percolation like processes [6].
os, Calle Tulipán s/n, Móstoles,
Starting from the seminal work by Pastor–Satorras and Vespignani
[7], the last twenty years have seen a burst of activity on understanding
the effects of a network topology on the rate and patterns of the disease
spread. A lot of studies have tried indeed to predict things such as the
total number of infected individuals, or the duration of an epidemic,
and to estimate various relevant parameters such as the reproductive
number. Moreover, and especially in relation to the recent COVID19
world pandemic crisis, thesemodels have been used to assess the effects
of public health interventions and/or to quantify the efficiency of issuing
a limited number of vaccines in a given population [8,9].

In particular, the SIR model [10,11] is one of the simplest compart-
mental models, and describes the evolution of diseases resulting in the
immunization or death of the infected individuals. The model assumes
that, at each time, each individual can be in one of three possible com-
partments: susceptible (denoted by S), infected (I), or removed (R).
The susceptible units of the network are those healthy persons that
can develop the disease if they get in contact with infected individuals.
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Table 1
Summary of the parameters involved in the model.

Symbol Description Range Chosen value

τ Infection rate [0,1] 0.0055
ν (Contact-based) awareness parameter [0,1] 0.011
μ0 (Spontaneous or local) awareness parameter [0,1] 0.011
γ Recovery parameter [0,1] 0.03
ρ0 Fraction of population initially infected [0,1] 0.01
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Once an individual contracts the infection, it moves into the infected
(and infective) compartment, and then, after some time, into the re-
moved compartment, which indicates that the individual cannot catch
the disease anymore (or passes it on), due to a lasting resistance con-
ferred by the recovery (or because it dies).

Just as a viral pandemic proliferates inside a population of individ-
uals, a ransomware (or other malware) software can spread within
the global Internet. As technology is today globally interconnected, a
cyber virus can indeed propagate from device to device, with devastat-
ing consequences. Cyber attacks on infrastructure services are currently
on the rise, and hackers are exploiting the use of the Internet of
Things which creates millions of new vulnerability points in all critical
infrastructures. A specific risk is therefore the occurrence of a cyber-
epidemics (or cyber-pandemic), produced either accidentally or inten-
tionally, and undermining the global Internet system up to the need of
its lockdown. The World Economic Forum [12] predicted that a single
daywithout Internetwould cost around 50billionUSDglobally, without
even considering the societal harm related to the shutdown of essential
services.

Since the first attempt to describe the spreading of computer viruses
[13], several other studies have tried to adapt classical, global or
networked, compartmental models with the aim not only of investigat-
ing the propagation cycle of cyber viruses but also to evaluate the
effectiveness of possible security countermeasures [14–20]. There is,
however, a fundamental difference between the spreading of a biologi-
cal virus within a population and a cyber-epidemic. In the former case,
indeed, each individual is passive actor of the game, contracting the dis-
ease and recovering from it due to the action of its immune system. The
latter case can instead be seen as the struggle between two kind of ac-
tors: the ones who intentionally program the malicious code and try
to seed it within the global Internet (that we will call from here after
as the “bad team”) and those (that we will call from here after as the
“good team”) who are instead engaged in programming the corre-
sponding antivirus code after becoming aware of the presence of the
newmalware in the network, and in spreading it to all network's users.

In this paper, we introduce a novel compartmental model, whose
variables and parameters are entirely customized for the case of a
cyber-epidemic. We will then compare the spreading of a malware on
top of Erdős-Rényi (connected) and scale-free network architectures
for both the case in which the virus is producing a fixed damage on
each device and the case where, instead, the virus is engineered to
mutate while replicating from device to device.

In our model, both the spreading of malware and awareness occurs
through waves developing and evolving within the same graph
structure (the global network of connected devices). Notice that this
differentiates our approach from that of Ref. [21] which describes the
dynamical interplay of a virus and of an awareness level on top of mul-
tiplex networks. In our case, instead, we consider two dimensional
vectorial compartments, the first component of which being the state
of the device with respect to the newmalware's propagation (S for sus-
ceptible, I for infected, and H for healed) while the second component
accounts for the awareness of the device's user about the presence of
the new virus (“a” for aware and “u” for unaware). Transition rates be-
tween such vectorial compartments are then defined to properlymodel
the behavior of a cyber-epidemic from the moment at which a new
(i.e., yet unknown to the good team) virus is seeded in the network by
the bad team, up to the moment at which a given user realizes that
his/her device has suffered a damage and consequently starts a wave
of awareness which eventually ends up with reaching one of the units
of the good team. Then, the good team develops a proper antivirus
software that the aware units download from the net for healing their
devices.

In otherwords, the frameworkwe adopt is somewhat like a vectorial
version of the SIRmodel, where each susceptible or infected node is also
either aware or unaware of the existence of the virus. This means that
one has four possible states before recovery: susceptible-unaware
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(Su), susceptible-aware (Sa), infected-unaware (Iu), and infected
aware (Ia), see Fig. 1. Finally, the recovery or healed status (Ha) can be
reached only by a node (a device) whose user, after getting aware of
the existence of the virus, applies a suitable operation on the system,
for instance installing an antivirus.

The transition probabilities between such states are mediated
by four fundamental parameters, whose meaning is directly linked to
specific processes occurring during a cyber epidemic:

• τ is the equivalent of the standard infection parameter in the SIR
model. Here, it accounts for the contact-based transition rate from
the susceptible to the infected status. In the case of Sa individuals, a
different infection rate is used (τ' = τ/10), due to the fact that
awareness makes individuals reluctant to be in contact with infected
sites/computers (for instance, email phishing campaigns normally
raise alarms in media, making people more concerned about clicking
on dubious links);

• ν is the rate of spreading of awareness due to network contacts,
i.e., the parameter who rules the contact-based transition from the
unaware to the aware status;

• μ accounts for the individual awareness parameter, i.e., the rate at
which an infected unaware user actually notices that his/her device
has suffered a damage (larger than a given threshold) due to having
been infected by a new cyber virus, and consequently turns to the in-
fected aware state and simultaneously starts signaling the existence of
a new virus circulating in the net;

• γ is the recovery/healing parameter, i.e., the rate at which an aware
(either susceptible or infected) individual gets healed by purging of
the system via the installation of a proper antivirus.

Two types of transitions may therefore occur in our model: contact-
based transitions and individual (or contact-independent) ones. In indi-
vidual transitions, the change of state is fully independent of the states
of the rest of the devices, but is only due to the perception of the damage
caused to the device (in the case of the passage from the state Iu to the
state Ia at rate μ) and/or the user's interest in using an antivirus (in the
case of the passage from any aware state to the state Ha at rate γ).

In our simulations, we initially prepare the network with all its units
in the Su state. Then, a newmalware is seeded by the bad team, i.e., one
node (or a small group of nodes) is turned to the state Iu, and contact
propagations start, yielding an initial spreading of the virus. At a
second time, i.e., when one of the infected users gets aware of the dam-
age produced by the cyber virus in its device, a second wave (which
spreads awareness in the same network) starts due to an initial local
transition from the state Iu to the state Ia. Eventually, the entire cycle
of the cyber-epidemic takes place, with an end state of the network
where all its units are in the Ha state [22].

In order to properlymonitor howdamaging a cyber-epidemic can be
in a network of devices, we introduce as a further parameter the dam-
age d∈ [0,1] causedwhen a device is infected by the virus, andwequan-
tify the total damage caused to the system as the sum of the damages
made to each single device. Finally, as the μ parameter is totally related
to the damage produced in a device, it is appropriate to define it to be
proportional to the d parameter. In addition, in order to account for
the fact that there may be situations where the virus damage is not



Fig. 1. (Color online) The compartmentalmodel for cyber-epidemics. Units of the network
can be in one of four possible states before recovery: susceptible-unaware (Su),
susceptible-aware (Sa), infected-unaware (Iu), and infected aware (Ia). The recovery or
healed status (Ha) is by nodes that, after getting aware of the existence of the malware,
applies a suitable operation on the system. Orange (blue) arrows stand for contact-
based (localized spontaneous) transitions.

Fig. 2. (Color online) The typical cycle of a cyber-epidemic. The total number of Su, Sa, Iu, Ia
and Ha units (see legend for color code) vs. time, during a typical cyclic evolution of the
virus. Simulations refer to an ensemble average over 1000 realization of an Erdős-Rényi
random network with N = 1000 nodes, average degree 〈k〉 = 10, threshold θ = 0.2 and
constant damage d = 0.3. See Table 1 for the values of the other parameters used. It is
possible to distinguish three different phases of the cycle: an initial phase of no
awareness where more and more nodes pass from the Su to the Iu state; a second stage,
the awareness phase starting at around t ~ 30, when a given Iu node becomes Ia and
ignites an awareness wave so that the total number of both Ia and Sa grows by contact
transitions; a final healing stage where all nodes turn to the Ha state.
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perceived at all by the user and the device continues to function
correctly even with high damage or, on the opposite, cases (like, for in-
stance, in high sensitivity infrastructures) where just a little damage
constitutes an alarm on the existence of the virus, the parameter μ is
activated depending on whether it exceeds a threshold θ ∈ [0,1]. The
latter lead to the following expression with μ0 ∈ [0,1]:

μ ¼ μ0 d−θð Þ if d ≥ θ;
0 if d < θ:

�

As for the threshold θ, the higher it is the more damage individual
systems can withstand before realizing the presence of the virus. If the
threshold is at a low value (as, for instance, in high security infrastruc-
tures or clusters) a damage as small as the deletion of a couple of files
in the system is already sufficient to trigger an alarm. If, instead, the
threshold is high, then a few files missing would be taken as an error,
but a large system failure would actually be understood as the conse-
quence of a virus. Lower thresholds are therefore always preferable for
protecting an overall system from damage, but in practice they are
overcostly as they need more investments in infrastructure protection
and even more employees to maintain it.

Fig. 2 reports the total number of Su, Sa, Iu, Ia and Ha units vs. time
during a typical cyclic evolution of the virus, for an Erdős-Rényi
random network of N = 1000 nodes, with average degree 〈k〉 = 10,
θ = 0.2, τ = 0.0055, ν = 0.011, μ0 = 0.011, γ = 0.03 and ρ0 = 0.01
(being ρ0 the fraction of population initially infected, which therefore
means that the virus is initially seeded in 10 devices). From the figure,
one can clearly distinguish the three different stages of the cycle: an
initial stage of no awareness where more and more nodes are infected
(passing from the Su to the Iu state), the beginning of the awareness
phase (around t ~ 30) when a given Iu node becomes Ia and starts an
awareness wave so that the total number of both Ia and Sa grows by
contact transitions, and the final healing stage where all nodes turn to
the Ha state.

In order to quantify the total injury produced in the system by the
cyber virus during its cycle of evolution, we introduce the quantity
D/N accounting for the normalized sum of the individual damages
suffered by each node. Its value is obtained with multiplying d by the
total number of infected nodes during a cycle (regardless on whether
they are in the state Iu or Ia), and dividing by N. When d is below the
threshold θ the presence of the cyber threat is never detected and, as a
consequence, the virus will propagate to all nodes in the network
yielding D/N=(N · d)/N= d. A nontrivial behavior is instead observed
for all values d > θ, where the awareness mechanism is activated at a
given time in the cycle.
3

As a first step, we face the problem of assessing how different
topologies of the network react to a virus (causing a constant damage
d when infecting a device) at different values of the threshold θ.

With the aim of comparing homogeneous and heterogeneous topolo-
gies Fig. 3 illustrates the results of our simulations, and reports D/N vs.
d for Barabási-Albert [23,24] scale free and Erdős-Rényi [25] random net-
works, at different values of themean degree 〈k〉 and different values of θ.
A first, even though rather trivial, evidence is that the global damage is
higher for higher values of θ, indicating that the harder it is for nodes to
become aware, the more free is the cyber threat to propagate without
countermeasures.Moreover, a noticeable difference is observed regarding
the position of themaximum damage that a virus can deal in a given sys-
tem, being it located at d = 1 for low thresholds and at d = θ for high
thresholds. Finally, and more remarkably, the results shown in Fig. 3
allow to conclude that Barabási-Albert scale free (i.e., heterogenous) net-
works are more fragile, and more sensitive to the spreading of viruses
causing a fixed damage than Erdős-Rényi (i.e., homogenous) ones, so
that a first conclusion is that engineering a network in a scale free topol-
ogy renders it more vulnerable to cyber-epidemics, in linewithwhatwas
already known about their structural fragility against intentional attacks
[26]. On the other hand, it is seen that, regardless on the specific network
topology, the higher is the average degree the higher is the graph's vul-
nerability. Already at this qualitative level, a first conclusion can be
drawn: if the threshold is high, inflicting maximal injury to a system re-
quires some tuning on the side of the bad team (the virus designers),
with the ideal value of the damage to be caused at each single device
being that of the threshold. On the opposite, if the threshold is low, then
a high base damage virus is able to inflict a huge damage on the network
regardless on the specific threshold value.

We then move to consider the effects of a damage which is variable
in time, that is, d = d(t), where t is a discrete time measuring the
number of iterations in the model (a time unit being the lapse from
one to another iteration of the networks' nodes). Namely, starting at
d0 = 0.1, the damage is increased in times as

d tð Þ ¼ d0eεt

1þ d0 eεt � 1ð Þ , ð1Þ



Fig. 3. Effects of network topology.D/N vs. d, for different choices of networks (Barabási-Albert or Erdős-Rényi) ofmeandegree 6, 10 and 14 (see legend at the bottomof thefigure for color
code) and different values of the threshold θ: a) θ = 0.2, b) θ = 0.4, and c) θ = 0.6.
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for some ε > 0. Note that the function d(t) is the logistic function with
growth rate ε, initial population d0 and carrying capacity 1, so that it
displays an exponential behavior (d(t) ≈ d0e

εt) when t ≈ 0 and
approaches 1 when t → ∞. Choosing the logistic function as the
damage function is ideal in the model, as the intentions of the bad
team is precisely that of spawning as much damage as possible before
the virus is detected by users.

Fig. 4 reports D/N vs. ε, for both Erdős-Rényi (left column) and
Barabási-Albert (right column) at different mean degrees and different
values of θ. For comparison, in the same figure the maximum possible
Fig. 4. (Color online) Effects of time varying damage.D/N vs. ε (see text for definition), for
different choices of networks (Erdős-Rényi in the left column and Barabási-Albert in the
right column) of mean degree 6, 10 and 14 (see legend at the bottom of the figure for
color code) and different values of the threshold θ: a, b) θ=0.2, c, d) θ=0.6. In all panels
themaximal injuries achieved by afixed strength virus (the globalmaximumof the curves
of Fig. 3) are reported with horizontal dashed lines.
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injury caused to the system by a fixed strength virus is reported by hor-
izontal dashed lines. One can easily see that, as a function of ε, D/N dis-
plays an initialmonotonic growth and an asymptotic behavior for ε→ 1,
featuring a local maximum for some 0 < ε < 1. Remarkably, one can
notice that for low values of the threshold, there is a range of ε forwhich
the amount of injury inflicted to the system is actually higher than the
maximum at constant base damage. This implies that the bad team
has the option of causing a higher injury on a high security system by
just engineering the virus with an internal clock, which would progres-
sively increase the damage inflicted to infected devices. On the contrary,
at high values of θ (i.e., when security is not so demanding), viruses
whose base damage is given by Eq. (1) cause an overall injury which
is comparable with the maximal value at constant damage strength.

Finally, we briefly describe the scenario in which the virus is
engineered to increase its base damage not due to an internal clock,
but due to a mutation that occurs all the times the virus is transmitted
from an infected device to a susceptible one. This is tantamount to say
that, when a device is infected at time t, the damage caused depends
on the story of the specific strain of the infecting virus. In other words,
Eq. (1) is substituted by

d tið Þ ¼ d0eεti

1þ d0 eεti � 1ð Þ with d0 ¼ 0:1,

where the discrete variable ti is now the number of times that the
infective strain propagated before reaching the actual device. Therefore,
the damage caused is now explicitly a function of the specific history of
the strain propagation. Moreover, for the Iu → Ia local transition, the
parameter μ is determined by looking at the base damage received by
the device at the moment of its contagion.

The results are reported in Fig. 5, where D/N is plotted vs. ε for the
case of a mutating virus. One can see that the emerging qualitative sce-
nario is similar to that of time varying viruses, in that one has an initial
growth and an asymptotic behavior with a local maximum in between.
Moreover, we again observe that for low thresholds a range of ε values
exists for which the injury to the system is higher than the case of a con-
stant base damage whereas at high thresholds a virus with fixed base
damage ismore harmful. The comparisonwith Fig. 4, however, suggests
that a virus with increasing base damage over time always produces a
larger injury to the system than mutating virus.

In conclusion, we have introduced a novel compartmental model
able to describe the spreading of a malware (and of the awareness of
its incidence) on a given network of devices. The novelty of our ap-
proach consists in having considered vectorial compartments made of
two components, the first being descriptive of the state of the device



Fig. 5. (Color online)Mutating virus.D/N vs. ε (see text for definition), for different choices
of networks (Erdős-Rényi in the left column and Barabási-Albert in the right column) of
mean degree 6, 10 and 14 (see legend at the bottom of the figure for color code) and dif-
ferent values of the threshold θ: a, b) θ=0.2, c, d) θ=0.6. For comparison, in all panelswe
report also the curves of Fig. 4 (with dashed lines) and the global maximum of the curves
of Fig. 3 (with horizontal dotted lines).
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with respect to the virus propagation, and the second accounting for the
awareness of the device's user about the presence of the cyber threat.
The model allows following the evolution of a cyber-epidemic from
the moment at which a malware is seeded in a network of devices,
until when a given user gets aware of the incurred damage and starts
a wave of awareness which eventually leads to the development of a
proper antivirus software. We then illustrate the overall injury that a
malware is able to produce in Erdős-Rényi and scale-free architectures
for both the case in which the virus is causing a fixed damage on each
device and the case in which, instead, the virus is engineered to mutate
while replicating from device to device. As our world is more and more
interconnected, a cyber-epidemic is a dangerous threat, where a cyber
virus would undermine the global Internet system with catastrophic
consequences. Our results are the attempt to describe, in a customized
way, the evolution of such pandemic, and our conclusion may give
hints on how to properly engineer a network of devices to minimize
its vulnerability.
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