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Abstract

In this paper we study, in an open bounded set with Lipschitz
boundary, the Dirichlet problem for a nonlinear singular elliptic equa-
tion involving the 1–Laplacian and a total variation term, that is, the
inhomogeneous case of the equation appearing in the level set formu-
lation of the inverse mean curvature flow. Our aim is twofold. On the
one hand, we consider data belonging to the Marcinkiewicz space with
a critical exponent, which leads to unbounded solutions. So, we have
to begin introducing the suitable notion of unbounded solution to this
problem. Moreover, examples of explicit solutions are shown. On the
other hand, this equation allows us to deal with many related problems
having a different gradient term which depend on a function g (see (1)
below). It is known that the total variation term induces a regularizing
effect on existence, uniqueness and regularity. We focus on analyzing
whether those features remain true when general gradient terms are
taken. Roughly speaking, the bigger g, the better the properties of the
solution.

1 Introduction

In the present paper we deal with the Dirichlet problem for equations in-
volving the 1–Laplacian and a total variation term: −div

( Du

|Du|

)
+ g(u)|Du| = f(x) in Ω ,

u = 0 on ∂Ω ,

(1)

where Ω ⊂ RN is a bounded open set with Lipschitz boundary ∂Ω, g(s)
stands for a continuous nonnegative function defined for s ≥ 0 and f is a
nonnegative function belonging to the Marcinkiewicz space LN,∞(Ω).
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A related class of elliptic problems involving the p–Laplacian operator
(defined in W 1,p(Ω) by ∆pu = div

(
|∇u|p−2∇u

)
, where p > 1) with a gra-

dient term has been widely studied. We recall the seminal paper [27] for a
gradient term of exponent p− 1 and the systematic study of equations hav-
ing a gradient term with natural growth initiated by Boccardo, Murat and
Puel (see [12, 13, 14]). The variational approach searches for solutions in the
Sobolev space W 1,p

0 (Ω) and considers data belonging to its dual W−1,p′(Ω).

(In the setting of Lebesgue spaces, data are naturally taken in L
Np

Np−N+p (Ω)
as a consequence of the Sobolev embedding.)

We point out that the natural space to look for a solution to problem (1)
should be the Sobolev space W 1,1

0 (Ω) and the space of data, from a varia-
tional point of view, should be its dual W−1,∞(Ω). The Sobolev embedding
Theorem and duality arguments lead to consider as the right function space
of data the space LN (Ω) (among the Lebesgue spaces) and LN,∞(Ω) (among
the Lorentz spaces). Evidences that the norm of LN,∞(Ω) is suitable enough
to deal with this kind of problems can be found in [16, 29]. As far as the en-
ergy space is concerned, we cannot search for solutions in W 1,1

0 (Ω), which is
not reflexive, and we have to extend our setting to the larger space BV (Ω),
the space of all functions of bounded variation. Therefore, our framework
is the following: given a nonnegative f ∈ LN,∞(Ω), find u ∈ BV (Ω) that
solves problem (1) in an appropriate sense which will be introduced below
(see Definition 4.1).

Two important cases of problem (1) have already been studied. When

g(s) ≡ 0 we obtain just the 1–Laplacian operator: −div
( Du

|Du|

)
. There

is a big amount of literature on this equation in recent years, starting in
[25]. Other papers dealing with this equation are [7, 10, 16, 19, 26, 29].
The interest in studying such a case came from an optimal design problem
in the theory of torsion and related geometrical problems (see [25]) and
from the variational approach to image restoration (see [7] and also [8] for
a review on the development of variational models in image processing).
The suitable concept of solution to handle the Dirichlet problem for this
kind of equations was introduced in [7]. In this paper, a meaning for the

quotient
Du

|Du|
(involving Radon measures) is given through a vector field

z ∈ L∞(Ω;RN ) satisfying ∥z∥∞ ≤ 1 and (z, Du) = |Du| as measures. This
vector field also gives sense to the boundary condition in a weak sense. The
meaning of all expressions in which appear vector fields relies on the theory
of L∞–divergence–measure fields (see [9] and [17]).

On the other hand, when g(s) ≡ 1, we get −div
( Du

|Du|

)
+ |Du|, which

occurs in the level set formulation of the inverse mean curvature flow (see
[22], related developments can be found in [23, 31, 32]). The framework
of these papers, however, is different since Ω is unbounded. Furthermore,
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the concept of solution is based on the minimization of certain functional
and does not coincide with which has been considered in the previous case.
This operator has also been studied in a bounded domain in [28], where it
is proved the existence and uniqueness of a bounded solution for a datum
regular enough.

It is worth noting that, contrary to what happens in the p–Laplacian
setting with p > 1, features of solutions to problem (1) with g(s) ≡ 0 are
very different to those with g(s) ≡ 1. Indeed, the presence of the gradient
term has a strong regularizing effect because in the first case the following
facts hold:

(i) Existence of BV –solutions is only guaranteed for data small enough,
for large data solutions become infinity in a set of positive measure.

(ii) There is no uniqueness at all: given a solution u, we also obtain that
h(u) is a solution, for every smooth increasing function h.

Whereas, in the second case, the properties are:

(i) There is always a solution, even in the case where the datum is large.

(ii) An uniqueness result holds.

Regarding regularity of solutions, even an equation related to the case g(s) ≡
0 like u − div

(
Du
|Du|

)
= f(x) (for which existence and uniqueness hold) has

solutions with jump part. On the contrary, solutions to problem (1) with

g(s) ≡ 1 have no jump part. Moreover, solutions to u − div
(
Du
|Du|

)
= f(x)

satisfy the boundary condition only in a weak sense (and in general, u|∂Ω ̸=
0), while if g(s) ≡ 1, then the boundary condition holds in the trace sense,
that is, the value is attained pointwise on the boundary.

We point out that the situation concerning existence is rather similar to
that shown in studying problem −∆u+ |∇u|2 = λ

u

|x|2
in Ω ,

u = 0 on ∂Ω ,
(2)

in domains satisfying 0 ∈ Ω, since the presence of the quadratic gradient
term induces a regularizing effect (see [3] and [1], see also Remark 5.4 below).
Indeed, existence of a positive solution to (2) can be proved for all λ > 0,
while if the gradient term does not appear, solutions can be expected only
for λ small enough, due to Hardy’s inequality.

Our purpose is to study the role of the function g on the above features
satisfied by the solutions. Roughly speaking, we see that the bigger g,
the better the properties of the solution. The standard case occurs when
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g(s) ≥ m > 0 for all s ≥ 0 and the situation degenerates as soon as g(s)
touch the s–axis.

We begin by considering the case g(s) = 1 for all s ≥ 0. To get an idea
of the difficulties one finds, let us recall previous works on this subject. As
mentioned, this problem was already handled in [28] for data f ∈ Lq(Ω),
with q > N . This condition is somewhat artificial and was taken in this way
due to the necessity of obtaining bounded solutions. This necessity derives
from the use of the theory of L∞–divergence–measure fields. It was initiated
in [9], where a sense is provided with the dot product (z, Du), where z ∈
L∞(Ω;RN ) satisfies that div z is a Radon measure and u ∈ BV (Ω)∩L∞(Ω)
is a continuous function. In a different way, it was later developed in [17]
for a -possibly discontinuous- function u ∈ BV (Ω)∩L∞(Ω) (see also [15, 30]
for a point of view closest to that of [9]). Since we must expect unbounded
solutions starting from the most natural space of data LN,∞(Ω), the first
result we need is to give sense to the dot product (z, Du) when u ∈ BV (Ω)
can be unbounded. This was achieved in [2], but we include it for the sake
of completeness.

Endowed with this tool, in the first part of this paper, we prove an
existence and uniqueness result for problem (1) in the particular case g(s) ≡
1. The second part is fully devoted to our main concern, that is, to search
for the properties that solutions to problem (1) satisfy for different functions
g. For better understanding, we summarize the results we will see in the
table 1 below.

Table 1

Function g(s) Existence Uniqueness Regularity

0 < m ≤ g(s) For every datum
(1)

Yes
(1) No jump part

(1)

Better summability
(2)

g vanishes at some points
For every datum

(3)
Yes

(3)
No jump part

(3)

g /∈ L1([0,∞[)

g vanishes at infinity For every datum
(4)

, with
Yes

(4)
No jump part

(4)

g /∈ L1([0,∞[) another concept of solution
(5)

g ∈ L1([0,∞[) For data small enough
(6,7)

Yes
(7)

No jump part
(7)

g vanishes on an interval For data small enough
(8)

No
(9) With jump part

(10)

No boundary condition
(11)
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(1) Theorem 6.4 and Theorem 6.5 (2) Proposition 6.6 (3) Theorem 7.1 (4) Theorem 7.3

(5) Definition 7.2 and Example 7.4 (6) Example 8.4 (7) Theorem 8.1 (8) Remark 8.5

(9) Remark 8.5 and Remark 8.7 (10) Example 8.8 (11) Example 8.6

The plan of this paper is the following. Section 2 is dedicated to prelim-
inaries, we introduce our notation and some properties of the spaces BV (Ω)
and LN,∞(Ω). In Section 3 we generalize the theory of L∞–divergence–
measure fields to take pairings (z, Du) of a certain vector field z and any
u ∈ BV (Ω). This theory is applied in Section 4 to extend the result of
existence and uniqueness of [28] to LN,∞(Ω)–data. In Section 5 we show
explicit radial examples of solutions. Section 6 is devoted to study the stan-
dard cases of problem (1), those where g(s) is bounded from below by a
positive constant. A non standard case is shown in Section 7 with g(s)
touching the s–axis; in this case we need to change our definition of solution
since solutions no longer belong to BV (Ω). Finally, in Section 8 we deal
with really odd cases for which the considered properties are not necessarily
satisfied.
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2 Preliminaries

In this Section we will introduce some notation and auxiliary results which
will be used throughout this paper. In what follows, we will consider N ≥ 2,
and HN−1(E) will denote the (N − 1)–dimensional Hausdorff measure of a
set E and |E| its Lebesgue measure.

In this paper, Ω will always denote an open subset of RN with Lipschitz
boundary. Thus, an outward normal unit vector ν(x) is defined for HN−1–
almost every x ∈ ∂Ω. We will make use of the usual Lebesgue and Sobolev
spaces, denoted by Lq(Ω) and W 1,p

0 (Ω), respectively.
We recall that for a Radon measure µ in Ω and a Borel set A ⊆ Ω the

measure µ A is defined by (µ A)(B) = µ(A∩B) for any Borel set B ⊆ Ω.
If a measure µ is such that µ = µ A for a certain Borel set A, the measure
µ is said to be concentrated on A.
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The truncation function will be use throughout this paper. Given k > 0,
it is defined by

Tk(s) = min{|s|, k} sign (s) , (3)

for all s ∈ R. Moreover, we define another auxiliary real function by

Gk(s) =
(
s− Tk(s)

)
sign (s) . (4)

2.1 The energy space

The space of all functions of finite variation, that is the space of those
u ∈ L1(Ω) whose distributional gradient is a Radon measure with finite
total variation, is denoted by BV (Ω). This is the natural energy space to
study the problems we are interested in. It is endowed with the norm defined
by

∥u∥ =

∫
Ω
|u| dx+

∫
Ω
|Du| ,

for any u ∈ BV (Ω). An equivalent norm, which we will use in the sequel, is
given by

∥u∥BV (Ω) =

∫
∂Ω

|u| dHN−1 +

∫
Ω
|Du| .

For every u ∈ BV (Ω), the Radon measure Du is decomposed into its
absolutely continuous and singular parts with respect to the Lebesgue mea-
sure: Du = Dau+Dsu. We denote by Su the set of all x ∈ Ω such that x is
not a Lebesgue point of u, that is, x ∈ Ω\Su if there exists ũ(x) such that

lim
ρ↓0

1

|Bρ(x)|

∫
Bρ(x)

|u(y)− ũ(x)| dy = 0 .

We say that x ∈ Ω is an approximate jump point of u if there exist two real
numbers u+(x) > u−(x) and νu(x) ∈ SN−1 such that

lim
ρ↓0

1

|B+
ρ (x, νu(x))|

∫
B+

ρ (x,νu(x))
|u(y)− u+(x)| dy = 0 ,

lim
ρ↓0

1

|B−
ρ (x, νu(x))|

∫
B−

ρ (x,νu(x))
|u(y)− u−(x)| dy = 0 ,

where
B+
ρ (x, νu(x)) = {y ∈ Bρ(x) : ⟨y − x, νu(x)⟩ > 0}

and
B−
ρ (x, νu(x)) = {y ∈ Bρ(x) : ⟨y − x, νu(x)⟩ < 0} .

We denote by Ju the set of all approximate jump points of u. By the
Federer–Vol’pert Theorem [6, Theorem 3.78], we know that Su is count-
ably HN−1–rectifiable and HN−1(Su\Ju) = 0. Moreover, Du Ju = (u+ −
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u−)νuHN−1 Ju. Using Su and Ju, we may split Dsu in two parts: the jump
part Dju and the Cantor part Dcu defined by

Dju = Dsu Ju and Dcu = Dsu (Ω\Su) .

Then, we have
Dju = (u+ − u−)νuHN−1 Ju .

Moreover, if x ∈ Ju, then νu(x) =
Du
|Du|(x) and

Du
|Du| is the Radon–Nikodým

derivative of Du with respect to its total variation |Du|.
The precise representative u∗ : Ω\(Su\Ju) → R of u is defined as equal

to ũ on Ω\Su and equal to u−+u+

2 on Ju. It is well known (see for instance
[6, Corollary 3.80]) that if ρ is a symmetric mollifier, then the mollified
functions u ⋆ ρϵ pointwise converges to u∗ in its domain.

A compactness result in BV (Ω) will be used several times in what fol-
lows. It states that every sequence that is bounded in BV (Ω) has a subse-
quence which strongly converges in L1(Ω) to a certain u ∈ BV (Ω) and the
subsequence of gradients ∗–weakly converges to Du in the sense of measures.

To pass to the limit we will often apply that some functionals defined on
BV (Ω) are lower semicontinuous with respect to the convergence in L1(Ω).
The most important are the functionals defined by

u 7→
∫
Ω
|Du| (5)

and

u 7→
∫
Ω
|Du|+

∫
∂Ω

|u| dHN−1 . (6)

In the same way, it yields that each φ ∈ C1
0 (Ω) with φ ≥ 0 defines a

functional

u 7→
∫
Ω
φ |Du| ,

which is lower semicontinuous in L1(Ω).
Finally, we recall that the notion of trace can be extended to any u ∈

BV (Ω) and this fact allows us to interpret it as the boundary values of u
and to write u

∣∣
∂Ω

. Moreover, it holds that the trace is a linear bounded
operator BV (Ω) → L1(∂Ω) which is onto.

For further information on functions of bounded variation, we refer to
[6, 20, 33].

2.2 The data space

Given a measurable function u : Ω → R, we denote by µu the distribution
function of u: the function µu : [0,+∞[→ [0,+∞[ defined by

µu(t) = |{x ∈ Ω : |u(x)| > t}| , t ≥ 0 .

8



For 1 < q < ∞, the space Lq,∞(Ω), known as Marcinkiewicz or weak-
Lebesgue space, is the space of Lebesgue measurable functions u : Ω → R
such that

[u]q = sup
t>0

t µu(t)
1/q < +∞ . (7)

The relationship with Lebesgue spaces is given by the following inclusions

Lq(Ω) ↪→ Lq,∞(Ω) ↪→ Lq−ε(Ω) ,

for suitable ε > 0. We point out that expression (7) defines a quasi–norm
which is not a norm in Lq,∞(Ω). (For a suitable norm in this space see (10),
(11) and (12) below).

Some properties of Lorentz spaces Lq,1(Ω) (with 1 < q < ∞) must be
applied throughout this paper. To begin with, we define the decreasing
rearrangement of u as the function u⋆ : ]0, |Ω|] → R+ given by

u⋆(s) = sup{t > 0 : µu(t) > s} , s ∈ ]0, |Ω|] ,

(the main properties of rearrangements can be found in [11, 24, 33]). In
terms of u⋆, the quasi-norm (7) becomes

[u]q = sup
s>0

{s1/qu⋆(s)} . (8)

We say that a measurable function u : Ω → R belongs to Lq,1(Ω) if

∥u∥Lq,1(Ω) =
1

q

∫ ∞

0
s1/qu⋆(s)

ds

s
(9)

is finite. This expression defines a norm (see [11, Theorem 5.13]). The
classical paper where these spaces are systematically studied is [24] (see also
[11, 33]). Some important properties of Lorentz spaces are:

1. Lq,1(Ω) is a Banach space endowed with the norm defined by (9).

2. Simple functions are dense in Lq,1(Ω).

3. The norm (9) is absolutely continuous.

Concerning duality, the Marcinkiewicz space Lq
′,∞(Ω) is the dual space

of Lq,1(Ω). Indeed, it follows from a Hardy–Littlewood inequality that if
f ∈ Lq

′,∞(Ω) and u ∈ Lq,1(Ω), then fu ∈ L1(Ω) and a Hölder type inequality
holds:∣∣∣ ∫

Ω
fu dx

∣∣∣ ≤ ∫ ∞

0
f⋆(s)u⋆(s) ds =

∫ ∞

0
s1/q

′
f⋆(s)s1/qu⋆(s)

ds

s

≤ q[f ]q′∥u∥Lq,1(Ω) .
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Thus,

∥f∥Lq′,∞(Ω) = sup


∣∣∣ ∫Ω fu dx∣∣∣
∥u∥Lq,1(Ω)

: u ∈ Lq,1(Ω)\{0}

 (10)

defines a norm in the Marcinkiewicz space and ∥f∥Lq′,∞(Ω) ≤ q [f ]q′ holds.
Taking into account that if E ⊂ Ω is a measurable set of positive measure

and u = |E|−
1
qχE , then ∥u∥Lq,1(Ω) = 1 and also applying the density of

simple functions, we deduce that

∥f∥Lq′,∞(Ω) = sup

{∣∣∣ ∫
Ω
fu dx

∣∣∣ : u = |E|−
1
qχE , with |E| > 0

}
= sup

{
|E|−1/q

∫
E
|f | dx : |E| > 0

}
. (11)

This implies [f ]q′ ≤ ∥f∥Lq′,∞(Ω), so that, the quasi–norm [ · ]q′ is equivalent
to the norm ∥ · ∥Lq′,∞(Ω). It also yields

∥f∥Lq′,∞(Ω) = sup
s>0

{s1/q′f⋆⋆(s)} , (12)

where f⋆⋆(s) =
1

s

∫ s

0
f⋆(σ) dσ .

On the other hand, we recall that Sobolev’s inequality can be improved
in the context of Lorentz spaces (see [4]): the continuous embedding

W 1,1
0 (Ω) ↪→ L

N
N−1

,1(Ω) (13)

holds. The best constant in this embedding will be denoted as

SN = sup

{∥u∥
L

N
N−1

,1
(Ω)∫

Ω |∇u| dx
: u ∈W 1,1

0 (Ω)\{0}
}
. (14)

Its value is known:

SN =
Γ
(
N
2 + 1

)1/N
N
√
π

=
1

NC
1/N
N

, (15)

where CN denotes the measure of the unit ball in RN . (We explicitly point
out that this is the value for the best constant having in mind the norm
in the Lorentz space as defined in (9).) Furthermore, by an approximation
argument, this inclusion may be extended to BV–functions with the same
best constant SN (see, for instance, [33]):

BV (Ω) ↪→ L
N

N−1
,1(Ω) . (16)
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It is worth remarking that the supremum in (14) is attained in BV (Ω).
As a consequence of this embedding, given f ∈ LN,∞(Ω) and u ∈ BV (Ω),

it yields fu ∈ L1(Ω). This fact will be essential in what follows.
Another fact concerning Lorentz spaces and duality is in order. We will

denote by W−1,q′(Ω) the dual space of W 1,q
0 (Ω), 1 ≤ q <∞. Here we recall

just that the norm in W−1,∞(Ω) is given by

∥µ∥W−1,∞(Ω) = sup

{∣∣ < µ, u >
W−1,∞(Ω),W 1,1

0 (Ω)

∣∣ :

∫
Ω
|∇u| dx ≤ 1

}
.

(17)

Since the norm in L
N

N−1
,1(Ω) is absolutely continuous, it follows that C∞

0 (Ω)

is dense in L
N

N−1
,1(Ω). A duality argument shows that LN,∞(Ω) ↪→W−1,∞(Ω)

and, having in mind (10) and (14), we obtain: if f ∈ LN,∞(Ω), then

∥f∥LN,∞(Ω) = sup


∣∣∣ ∫Ω fu dx∣∣∣

∥u∥
L

N
N−1

,1
(Ω)

: u ∈W 1,1
0 (Ω)\{0}


= sup


∣∣∣ ∫Ω fu dx∣∣∣∫
Ω |∇u| dx

·
∫
Ω |∇u| dx

∥u∥
L

N
N−1

,1
(Ω)

: u ∈W 1,1
0 (Ω)\{0}

 ≥ S−1
N ∥f∥W−1,∞(Ω) .

Therefore,

∥f∥W−1,∞(Ω) ≤
1

NC
1/N
N

∥f∥LN,∞(Ω) , (18)

for every f ∈ LN,∞(Ω). (For a related equality in a ball, see [29, Remark
3.3]).

3 Extending Anzellotti’s theory

In this section we will study some properties involving divergence–measure
vector fields and functions of bounded variation. Our aim is to extend the
Anzellotti theory.

Following [17] we define DM∞(Ω) as the space of all vector fields z ∈
L∞(Ω;RN ) whose divergence in the sense of distributions is a Radon mea-
sure with finite total variation, i.e., z ∈ DM∞(Ω) if and only if div z is a
Radon measure belonging to W−1,∞(Ω).

The theory of L∞–divergence–measure vector fields is due to G. Anzel-
lotti [9] and, independently, to G.–Q. Chen and H. Frid [17]. In spite of
their different points of view, both approaches introduce the normal trace
of a vector field through the boundary and establish the same generalized
Gauss–Green formula. Both two also define the pairing (z, Du) as a Radon
measure where z ∈ DM∞(Ω) and u is a certain BV –function. However,
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they differ in handling this concept. While in [9] it is only considered con-
tinuous functions belonging to BV (Ω) ∩ L∞(Ω) and the inequality

|(z, Du)| ≤ ∥z∥∞|Du| (19)

is proved for those functions; in [17], general u ∈ BV (Ω) ∩ L∞(Ω) are con-
sidered but it is only shown that the Radon measure (z, Du) is absolutely
continuous with respect to |Du|. In the present paper we need that the in-
equality (19) holds for every u ∈ BV (Ω) and every z ∈ DM∞(Ω) satisfying
a certain condition (see Corollary 3.5 below). That is why the way by which
the pairings (z, Du) are obtained will be essential in our work. This is the
reason for extending the Anzellotti approach in this Section.

We finally point out that the theory of divergence–measure fields has
been extended later (see [18] and [34]).

We begin by recalling a result proved in [17].

Proposition 3.1. For every z ∈ DM∞(Ω), the measure µ = div z is abso-
lutely continuous with respect to HN−1, that is, |µ| ≪ HN−1.

Consider now µ = div z with z ∈ DM∞(Ω) and let u ∈ BV (Ω); then the
precise representative u∗ of u is equal HN−1–a.e. to a Borel function; that
is, to limε→0 ρε ⋆ u, where (ρε) is a symmetric mollifier. Then, it is deduced
from the previous Proposition that u∗ is equal µ–a.e. to a Borel function.
So, given u ∈ BV (Ω), its precise representative u∗ is always µ–measurable.
Moreover, u ∈ BV (Ω) ∩ L∞(Ω) implies u ∈ L∞(Ω, µ) ⊂ L1(Ω, µ).

3.1 Preservation of the norm

We point out that every div z, with z ∈ DM∞(Ω), defines a functional on
W 1,1

0 (Ω) by

⟨div z, u⟩
W−1,∞(Ω),W 1,1

0 (Ω)
= −

∫
Ω
z · ∇u dx . (20)

To express this functional in terms of an integral with respect to the mea-
sure µ = div z, we need the following Meyers–Serrin type theorem (see [6,
Theorem 3.9] for its extension to BV –functions).

Proposition 3.2. Let µ = div z, with z ∈ DM∞(Ω). For every u ∈
BV (Ω)∩L∞(Ω) there exists a sequence (un)n in W 1,1(Ω)∩C∞(Ω)∩L∞(Ω)
such that

(1) un → u∗ in L1(Ω, µ) .

(2)
∫
Ω |∇un| dx→ |Du|(Ω) .

(3) un|∂Ω = u|∂Ω for all n ∈ N .

(4) |un(x)| ≤ ∥u∥∞ |µ|–a.e. for all n ∈ N .

12



Moreover, if u ∈W 1,1(Ω)∩L∞(Ω), then one may find un satisfying, instead
of (2), the condition

(2’) un → u in W 1,1(Ω) .

Since

−
∫
Ω
z · ∇φdx =

∫
Ω
φdµ

holds for every φ ∈ C∞
0 (Ω), it is easy to obtain this equality for every

W 1,1
0 (Ω) ∩ C∞(Ω). Given u ∈ W 1,1

0 (Ω) ∩ L∞(Ω) and applying Proposition

3.2, we may find a sequence (un)n in W 1,1
0 (Ω) ∩ C∞(Ω) satisfying (1) and

(2’). Letting n go to infinity, it follows from

−
∫
Ω
z · ∇un dx =

∫
Ω
un dµ

for every n ∈ N, that

−
∫
Ω
z · ∇u dx =

∫
Ω
u∗ dµ

and so

⟨div z, u⟩
W−1,∞(Ω),W 1,1

0 (Ω)
=

∫
Ω
u∗ dµ

holds for every u ∈ W 1,1
0 (Ω) ∩ L∞(Ω). Then the norm of this functional is

given by

∥µ∥W−1,∞(Ω) = sup

{∣∣∣ ∫
Ω
u∗ dµ

∣∣∣ : u ∈W 1,1
0 (Ω) ∩ L∞(Ω), with ∥u∥

W 1,1
0 (Ω)

≤ 1

}
.

where ∥u∥
W 1,1

0
=

∫
Ω |∇u| dx. We have seen that µ = div z can be extended

from W 1,1
0 (Ω) to BV (Ω) ∩ L∞(Ω). Next, we will prove that this extension

can be given as an integral with respect to µ and it preserves the norm. To
this end, the following Lemma, stated in [9], will be applied.

Lemma 3.3. For every u ∈ BV (Ω) –so that u
∣∣
∂Ω

∈ L1(∂Ω)–, there exists
a sequence (wn)n in W 1,1(Ω) ∩ C(Ω) such that

(1) wn|∂Ω = u|∂Ω .

(2)

∫
Ω
|∇wn| dx ≤

∫
∂Ω

|u| dHN−1 +
1

n
.

(3)

∫
Ω
|wn| dx ≤ 1

n
.

(4) wn(x) = 0 if dist(x, ∂Ω) > 1
n .

(5) wn(x) → 0 for all x ∈ Ω .

13



Moreover, if u ∈ BV (Ω) ∩ L∞(Ω), then wn ∈ L∞(Ω) and ∥wn∥∞ ≤
∥u

∣∣
∂Ω

∥∞ for all n ∈ N.

Theorem 3.4. Let z ∈ DM∞(Ω) and denote µ = div z. Then, the func-
tional given by (20) can be extended to BV (Ω) ∩ L∞(Ω) as an integral with
respect to µ and its norm satisfies

∥µ∥W−1,∞(Ω) = sup

{∣∣∣ ∫
Ω
u∗ dµ

∣∣∣ : u ∈ BV (Ω) ∩ L∞(Ω), with ∥u∥BV (Ω) ≤ 1

}
,

where ∥u∥BV (Ω) =

∫
∂Ω

|u| dHN−1 +

∫
Ω
|Du|.

Proof. Since we already know that BV (Ω)∩L∞(Ω) is a subset of L1(Ω, µ),
all we have to prove is∣∣∣ ∫

Ω
u∗ dµ

∣∣∣ ≤ ∥µ∥W−1,∞(Ω)

(
|Du|(Ω) +

∫
∂Ω

|u| dHN−1
)
. (21)

for all u ∈ BV (Ω) ∩ L∞(Ω). This inequality will be proved in two steps.
Step 1: Assume first that u ∈W 1,1(Ω) ∩ L∞(Ω). Consider the sequence

(wn)n in W 1,1(Ω) ∩ C(Ω) of the above Lemma. Hence, wn ∈ L∞(Ω) and
∥wn∥∞ ≤ ∥u

∣∣
∂Ω

∥∞ for all n ∈ N. Then it yields

∣∣∣ ∫
Ω
(u∗−w∗

n) dµ
∣∣∣ = ∣∣⟨µ, (u−wn)⟩W−1,∞(Ω),W 1,1

0 (Ω)

∣∣ ≤ ∥µ∥W−1,∞(Ω)

∫
Ω
|∇u−∇wn| dx

≤ ∥µ∥W−1,∞(Ω)

(∫
Ω
|∇u| dx+

∫
∂Ω

|u| dHN−1 +
1

n

)
.

It follows that∣∣∣ ∫
Ω
u∗ dµ

∣∣∣ ≤ ∣∣∣ ∫
Ω
(u∗ − w∗

n) dµ
∣∣∣+ ∣∣∣ ∫

Ω
w∗
n dµ

∣∣∣
≤ ∥µ∥W−1,∞(Ω)

(∫
Ω
|∇u| dx+

∫
∂Ω

|u| dHN−1 +
1

n

)
+
∣∣∣ ∫

Ω
w∗
n dµ

∣∣∣ . (22)

Since the sequence (wn)n tends pointwise to 0 and it is uniformly bounded
in L∞(Ω), by Lebesgue’s Theorem,

lim
n→∞

∫
Ω
w∗
n dµ = 0 .

Now, taking the limit in (22) we obtain (21).
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Step 2: In the general case, we apply Proposition 3.2 and find a sequence
un in W 1,1(Ω) ∩ C∞(Ω) ∩ L∞(Ω) such that

(1) u∗n → u∗ in L1(Ω, µ) .

(2)
∫
Ω |∇un| dx→ |Du|(Ω) .

(3) un|∂Ω = u|∂Ω for all n ∈ N .

(4) |un(x)| ≤ ∥u∥∞ |µ|–a.e. for all n ∈ N .

Then, it follows from∣∣∣ ∫
Ω
u∗n dµ

∣∣∣ ≤ ∥µ∥W−1,∞(Ω)

(∫
Ω
|∇un| dx+

∫
∂Ω

|u| dHN−1
)

for all n ∈ N

that (21) holds.

Corollary 3.5. Let z ∈ DM∞(Ω) satisfy div z = ν+ f for a certain Radon
measure ν and a certain f ∈ LN,∞(Ω). If either ν ≥ 0 or ν ≤ 0, then
µ = div z can be extended to BV (Ω) and

∥µ∥W−1,∞(Ω) = sup

{∣∣∣ ∫
Ω
u∗ dµ

∣∣∣ : u ∈ BV (Ω), |Du|(Ω) +
∫
∂Ω

|u| dHN−1 ≤ 1

}
.

Moreover, BV (Ω) ↪→ L1(Ω, µ).

Proof. Consider u ∈ BV (Ω), denote u+ = max{u, 0} and, for every
k > 0, apply the previous result to Tk(u+) (recall (3)). Then∣∣∣ ∫

Ω
Tk(u+)

∗ dµ
∣∣∣ ≤ ∥µ∥W−1,∞(Ω)

(
|DTk(u+)|(Ω) +

∫
∂Ω
Tk(u+) dHN−1

)

≤ ∥µ∥W−1,∞(Ω)

(
|Du+|(Ω) +

∫
∂Ω
u+ dHN−1

)
. (23)

On the other hand, observe that u∗ is a ν–measurable function, so that we
obtain ∫

Ω
Tk(u+)

∗ dµ =

∫
Ω
Tk(u+)

∗ dν +

∫
Ω
Tk(u+(x))f(x) dx

for every k > 0. We may apply Levi’s Theorem and Lebesgue’s Theorem to
deduce

lim
k→+∞

∫
Ω
Tk(u+)

∗ dν =

∫
Ω
(u+)

∗ dν
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and

lim
k→+∞

∫
Ω
Tk(u+(x))f(x) dx =

∫
Ω
u+(x)f(x) dx .

Thus,

lim
k→+∞

∫
Ω
Tk(u+)

∗ dµ =

∫
Ω
(u+)

∗ dµ .

Now, taking the limit when k goes to ∞ in (23), it yields∣∣∣ ∫
Ω
(u+)

∗ dµ
∣∣∣ ≤ ∥µ∥W−1,∞(Ω)

(
|Du+|(Ω) +

∫
∂Ω
u+ dHN−1

)
. (24)

Assume, in order to be concrete, that ν ≥ 0. Since∫
Ω
(u+)

∗ dµ− =

∫
Ω
u+(x)f−(x) dx ,

we already have that (u+)
∗ is µ−–integrable. Hence, as a consequence of

(24), we deduce that (u+)
∗ is µ+–integrable as well and then, (u+)

∗ µ–
integrable too.

Since we may prove a similar inequality to u− = max{−u, 0}, adding
both inequalities we deduce that u∗ is µ–integrable and that∣∣∣ ∫

Ω
u∗ dµ

∣∣∣ ≤ ∥µ∥W−1,∞(Ω)

(
|Du|(Ω) +

∫
∂Ω

|u| dHN−1
)

holds true.

3.2 A Green’s formula

Let z ∈ DM∞(Ω) and let u ∈ BV (Ω). Assume that div z = ν + f , with ν a
Radon measure satisfying either ν ≥ 0 or ν ≤ 0, and f ∈ LN,∞(Ω). In the
spirit of [9], we define the following distribution on Ω. For every φ ∈ C∞

0 (Ω),
we write

⟨(z, Du), φ⟩ = −
∫
Ω
u∗ φdµ−

∫
Ω
u z · ∇φdx , (25)

where µ = div z. Note that the previous subsection implies that every term
in the above definition has sense. We next prove that this distribution is
actually a Radon measure having finite total variation.

Proposition 3.6. Let z and u be as above. The distribution (z, Du) defined
previously satisfies

|⟨(z, Du), φ⟩| ≤ ∥φ∥∞∥z∥L∞(U)

∫
U
|Du| (26)

for all open set U ⊂ Ω and for all φ ∈ C∞
0 (U).
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Proof. If U ⊂ Ω is an open set and φ ∈ C∞
0 (U), then it was proved in

[30] that

|⟨(z, DTk(u)), φ⟩| ≤ ∥φ∥∞∥z∥L∞(U)

∫
U
|DTk(u)| ≤ ∥φ∥∞∥z∥L∞(U)

∫
U
|Du|

(27)
holds for every k > 0. On the other hand,

⟨(z, DTk(u)), φ⟩ = −
∫
Ω
Tk(u)

∗φdµ−
∫
Ω
Tk(u)z · ∇φdx .

We may let k → ∞ in each term on the right hand side, due to u∗ ∈ L1(Ω, µ)
and u ∈ L1(Ω). Therefore,

lim
k→∞

⟨(z, DTk(u)), φ⟩ = ⟨(z, Du), φ⟩ ,

and so (27) implies (26).

Corollary 3.7. The distribution (z, Du) is a Radon measure. It and its
total variation |(z, Du)| are absolutely continuous with respect to the measure
|Du| and ∣∣∣∣∫

B
(z, Du)

∣∣∣∣ ≤ ∫
B
|(z, Du)| ≤ ∥z∥L∞(U)

∫
B
|Du|

holds for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω.

On the other hand, for every z ∈ DM∞(Ω), a weak trace on ∂Ω of the
normal component of z is defined in [9] and denoted by [z, ν].

Proposition 3.8. Let z and u be as above. With the above definitions, the
following Green formula holds∫

Ω
u∗ dµ+

∫
Ω
(z, Du) =

∫
∂Ω

[z, ν]u dHN−1 , (28)

where µ = div z.

Proof. Applying the Green formula proved in [30], we obtain∫
Ω
Tk(u)

∗ dµ+

∫
Ω
(z, DTk(u)) =

∫
∂Ω

[z, ν]Tk(u) dHN−1 , (29)

for every k > 0. Note that the same argument appearing in the proof of the
previous Proposition leads to

lim
k→∞

∫
Ω
(z, DTk(u)) =

∫
Ω
(z, Du) .

We may take limits in the other terms since u∗ ∈ L1(Ω, µ) and u ∈ L1(∂Ω).
Hence, letting k go to ∞ in (29), we get (28).
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Proposition 3.9. Let z ∈ DM∞(Ω) with ∥z∥∞ ≤ 1 and let u ∈ BV (Ω).
Then (z, Du) = |Du| as measures if and only if (z, DTk(u)) = |DTk(u)| as
measures for all k > 0.

Proof. We first assume (z, Du) = |Du| and so (recall (4))

|Du| = (z, Du) = (z, DTk(u)) + (z, DGk(u))

≤ |DTk(u)|+ |DGk(u)| = |Du| .

Then, the inequality becomes equality and so (z, DTk(u)) = |DTk(u)| as
measures.
Conversely, we assume (z, DTk(u)) = |DTk(u)| for all k > 0. For each
φ ∈ C∞

0 (Ω), we use the same argument which appears in Proposition 3.6 to
obtain:

lim
k→∞

⟨(z, DTk(u)), φ⟩ = ⟨(z, Du), φ⟩

and

lim
k→∞

∫
Ω
φ |DTk(u)| =

∫
Ω
φ |Du| .

So, using the hypothesis, we conclude ⟨(z, Du), φ⟩ =
∫
Ω φ |Du| for every

φ ∈ C∞
0 (Ω), that is, (z, Du) = |Du| as measures.

3.3 The chain rule

We point out that there is a chain rule for BV –functions, the more general
formula is due to L. Ambrosio and G. Dal Maso (see [6, Theorem 3.101],
see also [6, Theorem 3.96]). In our framework, it states that if v ∈ BV (Ω)
satisfies Djv = 0 and u = G(v), where G is a Lipschitz–continuous real
function, then u ∈ BV (Ω) and

Du = G′(v)|Dv| .

We cannot directly apply this result in our context since G′ need not be
bounded. Hence, the following slight generalization is needed.

Theorem 3.10. Let v ∈ BV (Ω) such that Djv = 0 and let g be a continuous
and unbounded real function with g(s) > m > 0 for all s ≥ 0. We define

G(s) =

∫ s

0
g(σ) dσ .

Assuming that u = G(v) ∈ L1(Ω), it holds that u ∈ BV (Ω) if and only if
g(v)∗|Dv| is a finite measure and in that case |Du| = g(v)∗|Dv| as measures.
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Proof. Let φ ∈ C∞
0 (Ω) with φ ≥ 0. We apply the chain rule to get the

next equality:∫
{v<k}

φ |Du| =
∫
{v<k}

φg(Tk(v))
∗ |Dv| =

∫
{v<k}

φg(v)∗ |Dv| .

Now, using the monotone convergence theorem, we take limits when k → ∞
and it holds ∫

Ω
φ |Du| =

∫
Ω
φg(v)∗ |Dv| ,

and if one integral is finite, the other is finite too. Finally, we generalize this
equality to every φ ∈ C∞

0 (Ω) and the result is proved.

4 Solutions for LN,∞–data

This section is devoted to solve problem −div

(
Du

|Du|

)
+ |Du| = f(x) in Ω ,

u = 0 on ∂Ω ,
(30)

for nonnegative data f ∈ LN,∞(Ω). We begin by introducing the notion of
solution to this problem.

Definition 4.1. Let f ∈ LN,∞(Ω) with f ≥ 0. We say that u ∈ BV (Ω)
satisfying Dju = 0 is a weak solution of problem (30) if there exists z ∈
DM∞(Ω) with ∥z∥∞ ≤ 1 such that

−div z+ |Du| = f in D′(Ω) ,

(z, Du) = |Du| as measures in Ω ,

and
u
∣∣
∂Ω

= 0 .

Remark 4.2. We explicitly remark that any solution to problem (30) sat-
isfies

−div
(
e−uz

)
= e−uf

in the sense of distributions (see [28, Remark 3.4]).

Theorem 4.3. There is a unique nonnegative weak solution of problem (30).

Proof. The proof will be divided in several steps.

Step 1: Approximating problems.
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The function f is in LN,∞(Ω) so, there exists a sequence {fn}∞n=1 in
L∞(Ω) such that fn converges to f in L1(Ω).
In [28] it is proved that there exists un ∈ BV (Ω) ∩ L∞(Ω), with Djun = 0
and un ≥ 0, which is a solution to problem −div

(
Dun
|Dun|

)
+ |Dun| = fn(x) in Ω ,

un = 0 on ∂Ω .
(31)

That is, there exists a vector field zn in DM∞(Ω) such that

−div zn + |Dun| = fn in D′(Ω) , (32)

(zn, Dun) = |Dun| as measures in Ω , (33)

and
un

∣∣
∂Ω

= 0 . (34)

On account of Remark 4.2, it also holds

−div (e−unzn) = e−unfn in D′(Ω) . (35)

Step 2: BV –estimate.
Taking the function test Tk(un)

k in problem (31), we get

1

k

∫
Ω
(zn, DTk(un))+

1

k

∫
Ω
Tk(un)

∗|Dun| =
∫
Ω
fn
Tk(un)

k
dx ≤

∫
Ω
fn dx ≤ C ,

where C does not depend on n. Since (zn, Dun) = |Dun|, it follows from
Proposition 3.9 that (zn, DTk(un)) = |DTk(un)|, which is nonnegative. Thus

1

k

∫
Ω
Tk(un)

∗|Dun| ≤ C .

Then, letting k → 0 in the inequality above we arrive at∫
Ω
|Dun| ≤ C .

Therefore, un is bounded in BV (Ω) and, up to a subsequence, un → u in
L1(Ω) and Dun converges to Du ∗–weakly as measures when n→ ∞.

Step 3: Vector field.
Now, we want to find a vector field z ∈ DM∞(Ω) with ∥z∥∞ ≤ 1 such

that
−div z+ |Du| ≤ f in D′(Ω) .

The sequence {zn}∞n=1 is bounded in L∞(Ω;RN ) then, there exists z ∈
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L∞(Ω;RN ) such that zn ⇀ z ∗–weakly in L∞(Ω;RN ). In addition, since
∥zn∥∞ ≤ 1 we get ∥z∥∞ ≤ 1.
Using φ ∈ C∞

0 (Ω) with φ ≥ 0 as a function test in (31), we arrive at∫
Ω
zn · ∇φdx+

∫
Ω
φ |Dun| =

∫
Ω
fn φdx ,

and when we take n→ ∞, using (5) it becomes∫
Ω
z · ∇φdx+

∫
Ω
φ |Du| ≤

∫
Ω
f φ dx .

Therefore,
−div z+ |Du| ≤ f in D′(Ω)

and −div z is a Radon measure. In addition, since −div zn = fn − |Dun|
holds for every n ∈ N, the sequence −div zn is bounded in the space of
measures and, due to −div zn converges to −div z, we deduce that −div z is
a Radon measure with finite total variation.
On the other hand, multiply (35) by e−unφ, with φ ∈ C∞

0 (Ω), then Green’s
formula provides us∫

Ω
e−unzn · ∇φdx =

∫
Ω
fne

−unφdx ,

and letting n go to ∞ we get∫
Ω
e−uz · ∇φdx =

∫
Ω
fe−uφdx .

Namely,
−div (e−uz) = fe−u , in D′(Ω) . (36)

Step 4: Dju = 0.
In this step, we are adapting an argument used in [21], which relies on

[5, Proposition 3.4] and [15, Lemma 5.6] (see also [2, Proposition 2]). A
previous result is needed, namely, inequality (39) bellow. To prove (39), we
begin by recalling

−div (e−unzn) = e−unfn in D′(Ω) ,

since un is the solution to problem (31). Using that un = Gk(un) + Tk(un),
we can write

−div (e−unzn) = −e−Gk(un)div (e−Tk(un)zn) + (e−un)∗|DGk(un)| ,

and so

e−Tk(un)fn = −div (e−Tk(un)zn) + (e−Tk(un))∗|DGk(un)|

= −div (e−Tk(un)zn) + e−k|DGk(un)| .
(37)
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Applying first the chain rule and then [28, Proposition 2.3], we have

|De−Tk(un)| = (e−Tk(un))∗|DTk(un)|
= (e−Tk(un))∗(zn, DTk(un)) = (e−Tk(un)zn, DTk(un)) . (38)

Let φ ∈ C∞
0 (Ω) with φ ≥ 0, due to (38) and (37), we get

∫
Ω
φ |De−Tk(un)| = ⟨(e−Tk(un)zn, DTk(un)), φ⟩

= −
∫
Ω
Tk(un)φdiv (e−Tk(un)zn)−

∫
Ω
Tk(un) e

−Tk(un) zn · ∇φdx

=

∫
Ω
Tk(un)φe

−Tk(un)fn dx−
∫
Ω
k e−kφ |DGk(un)|−

∫
Ω
Tk(un) e

−Tk(un) zn·∇φdx .

That is,∫
Ω
φ |De−Tk(un)|+ k

ek

∫
Ω
φ |DGk(un)|

=

∫
Ω
Tk(un)φe

−Tk(un) fn dx−
∫
Ω
Tk(un) e

−Tk(un) zn · ∇φdx .

Now, we can take limits when n goes to ∞, and applying the lower semi-
continuity of the total variation, we arrive to the next inequality:∫

Ω
φ |De−Tk(u)|+ k

ek

∫
Ω
φ |DGk(u)|

≤
∫
Ω
Tk(u)φe

−Tk(u) f dx−
∫
Ω
Tk(u) e

−Tk(u) z · ∇φdx .

Finally, letting k → ∞ it holds that∫
Ω
φ |De−u| ≤

∫
Ω
uφ e−u f dx−

∫
Ω
u e−u z · ∇φdx = ⟨(e−uz, Du), φ⟩ .

Therefore,
|De−u| ≤ (e−uz, Du) (39)

as measures in Ω.
On the other hand, we already know that

div (u e−uz) = (e−uz, Du) + udiv (e−uz) ,

as measures and now we are considering the restriction on the set Ju. Since,
by (36) we have

udiv (e−uz) = −u e−uf ∈ L1(Ω)
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and |Ju| = 0, it follows that the measure udiv (e−uz) vanishes on Ju, so that

div (u e−uz) Ju = (e−uz, Du) Ju ≥ |De−u| Ju .

Applying [21, Lemma 2.3 and Lemma 2.4], the following manipulations can
be performed on Ju:

div (u e−uz) = [ue−uz, νu]
+ − [ue−uz, νu]

−

= u+[e−uz, νu]
+ − u−[e−uz, νu]

− .
(40)

Moreover, we also deduce that, on Ju,

div
(
e−uz

)
= [e−uz, νu]

+ − [e−uz, νu]
−

and, due to
div

(
e−uz

)
∈ L1(Ω) and |Ju| = 0,

it follows that [e−uz, νu]
+ = [e−uz, νu]

−. We will write this common value
as [e−uz, νu]. With this notation, (40) becomes

div (u e−uz) = (u+ − u−)[e−uz, νu]

= (u+ − u−)e−u
+
[z, νu]

≤ (u+ − u−)e−u
+

Thus, we have seen that

(u+ − u−)e−u
+HN−1 Ju ≥ |De−u| Ju =

(
e−u

− − e−u
+)HN−1 Ju .

Hence, for HN−1–almost all x ∈ Ju, we may use the Mean Value Theorem
to get

(u(x)+ − u(x)−)e−u(x)
+ ≥ e−u(x)

− − e−u(x)
+
= (u(x)+ − u(x)−)e−w(x)

with u(x)− < w(x) < u(x)+. Therefore, it yields u(x)+ = u(x)−. Since this
argument holds for HN−1–almost every point x ∈ Ju, we get

Dju = 0 .

Step 5: u is a solution to problem (30).
To finish the proof, it remains to check that u satisfies the three condi-

tions of the definition of solution. The previous step will be essential in this
checking. Indeed, it allows us to perform the following calculations:

fe−u = −div (e−uz) = −(z, D(e−u)∗)− (e−u)∗div z

≤ |De−u|+ fe−u − (e−u)∗|Du|

= fe−u .
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Therefore, the inequality becomes equality and so

−div z+ |Du| = f in D′(Ω) . (41)

To prove that (z, Du) = |Du| as measures in Ω, we just take into account
(39), [28, Proposition 2.3] and the chain rule to get

|D(e−u)| ≤ (e−uz, Du) = (e−u)∗(z, Du) ≤ (e−u)∗|Du| = |D(e−u)| ,

from where the equality (e−u)∗(z, Du) = (e−u)∗|Du| as measures follows.
We conclude that (z, Du) = |Du| as measures.
Now, we will prove that u(x) = 0 for HN−1–almost all x ∈ ∂Ω. To do that,
we use the test function Tk(un) in problem (31), so that∫

Ω
(zn, DTk(un)) +

∫
Ω
(Tk(un))

∗|Dun| =
∫
Ω
f Tk(un) dx .

Defining the auxiliary function Jk by

Jk(s) =

∫ s

0
Tk(σ) dσ =

{
s2

2 if 0 ≤ s ≤ k ,

ks− k2

2 if k > s ,

we obtain∫
Ω
|DTk(un)|+

∫
∂Ω

|Tk(un)| dHN−1 +

∫
Ω
|DJk(un)|+

∫
∂Ω

|Jk(un)| dHN−1

=

∫
Ω
f Tk(un) dx .

Taking into account that Jk(un) → Jk(u) in L1(Ω), we let n → ∞ and
applying the lower semicontinuity of functional (6) we arrive at∫

Ω
|DTk(u)|+

∫
∂Ω

|Tk(u)| dHN−1 +

∫
Ω
|DJk(u)|+

∫
∂Ω

|Jk(u)| dHN−1

≤
∫
Ω
f Tk(u) dx ≤

∫
Ω
fu dx .

Letting now k → ∞ we obtain∫
Ω
|Du|+

∫
∂Ω

|u| dHN−1 +

∫
Ω

∣∣∣D(u2
2

)∣∣∣+ ∫
∂Ω

u2

2
dHN−1 ≤

∫
Ω
fu dx .

On the other hand, Green’s formula implies∫
Ω
fu dx = −

∫
Ω
u∗div z+

∫
Ω
u∗|Du| =

∫
Ω
|Du|−

∫
∂Ω
u [z, ν] dHN−1+

∫
Ω
u∗|Du| .

Then ∫
∂Ω

(|u|+ u[z, ν]) dHN−1 +

∫
∂Ω

u2

2
dHN−1 ≤ 0
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and for that, u = 0 in ∂Ω.
Now, using the same argument which is used in [28] we prove that there is
a unique solution to our problem.

Proposition 4.4. The solution u to problem (30) is trivial if and only if
the function f is such that ∥f∥W−1,∞(Ω) ≤ 1.

Proof. Assume first that ∥f∥W−1,∞(Ω) ≤ 1 and let u ∈ BV (Ω) be the
solution to problem (30). Using the test function Tk(u) in that problem we
obtain∫

Ω
(z, DTk(u)) +

∫
Ω
Tk(u)

∗|Du| =
∫
Ω
f Tk(u) dx ≤

∫
Ω
fu dx . (42)

Now, taking into account that
∫
Ω Tk(u)

∗|Du| ≥ 0, it yields∫
Ω
(z, DTk(u)) =

∫
Ω
|DTk(u)| ≤

∫
Ω
fu dx .

Finally, letting k → ∞ in (42) and using Hölder and Sobolev’s inequalities
we arrive at∫

Ω
|Du|+

∫
Ω
u∗|Du| ≤

∫
Ω
fu dx ≤ ∥f∥W−1,∞

∫
Ω
|Du| ≤

∫
Ω
|Du| .

Then,
∫
Ω u

∗|Du| = 0 and thus, u∗ = 0 in Ω and we conclude u(x) = 0 for
almost every x ∈ Ω.
Now, we suppose that

∥f∥W−1,∞(Ω) = sup

{∫
Ω
φf dx :

∫
Ω
|∇φ| dx = 1, φ ∈W 1,1

0 (Ω)

}
> 1 ,

that is, there exists ψ ∈W 1,1
0 (Ω) such that∫

Ω
|∇ψ| dx = 1 and

∫
Ω
ψf dx > 1 .

Finally, we use ψ as a test function in (30), so we get∫
Ω
ψ |Du| =

∫
Ω
ψ f dx−

∫
Ω
z · ∇ψ dx >

∫
Ω
|∇ψ| dx−

∫
Ω
z · ∇ψ dx ≥ 0 .

Therefore, |Du| ≠ 0 and so u ̸= 0 in Ω.

Remark 4.5. This phenomenon of trivial solutions for non–trivial data is
usual in problems involving the 1–Laplacian. It is worth comparing the
above result with [29, Theorem 4.1] (see also [30, Theorem 4.2]), where the

Dirichlet problem for the equation −div
(
Du
|Du|

)
= f(x) is studied. Indeed,
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for such a problem it is seen that a datum satisfying ∥f∥W−1,∞(Ω) < 1 implies
a trivial solution, while no BV –solution can exist for ∥f∥W−1,∞(Ω) > 1.
Obviously, the most interesting case is when ∥f∥W−1,∞(Ω) = 1; then non–
trivial solutions can be found for some data but the trivial solution always
exists. In our case, this dichotomy does not hold: for ∥f∥W−1,∞(Ω) = 1, only
trivial solutions exist.

To study the summability of the solution to problem (30), we need the
following technical result which will also be useful in Sections 6 and 7.

Lemma 4.6. Let u ∈ BV (Ω) with Dju = 0 and let z be a vector field
with ∥z∥∞ ≤ 1 and div z = µ + f , where µ is a positive measure. If G is
an increasing and C1 function and lim

s→∞
G(s) = ∞, then, (z, Du) = |Du|

implies (z, DG(u)) = |DG(u)|.

Proof. Since (z, Du) = |Du|, we have (z, DTk(u)) = |DTk(u)| for all
positive k. Using [28, Proposition 2.2] we get (z, DG(Tk(u))) = |DG(Tk(u))|
for all k > 0. Now, sinceG(Tk(u)) = TG(k)G(u) and lim

s→∞
G(s) = ∞ we apply

Proposition 3.9 to arrive at (z, DG(u)) = |DG(u)|.

Proposition 4.7. If u is the solution to problem (30), then un ∈ BV (Ω)
for all n ∈ N. Consequently, u ∈ Lq(Ω) for all 1 ≤ q <∞.

Proof. We will prove the result by induction. If u is the solution of
problem (30), then choosing the solution itself as test function in problem
(30), we get ∫

Ω
|Du|+

∫
Ω
u∗ |Du| =

∫
Ω
f u dx .

Since the first integral is positive, we have that u∗ |Du| is a finite measure.
Thus, by Theorem 3.10 we know that u2 ∈ BV (Ω) and 2u∗ |Du| = |Du2|.
Now, set n ∈ N and assume that un ∈ BV (Ω). Taking the test function un

in (30), it yields ∫
Ω
(z, Dun) +

∫
Ω

(
un

)∗|Du| = ∫
Ω
fun dx .

By Lemma 4.6 we have (z, Dun) = |Dun| ≥ 0, then the integral
∫
Ω

(
un

)∗|Du|
is bounded and consequently un+1 ∈ BV (Ω) by Theorem (3.10).

Remark 4.8. If f ∈ Lm(Ω) for m > N , then the solution to problem (30)
belongs to L∞(Ω) (see [28]).
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5 Radial solutions

In this section we will show some radial solutions in Ω = BR(0) with R > 0
for particular data in LN,∞(Ω). In [28, Section 4], some examples of bounded
solutions for data f ∈ Lq(Ω), with q > N , can be found. In Example 5.1 we
show bounded solutions for f ∈ LN,∞(Ω)\LN (Ω), while in Example 5.3 we
show unbounded solutions. Therefore, unbounded solutions really occur.

Throughout this section, we will take u(x) = h(|x|) with h(r) ≥ 0,
h(R) = 0 and h′(r) ≤ 0. To deal with the examples, we will consider two
zones. If h′(r) < 0, we know that z(x) = Du

|Du| = − x
|x| , so that −div z(x) =

N−1
|x| . In the other case, h′(r) = 0 and then, the solution is constant and

we only have to determine the radial vector field z(x) = ξ(|x|)x, so that
div z(x) = ξ′(|x|)|x| + Nξ(|x|). The continuity of the vector field is always
searched, otherwise it would has a jump and as a consequence, the measure
div z would have a singular part concentrated on a surface of the form |x| =
ϱ, and measure |Du| would also have that singular part. Hence, it would
induce jumps on the solution.

Example 5.1. −div

(
Du

|Du|

)
+ |Du| = N − 1

|x|
+

λ

|x|q
in BR(0) ,

u = 0 on ∂BR(0) ,

with 0 < q < 1 and λ > 0.

First, we assume that u is constant in a ring: h′(r) = 0 for all ρ1 < r <
ρ2, and we consider the vector field z(x) = x ξ(|x|). Then, denoting r = |x|,
the equation yields

−(rξ′(r) +Nξ(r)) =
N − 1

r
+
λ

rq
,

which is equivalent to

−(rN ξ(r))′ = (N − 1) rN−2 + λ rN−1−q .

Therefore, solving the equation we get the vector field

z(x) = −x |x|−1 − λ

N − q
x |x|−q + Cx |x|−N , ρ1 < |x| < ρ2 , (43)

for some constant C. We next see under what conditions we can find a value
for this constant satisfying ∥z∥∞ ≤ 1. To this end, we will distinguished
three cases.
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1. Assuming that 0 < ρ1 < ρ2 < R (and that z is continuous), if |x| = ρ1,
then

−x |x|−1 = −x |x|−1 − λ

N − q
x |x|−q + Cx |x|−N ,

and it implies λ
N−qx |x|

−q = Cx |x|−N . Thus, we deduce that C =
λ

N−qρ
N−q
1 . The same argument leads to C = λ

N−qρ
N−q
2 when |x| = ρ2.

Therefore, ρ1 = ρ2 and we have got a contradiction.

2. If we assume 0 < ρ1 < ρ2 = R, then we may argue as above and find
C = λ

N−qρ
N−q
1 . Substituting in (43), we get

z(x) = −x |x|−1 − λ

N − q
x |x|−q + λ

N − q
ρN−q
1 x |x|−N .

Thus, condition ∥z∥∞ ≤ 1 yields∣∣∣1 + λ

N − q
|x|1−q − λ

N − q
ρN−q
1 |x|1−N

∣∣∣ ≤ 1 .

Nevertheless, this fact does not hold since 1+ λ
N−q r

1−q− λ
N−qρ

N−q
1 r1−N >

1 for r > ρ1.

3. If we assume 0 = ρ1 < ρ2 < R, then z ∈ L∞(Ω;RN ) implies C = 0.
So (43) becomes

z(x) = −x |x|−1 − λ

N − q
x |x|−q

and it follows from ∥z∥∞ ≤ 1 that λ
N−qx |x|

−q vanishes. Hence, λ = 0
and a contradiction is obtained.

In any case we get a contradiction, so that h′(r) = 0 cannot hold on ]ρ1, ρ2[.
Hence, we take z(x) = − x

|x| . Then, the equation becomes

−h′(r) = λ

rq
,

and the solution satisfying the boundary condition is given by

u(x) =
λ

1− q
(R1−q − |x|1−q) .

Remark 5.2. We may perform similar computations to those of the previ-
ous example to study problem −div

(
Du

|Du|

)
+ |Du| = N − 1

|x|
+ λ in BR(0) ,

u = 0 on ∂BR(0) ,

with λ > 0. Then the solution is given by u(x) = λ(R− r), with associated
vector field z(x) = − x

|x| .
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Example 5.3. Consider 0 < ρ ≤ R. −div

(
Du

|Du|

)
+ |Du| = λ

|x|
χ
Bρ(0)(x) in BR(0) ,

u = 0 on ∂BR(0) ,

with λ > 0.

Two cases according to the value of λ will be distinguished:

� Case 0 < λ ≤ N − 1.

Assuming h′(r) < 0 for any 0 ≤ r < R, the vector field is given by z(x) =
− x

|x| and the equation becomes

N − 1

r
− h′(r) =

λ

r
χ
]0,ρ[(r) .

When ρ < R, we have to distinguish two zones: where ρ ≤ r ≤ R in which
we get h′(r) = (N − 1)/r, and where 0 ≤ r < ρ in which we arrive at
h′(r) = (N − 1 − λ)/r. Both expressions are nonnegative and so they are
in contradiction with our hypothesis. We arrive at the same contradiction
when ρ = R. Therefore, h′(r) = 0 holds for all 0 ≤ r < R and it follows
h(r) = 0 for all 0 ≤ r < R due to the boundary condition. To obtain the
field z(x) = ξ(|x|)x we have to consider the equation

−(rNξ(r))′ = λ rN−2χ
]0,ρ[(r) .

If 0 ≤ r < ρ we get the field ξ(r) = −λ/(N − 1) r−1 + Cr−N but since we
ask ∥z∥∞ ≤ 1, then C = 0. On the other hand, if ρ ≤ r < R we arrive
at ξ(r) = −Cr−N . In order to determine the value of C, we demand the
continuity of ξ and then the field becomes

z(x) =


− λ

N − 1

x

|x|
if 0 ≤ r < ρ ,

−λρ
N−1

N − 1

x

|x|N
if ρ ≤ r < R .

� Case λ > N − 1.

In the region 0 ≤ r < ρ, we may argue as in the above example and have a
contradiction when h′(r) = 0. So h′(r) < 0 and the solution is given, up to
constants, by

u(x) = (N − 1− λ) log
( |x|
ρ

)
with the vector field z(x) = −x/|x|. On the other hand, if ρ < r < R, we
have a contradiction when h′(r) < 0, wherewith the solution is u(x) = 0 and
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the vector field is given by ξ(r) = −Cr−N . Since we have ∥z∥∞ = 1 when
0 ≤ r < ρ, in order to preserve the continuity we require

1 = |z (ρ)| = Cρ−Nρ .

Therefore, the vector field becomes z(x) = −ρN−1 x
|x|N and the solution is

given by

u(x) =

{
(N − 1− λ) log

( |x|
ρ

)
if 0 ≤ r ≤ ρ ,

0 if ρ < r < R .

Remark 5.4. An important particular case of the previous example is the
problem  −div

(
Du

|Du|

)
+ |Du| = λ

1

|x|
in BR(0) ,

u = 0 on ∂BR(0) ,
(44)

with λ > 0. We have seen that the solution is given by

u(x) =

{
0 when 0 < λ ≤ N − 1 ,

(N − 1− λ) log
( |x|
R

)
when λ > N − 1 .

Problem (44) can be seen as the limit case of problems with a Hardy–type
potential, namely, −div

(
|∇u|p−2∇u

)
+ |∇u|p = λ

up−1

|x|p
in BR(0) ,

u = 0 on ∂BR(0) ,

Problems with Hardy–type potential received much attention in recent years.
We point out that in [3] has been studied problem (44) with p = 2 showing
the regularizing effect produced by the gradient term as absorption.

6 Changing the unknown: More general gradient
terms

From now on, we will generalize problem (30) adding a continuous function
g : [0,∞[→ R in the gradient term: −div

(
Dv

|Dv|

)
+ g(v) |Dv| = f(x) in Ω ,

v = 0 on ∂Ω .
(45)

In this section, this problem will be studied for a function g that will result
in standard cases.
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The existence and uniqueness of solutions to problem (45) depend on the
properties of the function g, and the definition of solution to a problem may
depend of the case we are studying. In any case, we have to give a sense to
g(v)|Dv|, since the meaning of that term depends on the representative of
g(v) we are actually considering. First of all, we will assume that a solution
satisfies Djv = 0 and then we will take g(v) as the precise representative
g(v)∗ = g(v∗), which is integrable with respect to the measure |Dv|.

6.1 Bounded g

In this subsection, let g be a continuous and bounded function such that
there exists m > 0 with g(s) ≥ m for all s ≥ 0. We define the function

G(s) =

∫ s

0
g(σ) dσ .

With this notation, the term g(v)|Dv| in the equation means |DG(v)|.

Definition 6.1. We say that a function v is a weak solution to problem
(45) with g defined as above, if v ∈ BV (Ω) with Djv = 0 and there exists a
field z ∈ DM∞(Ω) with ∥z∥∞ ≤ 1 such that

−div z+ g(v)∗|Dv| = f in D′(Ω) ,

(z, Dv) = |Dv| as measures in Ω ,

and
v
∣∣
∂Ω

= 0 .

Theorem 6.2. Let u be the solution to problem (30). Assume that g is a
continuous nonnegative function such that 0 < m ≤ g(s) for all s ≥ 0 and
let u = G(v). Then, v is a solution to problem (45).

Proof. Since the function u is the solution of problem (30), there exists
a vector field z ∈ DM∞(Ω) such that

−div z+ |Du| = f in D′(Ω) , (46)

(z, Du) = |Du| as measures in Ω ,

and
u
∣∣
∂Ω

= 0 .

By the properties of g, the function G is increasing and the derivative of G−1

is bounded. Then, we apply the chain rule to get v = G−1(u) ∈ BV (Ω). We
also deduce Djv = 0 and

v
∣∣
∂Ω

= G−1(u)
∣∣
∂Ω

= 0 .
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Moreover, it holds by Lemma 4.6:

(z, Dv) = |Dv| as measures in Ω .

Finally, making the substitution u = G(v) in (46) and applying the chain
rule we get

−div z+ g(v)∗|Dv| = f in D′(Ω) .

Corollary 6.3. If v is a solution to problem (45) with g continuous, bounded
and such that g(s) ≥ m > 0 for all s ≥ 0, then, u = G(v) is the solution to
problem (30).

Proof. Applying the same argument which is used in Theorem 6.2 and
keeping it in mind that g is bounded and G is increasing, the result is proved.

Theorem 6.4. There exists a unique nonnegative solution to problem (45)
with g continuous, bounded and such that g(s) ≥ m > 0 for all s ≥ 0.

Proof. Assuming there are two solutions v1 and v2 of problem (45), by
the Corollary 6.3, G(v1) and G(v2) are solutions to problem (30). Thus,
G(v1) = G(v2) and since G is injective we get v1 = v2.

6.2 Unbounded g

In this subsection we will prove an existence and uniqueness result to prob-
lem (45) assuming g(s) ≥ m > 0 be an unbounded function.

Theorem 6.5. There is a unique solution to problem (45) with g continuous
and such that g(s) ≥ m > 0 for all s ≥ 0.

Proof. First of all, we consider the approximate problem −div

(
Dvk
|Dvk|

)
+ Tk(g(vk))|Dvk| = f(x) in Ω ,

vk = 0 on ∂Ω .
(47)

By Theorem 6.4, it has a unique solution. Then, there exists vk ∈ BV (Ω)
with Djvk = 0 and also a vector field zk ∈ DM∞(Ω) such that ∥zk∥∞ ≤ 1
and

−div zk + Tk(g(vk))
∗|Dvk| = f in D′(Ω) ,

(zk, Dvk) = |Dvk| as measures ,

and
vk
∣∣ = 0 HN−1–a.e. in ∂Ω .
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First, we take the test function Th(vk)
h in problem (47) and we get

1

h

∫
Ω
(zk, DTh(vk))+

∫
Ω
Tk(g(vk))

∗Th(vk)
∗

h
|Dvk| =

∫
Ω
f
Th(vk)

h
dx ≤

∫
Ω
f dx .

Keeping in mind that the first integral is positive (by Lemma 4.6), we can
take limits in the second integral when h→ 0 and so we obtain∫

Ω
Tk(g(vk))

∗|Dvk| ≤
∫
Ω
f dx . (48)

Since Tk(g(vk)) is bigger than m, it yields

m

∫
Ω
|Dvk| ≤

∫
Ω
f dx .

Therefore, vk is bounded in BV (Ω) and there exists v ∈ BV (Ω) such that,
up to subsequences, vk → v in L1(Ω) and a.e.. Moreover, Dvk → Dv ∗–weak
as measures when k → ∞.
To prove Djv = 0 we use the same argument which appears in Theorem
4.3, so we get DjG(v) = 0 and then we deduce that Djv = 0. On the other
hand, we define the function

Fk(s) :=

∫ s

0
Tk(g(σ)) dσ .

Using (48) and the chain rule we have the next inequality:∫
Ω
|DFk(vk)| ≤

∫
Ω
f dx .

which implies that the sequence Fk(vk) is bounded in BV (Ω) and converges
in L1(Ω) to G(v). Now, denoting uk = Fk(vk) and u = G(v) we get that uk
converges to u in L1(Ω) and∫

Ω
|Duk| ≤

∫
Ω
f dx .

Therefore, it is true that u ∈ BV (Ω). Moreover, keeping in mind Theorem
3.10, we get |Du| = g(v)∗|Dv| as well.
By Corollary 6.3, uk is the solution to −div

(
Duk
|Duk|

)
+ |Duk| = f(x) in Ω ,

uk = 0 on ∂Ω .

The same argument used in the proof of Theorem 4.3 works for determining
that u is the solution to −div

(
Du

|Du|

)
+ |Du| = f(x) in Ω ,

u = 0 on ∂Ω .
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Finally, since g(s) ≥ m > 0 for all s ≥ 0 and applying Theorem 6.2, we
deduce that v is the solution to problem (45).

Proposition 6.6. The solution v to problem (45) satisfies v ∈ Lq(Ω) for
all 1 ≤ q <∞.

Proof. The proof follows the argument of the proof of Proposition 4.7,
on account of g(s) ≥ m > 0 for all s ≥ 0.

7 A non standard case: g touches the axis

In this section we assume that g is a continuous, bounded and non integrable
function with g(s) > 0 for almost every s ≥ 0. In this case, G is increasing
but (G−1)′ may be unbounded.

First, we analyze the case when there exist m, σ > 0 such that g(s) ≥
m > 0 for all s ≥ σ. Observe that this condition resembles Condition (1.7)
in [1].

Theorem 7.1. Let g be as above. Then, there exists a solution to problem
(45).

Proof. Let vn be the solution to the approximating problem −div

(
Dvn
|Dvn|

)
+

(
g(vn) +

1

n

)
|Dvn| = f in Ω ,

vn = 0 on ∂Ω ,

with the associated vector field zn. Using the test function Tk(vn−Tσ(vn))
k in

that problem we get∫
{vn>σ}

g(vn)
∗Tk(vn − Tσ(vn))

∗

k
|Dvn| ≤

∫
{vn>σ}

f dx ;

and taking limits when k → 0+ it yields∫
{vn>σ}

g(vn)
∗|Dvn| ≤

∫
{vn>σ}

f dx .

Since there exist m > 0 such that g(s) ≥ m for all s ≥ σ, then, the previous
inequality becomes: ∫

{vn>σ}
|Dvn| ≤

1

m

∫
Ω
f dx . (49)

Now, we use the test function Tσ(vn) in the same problem, so we get∫
{vn≤σ}

|Dvn| ≤
∫
Ω
f Tσ(un) dx ≤ σ

∫
Ω
f dx . (50)
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Finally, with (49) and (50) we have∫
Ω
|Dvn| ≤

(
σ +

1

m

)∫
Ω
f dx for all n ∈ N ,

that is, the sequence (vn)n is bounded in BV (Ω) and this implies that, up
to subsequences, there exists v ∈ BV (Ω) with vn → v in L1(Ω) and a.e. as
well as Dvn → Dv ∗–weak in the sense of measures. We conclude the proof
using arguments of Theorem 4.3.

For a general function g we have to change the definition of solution. We
will show in Example 7.4 that Definition 6.1 does not really work.

Definition 7.2. Let g be a continuous, bounded and non integrable function
with g(s) > 0 for almost every s ≥ 0. We say that a function v is a weak
solution to problem (45) if v(x) < ∞ a.e. in Ω, G(v) ∈ BV (Ω) with
DjG(v) = 0 and there exists a field z ∈ DM∞(Ω) with ∥z∥∞ ≤ 1 such that

−div z+ g(v)∗|Dv| = f in D′(Ω) ,

(z, DG(v)) = |DG(v)| as measures in Ω ,

and
v
∣∣
∂Ω

= 0 ,

where the function G is defined by

G(s) =

∫ s

0
g(σ) dσ .

Theorem 7.3. Assume that the function g is continuous, bounded and non
integrable with g(s) > 0 for almost every s ≥ 0. Then, there exists a unique
solution to problem (45) in the sense of Definition 7.2.

Proof. The approximating problem −div

(
Dvn
|Dvn|

)
+

(
g(vn) +

1

n

)
|Dvn| = f(x) in Ω ,

vn = 0 on ∂Ω ,
(51)

has a unique solution for every n ∈ N because of Theorem 6.4. That is,
there exists a vector field zn ∈ DM∞(Ω) with ∥zn∥∞ ≤ 1 and a function
vn ∈ BV (Ω) with Djvn = 0 and such that

−div zn +

(
g(vn) +

1

n

)∗
|Dvn| = f in D′(Ω) , (52)

(zn, DGn(vn)) = |DGn(vn)| as measures in Ω ,
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and
vn

∣∣
∂Ω

= 0 ,

where we denote

Gn(s) =

∫ s

0

(
g(σ) +

1

n

)
dσ .

We will show that the limit of the sequence (vn)n is the solution to problem

(45). First of all, we take the test function Tk(vn)
k in problem (51) and we

arrive at
1

k

∫
Ω
Tk(vn)

∗|DGn(vn)| ≤
∫
Ω
f dx

for every k. Now, letting k → 0 and using Fatou’s Theorem we get∫
{vn ̸=0}

|DGn(vn)| ≤
∫
Ω
f dx .

In addition, since Djvn = 0 it follows that Dvn = 0 almost everywhere in
{vn = 0}. Thus, ∫

Ω
|DGn(vn)| ≤

∫
Ω
f dx ,

and so Gn(vn) is bounded in BV (Ω). This implies that, up to subsequences,
there exist w such that Gn(vn) → w in L1(Ω) and a.e., and also DGn(vn) →
Dw ∗–weak in the sense of measures. We denote v = G−1(w), which is finite
a.e..
In what follows, we apply the same argument used in Theorem 4.3 with
minor modifications, hence we just sketch it. We get zn ⇀ z ∗–weakly in
L∞(Ω) with ∥z∥∞ ≤ 1 and −div z is a Radon measure with finite total
variation. Moreover, using the test function e−Gn(vn)φ with φ ∈ C∞

0 (Ω) in
problem (51) and letting n go to ∞, it leads −div (e−G(v)z) = e−G(v)f in the
sense of distributions. The next step is to show, with the same argument
used in Theorem 4.3, that DjG(v) = 0 and deduce Djv = 0. Then is easy
to obtain

−div z+ |DG(v)| = f in D′(Ω)

in the sense of distributions and

(z, DG(v)) = |DG(v)|

as measures. Moreover, we take Tk(Gn(vn)) in (51) to arrive at G(v)
∣∣
∂Ω

= 0
and then, we also get

v
∣∣
∂Ω

= 0 .

The uniqueness can be proved as in [28].

To remark the necessity to have a new definition to the concept of solu-
tion, we show in the next example that the solution to (45) when g is such
that lim

s→∞
g(s) = 0 is not in BV (Ω).
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Example 7.4. The solution to problem −div

(
Dv

|Dv|

)
+

1

1 + v
|Dv| = λ

|x|
in Ω ,

v = 0 on ∂Ω ,
(53)

is not in BV (Ω) for λ big enough.

First, we will solve the related problem −div

(
Du

|Du|

)
+ |Du| = λ

|x|
in Ω ,

u = 0 on ∂Ω ,
(54)

and then, using the inverse function of

G(s) =

∫ s

0

1

1 + σ
dσ = log(1 + s)

we will get the solution v.
Due to Example 5.3 we know that, for λ > N − 1, the solution to problem
(54) is given by u(x) = (N − 1 − λ) log(|x|/R) with the associated field
z(x) = −x/|x|. Moreover, the inverse of function G is given by G−1(s) =
es − 1. Therefore, the solution to (53) is given by

v(x) = G−1(u(x)) =

(
|x|
R

)N−1−λ
− 1

when λ > N−1. Nevertheless, v is not in BV (Ω) when N < λ/2+1 because

in that case, |Du| = λ−N + 1

RN−1−λ |x|N−2−λ is not integrable.

8 Odd cases

In this last section we will show some cases where the properties of the
function g does not provide uniqueness, existence or regularity of solutions
to problem (45).

8.1 First case

First of all, we suppose the function g is integrable. With that condition
about g, it is the function f who determines the existence or absence of
solution.

Theorem 8.1. Let f ∈ LN,∞(Ω) with f ≥ 0 and we consider problem (45)
with g ∈ L1([0,∞[). Then,

(i) if ∥f∥W 1,−∞(Ω) ≤ 1, the trivial solution holds;
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(ii) if ∥f∥W 1,−∞(Ω) > eG(∞), does not exist any solution;

with G(∞) = sup {G(t) : s ∈]0,∞[}.

Proof. The first point is deduced following the proof of Proposition 4.4.
On the other hand, let φ ∈ W 1,1

0 (Ω), we use −div (e−G(v)z) = e−G(v)f to
get

e−G(∞)

∫
Ω
f |φ| dx ≤

∫
Ω
e−G(u)f |φ| dx =

∫
Ω
e−G(u)z · ∇|φ| dx ≤

∫
Ω
|∇φ| dx .

Then, if ∥f∥W−1,∞(Ω) > eG(∞), cannot exist any solution to problem (45).

Remark 8.2. Since we have shown in (18) that

∥f∥W−1,∞(Ω) ≤ SN∥f∥LN,∞(Ω) ,

Theorem 8.1 implies the following fact:

(i) If ∥f∥LN,∞(Ω) ≤ S−1
N , the trivial solution holds.

Remark 8.3. One may wonder what happens when 1 < ∥f∥W−1,∞(Ω) ≤
eG(∞). Consider the approximate solutions vn to problem (51) and let w
satisfy G(vn) → w. Then w ∈ [0, G(∞)]. In particular, if w ∈ [0, G(∞)[, the
function v = G−1(w) is finite a.e. in Ω and is the solution to problem (45).
However, w can be equal to G(∞) in a set of positive measure and so v is
infinite in the same set. We conclude that v, in this case, is not solution.

Example 8.4. Problem −div

(
Dv

|Dv|

)
+

1

1 + v2
|Dv| = N − 1

|x|
+ λ in BR(0) ,

v = 0 on ∂BR(0) ,
(55)

has not radial solutions when λ is large enough.

Assuming there exists a radial solution u(x) = h(|x|) with h : [0, R] → R
is such that h(r) ≥ 0, h(R) = 0 and h′(r) ≤ 0, we will get a contradiction.
First, we suppose that h′(r) = 0 for ρ1 < r < ρ2 and, reasoning as in
Example 5.1, we get a contradiction. Therefore, we only can have h′(r) < 0
for all 0 ≤ r < R. In this case, we know that the vector field is given by
z(x) = −x/|x| and the equation becomes

−g(h(r))h′(r) = λ ,

which is equivalent to (G(h(r))′ = −λ. Then, the solution is given by
G(h(r)) = λ(R− r).
On the other hand, we know that G(s) ∈ [0, π2 [ because

G(s) =

∫ s

0
g(σ) dσ =

∫ s

0

1

1 + σ2
dσ = arctan s .
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Thus, we have a radial solution if λ <
π

2R
. When λ =

π

2R
, we also obtain a

radial solution, which is given by

u(x) = tan
(
λ(R− r)

)
.

8.2 Second case

Now, we will take the function g : [0,∞[→ R such that g(s) = 0 when
s ∈ [0, ℓ] and g(s) > 0 for all s > ℓ. We assume g ̸∈ L1([0,∞[) as well.

Remark 8.5. With g defined as above, there is not uniqueness of solutions.
On the one hand, if ∥f∥LN,∞(Ω) ≤ S−1

N and u ∈ BV (Ω) satisfies u
∣∣
∂Ω

= 0,
then the function Tℓ(u) is a solution to problem (45). Thus, there is not
uniqueness in any way.

On the other hand, if ∥f∥LN,∞(Ω) > S−1
N we define

h(s) = g(s+ ℓ)

and let w be a solution to problem −div

(
Dw

|Dw|

)
+ h(w) |Dw| = f in Ω ,

w = 0 on ∂Ω ,
(56)

with associated field z. Therefore, v(x) = w(x) + ℓ is a solution to problem
(45) with the same vector field z.

Moreover, let ψ : [0, ℓ + 1] → [ℓ, ℓ + 1] be an increasing and bijective
C1–function such that ψ′(ℓ+ 1) = 1. Then we consider

h(s) =

{
ψ′(s)g(ψ(s)) if 0 ≤ s ≤ ℓ+ 1 ,
g(s) if ℓ+ 1 < s ,

and let w be a solution to problem (56) with h defined as above. Therefore,
the function

v(x) =

{
ψ(w(x)) if 0 ≤ w(x) ≤ ℓ+ 1 ,
w(x) if ℓ+ 1 < w(x) ,

is a solution to (45), as we can see as follows. It is straightforward that the
equation holds inD′(Ω) and v

∣∣
∂Ω

= 0. We only have to see that (z, DG(v)) =
|DG(v)| as measures in Ω. If 0 ≤ s ≤ ℓ+ 1 we get

H(s) =

∫ s

0
h(σ) dσ =

∫ s

0
ψ′(σ)g(ψ(σ)) dσ =

∫ ψ(s)

0
g(σ) dσ = G(ψ(s)) ,

H(ℓ+ 1) = G(ψ(ℓ+ 1)) = G(ℓ+ 1) ,
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and for s > ℓ+ 1 we have

H(s) = H(ℓ+ 1) +

∫ s

ℓ+1
h(σ) dσ = G(ℓ+ 1) +

∫ s

ℓ+1
g(σ) dσ = G(s) .

Therefore, DG(v(x)) = DH(w(x)) and we conclude (z, DG(v)) = |DG(v)|
as measures in Ω.

Example 8.6. The solution to problem −div

(
Du

|Du|

)
+ g(u)|Du| = N

|x|
in Ω ,

u = 0 on ∂Ω ,
(57)

with

g(s) =

{
0 if s ≤ a ,
s− a if a < s ,

for a > 0 does not vanish on ∂Ω.

We define

G(s) =

∫ s

0
g(σ) dσ =

 0 if 0 ≤ s ≤ a ,
a

2
+
s2

2
− a s if a < s .

It is easy to prove that

u(x) = h(|x|) = h(r) = G−1
(
− log

( r
R

))
with z = x

|x| is such that (z, Du) = |Du| as measures in Ω and −div z +

g(u)∗|Du| = N
r in D′(Ω). However,

h(R) = G−1(0) = 1 .

Although the boundary condition is not true, the solution achieves the
boundary weakly (see [7]), that is

[z, ν] = − x

|x|
x

|x|
= −1 = − sign (u) .

8.3 Third case

Finally, let 0 < a < b, we will take g a function with g(s) = 0 when
s ∈ [a, b] and g(s) > 0 for all s < a and s > b. Moreover we assume that
g ̸∈ L1([0,∞[).
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Remark 8.7. We will use a similar argument to the previous one to show
that there is not uniqueness of solution to problem (45) with function g
defined as above.

Let ψ : [0, b] → [0, a] be an increasing and bijective C1–function. Now,
we define

h(s) =

{
ψ′(s)g(ψ(s)) if 0 ≤ s ≤ b ,
g(s) if b < s .

If w is a solution to problem (56), then, we have that

v(x) =

{
ψ(w(x)) if 0 ≤ w(x) ≤ b ,
w(x) if b < w(x) ,

is a solution to the original problem (45) because the equation holds in D′(Ω)
and also w

∣∣
∂Ω

= 0. In addition, for 0 ≤ s ≤ b we have

H(s) =

∫ s

0
h(σ) dσ =

∫ s

0
ψ′(σ)g(ψ(σ)) dσ =

∫ ψ(s)

0
g(σ) dσ = G(ψ(s)) ,

H(b) = G(ψ(b)) = G(a) = G(b)

and for s > b we get

H(s) = H(b) +

∫ s

b
h(σ) dσ = G(b) +

∫ s

b
g(σ) dσ = G(s) .

Therefore, we have proved the remaining condition: (z, DG(v)) = |DG(v)|
as measures in Ω.

Example 8.8. Problem −div

(
Du

|Du|

)
+ g(u)|Du| = N

|x|
in Ω ,

u = 0 on ∂Ω ,
(58)

with

g(s) =


a− s if s < a ,
0 if a ≤ s ≤ b ,
s− b if b < s ,

where 0 < a < b, has a discontinuous solution.

We define

G(s) =

∫ s

0
g(σ) dσ =



−s2

2
+ a s if 0 ≤ s ≤ a ,

a2

2
if a ≤ s ≤ b ,

a2 + b2

2
+
s2

2
− b s if b < s .
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We will prove that the radial function

u(x) = h(|x|) = G−1

(
− log

(
|x|
R

))
is a solution to problem (58) pointing out that, since G−1 is discontinuous,
the solution u is discontinuous too.
We get the radial solution

h′(r) =
−1

g
(
G−1

(
− log

(
r
R

))
r
) ,

and since we take

z(x) =
−x
|x|

,

it is easy to prove
(z, Du) = |Du| in D′(Ω) ,

−div z+ g(u)∗|Du| = N

|x|
as measures in Ω ,

and also
h(R) = G−1(0) = 0 .
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