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Abstract

We prove existence and uniqueness of self-similar solutions with exponential form

u(x, t) = eαtf(|x|e−βt), α, β > 0,

to the quasilinear reaction-diffusion equation

∂tu = ∆um + |x|σup,

posed for (x, t) ∈ RN × (0, T ), with m > 1, 1 < p < m and σ = −2(p − 1)/(m − 1) and
in dimension N ≥ 2, with the same results holding true in dimension N = 1 under the
extra assumption 1 < p < (m + 1)/2. Such self-similar solutions are usually known in the
literature as eternal solutions since they exist for any t ∈ (−∞,∞). As an application of
the existence of these eternal solutions, we show existence of global in time weak solutions
with any initial condition u0 ∈ L∞(RN ) and, in particular, that these weak solutions remain
compactly supported at any time t > 0 if u0 is compactly supported.
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Keywords and phrases: Reaction-diffusion equations, weighted reaction, singular potential,
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1 Introduction

This paper is devoted to the study of the following quasilinear reaction-diffusion equation with
critical singular potential:

∂tu = ∆um + |x|σup, (x, t) ∈ RN × (0,∞), (1.1)
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where N ≥ 2, and the exponents m, p, σ satisfy the assumptions

m > 1, 1 < p < m, σ = σ∗ := −2(p− 1)

m− 1
. (1.2)

We also consider Eq. (1.1) posed in dimension N = 1 in the same range of exponents (1.2)
together with the extra assumption

1 < p <
m+ 1

2
, that is, σ∗ > −1. (1.3)

As we see, this equation involves a singular potential as a weight on the reaction term, and this
precise value σ = σ∗ is critical with respect to the dynamics of the equation, as we will find out in
the current work. Our goals in the present paper are, on the one hand, to establish the existence
and uniqueness (up to a rescaling) of a compactly supported self-similar solution in exponential
form which is global in time (that is, does not blow up in finite time) and, on the other hand, to
give a theory of existence of global in time weak solutions in suitable functional spaces. This is
always challenging when dealing with singular potentials and will be achieved here by employing
the exponential self-similar solutions as upper barriers to prevent finite time blow-up.

The main mathematical interest of equations of the type of Eq. (1.1) is given by the double
competition taking place between its two terms in the right hand side, in order to govern the
evolution:

• On the one hand, we observe a general competition between a diffusion term of porous
medium type and a source term. The effects of this competition, in the autonomous case σ = 0,
are by now quite well understood; and in particular, in the range we are concerned with, m > 1
and 1 < p < m, finite time blow-up holds true for any solution (see for example [33, Chapter IV]),
that is, there exists T ∈ (0,∞) such that u(t) ∈ L∞(RN ) for any t ∈ (0, T ), but u(T ) ̸∈ L∞(RN ).
More precise characterizations (at least in dimension N = 1) concerning blow-up set, blow-up of
interfaces and detailed behavior of the solutions as t → T with an asymptotic pattern given by
a self-similar solution in backward form are also given in the above mentioned source.

• On the other hand, the presence of a singular potential of the form |x|σ with σ < 0 introduces
a new competition, between regions that are close to x = 0 (where the singular potential is likely
to produce a very strong reaction) and regions lying sufficiently far from the origin (where the
singular potential is formally small). It has been seen for a long time that the effects of this
second competition on the dynamics of the solutions can be very striking. A famous example,
which became a starting point for the study of singular potentials, comes from the celebrated
paper by Baras and Goldstein [4], where it is shown that, if we let m = p = 1 and σ = −2 in
Eq. (1.1), existence or non-existence of solutions (in the form of instantaneous blow-up at every
point) is related to the famous optimal constant in Hardy’s inequality. A similar conclusion about
non-existence was later established by Goldstein and other collaborators for m = p < 1, that is,
the fast-diffusion case [15, 14, 28], or by Cabré and Martel [7], who replaced the weight |x|−2 by
more general, abstract weights a(x) with suitable properties. Two of the authors also suggested
(without giving a proof) a similar non-existence range for Eq. (1.1) with p = m > 1 and σ = −2
in [23].

The above is just an example of how interesting or unexpected the outcome of the second
competition can be. It also motivated us to consider singular potentials related to reaction-
diffusion equations, and in particular, the study of the so-called Hardy equation in the semilinear
case m = 1, p > 1 and −2 < σ < 0, strongly developed in recent years, as shown by the growing
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number of works devoted to the subject (see, for example, [6, 5, 9, 10, 36, 17]). With respect to
similarity solutions, again in the semi-linear case m = 1 but with p > 1, Filippas and Tertikas [12]
gave a classification of them for σ > −2 (that could be both positive and negative), analyzing
also the behavior near the blow-up time. Their study was completed by Mukai and Seki [30]
with a study of blow-up of Type II, that is, a type of blow-up achieved for p sufficiently large
and with variable blow-up rates. The quasilinear case m > 1 but always in the range p > m,
and with σ > −2 (including both positive or negative values), has been addressed by Qi [32] and
then Suzuki [35], two works devoted to establishing the Fujita-type exponent and then analyzing
for which initial conditions u0 solutions can be global in time. Later on, Andreucci and Tedeev
established blow-up rates in [3].

However, we noticed some years ago that works dealing with the range m > 1 and p ∈ (1,m)
were missing from the literature either when σ > 0 or when σ < 0. This gave us the motivation
to start investigating this case, and the results obtained within several recent works were quite
unexpected. As a first outcome, it seems that (as we have shown at the level of self-similar
solutions), the occurrence of finite time blow-up or not depends strongly on the sign of the
following constant:

L := σ(m− 1) + 2(p− 1). (1.4)

Indeed, the authors gave very recently in [20] (following previous results in [22, 24] restricted to
σ > 0 and dimension N = 1) a classification of the self-similar blow-up patterns for L > 0, that
is, solutions of the form (known as backward self-similarity)

u(x, t) = (T − t)−αf(|x|(T − t)β), α =
σ + 2

L
, β =

m− p

L
, (1.5)

showing that the form of the self-similar profiles f , and thus of the blow-up sets and rates of the
solutions, strongly depends on the magnitude of σ. In particular, for σ ∈ (−2, 0), it is shown
that blow-up occurs always simultaneously (that is, u(x, t) → ∞ as t → T , for any x ∈ RN ).

On the contrary, in another recent work [21], the range L < 0 has been considered (for
σ > −2), which directly implies that −2 < σ < σ∗ < 0, with σ∗ defined in (1.2). It is then proved
therein that there exists a unique self-similar solution which is global in time, in the form (known
as forward self-similarity)

u(x, t) = tαf(|x|t−β), α = −σ + 2

L
, β = −m− p

L
, (1.6)

which obviously exists for any t > 0. We also explain in [21] how the existence of this solution
prevents blow-up of general solutions, and in fact a theory of existence of weak solutions which
are global in time can be made in that case along the lines of the last section of the current work.
We furthermore recently extended the study of global solutions to the limit case σ = −2, which
gives obviously L < 0 for any p ∈ (1,m), showing in [27] that in this limit case the solution, also
unique if asking to be compactly supported, has an integrable singularity at x = 0.

In view of these precedents and previous comments, and in order to complete the theory of
the case σ < 0, we are thus left to consider the case L = 0, that is, σ = σ∗, which is the aim of
the present paper. It is now the right moment to describe more precisely the results of this work.

Main results. As we have explained before, we are looking for self-similar solutions to Eq. (1.1)
in the range of exponents (1.2). It is straightforward to notice that there cannot exist self-similar
solutions in any of the previous forms (1.6) or (1.5), as when inserting these ansatzes in Eq. (1.1),
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the time-dependent part cannot vanish, and its exponents in the three terms of Eq. (1.1) form
an incompatible system in α and β precisely due to the critical value σ = σ∗. We are thus left
with considering a third form (known as exponential self-similarity), namely,

u(x, t) = eαtf(|x|e−βt), (1.7)

for α and β to be found. Introducing the ansatz (1.7) into Eq. (1.1), we readily find that in order
for u to be a solution, its self-similar exponents must satisfy α = 2β/(m− 1), while the profile f
solves the differential equation

(fm)′′(ξ) +
N − 1

ξ
(fm)′(ξ)− αf(ξ) + βξf ′(ξ) + ξσf(ξ)p = 0, (1.8)

where ξ = |x|e−βt. Moreover, the (formal) calculation of the total mass of a solution at any time
t > 0, given by

M(t) :=

∫
RN

u(x, t) dx =

∫
RN

eαtf(|x|e−βt) dx = e(α+Nβ)t

∫
R
f(ξ)ξN−1 dξ,

together with the natural assumption and expectation that M(t) increases with time, since we
are dealing with an equation with a source term, give that α + Nβ > 0, which in particular
implies that α > 0 and β > 0, as α = 2β/(m− 1). We thus assume from now on that both α and
β are positive. As a further remark, let us notice that, if f is a solution to (1.8) with exponents
α, β > 0, then the rescaled functions

fλ(ξ) = λf
(
λ−(m−1)/2ξ

)
, λ > 0, (1.9)

are also solutions to (1.8) and thus candidates for self-similar profiles. With these notation and
conventions, we are ready to state our first result, completely classifying the self-similar profiles
in exponential form.

Theorem 1.1. There exists a unique exponent α∗ ∈ (0,∞) (and corresponding β∗ = (m −
1)α∗/2) such that

1. For α = α∗, there exists a unique one-parameter family of compactly supported self-similar
solutions in exponential form (1.7) such that their profile f satisfies f(0) > 0, with local
behavior as ξ → 0, given by

fK(ξ) ∼
[
K − (m− 1)2

2m[N(m− 1)− 2(p− 1)]
ξ2(m−p)/(m−1)

]1/(m−p)

, (1.10)

and such that there exists ξ0 ∈ (0,∞) such that f(ξ0) = 0 and (fm)′(ξ0) = 0. All these
profiles are obtained from the profile f1 by the rescaling (1.9).

2. For any α ∈ (α∗,∞), there exists a unique one-parameter family of self-similar solutions
in exponential form (1.7) such that their profile f satisfies f(0) > 0, with local behavior as
ξ → 0 given by (1.10) and the following (unbounded) behavior at infinity:

f(ξ) ∼ C(m, p, α)ξ2/(m−1)(log ξ)−1/(p−1), as ξ → ∞, (1.11)

where C(m, p, α) > 0 is a constant that is made explicit in (2.4). Again, all these profiles
can be obtained from a single one of them by the rescaling (1.9).
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3. For any α ∈ (0, α∗) there are no self-similar solutions in exponential form (1.7) with such
exponent α (and corresponding β).

Notice that we had to “normalize” f(ξ) by fixing f(0) = 1 in order to have uniqueness not
only of the exponent α∗ but also of the profile in Theorem 1.1. Indeed, if dropping this fixed
value f(0) = 1, we obtain in reality a one-parameter family of self-similar profiles fλ according
to (1.9), with the same properties with respect to compact support or behavior at infinity given
by (1.11), in each case. Let us also emphasize here the behavior (1.11), which involves a mixed
scale of powers and logarithms. This is a sometimes tricky feature of critical exponents, where
logarithmic corrections to algebraic behaviors might occur; see also [19] for such a mixed behavior.

Remark. Eternal solutions. Observe that solutions as in (1.7) can be defined also in a
backward sense, making them eternal, that is, valid for any t ∈ (−∞,∞). This is a very unusual
case in the theory of parabolic equations, since in general the backward problem associated with
a parabolic equation is ill-posed. Such eternal solutions have been thus identified only in a few
critical cases limiting between ranges with very different behaviors. The term eternal solutions
seems to stem (to our knowledge) from Daskalopoulos and Sesum [11], where such solutions
are obtained for the two-dimensional Ricci flow. Prior to that, exponential self-similarity has
been met in the paper [13] dealing with the critical exponent mc = (N − 2)/N of the fast
diffusion equation in dimension N ≥ 3, which limits between conservation of mass and finite time
extinction. Two of the authors recently classified eternal solutions to Eq. (1.1) in the ranges
m > 1, 0 < p < 1 in [25] and the fast diffusion range 0 < m < mc and p > 1 in [26], respectively,
in both cases with the same critical value σ = σ∗ which is there positive, in contrast to our case.
We also mention here the eternal solutions obtained in [19] for an equation with p-Laplacian fast
diffusion and gradient absorption. We believe that the availability of such eternal solutions is an
interesting feature of critical exponents in parabolic PDEs.

Let us also remark at this point that the rescaling (1.9) acts on the eternal self-similar solutions
as a translation in time. Indeed, if λ = eαt0 for some t0 ∈ R and if we define

uλ(x, t) = eαtfλ(|x|e−βt),

where fλ is defined in (1.9), we readily observe that

uλ(x, t) = eα(t+t0)f(|x|e−β(t+t0)).

We thus understand better the uniqueness of exponential self-similar solutions in Theorem 1.1,
since in fact all the one-parameter family is composed by a translation in time of a single one.

Existence of general global in time solutions. The self-similar solutions obtained in The-
orem 1.1 can be used in order to establish existence of general solutions to the Cauchy problem
associated with Eq. (1.1) with suitable initial conditions u0(x) = u(x, 0), x ∈ RN . In order to
state these results, let us introduce the functional space

L∞(RN ; |x|2/(m−1)) := {g ∈ L∞
loc(RN ) : |x|−2/(m−1)g(x) ∈ L∞(RN \B(0, 1))} (1.12)

of functions having a behavior limited by the exponent in (1.11) at spatial infinity. We also define
below the notion of weak solution that will be employed (which in some texts is called very weak,
as it involves integrating by parts twice in the diffusion term).
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Definition 1.2. By a weak solution to Eq. (1.1) we mean a function u ∈ C((0, T ) : L1
loc(RN ))

for some T > 0 which moreover satisfies the following assumptions:

�

u(t) ∈ L1
loc(RN ), um(t) ∈ L1

loc(RN ), |x|σup(t) ∈ L1
loc(RN ),

for any t ∈ (0, T ).

� u is a solution in the sense of distributions to Eq. (1.1), which means that for any φ ∈
C2,1
0 (RN × (0, T )) and for any t1, t2 ∈ (0, T ) with t1 < t2, we have∫

RN

u(t2)φ(t2) dx−
∫
RN

u(t1)φ(t1) dx−
∫ t2

t1

∫
RN

u(t)φt(t) dx dt

−
∫ t2

t1

∫
RN

um(t)∆φ(t) dx dt =

∫ t2

t1

∫
RN

|x|σup(x, t)φ(x, t) dx dt.
(1.13)

We say that a function u ∈ C([0, T ) : L1
loc(RN )) for some T > 0 is a weak solution to the Cauchy

problem with initial condition u0(x) if u is a weak solution to Eq. (1.1) and the initial condition
is taken in the L1

loc sense, that is,

lim
t→0

[∫
RN

u(x, t)φ(x) dx−
∫
RN

u0(x)φ(x) dx

]
= 0,

for any compactly supported test function φ ∈ C0(RN ).

With these definitions and notations in hand, we can now state the existence theorem for Eq.
(1.1).

Theorem 1.3. Given u0 ∈ L∞(RN ) such that u0(x) ≥ 0 for any x ∈ RN , there exists at least a
weak solution u with

u(t) ∈ L∞(RN ; |x|2/(m−1)), for any t > 0,

to the Cauchy problem associated with Eq. (1.1) with initial condition u(x, 0) = u0(x) for any
x ∈ RN . If, moreover, the initial condition u0 is compactly supported, then there exists a weak
solution u to the same Cauchy problem such that u(t) is compactly supported for any t > 0.

Notice that the solutions given by Theorem 1.3 are global in time, and their existence will
be obtained through a monotone approximation process, using the self-similar solutions obtained
in Theorem 1.1 as barriers from above in order to ensure that the limit function exists. We can
thus say that the existence of global self-similar solutions established in Theorem 1.1 prevents
finite time blow-up of general solutions to Eq. (1.1). This is an interesting property which is, as
explained at the beginning of the Introduction, completely due to the presence of the singular
potential and the competition it involves between regions.

2 The phase plane. Finite critical points

The proof of Theorem 1.1 is based on a careful study of a phase plane associated with a planar,
two-dimensional dynamical system into which the non-autonomous differential equation (1.8) can
be mapped. To make it precise, let us introduce the new variables

X(ξ) = mξ−2f(ξ)m−1, Y (ξ) = mξ−1f(ξ)m−2f ′(ξ), (2.1)
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together with the new independent variable of the system defined as

η(ξ) =
1

m

∫ ξ

0

ζ

fm−1(ζ)
dζ. (2.2)

By making an “abuse of notation” and keeping the same letters for X(η) := X(η(ξ)), Y (η) :=
Y (η(ξ)), it follows after straightforward calculations that (X,Y ) solves the autonomous dynamical
system {

Ẋ = X [(m− 1)Y − 2X] ,

Ẏ = −Y 2 − βY + αX −NXY −m(1−p)/(m−1)X(m+p−2)/(m−1),
(2.3)

where derivatives are taken with respect to the variable η introduced in (2.2). This is the system
whose phase plane we will analyze in the sequel. Notice at first that X ≥ 0 and that the line
{X = 0} is invariant for the system (2.3), while Y might change sign. Another important fact is
that, in our range of exponents (1.2), we have

1 <
m+ p− 2

m− 1
< 2,

an estimate which will be very helpful in the sequel. We now compute the finite critical points
of the system (2.3) and get only two: P0 = (0, 0) and P1 = (0,−β). We analyze the flow of the
system in a neighborhood of them below.

Lemma 2.1. The linear approximation of the system (2.3) in the neighborhood of the critical
point P0 has a one-dimensional stable manifold and (many) one-dimensional center manifolds.
Any center manifold contains orbits entering P0, and thus the point P0 behaves like a stable node
for orbits entering it from the half-plane {X > 0}. The orbits entering P0 on the center manifolds
contain profiles with local behavior given by (1.11) as ξ → ∞, with the explicit constant

C(m, p, α) =

(
α(m− 1)

2(p− 1)

)1/(p−1)

m−(m+p−2)/[(m−1)(p−1)]. (2.4)

Proof. The linear approximation of the system (2.3) near P0 has the matrix

M(P0) =

(
0 0
α −β

)
.

Hence, the one-dimensional stable manifold (which is unique; see [16, Theorem 3.2.1]) and the
one-dimensional center manifolds (which may not be unique) correspond to the eigenvalues λ2 =
−β < 0 and λ1 = 0, respectively. In order to apply the Local Center Manifold Theorem [31,
Theorem 1, Section 2.12], we have to perform a further change of variables to put the system
(2.3) into the canonical form. We thus set V = βY − αX and obtain the system

Ẋ = m−1
β XV,

V̇ = − 1
βV

2 − βV − mN−N+2m+2
m−1 XV − (mN−N+2)α

m−1 X2

−m(1−p)/(m−1)βX(m+p−2)/(m−1).

(2.5)

Noticing that the vector field of the system (2.5) is of class Cr with r = (m+p−2)/(m−1) ∈ (1, 2),
we can apply [31, Theorem 1, Section 2.12] and look for an approximation of the center manifold
of the form

V = h(X) = aXθ + o(Xθ), θ > 1, (2.6)
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as allowed, for example, by [8, Theorem 3, Section 2.5]. Inserting the approximation (2.6) into
the equation of the center manifold, we readily get that θ = (m + p − 2)/(m − 1) ∈ (1, 2) and
a = −m by identifying the exponents of lowest order (which are (m+ p− 2)/(m− 1) since it is
smaller than two). We thus infer that the center manifold has the local approximation

V = −mX(m+p−2)/(m−1) + o
(
X(m+p−2)/(m−1)

)
(2.7)

and the flow on the center manifold, according to the Reduction Principle [8, Theorem 2, Section
2.4], is given by

Ẋ = −2m

α
X(m+p−2)/(m−1)+1 + o(X(m+p−2)/(m−1)+1),

which shows that the center manifolds are stable with respect to the flow. In order to go back to
profiles, we first undo the change of variables to get back to X and Y . We infer from (2.7) that

βY − αX = −mX(m+p−2)/(m−1) + o
(
X(m+p−2)/(m−1)

)
,

which in terms of profiles reads (dropping the small order from the notation for simplicity)

βmξ−1fm−2(ξ)f ′(ξ)− αmξ−2fm−1(ξ)

∼ −m(2m+p−3)/(m−1)ξ−2(m+p−2)/(m−1)fm+p−2(ξ),

or equivalently, after multiplying by ξf2−m(ξ)/(mβ),

f ′(ξ)− α

β
ξ−1f(ξ) +

1

β
m(m+p−2)/(m−1)ξ1−2(m+p−2)/(m−1)fp(ξ) → 0, (2.8)

with convergence as η = η(ξ) → ∞. First of all, the equation (2.8) is integrable, and we obtain
the local behavior

f(ξ) ∼
(
K + C(m, p, α)−(p−1) log ξ

)−1/(p−1)
ξ2/(m−1), (2.9)

where C(m, p, α) is the constant defined in (2.4). We have to use now the fact that X(ξ) → 0 on
the center manifolds, and thus

X(ξ) ∼ m
(
K + C(m, p, α)−(p−1) log ξ

)−(m−1)/(p−1)
→ 0,

which shows that indeed the approximation in (2.9) has to be taken as ξ → ∞. Then, the
integration constant K in (2.9) becomes negligible with respect to the log ξ term, leading to the
behavior (1.11), as stated.

The analysis near P1 is immediate, since this point is hyperbolic. We borrow ideas from the
analogous [20, Lemma 2.2].

Lemma 2.2. The critical point P1 = (0,−β) is a saddle point. The unique orbit going out of P1

lies on the invariant line {X = 0}, while the unique orbit entering P1 contains profiles with an
interface behavior at some ξ0 ∈ (0,∞). The behavior at the interface is given by

f(ξ) ∼
[
C − β(m− 1)

2m
ξ2
]1/(m−1)

+

, as ξ → ξ0 =

√
2mC

β(m− 1)
, ξ < ξ0, (2.10)

where C > 0 is a free constant.
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Proof. The linear approximation of the system (2.3) in a neighborhood of P1 has the matrix

M(P1) =

(
−(m− 1)β 0
α+Nβ β

)
.

Thus, it is obvious that P1 is a saddle point. The unstable manifold corresponds to the eigenvalue
λ2 = β > 0, with eigenvector e2 = (0, 1); thus, it is fully contained in the line {X = 0}, since
the latter is invariant. The stable manifold corresponds to the eigenvalue λ1 = −(m − 1)β < 0.
In terms of profiles, the local behavior near P1 is deduced starting from the fact that Y → −β,
together with the fact that X → 0. If this limits were taken as ξ → ∞, the fact that

ξX ′(ξ) = −2X(ξ) + (m− 1)Y (ξ)

together with an application of [18, Lemma 2.9] for the function X(ξ) would imply that there
exists a sequence ξk → ∞ such that ξkX

′(ξk) → 0 as k → ∞. Since X(ξk) → 0, we infer that
(m − 1)Y (ξk) → 0 as k → ∞, which is a contradiction with the fact that Y → −β. Thus, the
previous limits are taken, in terms of profiles, as ξ → ξ0 ∈ (0,∞) from the left, which gives first
that f(ξ0) = 0 and then

(fm−1)′(ξ) ∼ −β(m− 1)ξ

m
, as ξ → ξ0,

and the local behavior given by (2.10) follows by direct integration (ξ, ξ0).

3 Critical points at infinity

This rather technical section is needed in order to complete the local analysis of the phase plane
associated with the system (2.3). In order to analyze these points, we pass to the Poincaré sphere
by setting

X =
X

W
, Y =

Y

W
.

According to [31, Theorem 1, Section 3.10], the critical points at infinity lie on the equator of

the Poincaré sphere in variables (X,Y ,W ), that is, W = 0 and X
2
+ Y

2
= 1. Moreover, they

are also solutions of the equation

XQ∗(X,Y ,W ) = Y P ∗(X,Y ,W ), where

P ∗(X,Y ,W ) := W 2P

(
X

W
,
Y

W

)
, Q∗(X,Y ,W ) := W 2Q

(
X

W
,
Y

W

)
,

where P and Q are the components of the vector field of the system (2.3), that is, the right hand
side of the two equations. In the case of the system (2.3), straightforward calculations give that
the critical points satisfy the equations

XY (mY + (N − 2)X) = 0, X
2
+ Y

2
= 1.

Hence, we find four critical points at infinity, namely,

Q1 = (1, 0, 0), Q2,3 = (0,±1, 0), Q4 =

(
m√

m2 + (N − 2)2
,− N − 2√

m2 + (N − 2)2
, 0

)
.

We classify next the orbits connecting to these critical points, first in dimension N ≥ 3.
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3.1 Local analysis at infinity for N ≥ 3

Let us fix throughout this section N ≥ 3. According to [31, Theorem 2, Section 3.10], the flow
of the system (2.3) in a neighborhood of the two critical points Q1 and Q4 that have nonzero
X component is analyzed by projecting on the X-variable, that is, performing the change of
variables

y =
Y

X
, z =

1

X
. (3.1)

Moreover, we notice that in the general framework of [31, Theorem 2, Section 3.10], we have
to choose the minus sign, since we are dealing with X as the dominating variable, and the first
equation in (2.3) gives in a neighborhood of Q1 and Q4 that

Ẋ = X2

[
−2 + (m− 1)

Y

X

]
< 0,

since either Y/X → 0 (at Q1) or Y/X → −(N − 2)/m < 0 (at Q4). With this choice of sign and
the change of variables (3.1), the system given in [31, Theorem 2, Section 3.10] reads in our case
as {

ẏ = −(N − 2)y −my2 − βyz + αz −m(1−p)/(m−1)z(m−p)/(m−1),

ż = 2z − (m− 1)yz.
(3.2)

The points Q1 and Q4 are mapped into the critical points (0, 0) and (−(N−2)/m, 0), respectively,
in the system (3.2). Noticing that (m− p)/(m− 1) ∈ (0, 1), we need to perform a further change
of variables in order to convert the system (3.2) into one having a C1 vector field. We thus let
w = z(m−p)/(m−1) and finally get the system that we will use next:

ẏ = −(N − 2)y −my2 − βyw(m−1)/(m−p)

+αw(m−1)/(m−p) −m(1−p)/(m−1)w,

ẇ = m−p
m−1 (2w − (m− 1)yw) .

(3.3)

With “abuse of language,” we will still refer to the two critical points (0, 0) and (−(N − 2)/m, 0)
of the latter system as Q1 and Q4.

Lemma 3.1. The critical point Q1 = (0, 0) of the system (3.3) is a saddle point. The unique
orbit contained in its unstable manifold contains profiles with the local behavior (1.10) as ξ → 0.

Proof. The linear approximation of the system (3.3) in a neighborhood of Q1 has the matrix

M(Q1) =

(
−(N − 2) −m(1−p)/(m−1)

0 2(m−p)
m−1

)
.

Hence, Q1 is a saddle point, with one orbit in the stable manifold contained in the invariant line
{w = 0}, since the eigenvector corresponding to the eigenvalue λ1 = −(N − 2) < 0 is e1 = (1, 0),
and one orbit in the unstable manifold corresponding to the eigenvalue λ2 = 2(m−p)/(m−1) and
going out of Q1 tangent to the eigenvector e2 = ((m− 1)m(1−p)/(m−1),−[N(m− 1)− 2(p− 1)]).
It then follows that in the first approximation, the orbit going out of Q1 satisfies

y

w
∼ − (m− 1)m(1−p)/(m−1)

N(m− 1)− 2(p− 1)
.
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Recalling that w = z(m−p)/(m−1) and undoing the change of variables (3.1), we obtain

Y ∼ − (m− 1)m(1−p)/(m−1)

N(m− 1)− 2(p− 1)
X(p−1)/(m−1). (3.4)

Notice that this is perfectly coherent with the condition Y/X → 0, since (p − 1)/(m − 1) < 1.
Putting (3.4) in terms of profiles gives

mξ−1fm−2(ξ)f ′(ξ) ∼ − (m− 1)m(1−p)/(m−1)

N(m− 1)− 2(p− 1)

(
mξ−2fm−1(ξ)

)(p−1)/(m−1)
,

or equivalently, after obvious simplifications,

fm−p−1(ξ)f ′(ξ) ∼ − m− 1

m[N(m− 1)− 2(p− 1)]
ξ(m−1−2(p−1))/(m−1). (3.5)

Assume now for contradiction that the equivalences (3.4), respectively (3.5), are taken as ξ →
ξ0 ∈ (0,∞) from the right. Then, on the one hand, the condition X → ∞ as ξ → ξ0 converts into
f(ξ) → +∞ as ξ → ξ0, ξ > ξ0, so we would get a vertical asymptote on the right. On the other
hand, since now ξ → ξ0, we readily get from (3.5) that (fm−p)′(ξ) → C(ξ0) ∈ (−∞, 0) as ξ → ξ0,
which is a contradiction with the vertical asymptote. We thus deduce that (3.4) and (3.5) are
taken as ξ → 0; hence, we arrive to the local behavior (1.10) by integration in (3.5).

The same system (3.3) allows for the local analysis in a neighborhood of Q4, as follows.

Lemma 3.2. The critical point Q4 is an unstable node for N ≥ 3. The orbits contained in its
two-dimensional unstable manifold contain profiles with a vertical asymptote at ξ = 0 and with
the precise local behavior

f(ξ) ∼ Cξ−(N−2)/m, as ξ → 0, C > 0 free constant. (3.6)

Proof. Since we identify Q4 = (−(N − 2)/m, 0) in the system (3.3), the linear approximation of
the system in a neighborhood of Q4 has the matrix

M(Q4) =

(
N − 2 −m(1−p)/(m−1)

0 (m−p)(mN−N+2)
m(m−1)

)
,

with two positive eigenvalues. In terms of profiles, we notice that the orbits going out of Q4 have
y → −(N − 2)/m. Hence, undoing the change of variables (3.1), we get

Y

X
=

ξf ′(ξ)

f(ξ)
→ −N − 2

m
. (3.7)

Assume for contradiction that the limit in (3.7) is taken as ξ → ξ0 ∈ (0,∞), ξ > ξ0. Then, we
obtain that

lim
ξ→ξ0

f ′(ξ)

f(ξ)
= −N − 2

mξ0
,

which by integration on (ξ0, ξ) for some ξ > ξ0 sufficiently close to ξ0 gives that

f(ξ) ∼ f(ξ0) exp

[
−N − 2

mξ0
(ξ − ξ0)

]
, as ξ → ξ0.

However, this is a contradiction with the assumed fact that X → ∞ as ξ → ξ0, since the latter
implies that f(ξ) → ∞ as ξ → ξ0. We are thus left with the behavior (3.7) as ξ → 0, which
conducts to (3.6) by direct integration.
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We are left with the local analysis of the flow in a neighborhood of the remaining points
Q2 and Q3. In order to analyze them, we have to project on the Y variable, which is in their
neighborhood the dominant one. We thus set

x =
X

Y
, z =

1

Y
(3.8)

and apply the second part of [31, Theorem 2, Section 3.10] in order to obtain, after some direct
calculations that we omit here, the system

±ẋ = mx+ βxz + αx2z + (N − 2)x2

+m(1−p)/(m−1)x(2m+p−3)/(m−1)z(m−p)/(m−1),

±ż = z + βz2 + αxz2 +Nxz

+m(1−p)/(m−1)x(m+p−2)/(m−1)z(2m−p−1)/(m−1),

(3.9)

where the plus or minus signs have to be chosen according to the direction of the flow.

Lemma 3.3. The critical point Q2 is an unstable node, and the critical point Q3 is a stable node.
The orbits going out of Q2 on its unstable manifold contain profiles with a change of sign at some
point ξ0 ∈ (0,∞), in the sense that f(ξ0) = 0 and (fm)′(ξ0) > 0, with the local behavior

f(ξ) ∼ C(ξ − ξ0)
1/m, as ξ → ξ0, ξ > ξ0.

The orbits entering Q3 on its stable manifold contain profiles with a change of sign at some point
ξ0 ∈ (0,∞) such that f(ξ0) = 0 and (fm)′(ξ0) > 0, with the local behavior

f(ξ) ∼ C(ξ0 − ξ)1/m, as ξ → ξ0, ξ < ξ0.

Notice that we have to analyze in both cases the origin of the system (3.9). However, when
working in a neighborhood of Q2. we have to choose the minus sign, since Y → +∞ and thus
decreases along the orbits. Meanwhile, when working in a neighborhood of Q3, we have to choose
the plus sign, since Y → −∞ and also decreases along the orbit, but the direction of the flow as
“observed” from the critical point is reversed. We omit here the proof, as it is very similar to the
one of [25, Lemma 2.4], to which we refer the reader (an analogous proof is also given in detail
in [24, Lemma 2.6]).

3.2 Local analysis at infinity in dimensions N = 2 and N = 1

In dimensions N = 2 and N = 1 there appear some noticeable differences in the analysis of the
flow of the system (3.3) in a neighborhood of the critical points Q1 and Q4, as can be readily
seen from the signs of the eigenvalues of the matrices M(Q1) and M(Q4).

Dimension N = 2. In this case the points Q1 and Q4 coincide. We keep labeling this point as
Q1 for simplicity, and the local behavior of the orbits going out of it is given below.

Lemma 3.4. The critical point Q1 = (0, 0) of the system (3.3) in dimension N = 2 is a saddle-
node. There is a unique orbit going out of Q1 into the phase plane which contains profiles with
the local behavior (1.10). All the other orbits go out of Q1 tangent to the y axis into the region
{Y < 0} and contain profiles such that

f(ξ) ∼ D (− ln ξ)1/m , as ξ → 0, D > 0 free constant. (3.10)
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Sketch of the proof. This result is analogous to the one of [25, Lemma 4.1], so we will just give a
sketch here for the sake of completeness. Let us notice that for N = 2, we have

M(Q1) = M(Q4) =

(
0 −m(1−p)/(m−1)

0 2(m−p)
m−1

)
,

with eigenvalues λ1 = 0, λ2 = 2(m−p)/(m−1) > 0 and corresponding eigenvectors e1 = (1, 0) and
e2 = ((m− 1)m(1−p)/(m−1),−2(m− p)). The unique orbit going out of Q1 on the stable manifold
associated with the second eigenvalue contains profiles having local behavior as in (1.10), as the
proof of Lemma 3.1 can be reproduced for them. We then have center manifolds (that may not
be unique) tangent to the y axis according to the theory in [16, Section 3.4]. In fact, according
to the approximation theorem [8, Theorem 3, Section 2.5], which allows us to write the center
manifold as

w(y) = ay2 + o(y2), a ∈ R,

we get after straightforward calculations that w(y) = o(y2). Thus, on the center manifold, we
get by neglecting lower order terms

dy

dw
∼ −m(m− 1)

2(m− p)

y2

w
.

Hence,

y ∼ 2(m− p)

m(m− 1)

1

ln w
=

2

m ln z
.

We thus arrived to exactly the same situation as in the proof of [25, Lemma 4.1], since in our
notation, variables (y, z) correspond to variables (Y,X) therein. The rest of the proof is based
on the fact that the first two terms in the differential equation (1.8) dominate over the last three
ones over the trajectories contained in the center manifolds of Q1, and thus we get the local
behavior (3.10) by equating in a first approximation

(fm)′′(ξ) +
N − 1

ξ
(fm)′(ξ) → 0, as ξ → 0,

and the details follow very closely the ones in the second part of the proof of [25, Lemma 4.1],
to which we refer the reader.

Dimension N = 1. In this case the sign of 2−N changes, and the critical point Q4 = (1/m, 0)
lies now in the positive half-plane with respect to the y-axis. We have the following.

Lemma 3.5. Let N = 1 and the assumption (1.3) be in force. The critical point Q1 = (0, 0)
of the system (3.3) is an unstable node, and the critical point Q4 = (1/m, 0) is a saddle point.
There is a unique orbit going out of Q1 which contains profiles such that f ′(0) = 0 and, more
precisely, with the local behavior (1.10). All the other orbits going out of Q1 contain profiles such
that f(0) > 0 with any possible slope f ′(0) = B ̸= 0. The only orbit going out of the critical point
Q4 contains profiles such that

f(ξ) ∼ Dξ1/m, as ξ → 0, D > 0 free constant. (3.11)
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Proof. The linear approximation of the system (3.3) in a neighborhood of Q1 in dimension N = 1
has the matrix

M(Q1) =

(
1 −m(1−p)/(m−1)

0 2(m−p)
m−1

)
,

with two positive eigenvalues λ1 = 1 and λ2 = 2(m− p)/(m− 1). We infer from the assumption
(1.3) that

2(m− p) > 2

(
m− m+ 1

2

)
= m− 1,

whence λ2 > λ1. Standard theory of the unstable manifold (see, for example, [1, Theorem 19.11])
implies the uniqueness of the orbit tangent to the eigenvector corresponding to the eigenvalue
λ2. In order to establish the local behavior of the orbits (and then, of the profiles contained in
it), it is sufficient to integrate the linear approximation of the system (3.3), which gives

dy

dw
∼ (m− 1)[y −m(1−p)/(m−1)w]

2(m− p)w
,

and by integration

y ∼ Cw(m−1)/2(m−p) − (m− 1)m(1−p)/(m−1)

m+ 1− 2p
w, (3.12)

in a neighborhood of (y, w) = (0, 0). We next infer from (1.3) that (m − 1)/2(m − p) < 1, and
then the first term in (3.12) is the dominating one as w → 0. We thus have a unique orbit with
local linear behavior, that is, the one corresponding to the integration constant C = 0 in (3.12),
and we reach again the local behavior (3.4) in variables (X,Y ), which implies that the profiles
contained in this orbit have the local behavior given in (1.10). All the other orbits going out of
Q1 have local behavior given by

y ∼ Cw(m−1)/2(m−p), C ̸= 0,

which is equivalent in the initial phase plane variables (X,Y ) to Y = CX1/2. Hence, in terms of
profiles,

2

m− 1

(
f (m−1)/2

)′
(ξ) ∼ C, as ξ → 0,

which by integration gives functions with f(0) > 0 and f ′(0) ̸= 0, depending on the integration
constant C, as claimed.

The linear approximation of the system (3.3) in a neighborhood of Q4 = (1/m, 0) in dimension
N = 1 has the matrix

M(Q4) =

(
−1 −m(1−p)/(m−1)

0 (m−p)(m+1)
m(m−1)

)
.

Hence, Q4 is a saddle point. The orbit entering it lies on the invariant axis {w = 0} of the system
(3.3), while the unique orbit contained in its unstable manifold has y → 1/m, which readily leads
to the local behavior (3.6) by integration after dropping the possibility that such a behavior is
attained in a limit ξ → ξ0 ∈ (0,∞) in the same way as in the end of the proof of Lemma 3.2.

Remark. The analysis in this section shows that we are dealing with a transcritical bifurcation
(according to [34], see also [16, Section 3.4]), that is, an interchange of stability between the
points Q1 and Q4 that takes place at N = 2 in the system (3.3).
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4 Proof of Theorem 1.1: Existence

Throughout all this section, we assume that either N ≥ 2 and (1.2) hold true, or N = 1 and both
(1.2) and (1.3) hold true. We monitor the unique orbit going out of Q1 containing profiles with
the desired local behavior (1.10), whose uniqueness is ensured by Lemma 3.1 in dimension N ≥ 3,
Lemma 3.4 in dimension N = 2 and Lemma 3.5 in dimension N = 1. Let us denote this orbit by
l(α) for simplicity, as it depends on α > 0. As we immediately get from the classification of the
critical points in Sections 2 and 3, it has only three critical points to which it might connect, P0,
P1 and Q3, plus possible ω-limits given by the Poincaré-Bendixon theory. We next classify this
connection for α close to zero and for α very large. In the former, we have the following.

Proposition 4.1. There exists α1 > 0 (and corresponding β1) such that for any exponent α ∈
(0, α1), the orbit l(α) connects to the stable node Q3.

Proof. Let first N ≥ 3. We begin with the system obtained by passing to the limit as α → 0 in
(3.3). Since β = (m− 1)α/2, we also have β → 0, and in the limit, at least formally, we are left
with the system {

ẏ = −(N − 2)y −my2 −m(1−p)/(m−1)w,

ẇ = 2(m−p)
m−1 w − (m− p)yw.

(4.1)

We start with the isocline given by ẏ = 0, which is the parabola

w = m(m+p−2)/(m−1)

[
−y2 − N − 2

m
y

]
, (4.2)

which connects the two critical points Q1 and Q4. The normal vector to this curve has the
direction

n =

(
m(m+p−2)/(m−1)

[
−2y − N − 2

m

]
,−1

)
,

and thus the direction of the flow of the system (4.1) on this curve is given by the sign of the
scalar product of this normal vector with the vector field of the system, which gives the expression

F (y, w) = −2(m− p)

m− 1
w + (m− p)yw < 0,

since we are only interested in the region where w ≥ 0 and y < 0. It thus follows that the flow
of the system goes in the increasing direction of the w variable. On the other hand, it is obvious
that the flow of the system (4.1) on the line {y = 0} points towards the half-space {y < 0}. Set

D := {(y, w) : y < 0,m−(m+p−2)/(m−1)w > max{−y2 − (N − 2)y/m, 0}}, (4.3)

which is then positively invariant for the flow of the system (4.1). Since the unique orbit going out
of Q1 and containing profiles with local behavior given by (1.10) starts tangent to the eigenvector

e2 = (−(m− 1)m(1−p)/(m−1), N(m− 1)− 2(p− 1)),

in a neighborhood of Q1 = (0, 0) it has a slope given by

w

y
∼ −N(m− 1)− 2(p− 1)

(m− 1)m(1−p)/(m−1)
< − N − 2

m(1−p)/(m−1)
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with the latter being the slope at Q1 of the isocline (4.2). The last inequality follows easily from
the fact that N(m− 1)− 2(p− 1) > (N − 2)(m− 1). This implies that the orbit going out of Q1

enters the region D of the phase plane associated with the system (4.1) and remains there. The
same sentence remains true in dimensions N = 1 and N = 2 in a trivial way, since the isocline
(4.2) in these dimensions does not enter the region where w ≥ 0 and y < 0. We can visualize the
outcome of the previous arguments in Figure 1 below.

y

w

− (N−2)
m

D

0

Figure 1: The isocline (4.2), the region D and the orbit going out of Q1 into the region D

From the definition of D, we observe that along the orbits contained in it, the variable y
decreases while the variable w increases. Thus, there exist

y0 := lim
η→∞

y(η) ∈ [−∞, 0), w0 := lim
η→∞

w(η) ∈ (0,∞],

where η is the independent variable of the system. We immediately see that (y0, w0) cannot be
a finite point, as it would be a critical point of the system (4.1), and there is no such a point.
Thus, at least one of (y0, w0) is infinite; assume for contradiction that one of them is finite. We
are left with the following two cases:

• y0 ∈ (−∞, 0), w0 = +∞. We then deduce from the system (4.1) that

dy

dw
= −(m− 1)[(N − 2)y +my2]

(m− p)(2− (m− 1)y)w
− (m− 1)m(1−p)/(m−1)

(m− p)(2− (m− 1)y)

→ − (m− 1)m(1−p)/(m−1)

(m− p)(2− (m− 1)y0)
,

as η → ∞, and such a linear limit behavior obviously contradicts the assumption of a vertical
asymptote of the orbit at y = y0 < 0.

• y0 = −∞, w0 ∈ (0,∞). We thus deduce from the system (4.1) that

dy

dw
= −(m− 1)[(N − 2)y +my2]

(m− p)(2− (m− 1)y)w
− (m− 1)m(1−p)/(m−1)

(m− p)(2− (m− 1)y)
∼ my

(m− p)w0
,

as η → ∞, which by integration gives

y ∼ Kemw/(m−p)w0 → Kem/(m−p) ∈ R,
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contradicting the assumption that y0 = −∞.
We thus infer that y0 = −∞ and w0 = +∞, that is, y → −∞ and w → +∞ as η → ∞

along the orbit going out of Q1. Going back to variables (X,Y ) we obtain that Y/X → −∞ and
X → 0 as η → ∞. The classification of critical points easily then leads us to the conclusion that
this orbit enters the stable node Q3. Since Q3 is a stable node, the conclusion follows from the
continuity with respect to the parameter α in the system (3.3).

We will next study the orbit l(α) for large values of α. To this end, we need a slight modi-
fication of the initial variables in order to reach a system having the parameter α (or β, which
is proportional) in a denominator. We thus perform the following (easy) change of variables by
letting

X (ξ) :=
X(ξ)

β
, Y(ξ) :=

Y (ξ)

β
, η(ξ) := βη(ξ). (4.4)

In these variables, the system (2.3) transforms into a new system{
Ẋ = X [(m− 1)Y − 2X ] ,

Ẏ = −Y2 − Y + 2
m−1X −NXY − m(1−p)/(m−1)

β(m−p)/(m−1)X (m+p−2)/(m−1).
(4.5)

Since homotheties are obvious diffeomorphisms, the systems (2.3) and (4.5) are topologically
equivalent. In fact, their critical points (both finite and infinite) are the same, with similar
analysis, except for the point P1, which in terms of the system (4.5) is seen as P1 = (0,−1). We
then let again

y =
Y
X
, z =

1

X
(4.6)

and obtain the system{
ẏ = −(N − 2)y −my2 − yz + 2

m−1z −
m(1−p)/(m−1)

β(m−p)/(m−1) z
(m−p)/(m−1)

ż = 2z − (m− 1)yz.
(4.7)

Letting β → ∞ is equivalent, at a formal level, to studying the system{
ẏ = −(N − 2)y −my2 − yz + 2

m−1z

ż = 2z − (m− 1)yz,
(4.8)

which is now quadratic, and no further change of variable is needed.

Proposition 4.2. There exists α2 > 0 (and corresponding β2) such that for any α ∈ (α2,∞),
the orbit l(α) connects to the critical point P0.

Proof. We work on the limit system (at least formally) (4.8) obtained as β → ∞ from (4.7). The
linear approximation of the critical point Q1 = (0, 0) in the system (4.8) has the matrix

M =

(
−(N − 2) 2

m−1

0 2

)
,

and thus the orbit we are interested in, which we will call l(∞), goes out tangent to the second
eigenvector e2 = (2, N(m − 1)), that is, in the half-plane {y > 0}. The flow of the system (4.8)
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over the vertical lines {y = 0} and {y = 2/(m − 1)}, in both cases taking as normal direction
n = (1, 0), is given by the signs of the expressions

F1(z) =
2

m− 1
z > 0 and F2(z) = − 2

m− 1

(
N − 2 +

2m

m− 1

)
< 0, respectively.

Hence, the strip S = {(y, z) : 0 < y < 2/(m − 1), z > 0} is positively invariant, and the orbit
l(∞) stays forever inside S. Let us now restrict ourselves for the moment to dimension N ≥ 2
and consider the part of the isocline

−(N − 2)y −my2 − yz +
2

m− 1
z = 0, that is, z(y) =

y(N − 2 +my)

2/(m− 1)− y
, (4.9)

contained in the strip S. We easily observe that the isocline (4.9) is increasing as a function
z(y), with z(0) = 0, having a vertical asymptote at y = 2/(m − 1) and with normal vector
n = (−(N − 2)− 2my − z, 2/(m− 1)− y). The direction of the flow of the system (4.8) over the
curve (4.9) is given by the sign of the scalar product between this normal vector and the vector
field of the system, which gives

G(y, z) =

(
2

m− 1
− y

)2

(m− 1)z > 0.

It follows that the flow goes from the region of the strip S with ẏ < 0 into the region with ẏ > 0.
By comparing the slopes of the eigenvector e2 (which is equal to N(m − 1)/2) and the isocline
(4.9) in a small neighborhood of (y, z) = (0, 0), which is given by

z′(0) =
(N − 2)(m− 1)

2
<

N(m− 1)

2
,

we readily deduce that the orbit l(∞) goes out in the region of the strip S where ẏ > 0 and
thus remains there along all its trajectory. In particular, the coordinate y is increasing along this
orbit. The same is true, in an analogous way, in dimension N = 1. We illustrate the previous
arguments, with the regions where ẏ > 0 and ẏ < 0, the isocline (4.9) and the orbit going out of
Q1 in Figure 2.

We also remark that in the strip S, the coordinate z increases along the orbits and thus
there exist y0 := lim

η→∞
y(η), which is finite since y is bounded, and z0 := lim

η→∞
z(η). Assuming

for contradiction that z0 ∈ R, it then follows that (y0, z0) is a finite critical point of the system
(4.8) lying in the closed strip S. However, such a point does not exist, and we then conclude
that z0 = +∞. Undoing then the change of variables (4.6), we find that

lim
η→∞

Y(η) = lim
η→∞

y(η)

z(η)
= 0, lim

η→∞
X (η) = lim

η→∞

1

z(η)
= 0,

which proves that the orbit l(∞) enters P0. Since P0 has a stable node sector for the orbits
arriving from the positive region of the phase plane, as shown in Lemma 2.1, the conclusion
follows by standard arguments of continuity with respect to the parameter β in the system (4.7).

We are now in a position to complete the proof of the existence part of Theorem 1.1.
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Figure 2: Regions where ẏ > 0 and ẏ < 0 in the strip S and the orbit going out of Q1

Proof of Theorem 1.1: Existence. Let us define the following three sets:

A = {α ∈ (0,∞) : the orbit l(α) enters Q3},
C = {α ∈ (0,∞) : the orbit l(α) enters P0},
B = {α ∈ (0,∞) : the orbit l(α) does neither enter Q3 nor P0}.

Proposition 4.1 together with the fact that Q3 is a stable node implies that the set A is non-
empty and open, while Proposition 4.2 together with the fact that P0 has a stable node sector
in the half-plane {X > 0} (which is the same as X > 0) gives that the set C is non-empty
and open. Since the three sets above are obviously disjoint, and A ∪ B ∪ C = (0,∞), standard
topological results imply that the set B is non-empty and closed. Let then α ∈ B. According to
the Poincaré-Bendixon theory [31, Section 3.7], its ω-limit set must be a critical point, as any
periodic orbit should contain a finite critical point in its interior region (see, for example, [31,
Theorem 5, Section 3.7]), and there are no such points. However, the only critical point different
from P0 and Q3 which is not totally unstable is P1. In conclusion, we have an orbit connecting
Q1 and P1 for any α ∈ B.

5 Proof of Theorem 1.1: Uniqueness

We assume once more that (1.2) and (1.3) if N = 1 hold true. We next show that the set B
introduced at the end of the previous section is a singleton. To this end, we work throughout
this section with the system (4.5), and the idea of the proof is that the already existing orbit
connecting the critical points Q1 and P1 will serve as a barrier for other possible orbits. This will
be made rigorous below.

Proof of Theorem 1.1: Uniqueness. We divide this proof into several steps for the reader’s con-
venience.

Step 1. Local monotonicity with respect to α on the orbits l(α). Recall that the orbit
l(α) is the one going out of Q1 and containing profiles with local behavior given by (1.10). In
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order to analyze it in general, we start from the system (4.7), and we perform the further change
of variables w = z(m−p)/(m−1) (also used in Section 3 to deduce the system (3.3)) to find the new
system 

ẏ = −(N − 2)y −my2 − yw(m−1)/(m−p) + 2
m−1w

(m−1)/(m−p)

−m(1−p)/(m−1)

β(m−p)/(m−1)w

ẇ = m−p
m−1w(2− (m− 1)y),

(5.1)

whose vector field is of class C1 and whose linear approximation in a neighborhood of Q1 = (0, 0)
has the matrix

M1 :=

(
−(N − 2) −m(1−p)/(m−1)

β(m−p)/(m−1)

0 2(m−p)
m−1

)
.

We next recall that the orbit l(α) is the one going out tangent to the eigenvector corresponding
to the second eigenvalue λ2 = 2(m− p)/(m− 1), that is,

e2 :=

(
−m(1−p)/(m−1)

β(m−p)/(m−1)
,
2(m− p)

m− 1
+N − 2

)
.

This implies that, for fixed w, the y-coordinate increases with β (and thus with α) in a neighbor-
hood of Q1. Hence, coming back to initial coordinates (X ,Y), the coordinate Y = y/w(m−1)/(m−p)

is also increasing with respect to α for fixed values of X .

Step 2. Local monotonicity with respect to α on the unique orbit in the stable
manifold of P1. We recall now that P1 corresponds to the critical point (0,−1) in the variables
of the system (4.5), and this point is a saddle. For the easiness of the calculations, we translate
this critical point to the origin by letting U := Y + 1. Thus, the system (4.5) reads in variables
(X ,U) as {

Ẋ = X [(m− 1)U − 2X − (m− 1)] ,

U̇ = −U2 + U + mN−N+2
m−1 X −NXU − m(1−p)/(m−1)

β(m−p)/(m−1)X (m+p−2)/(m−1),
(5.2)

and our critical point is now the origin of the system (5.2). The linear approximation of it in a
neighborhood of (0, 0) has the matrix

M(0, 0) =

(
−(m− 1) 0
mN−N+2

m−1 1

)
,

and the unique orbit in the stable manifold is tangent to the eigenvector e1 = (m,−(mN −N +
2)/(m− 1)). Hence, in the linear approximation our orbit reads

U = −mN −N + 2

m(m− 1)
X + o(X ).

Since we have no explicit dependence on α in this expression, we have to go to the next order in
the expansion. To this end, taking into account that (m + p − 2)/(m − 1) ∈ (1, 2) and the fact
that

XU = −mN −N + 2

m(m− 1)
X 2 + o(X 2) = o

(
X (m+p−2)/(m−1)

)
,
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we can neglect the quadratic terms of the vector field of (5.2) (which are all o
(
X (m+p−2)/(m−1)

)
)

to get

dU
dX

= −
U + mN−N+2

m−1 X − m(1−p)/(m−1)

β(m−p)/(m−1)X (m+p−2)/(m−1)

(m− 1)X
+ o
(
X (p−1)/(m−1)

)
. (5.3)

Integrating (5.3) gives then

Y + 1 = U = −mN −N + 2

m(m− 1)
X +

m(1−p)/(m−1)

(m+ p− 1)β(m−p)/(m−1)
X (m+p−2)/(m−1)

+ o
(
X (m+p−2)/(m−1)

)
,

and we infer that, if X is fixed, the coordinate Y decreases with respect to the exponent β (and
thus to α) in a small neighborhood of P1 = (0,−1).

Step 3. Uniqueness of the connection from Q1 to P1. We have obtained in the previous
steps reversed monotone behaviors with respect to α of the orbit l(α) and of the stable manifold of
P1, but for the moment they are valid only locally near the critical points Q1 and P1, respectively.
Set now

α∗ := inf B > 0, β∗ :=
(m− 1)α∗

2
,

which are well defined, as we recall that the set B is non-empty, closed and strictly included in
(0,∞). In particular, (α∗, β∗) are the smallest self-similarity exponents for which there exists a
connection between Q1 and P1. Consider next, as a last preparatory fact, the line (m−1)Y−2X =
0, which is an isocline of (4.5). The direction of the flow of the system (4.5) over it is given by
the sign of the expression

H(X ,Y) = −(m− 1)Y2 −N(m− 1)XY − (m− 1)m(1−p)/(m−1)

β(m−p)/(m−1)
X (m+p−2)/(m−1)

= −
[
(m− 1) +

N(m− 1)2

2

]
Y2 − (m− 1)m(1−p)/(m−1)

β(m−p)/(m−1)
X (m+p−2)/(m−1)

< 0.

The latter gives that the half-plane {(m−1)Y−2X < 0} is positively invariant for the flow of the
system (4.5), and thus the orbit l(α), going out of Q1 in this half-plane, will stay forever inside
it. This implies furthermore that X is decreasing along this orbit, and it allows us to write that,
along this orbit,

dY
dX

=
1

(m− 1)Y − 2X

×
[
−(m− 1)Y2 − (m− 1)Y + 2X −N(m− 1)XY

(m− 1)X

−m(1−p)/(m−1)

β(m−p)/(m−1)
X (p−1)/(m−1)

]
.

(5.4)

We notice from (5.4) and the fact that (m−1)Y−2X < 0 that the expression of dY/dX decreases
with respect to the exponent β (and thus with respect to α). Step 1 and standard comparison
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arguments then entail that, for any α > α∗, and along the orbit l(α), we have Yα > Yα∗ for
identical values of X (the order being ensured by the fact that X decreases along any orbit l(α)
with α > 0, as shown above). This shows that none of the orbits l(α) with α > α∗ can cross
the orbit l(α∗) at any point. Since the orbit l(α∗) enters P1, the reversed local monotonicity in
a neighborhood of the critical point P1 proved in Step 2 ensures that l(α) cannot connect to the
stable manifold of P1 for any α > α∗, implying the uniqueness of the exponent α∗.

Step 4. End of the proof. We have thus proved completely Part 1 in Theorem 1.1. Moreover,
the uniqueness of α∗ together with the outcome of Propositions 4.1 and 4.2 allows us to write

A = (0, α∗), B = {α∗}, C = (α∗,∞).

The definitions of the sets A and C, together with the local analysis near the critical points Q3

(see Lemma 3.3) and P0 (see Lemma 2.1), give then both the existence and uniqueness stated in
Part 2 of Theorem 1.1 and the non-existence claimed in Part 3 of Theorem 1.1.

6 General global solutions. Proof of Theorem 1.3

The main idea of this proof is to construct a monotone sequence of approximating solutions and
then pass to the limit to obtain the claimed weak solution to Eq. (1.1) as a limit solution. In this
process, the self-similar solutions whose profiles are classified in Theorem 1.1 will be very useful
as uniform upper barriers, allowing us to show both that the limit function is finite at every point
and that it has the required regularity. Set, then, for any α ≥ α∗ and β = (m− 1)α/2,

Uα(x, t) := eαtf(|x|e−βt)

to be the unique eternal self-similar solution (as established in Theorem 1.1) having self-similar
exponents α and β and whose profile satisfies f(0) = 1. We begin with a preparatory result.

Lemma 6.1. (a) Let u0 ∈ L∞(RN ), u0 ≥ 0. Then, for any α > α∗, there exists τ0 > 0 (which
might depend on α) such that

u0(x) ≤ Uα(x, τ0), for any x ∈ RN .

(b) Moreover, if u0 is compactly supported, then there exists τ∗0 > 0 such that

u0(x) ≤ Uα∗(x, τ∗0 ), for any x ∈ RN .

Proof. (a) Let u0 ∈ L∞(RN ) be non-negative and pick any α > α∗. We infer from the local
behaviors (1.10) as ξ → 0 and (1.11) as ξ → ∞ that the profile f(ξ) of the eternal self-similar
solution Uα is decreasing with respect to ξ in a right neighborhood of ξ = 0 and tends to infinity
as ξ → ∞, so it has a positive minimum at some point ξmin > 0. If we fix t > 0, we then observe
that Uα(t) achieves a positive minimum at points x ∈ RN such that |x| = ξmine

βt. Hence, we
find that

Uα(x, τ0) ≥ eατ0f(ξmin) ≥ ∥u0∥∞ ≥ u0(x), x ∈ RN ,

if we pick τ0 > 0 sufficiently large such that

τ0 ≥
1

α
ln

(
∥u0∥∞
f(ξmin)

)
.
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(b) Let u0 be now a compactly supported function; more precisely, suppu0 ⊂ B(0, R) for some
R > 0. Take α = α∗ and let ξ0 ∈ (0,∞) be the edge of the support of the profile f(ξ) of the
eternal compactly supported self-similar solution Uα∗ . Set

Q := inf{f(ξ) : ξ ∈ (0, ξ0/2)} > 0

and choose

τ0 ≥ max

{
1

α∗ ln

(
∥u0∥∞

Q

)
,
1

β∗ ln

(
2R

ξ0

)
, 0

}
. (6.1)

On the one hand, we infer from (6.1) that

|x|e−β∗τ0 ≤ ξ0
2
, for any x ∈ B(0, R),

which gives that, on the other hand,

Uα∗(x, τ0) = eα
∗τ0f(|x|e−β∗τ0) ≥ eα

∗τ0Q ≥ ∥u0∥∞ ≥ u0(x),

again for any x ∈ B(0, R). The conclusion follows from the fact that Uα∗(x, τ0) ≥ 0 = u0(x) for
any x ∈ RN \B(0, R).

We are now ready to complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Let u0 ∈ L∞(RN ) such that u0(x) ≥ 0 for any x ∈ RN and consider the
following approximating family of Cauchy problems

∂tuϵ = ∆umϵ + (|x|+ ϵ)σupϵ , (x, t) ∈ RN × (0,∞), (6.2a)

u(x, 0) = u0(x), x ∈ RN , (6.2b)

for any ϵ ∈ (0, 1] and for the same exponents m, p, σ = σ∗ as in (1.2) and (1.3). On the one
hand, observe that, if u1 is a solution to (6.2a) with ϵ = 1, the rescaling

uϵ(x, t) = ϵ2/(m−1)u1(ϵ
−1x, t), (x, t) ∈ RN × (0,∞), (6.3)

produces a solution to (6.2a) for any ϵ ∈ (0, 1). On the other hand, since u0 ∈ L∞(RN ), we
readily notice that

[[u0]]1 := sup
ϱ≥1

ϱ−2/(m−1) 1

|B(0, ϱ)|

∫
B(0,ϱ)

|u0(y)| dy ≤ ∥u0∥∞ < ∞.

Hence, the existence theory given in [2, Theorem 3.1] for Eq. (6.2a) with ϵ = 1 applies in our case
and can be straightforwardly extended to any ϵ ∈ (0, 1) by the rescaling (6.3). Moreover, since
the coefficients in (6.2a) are bounded, standard theory of parabolic equations (see, for example,
[29, Section 8, Chapter 5] or also [2, Section 5]) implies that the uniqueness and the parabolic
comparison principle hold true for (6.2a) with ϵ ∈ (0, 1). We thus infer that there exists a unique
weak solution uϵ to the Cauchy problem (6.2), and in particular it satisfies the weak formulation
which implies that for any φ ∈ C2,1

0 (RN × (0, T )) and for any t1, t2 ∈ (0, T ) with t1 < t2, we have∫
RN

uϵ(t2)φ(t2) dx−
∫
RN

uϵ(t1)φ(t1) dx−
∫ t2

t1

∫
RN

uϵ(t)φt(t) dx dt

−
∫ t2

t1

∫
RN

umϵ (t)∆φ(t) dx dt =

∫ t2

t1

∫
RN

(|x|+ ϵ)σupϵ (t)φ(t) dx dt.

(6.4)
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The initial condition is taken in the L1
loc sense. Moreover, if 0 < ϵ1 < ϵ2 < 1, we observe that

the solution uϵ1 is a supersolution to Eq. (6.2a) with ϵ = ϵ2, and the comparison principle then
entails that uϵ1(x, t) ≥ uϵ2(x, t) for any (x, t) ∈ RN × (0,∞). Finally, the last element in the
proof follows from Lemma 6.1. Indeed, any eternal self-similar solution Uα(·, ·+ τ0) with α ≥ α∗

and τ0 ≥ 0 given by Lemma 6.1 is a supersolution to any of the Cauchy problems (6.2), and the
comparison principle gives that

uϵ(x, t) ≤ Uα(x, t+ τ0), (x, t) ∈ RN × (0,∞), ϵ ∈ (0, 1). (6.5)

We deduce that the pointwise limit

u(x, t) := lim
ϵ→0

uϵ(x, t), (x, t) ∈ RN × (0,∞) (6.6)

is well defined and finite at any point. Moreover, we can pass to the limit as ϵ → 0 in the weak
formulation (6.4), and Lebesgue’s dominated convergence theorem implies that the limit function
u defined in (6.6) satisfies the weak formulation (1.13) of Eq. (1.1). In a similar way, the initial
condition u0 is taken in the L1

loc sense (as explained in Definition 1.2) by u. It thus follows that u
is a weak solution, according to Definition 1.2, to the Cauchy problem associated with Eq. (1.1)
with initial condition u0. The fact that

u(t) ∈ L∞(RN ; |x|2/(m−1)), for any t > 0,

if u0 ∈ L∞(RN ), or the more precise property of compact support of u(t) if u0 is compactly
supported, follows from the inequality (6.5) together with the form of the self-similar solutions
Uα with α > α∗ in the former case and Uα∗ in the latter case, completing the proof.

Remark. The global existence result in Theorem 1.3 can be extended (with slightly more
technical work for the proof of the preparatory Lemma 6.1 in this case) with a proof along the
same lines as above for any initial condition u0 ∈ L∞(RN ; |x|2/(m−1)) or even in more precise
logarithmic spaces taking into account also the logarithmic correction in the local behavior (1.11).
We omit the details here.
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