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Period-doubling bifurcations and islets of stability in two-degree-of-freedom Hamiltonian systems
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In this paper, we show that the destruction of the main Kolmogorov-Arnold-Moser (KAM) islands in two-
degree-of-freedom Hamiltonian systems occurs through a cascade of period-doubling bifurcations. We calculate
the corresponding Feigenbaum constant and the accumulation point of the period-doubling sequence. By means
of a systematic grid search on exit basin diagrams, we find the existence of numerous very small KAM islands
(“islets”) for values below and above the aforementioned accumulation point. We study the bifurcations involving
the formation of islets and we classify them in three different types. Finally, we show that the same types of islets
appear in generic two-degree-of-freedom Hamiltonian systems and in area-preserving maps.
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I. INTRODUCTION

One of the most remarkable characteristics of conserva-
tive nonlinear systems, such as area-preserving maps and
nonintegrable Hamiltonians, is the existence of Kolmogorov-
Arnold-Moser (KAM) tori surrounding stable periodic orbits.
Embedded in a chaotic sea, KAM tori constitute regions (“is-
lands”) of stability where periodic and quasiperiodic motions
take place. Nonetheless, the inner structure of KAM islands is
anything but simple. As shown by the Poincaré-Birkhoff theo-
rem [1,2], resonant islands are created around the main stable
periodic orbit. Near these resonant islands, chaotic orbits can
exist and form an inner chaotic domain [3]. As a result, chaotic
and regular trajectories coexist within KAM islands, and they
are separated from the chaotic sea by a boundary known as the
“last KAM curve” [4].

As the parameters of the system are modified, the struc-
ture of the KAM islands evolves in a complex manner. Even
though the presence of KAM islands is directly explained by
the existence of stable periodic orbits, they undergo an infinite
set of bifurcations that generate a fractal treelike structure that
has been first shown in a paper by Greene et al. [5]. The
ramifications appearing in the top of these structures are a
consequence of a sequence of period-doubling bifurcations
similar to the ones studied by Feigenbaum in the case of dissi-
pative systems [6]. This analogous behavior observed in both
dissipative and conservative systems lead to intensive efforts
to numerically characterize the sequences of period-doubling
bifurcations in conservative systems, so much so that during
the early 1980s within only a few years different authors
obtained that in two-dimensional area-preserving maps the
Feigenbaum constant takes the value δH ≈ 8.721 [7–9] (we
recall that the dissipative Feigenbaum constant is δ ≈ 4.669).
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Some years later, these results have been extended to four-
dimensional volume-preserving maps [10].

In the case of time-independent Hamiltonian systems, the
literature is filled with countless articles studying periodic
orbits and their close relation with KAM tori. Some early
works are [11–15], while more recent research can be found
in [16–18]. Undoubtedly, one of the disadvantages of Hamil-
tonian systems when compared with discrete ones is the
computational cost of the numerical simulations and, in this
context, the difficulty to accurately detect periodic orbits.
As a consequence, numerous research works have focused
the attention on developing new methods and techniques to
search for periodic orbits [19–22]. Nonetheless, despite the
wide variety of techniques for computing periodic orbits, the
period-doubling cascades have not been exhaustively explored
in two-degree-of-freedom Hamiltonian systems and, as far
as we know, the conservative Feigenbaum constant has not
been obtained in this kind of systems. In this paper, we use
a two-degree-of freedom-Hamiltonian system to describe the
destruction of the main tori in terms of the period-doubling
cascade. We also calculate the conservative Feigenbaum con-
stant, obtaining the same value that was found in discrete
conservative systems, as indicated above.

Based on previous research, one might assume that the
structure and evolution of KAM islands can be fully under-
stood by studying the bifurcations of the main stable periodic
orbit. Additionally, by numerically obtaining the accumu-
lation point (also known as the Feigenbaum point) of the
period-doubling sequence, the exact parameter value at which
the last KAM tori are destroyed can be determined. Over this
value, the reign of chaos begins. However, research conducted
in the 1980s discovered that typical area-preserving maps
exhibit very small KAM islands (“islets”) even for param-
eter values significantly above the accumulation point [23].
This finding was corroborated years later by Contopoulos and
Grousouzakou [24], who found that these islets of stability
were not related to the main tori, but instead seemed to appear
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in saddle-node bifurcations out in the chaotic sea. Recently,
islets of stability have also been found in two-degree-of-
freedom Hamiltonian systems [25]. Moreover, it has been
demonstrated through computer-assisted proofs that they are
not a product of spurious numerical simulations [17].

Although islets occupy a small volume in phase space and
appear in a reduced range of parameter values, their exis-
tence implies that the system dynamics is not fully governed
by chaos. Moreover, even small KAM islands can influence
nearby chaotic trajectories through their stickiness [26,27],
as well as affect global system properties such as transport
[28,29] and decay correlations [30]. In this paper, we have
conducted a comprehensive search for islets and we have
found many of them below and above the accumulation point.
After carefully analyzing the bifurcations involved in their
formation, we have classified them into three different types.

The paper is organized as follows. First, in Sec. II, we
introduce the model used in this paper and the methods for
computing periodic orbits and their stability. The description
of the destruction of the main tori, together with the numer-
ical computation of the conservative Feigenbaum constant,
is shown in Sec. III. The analysis and classification of islets
are carried out in Sec. IV. To illustrate the generality of the
previous results, in Sec. V we show that the same types of
islets also appear in different Hamiltonian systems and even
in the case of area-preserving maps. Finally, in Sec. VI, we
present the main conclusions of this paper.

II. MODEL DESCRIPTION

For this research, we chose the Hénon-Heiles system [31]
as our model. This system is a well-known example of a
two-degree-of-freedom Hamiltonian and has been extensively
studied in the field of nonlinear dynamics. It was named after
the French astronomer Hénon and the American astrophysicist
Heiles, who used it in 1964 to search for the third integral of
motion. The Hamiltonian describing this system is given by

H = 1
2 (ẋ2 + ẏ2) + 1

2 (x2 + y2) + x2y − 1
3 y3. (1)

As a consequence, the equations of motion read

ẋ = px,

ẏ = py,

ṗx = −x − 2xy,

ṗy = −y − x2 + y2. (2)

Since the Hamiltonian function governing the Hénon-
Heiles system has no time dependence, the energy is con-
served and can be expressed as H(x, y, px, py) = E . Above
the threshold Ee = 1/6, known as escape energy, the poten-
tial exhibits three symmetric exits separated by an angle of
2π/3 rad, as can be seen in Fig. 1. When the energy exceeds
Ee, the particles can escape towards ±∞ through one of these
exits. Conversely, when the energy is below Ee, the motion of
the particles is bounded.

The fact that the Hénon-Heiles system exhibits escapes
allows us to define exit basins [32,33]. Similarly to basins of
attraction in dissipative systems, exit basins are sets of initial
conditions that lead to escape through a specific exit of the
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FIG. 1. Isopotential curves of the Hénon-Heiles system for dif-
ferent values of the potential V (x, y) = 1

2 (x2 + y2) + x2y − 1
3 y3. The

curves are color coded based on the value of the potential, as indi-
cated by the accompanying color bar. Values below and above the
escape energy Ee = 1/6 are displayed. The three saddle points of the
potential are indicated on the plot by red dots.

potential. Since orbits with initial conditions within a KAM
island do not escape, it is possible to accurately detect the
external structure of KAM islands by computing exit basin
diagrams. This approach reduces computational cost com-
pared to closed systems, where a systematic search for KAM
islands requires the use of chaos indicators such as SALI or
GALI [34,35]. As an example, we show exit basin diagrams
for two values of the energy (E = 0.17 and 0.18) in Fig. 2.
The colors green, red, and blue indicate initial conditions
escaping through exits 1 (y → ∞), 2 (x, y → −∞), and 3
(x → ∞, y → −∞), respectively. The white regions inside
the potential correspond to initial conditions that never escape,
so they constitute KAM islands.

Using a simple tool like the exit basin diagrams, we can
find KAM islands and detect with high accuracy their external
structure. Hence, for a complete description of their evolution
and destruction we only need to compute the associated peri-
odic orbits and their stability.

The Hénon-Heiles system, like most Hamiltonian systems,
has some symmetries. In particular, the system is time re-
versible and possesses the symmetry group of an equilateral
triangle (D3 symmetry). As a consequence, its periodic orbits

FIG. 2. Exit basins in the physical space of the Hénon-Heiles
system with energy (a) E = 0.17 and (b) E = 0.18. The colors red,
green, and blue refer to initial conditions leading to the three exits
of the potential: exit 1 (y → ∞), exit 2 (x, y → −∞), and exit 3
(x → ∞, y → −∞). White regions inside the potential correspond
to KAM islands.
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are also symmetric. They can be symmetric with respect to the
three symmetry axes or only with respect to one of them. In
the latter case, there necessarily exist two additional periodic
orbits that are symmetric with respect to the other two symme-
try axes. Due to these symmetry arguments, all periodic orbits
must perpendicularly cross one of the three symmetry axes.
For convenience, we find periodic orbits that are symmetric
about the y axis. Hence, any trajectory that starts at x0 = 0 be-
ing perpendicular to the y axis [i.e., ẏ0 = 0 and ẋ0 = f (y0, E )]
and that eventually crosses perpendicularly again the same
axis corresponds to a periodic orbit. The number of crossings
between perpendicular intersections is the multiplicity m of
the periodic orbit. On the other hand, the period T of a peri-
odic orbit is twice the time needed to return perpendicularly
to the y axis. Therefore, the condition for a periodic orbit to
exist is x(0, y0, ẋ0, 0; T/2) = ẏ(0, y0, ẋ0, 0; T/2) = 0.

Consequently, we have computed periodic orbits following
the systematic search for symmetric periodic orbits described
in [21]. We have determined the stability of periodic orbits
by means of the eigenvalues of the monodromy matrix M(T ),
which is the solution at time T (one period of the orbit) of the
linear matrix differential system

Ṁ =
(

0 I2

−Hess[V (x, y)] 0

)
M with M(0) = I4, (3)

where Hess[V (x, y)] denotes the Hessian matrix of the poten-
tial function and In denotes the identity matrix of order n.

Since M(T ) is a real symplectic matrix, its eigenvalues
need not be explicitly calculated. Instead, the stability can be
determined using the stability index κ = tr[M(T )] − 2 [36].
In particular, a periodic orbit is stable if |κ| < 2, unstable if
|κ| > 2, and critical if |κ| = 2.

III. THE DESTRUCTION OF THE MAIN KAM ISLAND

The Hénon-Heiles system features a main KAM island that
surrounds a stable periodic orbit and its bifurcation branches.
The bifurcations that occur in the branches of periodic orbits
before they become unstable have been intensively studied in
[17,18]. Here, we focus our attention on the period-doubling
bifurcations that destroy the main family of periodic orbits and
cause the main KAM island to disappear.

For low energy values, the main KAM island surrounds a
periodic orbit of multiplicity m = 1. For energies near zero,
the periodic orbit takes on an almost circular shape due to the
system behaving like a two-dimensional harmonic oscillator.
At higher energies, the orbit exhibits a triangular symmetry, as
shown in Fig. 3(a) for E = 0.1486. By slightly increasing the
energy until E1 ≈ 0.148 65, the periodic orbit loses its stabil-
ity and a stable periodic orbit of double multiplicity emerges
[see Fig. 3(b)]. Therefore, the first period-doubling bifurcation
has occurred. Further increasing the energy causes the shape
of the m = 2 periodic orbit to evolve until becoming almost
unrecognizable, as illustrated in Fig. 3(c). Following the same
fate of its parent periodic orbit, this m = 2 periodic orbit
loses its stability in the subsequent period-doubling bifurca-
tion, which occurs for E2 ≈ 0.206 26. The newly bifurcated
m = 4 periodic orbit is depicted in Fig. 3(d). This sequence
of period-doubling bifurcations continues until reaching the

FIG. 3. Periodic orbits in the Hénon-Heiles system for energy
values (a) E = 0.1486, (b) E = 0.1488, (c) E = 0.2062, and (d) E =
0.2064. The multiplicity m of the orbits is indicated in each panel. Or-
bits depicted in panels (a) and (b) and in panels (c) and (d) have been
computed for energy values just prior to and immediately following
the first and second period-doubling bifurcations, respectively.

accumulation point E∞, where the last bifurcation branches
become unstable. As a consequence, beyond E∞ large KAM
islands do not exist anymore in the system.

The period-doubling bifurcations and their effects on the
structure of KAM islands can be visualized by representing
the branches of periodic orbits over an exit basin diagram in
the (y, E ) plane. Since we are not interested here in the fractal
structures of the exit basins, we have assigned white color
to all escaping trajectories, while KAM islands are depicted
in blue. The result is shown in Fig. 4, where green (red)
lines denote stable (unstable) periodic orbits. In this figure,
each panel is a magnification of the area enclosed by dashed
lines in the previous one. Therefore, the m = 2 branches are
represented in Fig. 4(a), while the following panels show
the subsequent period-doubling bifurcations. Regardless of
the energy range, it can be observed that panels (b) and (d)
exhibit the same qualitative features, while panel (c) is a
mirror image of the other panels. As a matter of fact, this
self-similar fractal structure repeats itself indefinitely within
a finite energy range. Moreover, the bifurcations that occur in
the branches of periodic orbits before they become unstable
repeat in the same sequence at different scales. Therefore,
each of these figures captures the fundamental aspects of
the formation, evolution, and destruction of the main KAM
island. We highlight that these structures are not representative
of the Hénon-Heiles system only, but they are astonishingly
similar in many different conservative systems (e.g., see Fig. 8
in [5] and Figs. 9 and 10 of this paper).

By detecting the loss of stability of periodic orbits, we have
obtained numerically the energy values En (n = 1, 2, 3 . . .)
where the first seven period-doubling bifurcations occur. The
results are shown in the first three columns of Table I. In this
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FIG. 4. Branches of periodic orbits and KAM islands in the
Hénon-Heiles system. The stable (unstable) periodic orbits are rep-
resented using green (red) lines. The KAM islands have been
determined by computing the exit basins along the y axis for dif-
ferent energies. Escaping initial conditions are colored in white,
while KAM islands (nonescaping initial conditions) are represented
in blue. Panel (a) shows the m = 2 branches, while the next pan-
els represent the subsequent period-doubling bifurcations. Note that
each panel is a magnification of the area enclosed by dashed lines in
the previous one.

table, and throughout the whole paper, the uncertainty in the
last significant digits of the parameters is indicated between
parentheses. In the case of En, the uncertainty is given by half
the difference between two consecutive energy values where
we detect that the stability of the periodic orbit changes.

Once we have obtained the parameter values where the
period-doubling bifurcations occur, we can estimate the
Feigenbaum constant, which is given by

δH = lim
n→∞

En−1 − En−2

En − En−1
, (4)

TABLE I. Values of the energy, En, where the first seven
period-doubling bifurcations occur, together with estimations of the
Feigenbaum constant δH using the former and the two previous
values of En. The first two columns indicate the number of the period-
doubling bifurcation and the multiplicity of the created periodic
orbit, respectively.

n m En δH

1 2 0.1486504275(5)
2 4 0.2062564235(5)
3 8 0.2105406495(5) 13.4460684(34)
4 16 0.2110432870(1) 8.523491(12)
5 32 0.21110070066(4) 8.754667(32)
6 64 0.21110728629(1) 8.71802(87)
7 128 0.211108041425(25) 8.72113(47)

where the index H indicates that the constant is calculated in
a Hamiltonian system.

All estimates of δH are shown in the last column of
Table I, while the standard methods to calculate its uncer-
tainty are explained in Appendix A. Our best approximation
(using E5, E6, and E7) is δH = 8.721 13(47), which agrees
to a large extent with the result obtained by Greene et al. in
two-dimensional area-preserving maps [5] and by Mao et al.
in four-dimensional volume-preserving maps [10]. Therefore,
we confirm that the value of the Feigenbaum constant is
universal not only for area-preserving maps, but also for two-
degree-of-freedom Hamiltonian systems.

The infinite sequence of period-doubling bifurcations oc-
curs within a finite energy range. Therefore, there exists an
accumulation point that can be calculated as follows:

E∞ = E6 +
∞∑

k=0

(E7+k − E6+k ) = E6 +
∞∑

k=0

(E7 − E6)

δk
H

= E6 + δH (E7 − E6)

δH − 1
= 0.211 108 139 226(35), (5)

where we have used our best estimation for δH . Using a
more accurate value δH = 8.721 097 200(1), we obtain E∞ =
0.211 108 139 227(30). Both estimations only differ in the last
significant digit.

IV. ISLETS OF STABILITY

Although the only large KAM tori appear surrounding the
main family of periodic orbits, unrelated and occasionally
stable branches generate islets of stability. Since all periodic
orbits cross at least once the (0, y, ẋ(y, E ), 0) Poincaré sec-
tion, we can ensure that islets will appear on the (y, E ) exit
basin diagram. Furthermore, as periodic orbits appear in the
neighborhood of the boundary of the exit basins, the search for
islets can be constrained. Following these facts, we have found
24 of them by performing a detailed grid search out in the
boundary of the exit basins. Of course, by delving further into

FIG. 5. Islets of stability (solid white dots) in an exit basin di-
agram for the Hénon-Heiles system. The color code is as shown in
the caption of Fig. 2. Note that the white region in the left part of
the figure is a set of energetically forbidden initial conditions, not a
KAM island.
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FIG. 6. Representative examples of the different types of islets. The pairs of panels (a) and (b), (c) and (d), and (e) and (f) represent islets
of types I, II, and III, respectively. These pairs of panels contain similar information, but from different perspectives. Panels (a), (c), and (e)
display the bifurcations and the emergence of islets surrounding stable periodic orbits. Panels (b), (d), and (f) represent the islets in contrast to
the fractal basin boundary. In panels (a), (c), and (e) the color code is as in Fig. 4, while in panels (b), (d), and (f) it is as in Fig. 2.

the structure of the boundary, one may discover an arbitrarily
large number of islets. Due to their reduced area in the (y, E )
plane, we indicate their position by using solid white dots in
Fig. 5. In this figure, the m = 2 branches of the main KAM
island can be clearly observed at the bottom of the plot [note
that, colors aside, Fig. 4(a) is a magnification of Fig. 5 in the
vicinity of the main KAM island].

We have studied individually each detected islet and, based
on the bifurcations of periodic orbits involved in their forma-
tion, we have classified them into three different types. For
a better understanding of their origin, we can observe that
they appear near the edge of the parabolic shapes arising in
the basin boundary (see Fig. 5). The edge of these parabolic

shapes is generated by an infinite set of bifurcations, usually
characterized by the birth of two unstable branches which
correspond to a single unstable periodic orbit that crosses
the Poincaré section twice. Nonetheless, in some cases a pair
of stable-unstable periodic orbits is created in a saddle-node
bifurcation. The stable branch is responsible for the formation
of a type I islet [see Figs. 6(a) and 6(b)]. The remaining two
types of islets always appear in branches of periodic orbits
created in a saddle-node bifurcation. Therefore, islets of types
II and III are always preceded by a type I islet.

The stable periodic orbit that generates a type I islet
eventually loses its stability after undergoing some standard
bifurcation (typically pitchfork). For slightly higher energy
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FIG. 7. A gallery of stable periodic orbits for the Hénon-Heiles system. Each of these orbits generates one of the 24 islets that we have
detected, classified, and listed in Table I (Appendix A). In particular, the numbers of the corresponding islets are (a) 1, (b) 5 and 6, (c) 9, (d) 12,
(e) 14, (f) 16, (g) 19, (h) 22 and 23, and (i) 24.

values, the periodic orbit can become stable again, creating
a type II islet [see Figs. 6(c) and 6(d)]. Hence, if a type II islet
exists, it always appears in the same branch where a type I islet
existed (i.e., in the stable branch created in the saddle-node
bifurcation). However, we emphasize that not all type I islets
are followed by a type II islet, but they can also be alone.

Unlike type II islets, type III islets do not always appear
in the stable branch created in the saddle-node bifurcation,
but may also appear in the unstable branch. They arise from
bifurcations where an unstable periodic orbit becomes stable
[see Figs. 6(d) and 6(e)]. While type II islets exhibit a smooth
shape near the bifurcation point, type III islets are character-
ized by a sharp edge. Unlike the previous types, we have not
observed the emergence of new unstable periodic orbits in the
bifurcation leading to type III islets.

For the sake of reproducibility, in Table II (see Ap-
pendix B) we list the range of coordinates in the (y, E ) plane
where the 24 islets that we have detected can be found. We
also indicate their type and the multiplicity of the generating
periodic orbit. Except for the 24th islet, we have detected and
listed the islets that occupy a bigger area in the (y, E ) plane (in

the case of the 24th islet we have used higher resolution in the
exit basin diagram with the aim of finding the energy value
which generates the last islet). As can be seen in Table II,
the periodic orbits have a relatively low multiplicity. This fact
suggests that periodic orbits with high multiplicity generate
smaller islets.

For illustrative purposes, in Fig. 7 we represent in the (x, y)
plane some stable periodic orbits that generate islets. Note that
a single periodic orbit can cross the (0, y, ẋ(y, E ), 0) Poincaré
section twice [e.g., the periodic orbits represented in Figs. 7(a)
and 7(h)]. In these cases, two islets of the same type appear in
the (y, E ) plane.

Occasionally, islets of types II and III can be observed in
the same plot as type I islets, since they appear for close en-
ergy values. Two examples of this phenomenon are displayed
in Fig. 8. In panels (a) and (b), we can see a type II islet form-
ing in the same branch where a type I islet previously existed
at lower energy levels. In panels (c) and (d), we see how a type
III islet appears after the unstable branch created in a saddle-
node bifurcation becomes occasionally stable. In this case,
during a short energy range, islets of types I and III coexist.
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FIG. 8. Two examples where islets of different types appear within a reduced energy range. The pairs of panels (a) and (b) and panels
(c) and (d) contain similar information, but from different perspectives. Panels (a) and (c) display the bifurcations and the emergence of islets
surrounding stable periodic orbits. Panels (b) and (d) represent the islets in contrast to the fractal basin boundary. In panels (a) and (c) the color
code is as in Fig. 4, while in panels (b) and (d) it is as in Fig. 2.

We aim to conclude our findings on the Hénon-Heiles
system by discussing an aspect that attracted the attention of
some researchers: the energy value Ek for which the KAM tori
disappear. Regarding this matter, various energy values have
been put forward in the literature. The initial approximation
to this limit value was Ek ≈ 0.2113 [37], which is a rough
approximation of the accumulation point. Another suggested
value was Ek ≈ 0.2309 [38], which probably arose as a result
of detecting the islet number 17 (see Table II). Finally, a
recent paper found an islet for Ek ≈ 0.2534 (islet number 21
in Table II). In our numerical simulations, the last detected
islet is destroyed for Ek ≈ 0.261 943 67 (islet number 24 in
Table II).

From the previous information, it is clear that the value of
Ek is gradually increased due to higher precision in the nu-
merical simulations. This is not surprising, since the range of
energies where islets appear is reduced as the energy of the
system is increased. However, bifurcations do not occur for
arbitrarily high values of the energy. After searching into the
structure of the boundary of the exit basins, we have found
that the last bifurcation occurs for E = 0.262 158 902 577(1).
We have not found a stable periodic orbit nor an islet in the
neighborhood of the last bifurcation, but its existence cannot
be definitively dismissed. Therefore, we cannot provide an
exact value for Ek , but we conjecture that its value is not sig-
nificantly above the energy where the last bifurcation occurs.

V. ISLETS OF STABILITY IN DIFFERENT SYSTEMS

The same types of islets that we have found in the Hénon-
Heiles system appear in generic two-degree-of-freedom
Hamiltonian systems and area-preserving maps. To illustrate
this generality, in this section we provide numerical evidence
of the existence of islets in the Barbanis system [39] and in
the standard map (also known as Chirikov-Taylor map) [40].

The Barbanis system is a two-degree-of-freedom Hamilto-
nian system given by

H = 1
2 (ẋ2 + ẏ2) + 1

2 (x2 + y2) − xy2. (6)

Besides being time reversible, the system is symmetric
about the x axis. Therefore, using similar arguments to those
used in the Hénon-Heiles system, the condition for a periodic
orbit to exist in the Barbanis system is y(x0, 0, 0, ẏ0; T/2) =
ẋ(x0, 0, 0, ẏ0; T/2) = 0. Thus, for detecting islets we have
chosen the (x, 0, 0, ẏ) Poincaré section and we have computed
an exit basin diagram in the (x, E ) plane. The result is shown
in Fig. 9, where the position of 12 islets is represented with
white dots. Here we only see two colors in the exit basin
diagram since the system exhibits two exits. The coordinate
range where the islets can be found in this system is shown in
Table III (see Appendix B).
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FIG. 9. Islets of stability (solid white dots) in an exit basin di-
agram for the Barbanis system. The colors green and blue refer to
initial conditions leading to the two exits of the potential: exit 1
(y → ∞) and exit 2 (y → −∞). White regions inside the potential
correspond to KAM islands.

On the other hand, the standard map is an area-preserving
map defined by the following formula:

θn+1 = θn + Jn+1 mod 2π,

Jn+1 = Jn + K sin θn, (7)

where K > 0 is a constant.
Unlike the time-independent Hamiltonian systems stud-

ied above, the standard map does not have any exit due
to the modulo operation. However, we can construct exit
basin diagrams by defining artificial leaks in the system,
as explained in [41]. In particular, we define two leaks
L1 ≡ [(0.2 − ω)π, (0.2 + ω)π ] × [0, 2π ] and L2 ≡ [(1.8 −
ω)π, (1.8 + ω)π ] × [0, 2π ] (this choice guarantees that both
leaks have width ωπ and are symmetric about θ = π ). Thus,
an exit basin is defined as the set of initial conditions falling
after one or more iterations in one particular leak. To represent

FIG. 10. Islets of stability (solid white dots) in an exit basin
diagram for the standard map with two symmetric leaks of width
0.1π . The colors red and blue refer to initial conditions leading to
the leaks L1 and L2, respectively. White regions inside the potential
correspond to KAM islands.

exit basin diagrams, we simply assign a different color to the
initial conditions depending on the first leak visited.

For K < 4, the periodic orbits of the system lie in the θ = 0
line, while for higher values of K they appear in the lines J =
2θ − 2π and 2θ . We have searched for islets close to the value
of K where the main KAM island is destroyed, so we have
computed exit basin diagrams in the (θ, K ) plane following
the line J = 2θ − 2π (we could have used the line J = 2θ in
an equivalent way). Therefore, once the value of K and the
initial condition θ0 are chosen, the initial condition in the J
coordinate is given by J0 = 2θ0 − 2π . The result is shown in
Fig. 10, where the position of 20 islets is represented with
white dots. The coordinate range where the islets can be found
is shown in Table IV (see Appendix B).

To further generalize the results regarding islets of stability,
we have verified that the Hénon area-preserving map [42] also
exhibits the same type of islets.

VI. CONCLUSIONS AND DISCUSSION

In summary, our research reveals that the destruction of
the main KAM island in two-degree-of-freedom Hamiltonian
systems is explained by a cascade of period-doubling bifur-
cations. By using the Hénon-Heiles system as a model, we
have calculated the conservative Feigenbaum constant and
the accumulation point where the last periodic orbit becomes
unstable. The value obtained for the Feigenbaum constant
confirms that the geometrical progression of bifurcations is
universal not only for area-preserving maps, but also for two-
degree-of-freedom Hamiltonian systems.

We have also shown that not all KAM islands surround
the main family of periodic orbits, but islets of stability exist
for values above and below the accumulation point. We have
studied these islets exhaustively, finding that all of them can
be classified in three different types. The first type appears
surrounding a stable periodic orbit created in a saddle-node
bifurcation. The other two types emerge in the branches cre-
ated in saddle-node bifurcations, always preceded by type I
islets. To further demonstrate the validity of our classification
scheme, we have identified the same types of islets in a dif-
ferent two-degree-of-freedom Hamiltonian system and in an
area-preserving map.

We expect that this paper could contribute to understand
the formation, evolution, and destruction of KAM islands in
Hamiltonian systems. The insights gained from this research
may find applications in various physical systems where KAM
islands play a critical role. Examples of such applications in-
clude plasma confinement in tokamaks [43], chaotic transport
of particles advected by fluid flows [44], and conductance
fluctuations in chaotic cavities [45].
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APPENDIX A: PROPAGATION OF UNCERTAINTY

The energy values where period-doubling bifurcations oc-
cur have been calculated by detecting the change in the
stability of periodic orbits. Our algorithm detects the values

Es and Eu for which the orbit is still stable and already un-
stable, respectively. Therefore, the bifurcation point is given
by En = (Es + Eu)/2 and its uncertainty is given by �En =
(Eu − Es)/2. Since we use the En for calculating δH , its un-
certainty is propagated as

�δH =
∣∣∣∣∂δH

∂En

∣∣∣∣�En +
∣∣∣∣ ∂δH

∂En−1

∣∣∣∣�En−1 +
∣∣∣∣ ∂δH

∂En−2

∣∣∣∣�En−2 = (En−1 − En−2)�En + (En − En−2)�En−1 + (En − En−1)�En−2

(En − En−1)2
.

In the case of the accumulation point E∞, its uncertainty is given by

�E∞ =
∣∣∣∣∂E∞
∂E6

∣∣∣∣�E6 +
∣∣∣∣∂E∞
∂E7

∣∣∣∣�E7 +
∣∣∣∣∂E∞
∂δH

∣∣∣∣�δH = �E6 + δH�E7

δH − 1
+ (E7 − E6)�δH

(δH − 1)2
.

APPENDIX B: COORDINATES OF ISLETS

Tables II–IV present the coordinates of islets.

TABLE II. Range of coordinates in the (y, E ) plane of the
Hénon-Heiles system where several islets of stability of different
multiplicity and type can be found.

n m E y Type

1 7 [0.17668,0.17680] [0.944,0.951] I

2 7 [0.1768,0.17715] [0.947,0.953] II

3 3 [0.1838,0.1850] [−0.372,−0.359] I

4 3 [0.1840,0.1865] [−0.387,−0.372] III

5 6 [0.19188,0.19245] [0.9496,0.9545] III

6 6 [0.19188,0.19245] [−0.3845,−0.3810] III

7 7 [0.193840,0.193865] [0.5120,0.5165] I

8 7 [0.199448,0.199464] [0.13,0.136] I

9 7 [0.20534,0.20552] [0.2802,0.2835] II

10 5 [0.20702,0.20716] [0.504,0.511] I

11 5 [0.20735,0.20795] [0.510,0.518] II

12 5 [0.2123,0.2130] [0.128,0.160] I

13 5 [0.2130,0.2143] [0.122,0.136] III

14 3 [0.217890,0.217903] [0.1495,0.1530] I

15 3 [0.21836,0.21853] [0.1365,0.1390] III

16 3 [0.2247,0.2252] [0.675,0.703] I

17 3 [0.2286,0.2308] [0.728,0.0.740] III

18 5 [0.23405,0.23437] [0.9767,0.9787] II

19 5 [0.23623,0.23630] [−0.2212,−0.2185] I

20 5 [0.23627,0.23643] [−0.2185,−0.2157] III

21 1 [0.25285,0.25345] [−0.11,−0.07] I

22 3 [0.260769,0.260782] [−0.1005,−0.095] I

23 3 [0.260769,0.260782] [0.98557,0.98600] I

24 1 [0.26194335,0.26194367] [−0.0993,−0.0984] I

TABLE III. Range of coordinates in the (x, E ) plane of the Bar-
banis system where several islets of stability of different multiplicity
and type can be found.

n m E x Type

1 7 [0.330768,0.330815] [−0.56056,−0.56048] III
2 7 [0.35304,0.35311] [−0.57842,−0.57826] III
3 11 [0.387718,0.387727] [−0.55975,−0.55965] II
4 3 [0.572922,0.572932] [−0.9473,−0.9458] I
5 13 [0.357048,0.357049] [−0.774675,−0.774620] I
6 13 [0.3570487,0.3570515] [−0.774735,−0.774695] III
7 5 [0.377254,0.377257] [−0.7471,−0.7463] I
8 7 [0.374565,0.374595] [−0.8487,−0.8482] I
9 7 [0.375200,0.375455] [−0.84763,−0.84755] III
10 7 [0.471438,0.471448] [−0.66935,−0.66885] I
11 7 [0.47153,0.47160] [−0.6683,−0.6680] III
12 1 [0.21330,0.21355] [0.093,0.113] I

TABLE IV. Range of coordinates in the (θ, K ) plane of the stan-
dard map where several islets of stability can be found.

n K θ Type

1 [5.985,5.996] [4.061,4.066] III
2 [4.85,4.92] [4.07,4.12] I
3 [6.020,6.026] [4.309,4.313] II
4 [4.936,4.942] [4.3036,4.3042] I
5 [4.608,4.616] [4.346,4.362] III
6 [3.339,3.343] [4.816,4.819] II
7 [5.081,5.091] [4.927,4.930] I
8 [5.115,5.135] [5.090,5.097] I
9 [6.013,6.030] [5.235,5.265] III
10 [3.684,3.694] [5.2431,5.2434] I
11 [3.687,3.692] [5.414,5.417] III
12 [5.21,5.25] [5.95,6.00] III
13 [3.557,3.573] [6.067,6.070] I
14 [6.065,6.071] [6.180,6.185] III
15 [3.813,3.819] [6.296,6.304] II
16 [3.521,3.538] [6.352,6.360] II
17 [4.832,4.834] [6.521,6.523] III
18 [6.083,6.085] [6.542,6.543] II
19 [4.24,4.32] [6.935,6.945] I
20 [6.091,6.093] [6.9568,6.9572] I

054215-9



NIETO, SEOANE, AND SANJUÁN PHYSICAL REVIEW E 107, 054215 (2023)

[1] H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Matem.
Palermo 33, 375 (1912).

[2] G. D. Birkhoff, Proof of Poincaré’s geometric theorem, Trans.
Am. Math. Soc. 14, 14 (1913).

[3] J. M. Greene, A method for determining a stochastic transition,
J. Math. Phys. 20, 1183 (1979).

[4] G. Contopoulos, M. Harsoula, N. Voglis, and R. Dvorak, De-
struction of islands of stability, J. Phys. A: Math. Gen. 32, 5213
(1999).

[5] J. M. Greene, R. S. MacKay, F. Vivaldi, and M. J. Feigenbaum,
Universal behavior in families of area-preserving maps, Physica
D 3, 468 (1981).

[6] M. J. Feigenbaum, Quantitative universality for a class of non-
linear transformations, J. Stat. Phys. 19, 25 (1978).

[7] G. Benettin, C. Cercignani, L. Galgani, and A. Giorgilli,
Universal properties in conservative dynamical systems, Lett.
Nuovo Cimento 28, 1 (1980).

[8] P. Collet, J.-P. Eckmann, and H. Koch, On universality for area-
preserving maps of the plane, Physica D 3, 457 (1981).

[9] T. C. Bountis, Period doubling bifurcations and universality in
conservative systems, Physica D 3, 577 (1981).

[10] J.-M. Mao, I. I. Satija, and B. Hu, Evidence for a new period-
doubling sequence in four-dimensional symplectic maps, Phys.
Rev. A 32, 1927 (1985).

[11] G. Contopoulos, Orbits in highly perturbed dynamical systems.
III. Nonperiodic orbits, Astron. J. 76, 147 (1971).

[12] G. Contopoulos, Infinite bifurcations, gaps and bubbles in
Hamiltonian systems, Physica D 8, 142 (1983).

[13] M. A. M. de Aguiar and C. P. Malta, Bifurcations of periodic
trajectories in non-integrable Hamiltonian systems with two de-
grees of freedom: Numerical and analytical results, Ann. Phys.
(NY) 180, 167 (1987).

[14] J.-M. Mao and J. B. Delos, Hamiltonian bifurcation theory of
closed orbits in the diamagnetic Kepler problem, Phys. Rev. A
45, 1746 (1992).

[15] G. Contopoulos, E. Grousouzakou, and C. Polymilis, Distribu-
tion of periodic orbits and the homoclinic tangle, Celest. Mech.
Dyn. Astron. 64, 363 (1996).

[16] C. Manchein and M. W. Beims, Conservative generalized bifur-
cation diagrams, Phys. Lett. A 377, 789 (2013).

[17] R. Barrio and D. Wilczak, Distribution of stable islands within
chaotic areas in the non-hyperbolic and hyperbolic regimes in
the Hénon-Heiles system, Nonlinear Dyn. 102, 403 (2020).

[18] A. R. Nieto, J. M. Seoane, R. Barrio, and M. A. F. Sanjuán,
A mechanism explaining the metamorphoses of KAM islands
in nonhyperbolic chaotic scattering, Nonlinear Dyn. 109, 1123
(2022).

[19] R. H. G. Helleman and T. Bountis, Periodic solutions of ar-
bitrary period, variational methods, in Stochastic Behavior in
Classical and Quantum Hamiltonian Systems, edited by G.
Casati and J. Ford (Springer, New York, 1979), pp. 353–375.

[20] J. D. Hadjedemetriou, Periodic orbits in gravitational systems,
in Chaotic Worlds: From Order to Disorder in Gravitational
N-Body Dynamical Systems, edited by B. A. Steves, A. J.
Maciejewski, and M. Hendry (Springer, New York, 2006),
pp. 43–79.

[21] R. Barrio and F. Blesa, Systematic search of symmetric periodic
orbits in 2DOF Hamiltonian systems, Chaos Solit. Fractals 41,
560 (2009).

[22] A. Abad, R. Barrio, and A. Dena, Computing periodic orbits
with arbitrary precision, Phys. Rev. E 84, 016701 (2011).

[23] R. S. Mackay, Islets of stability beyond period doubling, Phys.
Lett. A 87, 321 (1982).

[24] G. Contopoulos and E. Grousouzakou, Regular and irregular
periodic orbits, Celest. Mech. Dyn. Astron. 65, 33 (1997).

[25] R. Barrio, F. Blesa, and S. Serrano, Bifurcations and safe re-
gions in open Hamiltonians, New J. Phys. 11, 053004 (2009).

[26] G. Contopoulos and M. Harsoula, Stickiness effects in chaos,
Celest. Mech. Dyn. Astron. 107, 77 (2010).

[27] E. G. Altmann, A. E. Motter, and H. Kantz, Stickiness in Hamil-
tonian systems: From sharply divided to hierarchical phase
space, Phys. Rev. E 73, 026207 (2006).

[28] R. S. Mackay, J. D. Meiss, and I. C. Percival, Transport in
Hamiltonian systems, Physica D 13, 55 (1984).

[29] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous
transport, Phys. Rep. 371, 461 (2002).

[30] C. F. F. Karney, Long-time correlations in the stochastic regime,
Physica D 8, 360 (1983).

[31] M. Hénon and C. Heiles, The applicability of the third inte-
gral of motion: Some numerical experiments, Astron. J. 69, 73
(1964).

[32] G. Contopoulos, Order and Chaos in Dynamical Astronomy
(Springer-Verlag, Berlin, 2002).

[33] J. Aguirre, J. C. Vallejo, and M. A. F. Sanjuán, Wada basins and
chaotic invariant sets in the Hénon-Heiles system, Phys. Rev. E
64, 066208 (2001).

[34] Ch. Skokos, Ch. Antonopoulos, T. C. Bountis, and M. N.
Vrahatis, Detecting order and chaos in Hamiltonian systems by
the SALI method, J. Phys. A: Math. Gen. 37, 6269 (2004).

[35] Ch. Skokos, T. C. Bountis, and Ch. Antonopoulos, Geometrical
properties of local dynamics in Hamiltonian systems: The gen-
eralized alignment index (GALI) method, Physica D 231, 30
(2007).

[36] M. Hénon, Numerical exploration of the restricted problem,
V. Hill’s case: Periodic orbits and their stability, Astron.
Astrophys. 1, 223 (1969).

[37] R. Barrio, F. Blesa, and S. Serrano, Fractal structures in the
Hénon-Heiles Hamiltonian, Europhys. Lett. 82, 10003 (2008).

[38] A. R. Nieto, E. E. Zotos, J. M. Seoane, and M. A. F. Sanjuán,
Measuring the transition between nonhyperbolic and hyperbolic
regimes in open Hamiltonian systems, Nonlinear Dyn. 99, 3029
(2020).

[39] B. Barbanis, On the isolating character of the “third” integral in
a resonance case, Astron. J. 71, 415 (1966).

[40] B. V. Chirikov, A universal instability of many-dimensional
oscillator systems, Phys. Rep. 52, 263 (1979).

[41] M. A. F. Sanjuán, T. Horita, and K. Aihara, Opening a closed
Hamiltonian map, Chaos 13, 17 (2003).

[42] M. Hénon, Numerical study of quadratic area-preserving map-
pings, Quart. Appl. Math. 27, 291 (1969).

[43] R. L. Viana, E. C. da Silva, T. Kroetz, I. L. Caldas, M. Roberto,
and M. A. F. Sanjuán, Fractal structures in nonlinear plasma
physics, Phil. Trans. R. Soc. A 369, 371 (2011).

[44] T. H. Solomon, E. R. Weeks, and H. L. Swinney, Observation of
Anomalous Diffusion and Lévy Flights in a Two-Dimensional
Rotating Flow, Phys. Rev. Lett. 71, 3975 (1993).

[45] R. Ketzmerick, Fractal conductance fluctuations in generic
chaotic cavities, Phys. Rev. B 54, 10841 (1996).

054215-10

https://doi.org/10.1007/BF03015314
https://doi.org/10.2307/1988766
https://doi.org/10.1063/1.524170
https://doi.org/10.1088/0305-4470/32/28/303
https://doi.org/10.1016/0167-2789(81)90034-8
https://doi.org/10.1007/BF01020332
https://doi.org/10.1007/BF02776065
https://doi.org/10.1016/0167-2789(81)90033-6
https://doi.org/10.1016/0167-2789(81)90041-5
https://doi.org/10.1103/PhysRevA.32.1927
https://doi.org/10.1086/111098
https://doi.org/10.1016/0167-2789(83)90314-7
https://doi.org/10.1016/0003-4916(87)90044-3
https://doi.org/10.1103/PhysRevA.45.1746
https://doi.org/10.1007/BF00054553
https://doi.org/10.1016/j.physleta.2013.01.031
https://doi.org/10.1007/s11071-020-05930-x
https://doi.org/10.1007/s11071-022-07623-z
https://doi.org/10.1016/j.chaos.2008.02.032
https://doi.org/10.1103/PhysRevE.84.016701
https://doi.org/10.1016/0375-9601(82)90835-0
https://doi.org/10.1007/BF00048437
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1007/s10569-010-9282-6
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1016/0167-2789(84)90270-7
https://doi.org/10.1016/S0370-1573(02)00331-9
https://doi.org/10.1016/0167-2789(83)90232-4
https://doi.org/10.1086/109234
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1088/0305-4470/37/24/006
https://doi.org/10.1016/j.physd.2007.04.004
https://ui.adsabs.harvard.edu/abs/1969A%26A.....1..223H/abstract
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1007/s11071-019-05433-4
https://doi.org/10.1086/109946
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1063/1.1528750
https://doi.org/10.1090/qam/253513
https://doi.org/10.1098/rsta.2010.0253
https://doi.org/10.1103/PhysRevLett.71.3975
https://doi.org/10.1103/PhysRevB.54.10841

