
The Decision View of Software Architecture: Building
by Browsing

Juan C. Dueñas1, Rafael Capilla2

1 Department of Engineering of Telematic Systems, ETSI Telecomunicación, Universidad
Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain

jcduenas@dit.upm.es
2 Department of Informatics and Telematics, Universidad Rey Juan Carlos, c/ Tulipan s/n,

28933, Madrid, Spain
rcapilla@escet.urjc.es

Abstract. Documenting software architectures is a key aspect to achieve
success when communicating the architecture to different stakeholders. Several
architectural views have been used with different purposes during the design
process. The traditional view on software architecture defines this in terms of
components and connectors. Also, the “4+1” view model proposes several
views from the same design to satisfy the interests of the different stakeholder
involved in the modelling process. In this position paper we try to go a step
beyond previous proposals, to detail the idea of considering the architecture as a
composition of architectural design decisions. We will propose a set of
elements, information and graphical notation to record the design decisions
during the modelling process.

1. Introduction

For years, the field of software architecture has been growing in width and depth; as
key cornerstones of this evolution we could cite the discovery of architectural
patterns, the agreed definition of software architecture in itself, the increasingly
adopted lexical support for them (UML, for example), the generation of educated
architects, the application of software architecture principles to the development of
sets –of families- of systems, and so on. Very recently, the scope of work in the field
has been widening even more by identifying quality attributes and their impact on the
architecture of the systems, applying the architectures to distributed systems, and
pieces in architecture that support the medium-term evolution of systems.

However, very recently the software architecture community has been facing its
own limitations. The practical implementation of systems following the architectural
approach proposed by this community is getting more and more complex, up to the
extend of rendering the application of architectural approaches useless. Just an
example of this fact is the perceived complexity (and instability) in the usage of

platforms for enterprise computing; technologies such as J2EE are now available since
several years, but obtaining their promised benefits in practice seems still far of the
average architect.

Another example seems to be the increased size in elements of the Java 1.5 platform,
featuring the 1.5 version of the Java language. Let us remark that the application of
templates (or generics) add-ons to the core language made ISO-C++ much more
complex than the average engineer is able to cope with (a demonstration of such is the
relatively sparse usage of these generic elements, other than the standard template
library), and this seems to the track that the Java language is following.

In this position paper, we recall part of the original definition of the software
architecture, just to discover how poor has been supported one part of the
architecting process. We also claim that the lack of coverage of this part of the
architecture has lead to unmanageable complex architectures (such as those
mentioned before); we propose to add some lexical support for this kind of key
architectural information missed. At the far end of this vision, is the understanding of
the architectural process as a decision making –and therefore a social and
communication- process. Let us face it: making an architecture is taking decisions but,
once the architecture is there, these decisions evaporate.

2. Software architecture description

Software architecture of a system can be defined, using an already classical
definition [7] as the structure of components, their relationships, and the principles
and guidelines governing their design and evolution over time.

As for the representation of a system architecture composed by components and
connectors, several graphical notations have been used, including UML. Also,
different architecture description languages (ADL) (e.g.: ACME, C2, Wright, etc.) have
been proposed and used to formalize the graphical notations describing the
architecture. The need to describe the architectural products from different points of
view [4] depending of the context and interests of the variety of stakeholders involved
in the process has lead to define several views for each context and stakeholder. In
this way, Kruchten’s proposal [6] defines “4+1” views representing different
viewpoints. These viewpoints shown in figure 1 are the following:

• Logical view: Represents an object-oriented decomposition of the design
supporting the functional requirements of the future system.

• Process view: Represents the concurrency and synchronization aspects of
the design and some non-functional requirements. Distribution aspects and
processes (i.e.: executable units) of the systems as well as the tasks are
represented in the process view.

• Physical view: Represents the mapping of the software onto hardware
pieces. Non-functional requirements are represented in this view and the
software subsystems are represented through processing nodes.

• Development view: Represents the static organization of the software in its
environment. The development architecture view organizes software
subsystems into packages in a hierarchy or layers. The responsibility of each
layer is defined in the development view.

• Use case view: Represents the scenarios that reflect the process associated
to a set of system’s requirements. This view is redundant to the previous
ones but it serves to discover architectural elements and for validation
purposes.

 Logical
View

Development
View

Process
View

Physical
View

Scenarios

Fig. 1. The “4+1” view model (Kruchten)

The correspondence between the views of figure 1 can be performed to connect
elements from one view to another. There are other classification of views to be taken
into account, and some of them have received widespread attention by the community
of practitioners (among these the views proposed by [13]). In addition to this, other
authors [5] propose a viewtype of the architecture associated to aspects. The authors
introduce a conceptual model called aspect architecture which is considered as a
software architecture viewtype. The authors propose a new UML diagram type called
a concern diagram for modelling architectural views of aspects. Finally, in [3] the
authors mention a new classification for architectural views called viewtypes for
documenting purposes. A viewtype defines the types of elements and relationships
used to describe the architecture from a particular point of view or perspective. More
than defining new architectural views, the authors [3] try to modernize and make clear
for the stakeholders the documentation generated during the architectural
construction process. Also, they mention the need to record the rationale of the
design decisions as part of the information needed when documenting software
architectures but they do not mention how to record these design decisions in order to
be used afterwards if needed.

The architectural construction process involves several elements and aspects for
which the resultant software architecture constitutes the most visible part of the
overall design process. Software projects involve several actors or stakeholders
during the project lifecycle and the “view” of these stakeholders is quite different for
each them. Therefore, the need to represent different views or viewpoints at the design
level is a usual task [13].

Although in many situations such as: lost or inexistence of designs, reengineering
legacy systems, evolution of architectural products, or even changes in the

development team, lead to the need to recording the design decisions from which the
software architecture was obtained at a first instance. Design decisions represent the
cornerstone to obtain a suitable software architecture because they represent the
rational that motivated the election of architectural patterns and styles, the functional
blocks that represent systems and subsystems in the architecture, their relationships
among them and the control of the architecture. Our position in this paper and
following recent proposals [2] is to modernize the concept of software architecture
making the design decisions explicit, and adding them as a “new” viewpoint respect to
the traditional approaches. Our proposal tries to detail the representation of this
decision view in the architectural construction process. So, the traditional techniques
for describing a software architecture are able to give effective responses to the “how”
question (let us suppose that requirements engineering is able to provide satisfactorily
answers to the “what”), but, up to date, they can not describe “why”.

3. Requirements for the decision view in the software architecture

Again on the software architecture definition, we have seen that the structure of the
system components and relationships is described using the architectural views. The
“principles and guidelines” part are out of the scope of these architectural languages,
and therefore they are currently covered in a certain organization by means of out-of-
band methods: written documentation using natural language in the most mature of
the cases, and codified in the mind of the architects in the usual case.

But even for these less traditional topics there are proposals worth to be taken into
account, although most of them come from the domain of requirements engineering,
such as the NFR (non-functional requirements) framework proposed by Chung, that
characterizes stakeholders and their relationships in order to structure the decision
making process launched by the tradeoffs between conflicting quality requirements.
Also in this track can be allocated the well-known ATAM method [1] and derivatives.
These methods are practical enough to be used in the industrial setting; however,
these methods focus on the decision making process and its results, but no on the
documentation of the alternatives left out, the intermediate steps, nor the rationale; in
this sense, the methods rely heavily on human expertise and do not address the
knowledge representation problems, the “why”.

What we are proposing is not the usage of versioning methods applied on the
architecture models; first this method was attempted some years ago and lead to so
many deltas (in configuration management terminology) that the method shown to be
useless; even worse, if the deltas were not annotated with the knowledge that drive
the architects to the next version, it was impossible to replay the process.

Recent advances in the support of traceability between requirements and
architecture can also help in solving the problem [12], but not entirely. In fact, for
those decisions that come directly from requirements affecting architectural elements
in a 1:1 relationship, the approach may be useful, but for those that affect several at

once (architectural significant requirements [14]) the direct application of traceability
techniques will not record all the information.

Other methods –albeit old- can help: the lines of research opened by the design
space theory, the application of Quality Function Deployment, or Design Decision
Trees found, in their first application to software architectures [8][10], the lack of
agreements by the software architecture community regarding the lexical support that
now provides UML.

Some of the requirements stated then for the support of the decision view seem
surprisely applicable right now [9]:

• Multi-perspective support or, in other terms, giving support to the
different stakeholders.

• Visual representation so the decisions can be understood easily and
“replayed” and what-if scenarios easy to be built.

• Complexity control: since in large systems the set of decisions is also
large, some kind of mechanism (hierarchy, navigation, abstraction) is
required in order to keep the set under control. The “scalability”
requirement is closely related to this one.

• Groupware support: this is now an acknowledged fact that the several
stakeholders must interact in order to check and solve their conflicts.

• Gradual formalization because the decision making process is a learning
process and thus the decisions evolve in time.

Once a lexical support for design decisions representation is found, the architecting

process becomes a knowledge management process in which the product of the
application of this knowledge produces the architectural models of the other views,
and the process is able to explain why these elements in the structural views, for
example, have been chosen, which were discarded, and how this particular selection
fulfils the system requirements.

Some of the activities in this architectural-knowledge management process are:
• Growth-refinement: the design decisions are not isolated. As mentioned

before, there is a gradual formalization that appears when architectural
assessment activities are performed (both in the development process as
in post delivery analysis , these include architectural recovery and
architectural conformance). The knowledge base formed by decisions is
made more deep, or more decisions are included, or their possibilities for
application increase.

• Dissemination and learning. The knowledge base is the key asset in order
to learn the architecture process and this is precisely the point we try to
illustrate at the beginning of this contribution: in order to cope with large
systems (in intellectual effort), the ability to record and replay the
decisions, provided by the explicit description of them is a key element.

• Exploration-application: the application of design decisions should get to
the same architecture… only if the border conditions (stakeholders,
requirements and trade-offs) are the same. Applying the same decisions on
a different set of requirements would lead to a different architecture.

4. The Decision View of Software Architecture

The need to represent design decisions as a key aspect in the architectural
construction process has lead us to propose a new view called the decision view. This
decision view has to be defined and represented in the architecture documentation so
any of the stakeholders can use it later if needed. Several reasons for record the design
decisions are: changes in the development team, design recovery needs, lost of
designs, forward and backward trace between requirements and design products, etc.
Therefore, an explicit representation of the design decisions becomes a key factor for
building software architectures.

Design decisions must connect requirements and architectural products in order to
discover the rationale of the decisions taken during the design construction process.
The information we believe a design decision should include for representing this
using a UML notation or similar is the following:

• Iteration Number: Due that the software architecture is the outcome of a

iterative process in which several design decisions are taken, we need to
record the iteration of a particular decision.

• Following Iteration: It points to the following iteration in the design process.
• Decision Rule: This represents the name decision rule taken by the designer.

The motivation of the decision should be explicitly described here.
• Decision Rule Number: It numbers a specific decision rule
• Following Decision Rule Number: It points to the following decision rule and

is used for tracing purposes or for tracking the decisions made.
• Pattern / Style Applied: Represents the pattern or style applied for a

particular design decisions. They are used to impose restrictions to a
particular architectural element during the design construction process.

• Associated Use Case: They represent the number or name of one or more use
cases associated to a particular design decision. This is used to connect the
architectural product to requirements.

Figure 2 provides a graphical representation of a decision element which can be

modelled employing a new UML element.

UC1, UC2

Pattern / Style

Decisión rule 1

1

2

1

2

UC1, UC2

Pattern / Style

Decisión rule 2

1

3

2

X

Iteration number Decisión rule number
Next rule number

Point to subsequent iterations

Fig. 2. Representation of the information included in the decision view of the software
architecture

In this way, we can modify the figure proposed by Kruchten [6] to include the
decision view as a intermediate element between requirements and other design views,
such as figure 3 shows.

Fig. 3. The decision view model of software architecture

One key aspect when recording design decisions is how to associate these to
architectural elements when we represent graphically these architectural products. For
each of the iterations performed during the design process, we can assign a decision
element (shown in figure 2) to each architectural element. For subsequent iterations,
the design decisions elements will expand to describe the rationale of the design
decisions taken during the process. Figure 4 shows an example of several iterations
during the architecture construction process. The first iteration applies a layered style
for the architecture and assigns a decision element for that. The following iterations
apply other architectural styles and design decisions rules for each layer. The
decisions elements shown in figure 4 are used to record and link the decisions taken.

Logical View

Development View

Process View

Physical View

Use Cases

Requirements

DECISION

VIEW

Fig. 4. Decisions elements associated to architectural elements for the several iterations in the
architectural construction process

5. A proposal for the implementation of the decision view

In our proposal, so far, the key elements in the decision view are the links, or the
relations between pieces of information, plus pieces of text for the rationale. The
implementation of such should be the simplest if some kind of success in the industrial
stage is sought. In fact, the authors understand this point as one of the key and
deepest lessons to be taken from the open source communities and the social
networks theories: the quality and size of the communication (links) are more important
than the qualities of the pieces of information (the nodes). The practical application of
this fact means that the decision view can be deployed as a hyperlinked
documentation on top of the other architectural views: applying decisions is made by
navigating that hyperlinked documentation, “building by browsing”.

References

1. Bass L., Clements P. and Kazman R. Software Architecture in Practice, Addison-Wesley, 2nd
edition, (2003).

2. Bosch, J. Software Architecture: The Next Step, Proceedings of the 1st European Workshop
on Software Architecture (EWSA 2004), Springer-Verlag, LNCS 3047, pp. 194-199 (2004).

3. Clements P., Bachman F., Bass, L., Garlan D., Ivers J., Little R., Nord R. and Stafford J.
Documenting Software Architectures. Views and Beyond, Addison-Wesley (2003).

4. IEEE Recommended Practice for Architectural Description of Software-Intensive Systems,
IEEE Std 1471-2000 (2000).

Decision element
Iteration 1.

(a) 1st version of the Architecture

Decision element
Iteration 2

Decision element
Iteration 3

Decision element
Iteration 4

(a) 2nd version of the Architecture

5. Katara M. and Katz S. Architectural Views of Aspects. Proceedings of AOSD 2003, Boston,
USA, ACM, pp.1-10 (2003).

6. Kruchten P. Architectural Blueprints. The “4+1” View Model of Software Architecture.
IEEE Software 12 (6), pp.42-50 (1995).

7. Shaw M. and Garlan D. Software Architecture, Prentice Hall (1996).
8. Alonso, A., León, G., Dueñas, J.C., de la Puente, J. A. Framework for documenting design

decisions in product families development. Proceedings of the Third International
Conference on Engineering of Complex Computer Systems", Como, Italia, 1997. September
1997. ISBN: 0-8186-8126-8.

9. Dueñas, J. C., Hauswirth, M. Hyper-linked Software Architectures for Concurrent
Engineering. In Proceedings of Concurrent Engineering Europe 97, Erlangen-Nuremberg,
Germany, 1997. pp: 3-10. Society for Computer Simulation. ISBN: 1-56555112-5.

10. Dueñas, J. C., León, G. An introduction to evolution of large systems based on Software
Architectures. In Systems Implementation 2000, IFIP TC2 WG2.4 Working Conference on
Systems Implementation 2000, Berlin, Germay, February 1998. Chapman and Hall, 1998.
pp: 128-139. ISBN: 0-412-83530-4.

11. Woods, E.. Experiences Using Viewpoints for Information Systems Architecture: An
Industrial Experience Report. F. Oquendo (Ed) Proceedings of the First European Workshop
on Software Architecture, LNCS 3047, Springer Verlag, 2004.

12. Stuart, D., Sull, W., Cook, T. W.. Dependency Navigation in Product Lines Using XML.
Third International Workshop on Software Architectures for Product Families, F. van der
Linden (ed), LNCS 1951, Springer Verlag, 2000.

13. Gomaa, H., Shin, E.. A Multiple View Meta-modeling Approach for Variability
Management in Software Product Lines. Eighth International Conference on Software Reuse:
Methods, Techniques and Tools. LNCS 3107, Springer Verlag, 2004.

14. Jazayeri, M., Ran, A., van der Linden (eds) "Software Architecture for Product Families",
Addison-Wesley, 2000. ISBN: 0-201-69967-2.

