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Abstract 27 

Purpose: Nutritional compounds could be a safe and less expensive treatment for 28 

complications associated to obesity and metabolic syndrome (MetS). The aim of this study 29 

was to investigate the mechanism of action and the target tissues of a pepsin egg white 30 

hydrolysate (EWH) which had previously demonstrated to improve some obesity-related 31 

disorders on high-fat/high-glucose rat model. 32 

Methods: Wistar rats were used and divided in 3 groups: Control group (C), High-33 

fat/high-glucose diet (MS) and high-fat/high-glucose diet + EWH (MSH). The rats were fed 34 

during 20 weeks and the EWH was administrated from week 9th. At the end of the study, 35 

white adipose tissue (WAT), brown adipose tissue (BAT) and muscle samples were collected 36 

for RT-qPCR analyses and immunohistochemistry. 37 

Results: Our results showed a gene expression enhancement in BAT of genes related 38 

to thermogenesis and mitochondrial dynamics. Mitochondrial DNA quantification and 39 

immunohistochemistry results showed an increase of mitochondrial content in this tissue. 40 

Conclusions: In conclusion, our results show the potential metabolic effect of this 41 

pepsin EWH by enhancing mitochondria proliferation and gene expression related to  42 

thermogenesis in BAT. EWH could be used as functional food ingredient able to increase 43 

energy expenditure and counteract obesity-related MetS in a chronically obese society. 44 

Keywords 45 

Bioactive peptides; Egg white hydrolysate; Metabolic syndrome; Pathway; Rat model. 46 
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1. Introduction 48 

Metabolic syndrome (MetS) refers to a cluster of metabolic risk factors including 49 

central obesity, insulin resistance, impaired glucose tolerance, hypertension and 50 

dyslipidemia. This pathology increases the risk to develop other diseases such as type 2 51 

diabetes mellitus or non-alcoholic fatty liver disease [1]. In the last decades, the prevalence 52 

of this pathology has increased fast, reaching epidemic rates. This increase is especially 53 

important in developed areas, due to important changes in our lifestyle and dietary patterns 54 

[2, 3]. Sedentary habits and overnutrition both combined, lead to an imbalance between 55 

energy intake and energy expenditure that cause an excessive fat accumulation and thus 56 

obesity, main risk factor to develop MetS [1, 2]. 57 

The current treatment used in MetS complications are, firstly, lifestyle change 58 

interventions in order to balance the caloric intake, through changing the dietary patterns 59 

and reducing the sedentary habits on MetS patients. However, it is difficult for most people 60 

to maintain hypocaloric diets and lifestyle changes over a long term [2]. Due to this, in 61 

almost all cases, it is necessary a pharmacotherapy intervention and, sometimes, surgery. 62 

Such treatments seriously increase public health care expenses [4]. There is therefore an 63 

imperative need for new weight-loss treatments. 64 

Nutritional compounds are nowadays attracting much attention because, compared 65 

to drugs, they could be a safe and less expensive treatment for complications associated to 66 

obesity and MetS [5]. There is a large and growing list of food-derived compounds that have 67 

demonstrated to control metabolic complications related to MetS [2, 6-8], being several of 68 

them potential stimulators of thermogenesis and lipids oxidation, both potential targets on 69 

weight loss treatments [5, 9, 10]. Among the different food-derived products used to treat 70 

MetS, bioactive peptides released from both animal and plant proteins, have already shown 71 
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to have potential interest as treatment for numerous chronic diseases and risk factors. These 72 

bioactive peptides have shown different biological activities such as antihypertensive, 73 

antioxidant or anti-inflammatory activities which separately or combined could be useful for 74 

MetS treatment [11-18]. 75 

Adipose tissue acts as the body’s energy reservoir by storing excess of fatty acids in 76 

the form of triglycerides. Its main function is to buffer variations in energy supply and 77 

demand by storing and releasing fatty acids, and avoiding lipid accumulation in peripheral 78 

organ, thus preventing metabolic diseases such as non-alcoholic fatty liver disease [19]. In 79 

addition, adipose tissue is recognized as an endocrine organ which regulates and modulates 80 

several biological processes including immune response, inflammation, glucose metabolism 81 

or regulation of appetite and satiety [20]. Since white adipose tissue (WAT) main function is 82 

fatty acid storage, brown adipose tissue (BAT) is a key site of non-shivering thermogenesis 83 

and it has been considered an attractive target to promote weight loss [4, 21]. BAT is 84 

activated by cold exposure through sympathetic signaling in rodents and it has been shown 85 

to improve insulin sensitivity [21]. BAT is definitively present and functional in adult humans, 86 

and fluorodeoxyglucose positron emission tomography (FDG-PET) application has 87 

demonstrated that BAT in adults is also stimulated by cold and by insulin (89-92), but the 88 

activity of BAT is lower in obese than lean individuals (88-90,93,94). Recently, reduced 89 

activity in BAT has recently linked to the development of the metabolic syndrome (99, 101). 90 

Therefore, biomedical interest in BAT has focused on the potential capacity of this tissue to 91 

counteract MetS, including obesity and type 2 diabetes [4]. However, cold exposure is not 92 

enough to activate BAT in humans and mediate weight loss. It is hence needed to develop 93 

compounds able to efficiently differentiate human BAT and enhance nutrient oxidation and 94 

energy expenditure [1, 21]. In this context, whey and salmon protein hydrolysates have 95 
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already shown to enhance thermogenesis and energy expenditure in interscapular BAT [5, 96 

9]. 97 

Our research group has recently obtained a pepsin egg white hydrolysate (EWH) 98 

which simultaneously possess antioxidant, hypocholesterolemic and DPP-IV inhibitory 99 

activities in vitro [22] and have also shown to improve some MetS alterations in Zucker Fatty 100 

rats as a genetic model of obesity [23] and in a diet induced obesity (DIO) experimental 101 

model using high-fat/high-glucose fed Wistar rats [24]. However, the pathway by which this 102 

EWH exerts its effects in vivo is still unclear. 103 

The aim of our study was to investigate the specific pathways and target tissues 104 

involved in the beneficial effects observed after administration of this previously 105 

characterized pepsin EWH [22] on high-fat/high-glucose fed Wistar rats. 106 

2. Materials and Methods 107 

2.1. Preparation of egg white hydrolysate 108 

The EWH was carried out according to the method of Garcés-Rimón et al. Briefly, 109 

pasteurized egg white (Huevos Guillén S.L., Spain) was hydrolysed with food grade pepsin 110 

from pork stomach (E.C. 3.4.23.1. BC PEPSIN 1:3000 Biocatalysts, United Kingdom). The egg 111 

white was acidified with concentrated food grade HCl 37 % (Panreac Quimica S.L.U., Spain) 112 

to pH 2. The samples were incubated at 37 °C under constant stirring in a thermostatic water 113 

bath for 8 hours. Inactivation of pepsin was achieved by increasing the pH to 7.0 with food 114 

grade NaOH 10 M (Panreac Quimica S.L.U.). The hydrolysate was centrifuged for 15 min at 115 

4500 g, and the supernatant was freeze-dried and stored at -20 °C until use [22]. 116 

2.2. General protocol in animals 117 



6 
 

The experiments were designed to minimize the number of animals used and 118 

performed in accordance with the European and Spanish legislation on care and use of 119 

experimental animals (210/63/UE; Real Decreto 53/2013), and were approved by the Ethics 120 

Committee at University Rey Juan Carlos (URJC). 121 

Thirty-four 8-week old Wistar male rats weighting 280-310 g purchased from Harlan 122 

Laboratories (Harlan Ibérica, Spain) were used in this study. During the experimental period 123 

the animals were maintained in a temperature-controlled room (23 °C), 12 h light/dark 124 

cycles and ad libitum access to water and feed.  125 

The rats were randomly divided into 3 groups which were fed, for 20 weeks, with 126 

standard chow diet (A04, SAFE, France) + tap water as drinking fluid (Control group, C, n=7), 127 

high-fat diet (Purified Diet 235 HF, SAFE, France) + a solution of tap water with 25% glucose 128 

as drinking fluid (MetS group, MS, n=10) and high-fat diet with + a solution of tap water with 129 

25% glucose and 1g/kg/day EWH as drinking fluid (MetS + EWH group, MSH, n=10). The EWH 130 

was provided from the week 9th until the week 20th of the study. The daily dose of EWH was 131 

selected according to the good results obtained from previous in vivo studies using different 132 

doses of EWH after short and long term treatments to evaluate the antihypertensive and 133 

antioxidants properties of the hydrolysate in spontaneously hypertensive rats [13, 14, 17]. 134 

At the end of the study, rats were anesthetized with an intraperitoneal injection of 135 

ketamin (87 mg/kg) and xilacin (13 mg/kg), and sacrificed by decapitation. Epididymal 136 

adipose tissue, BAT and soleus muscle were immediately excised and kept frozen at -80ºC 137 

until analysis. Samples of BAT were also obtained, fixed in buffered 10% formalin and 138 

embedded in paraffin. The tissues were then prepared for immunohistochemistry analysis in 139 

order to stain mitochondria. 140 
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2.3. RNA isolation and qPCR 141 

Total RNA was extracted using TRIzol reagent (Life Technologies, France) according to 142 

the manufacturer’s instructions. The cDNA was synthetized from 1µg of total RNA using 143 

random primers (Life Technologies) and Moloney murine leukemia virus reverse 144 

transcriptase (Life Technologies) as previously described [6]. Real-time quantitative PCR 145 

analyses (qPCR) were performed using the Mx3005P Real-Time PCR System (Stratagene, 146 

USA). For each condition, expression was quantified in duplicate, and 18S rRNA was used as 147 

the endogenous control in the comparative cycle threshold (CT) method. Data were 148 

expressed as relative expression ratio [25]. The sequences of the primers used for qPCR 149 

determination of gene expression are displayed in Table S1. 150 

2.4. Mitochondrial DNA quantification 151 

Total DNA was extracted from cells using DNAzol (Euromedex, France). The content 152 

of mitochondrial DNA (mtDNA) was calculated using real-time quantitative PCR by 153 

measuring the threshold cycle ratio (ΔCT) of a mitochondrial-encoded gene Cox1 versus a 154 

nuclear-encoded gene cyclophilin A [10]. 155 

2.5. Immunohistochemistry 156 

5 µm sections were washed with phosphate buffered saline (PBS) with 0.05% Tween 157 

20 (Calbiochem, Darmstadt, Germany). Thereafter sections were incubated for 10 min in 3% 158 

(v/v) in hydrogen peroxide to inhibit endogenous peroxidase activity and blocked with fetal 159 

bovine serum (FBS) for 30 min to minimize non-specific binding of the primary antibody. 160 

Sections were then incubated overnight at 4°C with monoclonal mouse anti-SDHA antibody 161 

(1:5000) (Abcam, United Kingdom). After incubation, samples were washed with PBS-Tween. 162 

The peroxidase-based kit Masvision (Master Diagnostica, Spain) was used as secondary 163 
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antibody. Samples were counterstained with hematoxylin and coverslips mounted with 164 

Eukitt mounting media (O. Kindler GmbH & Co., Germany). To determine the level of non-165 

specific staining, the preparations were incubated without the primary antibody as a 166 

negative control. 167 

Samples were studied under a Zeiss Axioskop 2 (Zeiss, Germany) microscope 168 

equipped with the image analysis software package AxioVision 4.6 (Zeiss). The analysis was 169 

made under a 40× objective; the experimenter was blind to the treatment received by the 170 

rat from which the sample under analysis was obtained. 171 

2.6. Statistical analysis 172 

Data were expressed as the mean ± SEM. Significant differences between groups 173 

were determined using the non-parametric test Mann-Whitney using GraphPad Prism 6 174 

software (Graph pad, USA). Differences between the means were considered to be 175 

significant when P < 0.05. 176 

3. Results 177 

3.1. Effects of EWH on white adipose tissue 178 

Fig. 1 shows relative expression of genes implicated on synthesis, oxidation and 179 

mobilization of fatty acids in WAT. No differences were shown between experimental groups 180 

on Sterol Regulatory Element-Binding Protein 1c (SREBP1c) or Cell Death Activator CIDE-A 181 

(CIDEA). Gene expression of both Fatty Acid Synthase (FAS) and Acyl Co-A Carboxylase (ACC) 182 

were significantly lower in MS and MSH animals when compared to C group. No significant 183 

differences were observed between MS and MSH animals on gene expression of FAS and 184 

ACC. Gene expression of Adipocyte Protein 2 (AP2) was significantly higher in MS rats when 185 

compared to C and MSH rats. No differences were observed in this parameter between C 186 
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and MSH groups. No differences were observed on Acyl Co-A Oxidase (ACO) gene expression 187 

between MS and C animals. This parameter was significantly lower in MSH animals, when 188 

compared to MS and C groups. 189 

No significant differences were observed between groups on Leptin or Leptin 190 

Receptor (LeptR) gene expression. Both MS and MSH animals showed significantly lower 191 

adiponectin gene expression when compared to C animals. Resistin gene expression was 192 

significantly lower on MSH group when compared to C and MS groups. No differences were 193 

observed between C and MS animals on this parameter. Insulin Receptor (InsR) gene 194 

expression was significantly lower on MS and MSH animals when compared to C, and no 195 

significant differences were observed on this parameter between MS and MSH. MS showed 196 

significantly lower Glutathione Peroxidase 3 (GPX3) expression when compared to C. 197 

Inducible Nitric Oxide Synthase (iNOS) showed to be increased in MSH animals when 198 

compared to MS animals, but this increase did not show to be significant when compared to 199 

C animals (Table 1). 200 

3.2. Effects of EWH on fatty acid oxidation and metabolism 201 

As shown in Fig. 2A, genes implicated on oxidative metabolism in muscle, such as 202 

Peroxisome Proliferator-Activated Receptor alpha (PPARα) and Medium-Chain Acyl-CoA 203 

Dehydrogenase (Mcad) were significantly downregulated in MS animals when compared to 204 

control animals. No differences were observed between MS and MSH animals in these 205 

genes. Although no changes were observed in Long-Chain Acyl-CoA Dehydrogenase (Lcad) 206 

expression when MS was compared to C animals, MSH animals showed a significant 207 

downregulation of Lcad gene when compared to MS and C animals. Regarding to Pyruvate 208 

Dehydrogenase Kinase 4 (Pdk4) and PPARγ Coactivator 1β (PGC1β), the same results as 209 

those obtained on Lcad were observed. Carnitine Palmytoiltransferase 1B (Cpt1b) was 210 
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significantly downregulated in MSH animals when compared to C animals, while MS animals 211 

stayed unchanged when compared to C. PPARγ Coactivator 1α (PGC1α) was significantly 212 

downregulated on MS animals when compared to C, while no differences were observed in 213 

MSH animals when compared to C and MS animals. 214 

As shown in Fig 2B, all genes implicated on fatty acid and glucose oxidation (PPARα, 215 

Mcad, Lcad, Cpt1b, Pdk4, PGC1α, PGC1β) were significantly upregulated on MSH when 216 

compared to MS animals. PPARα, Mcad, Lcad, Cpt1b and PGC1β did not show expression 217 

changes in MS animals when compared to C animals. Pdk4 and PGC1α were significantly 218 

downregulated in MS animals when compared to C animals. 219 

3.3. Effects of EWH on thermogenesis and mitochondrial dynamics on BAT 220 

Although no significant differences were observed when compared C and MS 221 

animals, both UCP1 and PRDm16 showed a slight downregulation in MS group, MSH group 222 

showed a significant overexpression of both genes (Fig. 3Fig. 3A, Fig. 3B), when compared to 223 

C and MS groups.  224 

Genes related with mitochondrial biogenesis and dynamics (Tfam, MFN2, Tfb2m, 225 

NRF1, OPA1) showed a significant downregulation on MS group when compared to C group 226 

(Fig. 3C). This downregulation was significantly reverted on MSH animals, and gene 227 

expression reached similar values to C animals, even surpassing them as on Tfb2m gene. 228 

Dynamin Like 1 (Dnm1L) expression was significantly higher on MSH animals when 229 

compared to MS animals, although no differences were observed when we compared both 230 

groups with respective controls. 231 

Regarding to relative mtDNA quantity (Fig. 4A), a significant reduction of this 232 

parameter was observed in MS animals when compared to C animals. This reduction was 233 
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significantly reverted on MSH animals, which even surpass C values. Regarding to 234 

immunohistochemistry analysis of BAT (Fig. 4B), it can be observed a significant reduction of 235 

mitochondria density and larger lipid droplets on MS tissues when compared to C group. 236 

There was as well an important reduction of lipid droplets and a notable increase of 237 

mitochondria density on MSH tissues, when compared to MS tissues. 238 

4. Discussion 239 

In spite of the extensive current research on food-derived compounds and energy 240 

expenditure stimulation [5, 9, 21], just a few studies are focused on food peptides and 241 

proteins [9]. The aim of the present study was to determine the mechanisms of action by 242 

which pepsin EWH exerts in vivo effect. This EWH had been previously characterized 243 

showing to possess in vitro biological multi-activities [22], and have shown to improve MetS 244 

related-pathologies in both Zucker Fatty rats and DIO Wistar rats [23, 24]. To carry out this 245 

study, high-fat/high-glucose-fed Wistar rats were used as experimental MetS model. This 246 

model has already shown to develop obesity, abdominal fat deposition, increased oxidative 247 

stress biomarkers, impaired glucose tolerance and low-grade dyslipidemia [24]. 248 

In previous in vivo studies [23, 24], we had demonstrated that the consumption of 249 

EWH significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and 250 

lowered plasmatic concentration of free fatty acids in the Zucker obese animals. It also 251 

decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress in this 252 

experimental model. Recently, EWH consumption also normalized body weight gain, the 253 

abdominal obesity and the peripheral neuropathy developed in high fat/high glucose 254 

experimental model, reduced adipose tissue and liver weight, as well as plasma glucose. 255 

Oxidative stress and inflammation biomarkers were normalized in these animals. Therefore, 256 

we considered of great interest to clarify the mechanisms of action of EWH on obesity 257 

MARTA MIGUEL CASTRO
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condition to measure gene expression on tissues and organs involved in energetic 258 

metabolism (WAT, BAT, Muscle). Regarding gene expression on epididymal adipose tissue, 259 

genes related with de novo fatty acids synthesis (ACC, ACC) are strongly downregulated on 260 

MS animals. This is an expected result since de novo lipogenesis is usually reduced in obese 261 

individuals [26]. However, MSH animals did not show a reversion of such downregulation. 262 

On the contrary we observed a strong induction of AP2 in MS animals, which was not 263 

observed on MSH animals. Floresta et al. recently reviewed the important role of this 264 

protein in the development of major components of MetS [27]. 265 

Oxidative stress is strongly related to obesity and has been shown to precede MetS 266 

manifestation. As mentioned above oxidative stress was reduced after administration of 267 

EWH in several experimental models (citas). The impairment of mitochondrial function and 268 

an excessive ROS production leads to dysfunctional adipose tissue, contributing to a pro-269 

inflammatory signaling and glucose metabolism impairment [28, 29]. Indeed, a continuous 270 

reduction of mitochondrial function is followed by the overproduction of oxidants from non-271 

mitochondrial sources [29], such as the induction of peroxisomal oxidative metabolism [29, 272 

30]. The MetS model used in this study has already shown an increase of malondialdehyde 273 

(MDA), an oxidative stress biomarker, and reduced plasma antioxidant activity [24]. In our 274 

study, the reduction observed on ACO gene expression of MSH animals seems to reflect a 275 

reduction peroxisomal oxidative metabolism thus reducing this source of oxidative stress 276 

[30, 31]. In previous works we observed an important reduction of oxidative stress 277 

biomarkers on high-fat/high-glucose-fed rats when consumed EWH [24]. Garcés-Rimón et al. 278 

also described the potential antioxidant activity of the studied EWH both in vitro [22] and in 279 

vivo [23], showing a significant decrease of lipid peroxidation (plasmatic MDA decreased), 280 

and increased levels of reduced glutathione in the liver of obese Zucker rats. It is well known 281 

MARTA MIGUEL CASTRO
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the role of nitric oxide (NO) during cardiovascular disease. Perivascular adipose tissue 282 

dysfunction produced in obese individuals is strongly related with a lower NO availability and 283 

a reduced vasodilation leading eventually to hypertension [32]. NO is an important mediator 284 

of angiogenesis and vasodilation in hypoxia events [33]. In addition, Wang and Hai already 285 

reviewed the importance of NO levels during adipocyte differentiation and modulation [34]. 286 

Although the pathways are complex and many factors are implied in these processes, our 287 

result on iNOS gene expression could suggest an activation of adipocytes differentiation and 288 

maturation combined with a stimulation of angiogenesis and adipose tissue vascularization 289 

in MSH animals. Adipose tissue expansion is an important step on obese individuals, since 290 

obesity-associated diseases, such as MetS could occur if adipose tissue storage capacity is 291 

exceeded. Adipocyte differentiation and proliferation increases adipose tissue storage 292 

capacity thus avoiding the release of free fatty acids to systemic circulation and then 293 

avoiding ectopic lipid accumulation [1]. The stimulation of angiogenesis in this tissue would 294 

besides avoid hypoxia and related adipose tissue dysfunction by a correct vascularization 295 

and oxygen supply [35]. 296 

Resistin is a cytokine specifically produced on WAT that, in rodents, is positively 297 

related with the development of insulin resistance [36]. Since our previous results suggested 298 

an improvement of insulin sensitivity on MetS induced animals fed with pepsin EWH [24, 299 

37], we decided to evaluate the expression of this cytokine.  Our results showed a reduction 300 

on the expression of this cytokine, in agreement with our previous results and the insulin 301 

sensitizing effect of the studied EWH. 302 

Although our results on WAT showed an effect of EWH on MetS development and 303 

adiposity, we did not observe a strong trend which could suggest its mechanism of action. 304 
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Due to this, we suggest that the studied pepsin EWH could exert its action in other tissues, 305 

thus improving WAT markers and metabolism. 306 

In previous studies, we had observed an increased body weight and abdominal 307 

circumference on MetS-induced animals which were reverted, at least partially, on EWH-308 

treated animals [24]. These results were surprising considering that MetS-induced animals 309 

treated with EWH showed the highest caloric intake during the experimental period. Those 310 

results suggested a possible stimulation of energy expenditure.  A large amount of food-311 

derived compounds, including peptides and hydrolysates have already shown to induce 312 

energy expenditure by muscle or BAT stimulation [5, 6, 9], which led us to suggest that EWH 313 

could act stimulating energy expenditure. However, this idea should be investigated 314 

performing functional experiments using indirect calorimetry or FDG-PET. 315 

For that reason, we decided to focus our experiments on energy expenditure 316 

specialized organs, such as muscle and BAT. On Fig. 2, it can be observed an important 317 

increase of oxidative genes on BAT of MSH rats (PPARα, Mcad, Lcad, Cpt1b, Pdk4), 318 

suggesting a strong activation of this tissue after EWH consumption, which could lead to an 319 

increased energy expenditure. To the contrary, these genes seemed to be downregulated in 320 

muscle of MSH animals even when this downregulation is not observed in MS rats. The 321 

counter-regulatory activity between BAT and muscle has been largely discussed [38-40]. It is 322 

been described that an over-activation of BAT by non-shivering thermogenesis leads to a 323 

reduction in the thermogenesis produced in muscle, probably leading to a reduction y 324 

energy expenditure in this tissue [39]. It is important as well the activation observed of 325 

PGC1β expression, which is considered one of the most important regulators of 326 

mitochondrial biogenesis [4, 29], suggesting an increase of mitochondria content on MSH 327 

rats BAT tissues. This result is of great importance as mitochondrial dynamics and biogenesis 328 

MARTA MIGUEL CASTRO
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are critical processes for the maintenance of mitochondrial function and the oxidative 329 

balance in the cell. Our results suggest therefore that EWH could activate BAT metabolism 330 

directly, but further studies are necessary to conclude that the enhancing thermogenesis as 331 

mechanism of thIS activation. 332 

BAT is specialized in regulated energy dissipation as heat through UCP1 and is been 333 

suggested as a target for new anti-obesity treatments due to its capacity to counteract 334 

metabolic diseases associated to obesity, such as MetS [4, 21]. These treatments are focused 335 

on stimulating the mitochondrial proliferation as well as increasing the uncoupling capacity 336 

of mitochondria in adipose tissues through PRDm16 and thus UCP1 activation [4]. In this 337 

way, both UCP1 and PRDm16 showed to be overexpressed on MSH animals when compared 338 

to C and MS animals, suggesting an increase of thermogenic capacity in BAT after 339 

hydrolysate consumption. In addition, genes related with mitochondrial dynamics and 340 

biogenesis (Tfam, MFN2, Tfb2m, NRF1, OPA1) showed to be less expressed in MS animals 341 

when compared to controls. These alterations were counteracted with EWH consumption, 342 

as MSH animals showed results similar to C animals, or even higher for some genes (Tfb2m). 343 

Since these results suggested an important increase of mitochondrial content in BAT, mtDNA 344 

quantification and mitochondria-specific immunohistochemistry were performed. 345 

Accordingly with the mitochondrial dynamics observed, a significant decrease of mtDNA was 346 

observed in BAT of MS animals. This implies not only a lower ability of these animals to 347 

expend energy, but a major risk to develop oxidative stress and then metabolic disease. 348 

Otherwise, MSH animals showed a significant increase of mtDNA in BAT, even when 349 

compared to C animals. Regarding immunohistochemistry, BAT sections showed a lower 350 

density of mitochondria on MS samples as well as an observable hypertrophy and larger lipid 351 
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droplets, while MSH animals showed an important reduction of lipid droplets, even when 352 

compared to controls, as well as a higher density of mitochondria. 353 

Altogether, our results showed a potential metabolic effect of our pepsin EWH by 354 

enhancing mitochondria proliferation on BAT. As a consequence, An enhancing 355 

thermogenesis could be happening and consequently a reduction in body weight and 356 

adiposity could be observed. In addition, inflammation and oxidative stress biomarkers were 357 

less expressed. To confirm whether the potential benefits observed after consumption of 358 

pepsin EWH to counteract MetS in genetic and diet induced obesity animals could be due to 359 

an increase in energy expenditure, more studies are needed to clarify the complete pathway 360 

and the peptides implied in the observed activity. 361 

  362 
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Figures and tables captions 469 

Fig. 1 Relative gene expression in epididymal adipose tissue (WAT) of (A) Sterol Regulatory 470 

Binding Protein 1c (SREBP1c), (B) Fatty Acid Synthase (FAS), (C) Acetyl CoA Carboxylase 471 

(ACC), (D) Adipocyte Protein 2 (AP2), (E) Acyl CoA Oxidase (ACO) and (F) Cell Death Activator 472 

CIDE-A (CIDEA). Experimental groups: Control group (), MetS group () and MetS + EWH 473 

(). Values are expressed as mean ± SEM (n ≥ 6). Different letters mean that values are 474 

significantly different (p<0.05) among groups 475 

Fig. 2 Relative gene expression in (A) muscle and (B) brown adipose tissue (BAT) of 476 

Peroxisome Proliferator-Activated Receptor α (PPARα), Medium-Chain Acyl-CoA 477 

Dehydrogenase (Mcad), Long-Chain Acyl-CoA Dehydrogenase (Lcad), Carnitine 478 

Palmitoyltransferase 1B (Cpt1b), Pyruvate Dehydrogenase Kinase 4 (Pdk4), PPARγ 479 

Coactivator 1α (PGC1α) and PPARγ Coactivator 1β (PGC1β). Experimental groups: Control 480 

group (), MetS group () and MetS + EWH (). Values are expressed as mean ± SEM (n ≥ 481 

6). Different letters mean that values are significantly different (p<0.05) among groups 482 

Fig. 3 Relative gene expression in brown adipose tissue (BAT) of (A) Uncoupling Protein 1 483 

(UCP1), (B) PR domain containing 16 (PRDm16) and (C) mitochondrial dynamics related 484 

genes. Experimental groups: Control group (C) (), MetS group (MS) () and MetS + EWH 485 

(MSH) (). Values are expressed as mean ± SEM (n ≥ 6). Different letters mean that values 486 

are significantly different (p<0.05) among groups 487 

Fig. 4 (A) Relative quantity of mitochondrial DNA in brown adipose tissue (BAT). (B) 488 

Representative images of brown adipose tissue after mitochondria-specific stain, taken at 489 

40x magnification (Scale bar, 50 μm). Experimental groups: Control group (C) (), MetS 490 
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group (MS) () and MetS + EWH (MSH) (). Values are expressed as mean ± SEM (n ≥ 6). 491 

Different letters mean that values are significantly different (p<0.05) among groups 492 

Table 1 Relative gene expression in epididymal adipose tissue (WAT) of Leptin, Leptin 493 

Receptor (LeptR), Adiponectin, Resistin, Insulin Receptor (InsR), Glutathione Peroxidase 3 494 

(GPX3) and Inducible Nitric Oxide Synthase (iNOS). Experimental groups: Control group (C), 495 

MetS group (MS) and MetS + EWH (MSH). Values are expressed as mean ± SEM (n ≥ 6). 496 

Different letters mean that values are significantly different (p<0.05) among groups 497 











  Experimental group 

Measured gene (n≥6) C MS MSH 
Leptin 1.00 ± 0.15 0.76 ± 0.09 0.63 ± 0.07 
LeptR 1.00 ± 0.17 0.98 ± 0.10 1.08 ± 0.11 
Adiponectin 1.00 ± 0.09 0.53 ± 0.07* 0.41 ± 0.05* 
Resistin 1.00 ± 0.14 0.79 ± 0.11 0.47 ± 0.04*# 
InsR 1.00 ± 0.07 0.60 ± 0.06* 0.77 ± 0.07* 
GPX3 1.00 ± 0.08 0.61 ± 0.07* 0.81 ± 0.04 
iNOS 1.00 ± 0.15 0.83 ± 0.11 1.23 ± 0.07# 
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