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Energy-based stochastic resetting can avoid noise-enhanced stability
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The theory of stochastic resetting asserts that restarting a stochastic process can expedite its completion. In
this paper, we study the escape process of a Brownian particle in an open Hamiltonian system that suffers
noise-enhanced stability. This phenomenon implies that under specific noise amplitudes the escape process is
delayed. Here, we propose a protocol for stochastic resetting that can avoid the noise-enhanced stability effect. In
our approach, instead of resetting the trajectories at certain time intervals, a trajectory is reset when a predefined
energy threshold is reached. The trajectories that delay the escape process are the ones that lower their energy due
to the stochastic fluctuations. Our resetting approach leverages this fact and avoids long transients by resetting
trajectories before they reach low-energy levels. Finally, we show that the chaotic dynamics (i.e., the sensitive
dependence on initial conditions) catalyzes the effectiveness of the resetting strategy.
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I. INTRODUCTION

Stochastic resetting is a strategy used in search problems
to decrease the search time [1]. Imagine a simple search
problem in which a particle, the searcher, is looking for a
target in a plane without any previous information, and there
are no boundaries or restrictions on its movement. The eas-
iest strategy for the particle is just to freely diffuse until it
finds the target. However, this method is not very efficient
as the search time diverges. Stochastic resetting is a much
more suited strategy as the search time becomes finite. This
technique implies resetting the particle to its initial posi-
tion at specific time intervals and letting it evolve freely
between the resetting events. By resetting, we avoid the tra-
jectories that take too long and are far away from the target,
and we give them another chance to complete the search
rapidly.

Search processes in nature are often accompanied by a
resetting to an initial state. An example of this is animal
foraging [2], where animals repeatedly return to the shelter
during the search for resources. Another example where a
resetting strategy has also been observed to occur naturally is
human visual search [3]. The fact that resetting expedites the
search may explain its prevalence in nature. Furthermore, the
resetting strategy may be used purposely in different contexts,
such as chemical reactions [4] and other queueing processes
[5] that work like stochastic processes. The goal is to avoid
the metastable states that are causing a delay. In the case
of chemical reactions, for instance, the process is reset by
unbinding the catalyst. For more applications, see Refs. [6,7].

Stochastic resetting is a hot topic nowadays in the com-
munity and much has been published regarding multiple
searchers [8], multiple targets [9], interacting particle systems
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[10], and nondiffusive processes [11,12], to name a few. The
case of diffusion when the searcher can move in a bounded
region due to a potential has been less studied, although it
is a more realistic situation. Brownian particles subjected to
various potentials have been studied, including linear [13],
logarithmic [14], V-shaped [15], and higher-order potentials
[16]. Only recently has stochastic resetting in an escape prob-
lem been studied [17]. In this case, the search process ends
when the particle finds the exit and escapes. The authors
considered the Kramers problem, where a particle moving in
one dimension has to overcome a potential barrier in order to
escape.

Here, we aim to broaden current knowledge of stochas-
tic resetting in escape processes. For that purpose, we study
a two-dimensional open Hamiltonian system, the Hénon-
Heiles Hamiltonian. We chose this system as it presents a
phenomenon called noise-enhanced stability, which is also re-
ferred to as noise-enhanced trapping in the context of chaotic
scattering [18]. This phenomenon delays the escape process
for certain noise intensities. We explore if stochastic resetting
can counterbalance noise-enhanced stability and expedite the
escape process. This interplay was previously explored in
Ref. [19], where time-based resetting in a one-dimensional
system was considered.

To expedite an escape process from periodic potentials
may be useful in many physical situations. We would like to
mention Josephson junctions, which can be used for detection
of axionlike particles [20] or logical devices [21]. In that
case, the dynamics can be modeled by a particle moving in
the washboard potential and the escape of the particle im-
plies a switch between the superconductive and the resistive
states. The noise can delay the escape process by the same
noise-enhanced stability phenomenon that was mentioned,
producing a noise-delayed switching [22]. In this context,
stochastic resetting may increase performance by reducing the
switching time.
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Furthermore, we propose a protocol for resetting that we
call energy-based resetting. Previous studies have considered
resetting at fixed intervals of time, or intervals drawn from
a certain distribution (typically a Poisson distribution). Also,
a protocol with a space-dependent resetting rate has been
explored [23,24]. Here, we show that tracking the energy and
resetting when certain thresholds are reached is a strategy
capable of expediting the escape process and even suppressing
the noise-enhanced stability effect.

This paper is organized as follows. In Sec. II, we describe
the Hénon-Heiles system and the noise-enhanced stability
phenomenon. In Secs. III and IV, we implement the strategy
of stochastic resetting based on time and based on energy,
respectively. Later, in Sec. V, we compare both methods.
Finally, in Sec. VI, we present our concluding remarks.

II. NOISE-ENHANCED STABILITY
IN THE HÉNON-HEILES SYSTEM

To study the counterbalance of stochastic resetting and
the noise-enhanced stability effect, we use as a model the
paradigmatic Hénon-Heiles Hamiltonian [25]. Ever since its
emergence in scientific literature as a model of star motion
around a galactic center, this system has garnered extensive
attention as a prototype of Hamiltonian chaos. The Hamilto-
nian is given by

H(x, y, ẋ, ẏ) = 1
2 (ẋ2 + ẏ2) + 1

2 (x2 + y2) + x2y − 1
3 y3, (1)

where x and y are the spatial coordinates, and ẋ and ẏ are the
components of the velocity.

Since the Hamiltonian has no explicit time dependence,
the energy is a conserved quantity [i.e., H(x, y, ẋ, ẏ) = E ].
Beyond the critical energy level Ee = 1/6, which is often
referred to as the “escape energy,” the potential has three
symmetrical exits separated by an angle of 2π/3 rad, as il-
lustrated in Fig. 1. Therefore, in this situation particles can
escape towards ±∞. Conversely, below the escape energy the
particles’ motion remains bounded.

In order to account for the presence of noise in the system,
we include the influence of a random force, which we simplify
as an uncorrelated additive Gaussian white noise. Under these
considerations, the equations of motion can be expressed as

ẍ = −x − 2xy +
√

2ξηx(t ),

ÿ = −y − x2 + y2 +
√

2ξηy(t ), (2)

where ηx(t ) and ηy(t ) are Gaussian white noise processes
Xt ∼ N (0, 2ξ ) of amplitude ξ and autocorrelation function
〈η(t ′)η(t )〉 = √

2ξδ(t ′ − t ).
We have solved numerically the system of stochastic dif-

ferential equations (2) using a stochastic second-order Heun
method [26]. The robustness of this numerical scheme in the
stochastic Hénon-Heiles system has been tested in Ref. [27].

The phenomenon of noise-enhanced stability occurs in
the Hénon-Heiles system for certain noise conditions. This
phenomenon implies that the average escape time suffers a
peak for a specific noise amplitude. To explore this, we launch
trajectories from (x, y) = (0, 0) using a random shooting an-
gle θ ∈ [0, 2π/3], which is measured counterclockwise with
respect to the y axis. Note that, given the symmetry of the
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FIG. 1. Isopotential curves of the Hénon-Heiles system for var-
ious values of the potential V (x, y) = 1

2 (x2 + y2) + x2y − 1
3 y3. The

color of the curves indicates the different values of the potential,
which are marked in the color bar. For energy values below the
escape energy Ee = 1/6, the isopotential curves are closed, while the
potential exhibits three symmetrical exits for energy values above Ee.
Particles can escape through these exits towards ±∞.

system, it is not necessary to consider the complete circum-
ference. Without loss of generality, henceforth we use an
initial energy value of E0 = 0.25. Due to the effects of noise,
the energy value exhibits fluctuations, so E0 only defines the
initial conditions for the shooting. Once a shooting angle is
defined, the components of the initial velocity are given by
(ẋ, ẏ) = √

2E0(sin θ, cos θ ).
We represent the average escape time T̄ for different

noise levels ξ in Fig. 2. The blue shaded region around
T̄ corresponds to a 99.7% confidence interval. The peak

FIG. 2. Average escape time for 200 different noise amplitudes.
We represent the logarithm in base 10 of the noise amplitudes for
a better visualization. The escape time of 106 initial conditions is
averaged for each value of ξ . The blue shaded region represents a
99.7% confidence interval and the peak, emphasized by a red dashed
line, corresponds to the noise-enhanced stability phenomenon.
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FIG. 3. (a) Average escape times and (b) average minimum en-
ergy during the escape path for 100 different values of θ . In both
panels, 106 initial conditions are computed for each angle.

corresponding to the noise-enhanced stability phenomenon,
indicated by a red dashed line in Fig. 2, can be clearly distin-
guished in our system. In particular, the noise amplitude that
enhances the stability corresponds to the value ξs = 10−3.38.
This is precisely the effect that we try to counterbalance by
applying the resetting, so henceforth we fix ξ = ξs. For this
noise amplitude, the escape time averaged over all the initial
angles is T̄ = 12.97.

It is clear that for a certain noise level the escape time
depends on the launching angle. To observe this, we represent
the average escape times for different values of θ in Fig. 3(a).
As one can see, trajectories initially pointing directly to the
exits take less time to escape than others. The same occurs
for trajectories launched with angles close to π/3, which are
initially perpendicular to the potential. It is also remarkable
that the standard deviation increases for the angles for which
T̄ increases. This can be observed in the blue shaded region
representing the confidence intervals, which is widened for
those angles.

Furthermore, in Fig. 3(b) we represent the average min-
imum energy that the trajectories reach before escaping.
Interestingly, it presents mirror symmetry compared to
Fig. 3(a). This implies that fast-escaping particles do not have
the possibility to lower their energy. On the contrary, the parti-
cles that remain in the scattering region during long transients
can wander in the potential well at low-energy states.

Since our purpose is to study if stochastic resetting is a
valid strategy to avoid the noise-enhanced stability effect, we
shall compute the coefficient of variation (CV) beforehand.
This metric measures the ratio of the standard deviation, σ ,
and the mean value of the escape times, i.e., CV = σ (T )/T̄ .
In Ref. [28], the authors show that whenever CV > 1, stochas-
tic resetting can expedite the search process. The reasoning
behind this is that CV > 1 implies a wide distribution of
search times, with certain trajectories taking a large time to
complete the process. These are the trajectories that delay the
whole process and that are given a second chance by resetting.
Taking that into consideration, we explore which angles are
more beneficial for resetting in Fig. 4.

We see that CV > 1 for all angles, except the ones close to
the exits. The fundamental reason for this is that initial condi-
tions launched directly towards the exit generate nonchaotic
trajectories, which are not worth resetting. In Hamiltonian
systems, chaos occurs due to the existence of a nonattracting
chaotic set (a chaotic saddle) in phase space. The pattern that

FIG. 4. Coefficient of variation, CV = σ (T )/T̄ , for 100 values
of θ . For each value of θ , the average escape time and the correspond-
ing standard deviation have been estimated from 106 realizations of
the process.

can be observed for CV > 1 is explained by the structure
of the stable manifold of the chaotic saddle in the noiseless
system. This stable manifold is formed by the same set of
points as the basin boundary. This implies that orbits that start
close to the basin boundary are the ones that take longer times
to escape as they follow the stable manifold to the chaotic
saddle, spend long times in its vicinity, and finally escape
following the unstable manifold. If now we consider the noise,
an orbit starting close to the stable manifold (i.e., the basin
boundary) can jump to different basins and consequently dif-
ferent realizations of the process can have drastically different
escape times. Ultimately, this leads to CV > 1. In this sense,
it is worth noting that the chaotic dynamics (i.e., the sensitive
dependence on initial conditions) catalyzes the effectiveness
of the resetting strategy.

All of the above results can be better understood by look-
ing at the distribution of escape times for two characteristic
ranges of angles: one with high CV (θ ∈ [0.37, 1.71]) and
one with low CV (θ ∈ [0, 0.24] ∪ [1.85, 2π/3]). The escape
time is averaged for 107 initial conditions in those intervals
and represented in the form of histograms. In Fig. 5(a), the
relative frequency f (normalized to unity) of the escape time
for the trajectories with low CV is depicted. The distribution
is narrow, trajectories escape fast and are not worth resetting.
Meanwhile, in Fig. 5(b) we can see trajectories from a range
of angles with a high CV. In this case, the distribution shows
a long tail and trajectories are worth resetting.

III. RESETTING BASED ON TIME

We start applying resetting to our system at determinis-
tic time intervals. This technique has also been called sharp
restart [29]. We fix the resetting position to the given initial
condition (x, y, ẋ, ẏ) = (0, 0,

√
2E0 sin θ,

√
2E0 cos θ ), where

E0 = 0.25. This implies that a particle launched with a certain
angle is left to evolve freely in the potential until a certain
time tr , which is the resetting time interval. Then the particle
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FIG. 5. Escape time distribution based on initial conditions with
(a) low CV and (b) high CV. The escape time is averaged over 107

initial conditions in the intervals θ ∈ [0, 0.24] ∪ [1.85, 2π/3] for low
CV and θ ∈ [0.37, 1.71] for high CV. The relative frequency f is
normalized to unity. The distribution for high CV shows a long tail
of escape times, which we aim to avoid by resetting.

is reset to the initial position and launched again with the
same velocity and angle as in the beginning. This process is
repeated as many times as needed until the particle escapes.
The whole process is represented in Fig. 6, where the black dot
denotes the initial position and the black curves account for
the potential. The trajectory in blue wanders until the resetting
time interval tr . At that time, the position is marked by a red
dot. Then the trajectory is reset (see red segment). The process
is then restarted and now the particle escapes through the
lower right exit after a short time (see green trajectory). We
recall that both trajectories are not the same due to the noise.
Furthermore, their paths are completely different because they
are chaotic.

In the remainder of this section, we show that time-based
stochastic resetting can expedite the escape and we find the
optimal resetting time interval t∗

r to that end. As we have seen,

FIG. 6. Stochastic resetting for a trajectory in the Hénon-Heiles
Hamiltonian system. The angles θ for the exits are marked in the
upper left corner. We show a trajectory (blue curve) that starts at the
origin (black dot). The position of the particle at tr is marked with a
red dot, while the resetting process is represented with a red segment.
After resetting, the new trajectory (green curve) escapes in a time
t < tr .

FIG. 7. Escape time for 200 values of the resetting interval tr .
For each value of tr , T̄ has been calculated by averaging the escape
time of 106 random initial conditions. In panel (b) we show a zoom-
in around the optimum tr . The horizontal red dashed line marks
the average escape time of the system without stochastic resetting
(T̄ = 12.97).

not all trajectories are worth resetting. In particular, for initial
conditions with CV < 1, stochastic resetting is detrimental.
Therefore, the resetting strategy should be focused on initial
conditions with CV > 1 (i.e., the chaotic ones). This already
points out that t∗

r should be larger than the escape time of the
initial conditions with CV < 1 [recall Fig. 5(a)].

In Fig. 7, we show how the escape process is affected by
different values of the resetting interval tr . Figure 7(b) is a
magnification of Fig. 7(a), focused on the interval of values of
tr where stochastic resetting is more effective. In both panels
the horizontal dashed red line marks the average escape time
of the system without resetting (T̄ = 12.97). For tr < 10.5
stochastic resetting hinders the escape process. We have al-
ready mentioned that t∗

r should be larger than the average
escape time for trajectories with CV < 1, as these trajectories
should not be reset. For the initial conditions with CV > 1, the
optimum strategy is the one that does not reset the trajectories
that escape fast, but only the ones that belong to the tail of
escape times. Stochastic resetting starts to be effective for
tr > 10.5. If we compare this value with Fig. 5(b), it implies
resetting after the big waves of escape have passed. For ex-
ample, the probability that an initial condition with the initial
angle θ = 0.7 [maximum in Fig. 3(a)] escapes before t = 5 is
2×10−6. The probability that it escapes before t = 3 is 0 after
launching 106 simulations. This implies that resetting has to
occur for larger values of tr . Otherwise, we would be resetting
again and again without allowing any trajectory to escape. On
the other hand, for very large values of tr , stochastic resetting
is not beneficial either, as it is equivalent to not applying any
protocol. As a matter of fact, from Fig. 7(a) it is clear that
for large values of tr the escape time converges to the natural
value of the system without resetting.

The optimum resetting time interval is t∗
r ≈ 25. For this

value we find T̄ = 10.11, which is 22% less than the average
escape time of the system without stochastic resetting. Fur-
thermore, there is a wide range of values above t∗

r = 25 that
also bring good results; thus the chosen resetting interval does
not need to be extremely accurate.

An advantage of this method is that the fraction of reset tra-
jectories is low (only 9.3%). This is convenient if we assume
that the reset implies a certain cost. A simplification we have
taken in our model is that the resetting is instantaneous. Of
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FIG. 8. Escape time averaged over 106 random initial conditions
for 250 different values of the resetting energy Er . In panel (b) we
show a zoom-in around the optimum value of Er . The horizontal red
dashed line is located at the average escape time of the system with-
out stochastic resetting (T̄ = 12.97). The horizontal black dashed
line is located at the average escape time of the noiseless system
(T̄ = 8.95). It can be seen that resetting based on energy is capable
of avoiding the noise-enhanced stability effect and even reducing the
escape time under the value of the noiseless system.

course, every resetting event comes with a cost and requires
a certain time. This has been implemented by including re-
fractory periods or time penalties proportional to the distance
to the resetting position. Energetic and thermodynamics costs
have also been studied. For a review, see Ref. [30].

IV. RESETTING BASED ON ENERGY

In this section, we introduce an alternative approach for
resetting that is based on the energy of the particle. In this
case, the particle launched with a certain angle is left to evolve
freely in the potential, until a certain energy threshold Er is
reached. Then the trajectory is reset to the initial position and
launched with the same velocity and angle as in the beginning.

The interest of this approach is the following. Noise-
enhanced stability occurs due to a small amount of trajectories
that decrease their energy to very low values and remain
during long transients in the scattering region. This drop in
the energy allows these “unusual” trajectories to wander in
Kolmogorov-Arnold-Moser (KAM) regions or even to reach
energy levels for which the isopotential curves are closed [31].
Thus, the more natural parameter to track seems to be the
energy. This is true not only for our specific system but also
for all systems in which the process gets stuck in metastable
states.

Following this protocol, we show how the resetting energy
Er affects the escape times in Fig. 8(a). For the sake of
comparison, the horizontal red dashed line marks the average
escape time of the system without resetting. First of all, the
initial energy is fixed in all cases to E0 = 0.25, and we can see
that, if the energy drops below this value, resetting is always
beneficial in the sense that it accelerates the escape process.
However, the behavior is nonmonotonical and the optimum
value of Er can be found at E∗

r = 0.208.
The origin of the minimum in the escape times for resetting

with E∗
r can be explained as follows. On the one hand, if we

set the threshold at too low energies, the escape time increases.
This is because trajectories do not reach such low-energy
values in short times. Thus, setting a low Er would imply

FIG. 9. Escape time distribution averaged over 108 initial condi-
tions. The relative frequency f is normalized to unity. The red curve
is calculated for the system without resetting, while the blue curve
denotes the system with stochastic resetting with Er = E∗

r = 0.208.
Panels (b) and (d) are zoom-ins of panels (a) and (b), respectively. It
can be seen that the resetting is capable of reducing the long tail of
escape times.

resetting after large periods of time. On top of that, only a
few trajectories reach energy values close to 0, so we would
be resetting only these ones and not others that also take
large times to escape. On the other hand, setting Er too close
to the initial energy level results in resetting a high number
of particles, including those that were about to escape fast
after experiencing an initial energy drop. The action of both
effects leads to the nonmonotonic behavior and the presence
of an optimum value for Er . In this sense, the method predicts
the trajectories that will take longer times and resets them
beforehand.

In Fig. 8(b), we can see a zoom-in of Fig. 8(a) to ob-
serve that the value of T̄ drops slightly below the horizontal
dashed black line, which denotes the average escape time
of the noiseless system (T̄ = 8.95). Thus, we can conclude
that energy-based resetting is able to suppress noise-enhanced
stability. For this value, the average escape is T̄ = 8.81, which
is 32% less than the average escape time of the system with-
out stochastic resetting. Also, the maximum escape time is
max(T ) = 163, while without stochastic resetting max(T ) >

10 000 and after T = 163 still 0.8% of the trajectories did not
escape. These trajectories have T̄ = 295 and constitute the
20% of the average escape time. These are the type of events
that stochastic resetting is good at avoiding. We recall that
we have fixed the noise level ξ to the value that maximizes
the noise-enhanced effect (see Fig. 2), so we have shown that
the method is able to suppress noise-enhanced stability even
in the worst scenario. Needless to say, the method is also
efficient for other values of ξ .

In Fig. 9, we depict the escape-time distribution for the case
without resetting (red curve) and with energy-based resetting
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FIG. 10. Distribution of times at which the energy-based reset-
ting with E∗

r is applied. The results of this figure are based on 108

initial conditions and the relative frequency f is normalized to unity.
It can be seen that this protocol takes place mainly at early stages of
the process.

using E∗
r (blue curve). Figures 9(b) and 9(d) are zoom-ins

of Figs. 9(a) and 9(c), respectively. The method’s primary
advantage lies in the reduction of escape times’ tail.

Another interesting result is that 19.5% of the trajectories
are reset using E∗

r . Thus, more trajectories are reset using
this method than using the sharp restart. Furthermore, the
position of the particles when they are reset following the
energy-based protocol is approximately uniform, so there is
no relation between the position and the resetting in this case.
Regarding the times at which the energy-based resetting with
E∗

r is applied [t (E∗
r )], we have computed the distribution and

the results can be seen in Fig. 10.
As previously mentioned, the noise-enhanced stability is

caused by a small amount of trajectories that decrease their
energy to very low values and remain during long transients
in the scattering region. For this phenomenon to occur, trajec-
tories must avoid the escape by decreasing their energy fast.
If not, fluctuations would probably kick the particle out of the
well. Therefore, the particles that enhance the stability reach
low-energy values in short times. Energy-based resetting iden-
tifies these trajectories by detecting a fast energy drop. As we
can see in Fig. 10, most of the trajectories are reset after very
short times, meaning that, on average, it is not necessary to let
a trajectory evolve to know that its escape time will be large.
This is one of the key advantages of energy-based resetting in
comparison with time-based resetting.

V. COMPARISON BETWEEN METHODS

In this section, we make a comparison between time-based
and energy-based resetting to show the advantages and down-
sides of both methods. Furthermore, the results from the
preceding two sections have been calculated after averaging
different initial conditions using a random shooting angle
θ ∈ [0, 2π/3]. Here, we explore the effects of both methods
depending on the launching angle.

FIG. 11. Resetting probability for 100 different values of the
launching angle. The time-based resetting protocol with t∗

r = 25 is
shown in blue, and the energy-based resetting protocol with E∗

r =
0.208 is shown in red. For each initial condition, we perform 106

realizations of the process in order to obtain the resetting probability.

We define the resetting probability Pr as the probability that
an initial condition is reset using a particular value of tr or
Er . In the case of time-based resetting, we fix the resetting
time to t∗

r , and for 100 values of the angle in the interval
θ ∈ [0, 2π/3], we compute 106 realizations of the process.
From these data, we calculate the fraction of trajectories that
have not escaped after t = t∗

r . Equivalently, for energy-based
resetting, we fix the resetting energy to E∗

r and we calculate
the fraction of trajectories that have reached E = E∗

r before
escaping. With this procedure, we are calculating the fraction
of initial conditions that are reset at least once using the time
or energy-based protocols. Therefore, the resetting probability
is a measure of the cost of each method.

The dependence of Pr with the angle is depicted in Fig. 11.
For time-based resetting (blue curve), stochastic resetting is
never applied for angles with CV < 1. This is simply because
the nonchaotic trajectories generated by these initial condi-
tions always escape before t = t∗

r . However, the energy-based
protocol (red curve) is applied even in those cases, although it
is unnecessary.

To study how effective the method is depending on the
angle, we compute the escape times for different angles in
Fig. 12. The blue (red) curve corresponds to time-based
(energy-based) resetting. The black curve indicates the escape
time of the system without stochastic resetting. It is clear that
energy-based resetting is, overall, more effective than time-
based resetting. In particular, the average escape time of the
trajectories close to the basin boundary is reduced much more
significantly than using time-based resetting. On the contrary,
for initial conditions far from the basin boundary, this method
is ineffective and can be even counterproductive. This is the
case for θ = π/3 and for θ close to 0 and 2π/3. This suggests
that a combined method (i.e., using energy-based resetting in
conjunction with time-based resetting) could be beneficial.
Energy-based stochastic resetting resets the trajectories in
very short times (recall Fig. 10), so for initial conditions far
from the boundary (nonchaotic ones) the method also resets
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FIG. 12. Escape time for 100 different values of the launching
angle. The time-based resetting protocol with t∗

r = 25 is shown in
blue, and the energy-based resetting protocol with E∗

r = 0.208 is
shown in red. For comparison, we show in black the escape times
without applying resetting. For each initial condition, we perform
106 realizations in order to obtain T̄ .

trajectories that were going to escape very fast, making the
method inefficient for such initial conditions. By forcing the
reset to occur only if the time is greater than some threshold
(tr ≈ 3) or if CV > 1, we could retain the advantages of the
method while reducing its downsides.

Another consequence of resetting is a reduction of the
survival probability, that is, the probability that a certain tra-
jectory has not escaped until time t . This is a standard measure
in scattering problems in open Hamiltonian systems, and for
fully chaotic systems it roughly follows an exponential decay

FIG. 13. Survival probability decay with time. Blue dots cor-
respond to stochastic resetting based on time with tr = 25 [α =
0.0641 (r = 0.9991)], red dots to stochastic resetting based on en-
ergy with Er = 0.208 [α = 0.1087 (r = 0.9997)], and black dots to
the system without stochastic resetting [α = 0.0071 (r = 0.9993)].
The results for each data set are calculated after shooting 108 initial
conditions.

law,
P(t ) ∝ e−αt , (3)

where 1/α is commonly referred to as the characteristic time.
In Fig. 13, we see in logarithmic scale how this probability
changes with time for the case without resetting (black dots),
with time-based resetting (blue dots), and with energy-based
resetting (red dots). In this figure, we see that α (the slope of
the straight lines) is larger for energy-based stochastic reset-
ting. Although both methods significantly increase the escape
rate, energy-based resetting is a better protocol for expediting
the escape process.

VI. CONCLUSIONS AND DISCUSSION

Stochastic resetting has been proven to be a very effective
protocol to reduce search time in search processes, and re-
cently the same has been found for escape processes too. This
strategy consists of restarting a stochastic process in order to
avoid the system getting stuck in an undesired state.

Here, we have studied an open Hamiltonian system that
presents noise-enhanced stability. This implies that certain
noise levels delay the escape process. For these values, some
trajectories present long transients as the noise pushes them
close to KAM islands. Our aim has been to explore if stochas-
tic resetting can counterbalance this effect and expedite the es-
cape process. This technique could be applied in many phys-
ical contexts involving the escape from periodic potentials,
such as to improve the performance of Josephson junctions.

We have explored two different resetting protocols: a time-
based protocol (sharp restart) and an alternative protocol
based on tracking the energy of the system and resetting the
process when a certain threshold is reached. We have proven
that this protocol is capable of avoiding the noise-enhanced
stability phenomenon. Although time-based resetting is not as
effective in reducing the escape time, each protocol has its
advantages and disadvantages. Resetting is expected to have
a cost, either in terms of time or in terms of energy. In this
sense, time-based resetting is applied to a smaller number
of trajectories, which probably reduces the cost of resetting.
Energy-based resetting tends to over-reset, so even for trajec-
tories that have CV < 1 resetting is sometimes applied. Also,
tracking the energy of the process might not be possible in all
systems and time-based energy does not imply tracking any
measure of the process.

Another important remark is that we have explored
stochastic resetting in a system that presents transient chaos.
We conclude that in this situation the effectiveness of the
resetting strategy is strongly linked to chaotic dynamics. Tra-
jectories exhibiting sensitive dependence on initial conditions
can escape in a wide range of escape times under the effects
of noise. This implies high values of CV and thus stochastic
resetting is a more interesting strategy to be applied.
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