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Abstract

Partial control is a technique used in systems with transient chaos. The aim of this control

method is to avoid the escape of the orbits from a region Q of the phase space where the transient

chaotic dynamics takes place. This technique is based on finding a special subset of Q called the

safe set. The chaotic orbit can be sustained in the safe set with a minimum amount of control. In

this work we develop a control strategy to gradually lead any chaotic orbit in Q to the safe set by

using the safety function. With the technique proposed here, the safe set can be converted into a

global attractor of Q.
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I. INTRODUCTION

The control of chaotic systems developed in the late 20th century has been one of the

main achievements in the field of nonlinear dynamics. The deterministic nature of these

systems does not make them predictable. Due to the high sensitivity of the chaotic systems,

the uncertainty in the forecast of the trajectories increases exponentially with time, making

their control a challenging task. The OGY control method [1] was the first to achieve the

stabilization of an unstable periodic orbit embedded in a chaotic attractor, by applying small

perturbations in a system parameter. Since then, a variety of control methods have been

developed in different scenarios where chaotic dynamics is present.

One that has attracted interest in recent years is the chaotic transient behaviour. This

situation usually arises when due to the change of a parameter of the system, a chaotic

attractor collides with his own boundary basin causing a boundary crisis, giving the trajec-

tories a path to escape towards an external attractor. Sooner or later almost all trajectories

escape with the exception of a set called the nonattracting chaotic set (i.e chaotic repellor

or a chaotic saddle), where arbitrarily long transients can be found. This set is fractal and

non-attracting and is the skeleton of the transient chaos behaviour [2, 3].

In some situations, the chaotic behaviour is a desirable feature that is worth to preserve

[4, 5]. However, if we have transient chaos, we need to apply some control strategy to sustain

it. In this sense, different control methods have been proposed to convert transient chaos

into permanent chaos. Among the most important methods, we can refer to the methods

proposed by Yang et al. [6], Schwartz and Triandaf [7], and Dhamala and Lai [8]. With

the same goal a new method called partial control has been proposed [9, 10]. The main

difference of this method is that is conceived to deal with chaotic dynamics affected by

bounded noise. This actually makes a big difference, since all real experiments are affected

by noise. Even if this amount of noise is small, it should be taken into account since chaotic

motion is an error amplifier, and small deviations at the beginning can ruin even the best

control strategy.

The intrinsic instability of the nonattracting chaotic set, together with the action of

noise creates a difficult scenario where keeping the control small might seem not realistic.

However, the application of the partial control technique comes up with a surprising result.

It was discovered that a region Q with a nonattracting chaotic set contains a special subset

2



where chaotic orbits can be sustained with a very small amount of control. This subset of

Q called the safe set, depends on the noise strength affecting the map and the available

control intensity. Roughly speaking the safe sets resembles a coarse grained version of the

nonatractting chaotic repellor, where the degree of coarse graining depends on the noise and

control strength. The mathematical conditions for the existence of the safe sets has been

explored in [10–13], where both one-dimensional and higher-dimensional maps have been

studied. The following works in the partial control method show the application of this

control technique in many different problems, including maps and flows exhibiting transient

chaos [5, 10, 14, 15]. The main advantage of this method is that the safe sets allow to

minimize the necessary control bound to sustain the chaotic orbit in Q. Furthermore, it

has been demonstrated that the this control bound can be smaller than the noise bound

affecting the system.

In all these previous works, partial control is limited to find a safe set in a certain region

Q of phase space and then sustain the chaotic trajectory inside the safe set. This approach

implies that the initial condition of the orbit must already be in the safe set. However it

may happen in some cases that the choice of the initial condition might be imposed by the

problem. For example, if we deal with the problem of putting a satellite into a particular

orbit, the launch from Earth is an unavoidable initial condition that should be taken into

account in the control design. For this reason, we will develop here a novel strategy to

extend the control of the trajectories to any initial condition in Q, keeping the control as

low as possible.

The paper is organized as follows. In Sect. 2, we briefly introduce the partial control

method, and explain how to obtain the safe set from the safety function by using the slope-

three tent map. In Sect. 3, we present an strategy going beyond the partial control method

to gradually approach the safe set for any initial condition in Q. In Sect. 4, we analyze the

variation of the safe set in function of the upper disturbance bound and the parameter µ of

the tent map. Finally, we describe the main conclusions of our work.

II. THE PARTIAL CONTROL METHOD

Partial control is a control technique to sustain transient chaotic orbits affected by

bounded noise. The method is applied on a certain region Q of phase space Rn where orbits

3



exhibit transient chaos that eventually escape from Q. It is assumed that the dynamics in

Q can be described with the following map:

qn+1 = f(qn) + ξn + un, with |ξn| ≤ ξ0, |un| ≤ u0 < ξ0,

where q describes the state vector of the system defined in Rn, ξ is the noise (we call it

disturbance) affecting the map and is considered to be bounded so that |ξn| ≤ ξ0. The

control term un is also bounded so that |un| ≤ u0. This control un is applied with the

knowledge of the value f(qn) + ξn. There is no need to know f(qn) or ξn separately.

The safe set is defined to be the subset of Q where the controlled orbits can be sustained

with u0 < ξ0. This set can be obtained from a special function called the safety function,

which has been developed in a previous work [16]. An algorithm to compute the safety

function is described in an Appendix at the end. This function named U is defined in each

point q ∈ Q. The value U(q) represents the minimum control bound that an orbit starting

in q needs to remain in Q forever. For example, a value U(q) = 0.1 means that a chaotic

orbit with the initial condition q can be sustained in Q by applying each iteration a control

|un| ≤ 0.1.

The relation between the safe set and the safety function is the following. Given an upper

disturbance bound affecting the map ξ0, and an upper control bound u0 < ξ0, the safe set

corresponds to the points q ∈ Q that satisfies U(q) ≤ u0. The minimum possible value u0 is

the minimum value of the function U . Below this value, no safe set exist. In the following,

we compute the safe sets with the minimum value u0.

To show a simple example of the partial control application, we will use here the well-

known slope-three tent map. As is often seen in the literature, we use the variable x to

describe the one-dimensional state of the map. The equation of this map, including the

disturbance term ξn and the control term un, is given by:

xn+1 =

 µxn + ξn + un for xn ≤ 1
2

µ(1− xn) + ξn + un for xn > 1
2

(1)

This map with µ = 3, exhibits transient chaos in the interval Q = [0, 1] (see Fig. 1a).

In order to avoid the escape of the chaotic orbit, we compute first the corresponding safety
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Figure 1. Partial control method. The slope-three tent map is represented in this figure. The

map is affected by a uniform disturbance bounded by ξ0 = 0.05. The small dots help to visualize

the intensity and distribution of the disturbance. (a) An uncontrolled orbit that escapes from the

interval Q = [−0, 1] after a few iterations. (b) In blue, the safety function. It can be computed

that the minimum value of the safety function is 0.03. The minimal values of the safety function

define the safe set, which is represented with the red pieces at the bottom. In green, a controlled

orbit is shown. This controlled orbit starts in the point x0 = 0.3 that belongs to the safe set. At

every iteration of the map, the orbit is forced to pass through the safe set to remain forever in

Q = [0, 1]. (c) Controls |un| ≤ u0 applied during the first 100 iterations of the map.
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function (see Fig. 1b), where we consider an upper disturbance bound ξ0 = 0.05. The used

algorithm for its computation is detailed in [16]. The safety function has 8 minima with the

value u0 = 0.03. The location of this minima defines the safe set, shown in Fig. 1b by the

small red pieces.

Once the safe set is computed, the chaotic orbit can be controlled by forcing it to pass

through the safe set at each iteration. Each control |un| ≤ 0.03 is applied with the knowledge

of f(xn) + ξn so that f(xn) + ξn + un falls in the closest safe point. Note that the controlled

orbit drawn is not periodic. The 8 small pieces of the safe set are not visited by the orbit

following a periodic sequence due to the action of disturbance. Depending on the direction

of the disturbance and magnitude, the orbit will be controlled to a different piece of the safe

set. The control values corresponding to the first 100 iterations is shown in Fig. 1c.

In this example, we can also note that the 8 minima of the safety function have exactly

the same value 0.03. This is not a coincidence and usually indicates that the controlled orbit

takes advantage of all these minima to remain in Q with the minimum control. Therefore it

follows that all the minima must share the same value min(U(x)), since this value represents

the minimum upper control bound for the entire orbit.

III. BEYOND THE PARTIAL CONTROL METHOD

As mentioned in the introduction, partial control applies only to initial points in the safe

set, which is the subset of Q where the upper control bound satisfies u0 < ξ0. As shown

before, orbits starting in this subset require the minimum control to remain in Q.

However, it may occur that the initial condition of our orbit is outside the safe set. As

the shape of the safety function shows (Fig. 2a), initial conditions outside the safe set may

require a very large upper control bound in comparison to the control needed in the safe

set. The successive application of this large control can be prohibitive for the controller.

Fortunately, we have observed that with a suitable strategy, the use of large controls is only

needed at the very beginning. Broadly speaking, the strategy consists of converting the safe

set into a global attractor of the orbits in the region Q. In this manner, the controlled orbits

gradually approach the safe set, where the control needed is minimum.

Notice that, leading the orbit to the safe set is equivalent to leading the orbit to the

minima of the safety function U . Therefore, given an initial condition qn ∈ Q with the
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Figure 2. Controlling any initial condition in Q. (a) The black horizontal bar on the bottom

represents a set of 1000 initial conditions in Q. The remaining black pieces represent how these

initial conditions gradually approach the safe set, shown in red. Any initial condition converges

to the safe set in at most 6 iterations. A particular controlled orbit is shown by the red dots.

(b) The figure shows the first 100 controls |un| corresponding to the orbit shown in the figure,

represented by the red dots. Note that the intensity of the controls decreases very quickly as the

orbit approaches the safe set. Once the orbit enters into the safe set (in our example in at most 6

iterations), the controls |un| remain below the minimum control bound 0.03, that is, the minimum

value of the safety function.
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corresponding value U(qn), the control un is chosen so that the image f(qn) + ξn + un falls

in a point qn+1 with U(qn+1) ≤ U(qn). By repeating this strategy, the orbit gradually

approaches to the minimum of the safety function, since U(qn) ≥ U(qn+1) ≥ U(qn+2)...

Eventually, the orbit enters into the safe set to remain forever in it.

However, this strategy still allows different choices to apply the control un in each itera-

tion, since the choice of the image qn+1 with U(qn+1) ≤ U(qn) is not unique. Our proposal

here is to select the control un that minimizes the control bound of the orbit. This strategy

can be implemented as follows:

1. Given an initial point qn ∈ Q, evaluate the noisy image q∗ = f(qn) + ξn.

2. Compute all the possible controls |ui| = |qi − q∗| with qi ∈ Q, being i = 1 : N the grid

points in Q.

3. Among all the possible controls, apply the control un = min
(
max

(
|ui|, U(qi)

) )
.

The final point will be qn+1 = f(qn) + ξn + un = q∗ + un.

4. Repeat the algorithm with the new point qn+1.

We call this strategy the additional algorithm to differentiate it from the partial control

algorithm to compute the safe sets

In summer the whole control strategy proposed here consists of two steps:

Step 1. Given the map showing transient chaos and the upper bound of disturbance

affecting it ξ0, compute the minimum safe set. This computation can be done directly

with the algorithm shown in [10] or through the computation of the safety function

developed in [16]. Step 2. Compute the corresponding safety function (if it was not

done in step 1) and apply the additional algorithm to lead the orbits to the safe set. We

want to insist that this second step is only a proposal to control orbits starting outside

from the safe set and and there may be better ones depending on the preferences of

the controller to reach the safe set.

To show an example of this control strategy, we use again the slope-three tent map affected

by a disturbance bound value ξ0 = 0.05. The corresponding safety function is represented

in Fig. 2a. This function is the same as the one displayed in Fig. 1b with a minimum value

u0 = 0.03. To show how any initial condition converges to the safe set, we take a grid of
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Figure 3. Average number of iterations to reach the safe set. For each initial condition

q ∈ Q, the average was done over 1000 different orbits. The initial conditions farther from the

safe set take more iterations to reach the safe set. The central region is an exception because this

region maps directly outside the interval Q. See the explanation in the text.

1000 points in the interval Q = [0, 1]. This set of initial conditions is represented with a

black horizontal bar at the bottom of the Fig. 2a. Then we apply the control strategy to

the corresponding orbits. As shown, the initial set gradually converges to the safe set in at

most 6 iterations of the map.

We also displayed in Fig. 2a a particular controlled orbit, the orbit starting in x1 = 0.16

(outside the safe set) and the next 5 iterations after which the orbit reaches the safe set.

The sequence of the first 100 controls |un| for this orbit is represented in Fig. 2b. As shown,

only the first controls applied are larger since the orbit starts outside the safe set. Once

the orbit enters into the safe set, the controls remain below the minimum control bound

u0 = 0.03.

Other quantity that could be interesting to learn about the rate of convergence towards

the safe set, is the average number of iterations that an initial condition q ∈ Q takes to reach

the safe set, see Fig. 3. As expected, the initial conditions far from the safe set are the ones

that need more iterations. The only discordant region is the central region (around x = 0.5),

where the average number of iterations is smaller than expected. The reason is because the
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Figure 4. Average control per iteration to reach the safe set. For each orbit, we compute

the sum of the individual controls |un| to reach the safe set divided by the number of iterations. For

each initial point q ∈ Q, the average control has been computed for 1000 different orbits. Note that

the average control shape is similar to the safety function shape, showing that initial conditions

that need a larger upper control bound also require a larger average control.

central region maps directly outside the interval Q = [0, 1], in particular on the right side

outside of Q. Therefore, these points are directly reinserted into the right side inside of Q

(applying a large control), where the safety function takes low values. As a consequence,

the initial conditions placed in the center of Q, quickly reach the safe set. The counterpart

is the large control used.

To measure the size of the control needed, we represent in Fig. 4, the average control that

each initial condition q ∈ Q needs to reach the safe set. For the computation of this average

control, we only count the number of iterations that the orbit takes to reach the safe set. As

it can be seen, the shape of the average control resembles the shape of the safety function.

This shows that the initial conditions that need a larger upper control bound to remain in

Q, also require a larger average control to converge to the safe set. The farther an initial

condition is from the safe set, the more control it will need.
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IV. VARIATION OF THE SAFE SET WITH ξ0 AND µ

In the previous section we have seen how the safe set can be transformed in a global

attractor of the initial conditions in Q. Once the trajectories enter into the safe set, the

upper control bound u0 required is minimum.

As shown, the safe set is the subset of Q where the safety function is minimum. This

function strongly depends on the upper disturbance bound ξ0 affecting the map and the

parameter value of the system. As a consequence, the location of the safe set and the

corresponding control u0 may change.

To visualize this variation, we display in Fig. 5 the different safe sets in red computed

for the slope-three tent map, that is with the parameter µ = 3, and different disturbance

values in the range ξ0 = [0.005, 0.25]. We represent here the interval Q = [0, 1] on the left

y-axis. For a given value ξ0, the safe set corresponds to the intersection of the vertical axis

located at this value with the red figure. On the other hand, we plot on the right y-axis,

the u0 control value in blue associated to each safe set at a given value ξ0. As it can be

seen, from left to right, the safe sets structure resembles the Cantor structure characteristic

of the nonattracting chaotic set, the topological object responsible for the transient chaotic

dynamics. Lower values of ξ0 result in safe sets with many small pieces, whereas larger

ξ0 values result in safe sets with only a few pieces. Note that each piece of the safe set

is a region of Q where the safety function has a minimum. It is also remarkable how the

thickness of these pieces suddenly changes (see for example the change in ξ0 = 0.11). With

respect to the variation of u0, we can see that larger ξ0 disturbance values require larger

u0 control values as expected. It is noteworthy to observe that the relation u0/ξ0 is almost

constant and always smaller than 1, as a matter of fact about 0.6.

Now, we fix the upper disturbance bound ξ0 = 0.05 and we have computed different safe

sets in the parameter range µ = [2, 15] of the tent map. This is shown in Fig. 6. As in

Fig. 5, the left y-axis is the interval Q = [0, 1] and the right y-axis represents the u0 control

value corresponding to each safe set. On the left side of the figure we can observe that for

µ = 2, the control u0 is not zero. This is because, the action of the disturbance in the tent

map, allows the orbits to escape from Q even for parameter values below µ = 2. We can

also observe that, for increasing values of µ, the number of pieces of the safe set decrease,

with sudden changes in µ = 2.35 and µ = 8.67.
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However, what is more surprising in Fig. 6 is how the upper control bound u0 varies. This

control increases and decreases without a clear pattern showing that, larger parameter values

of µ do not necessary implies larger controls u0. What we have observed is that the average

separation d between nearby pieces of the safe set, has an important influence on the value

u0 required. The value u0 tends to be lowest in the safe sets for which d ≈ ξ0 = 0.05. For

example, from left to right in the figure, for µ = 2.6 the separation d between nearby pieces

is about 0.1, which is far from ξ0, and the control u0 has a local maximum. For µ = 3.8

however, the separation d between nearby pieces is about 0.05, and the control u0 has a

local minimum. Then, the control increases again until it reaches a maximum for µ = 8.67.

Here, the separation d between nearby pieces of the safe set is approximately 0.015, also far

from ξ0. At this point, the 8 pieces of the safe set collapses in 4 pieces and the separation

d changes to approximately 0.1, again far from ξ0. Finally, for parameter values µ > 8.67

the separation d decreases, taking values closer and closer to ξ0. The u0 value in this region

also decreases until the last safe set plotted (µ = 15), where the separation d is about 0.06.

The reason for this minimum condition d ≈ ξ0 = 0.05 can be roughly explained if we

note that the image f(safeset) is surrounded by the own safe set. Typically the image

f(safeset) falls in between the safe set. In this situation, it is clear that if we apply the

worst disturbance to the image f(safeset), we can always come back to the safe set applying

a smaller control (u0 ≤ ξ0). Going further in this reasoning, it also follows that when the

typical distance between nearby pieces of the safe set satisfies d ≈ ξ0, the relation u0/ξ0 will

be minimum. However, it should be clear that this is merely a heuristic explanation lacking

rigor, as it goes without saying that features such as the shape of the map can also influence

the determination of u0.

V. CONCLUSIONS

The partial control technique is able to sustain a transient chaotic orbit by means of the

computation of the safe set. This special set is the subset of Q where the safety function

has a minimum. Orbits with initial conditions inside the safe set need a minimum control to

remain in Q. However, orbits with initial conditions outside the safe set may need a larger

control to remain in Q. Here, we present a different strategy to greatly reduce these large

controls. This control strategy consists of gradually approaching the orbit to the safe set.
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Figure 5. Safe set variation with ξ0. In this plot we represent in red different safe sets computed

for different values ξ0 = [0.005, 0, 25]. The parameter µ = 3 of the tent map is kept fixed. In blue,

the upper control bound u0 corresponding to each safe set. Notice that the relation u0/ξ0 is almost

constant and smaller than 1, as a matter of fact about 0.6.

As a result, the safe set is an attractor of any initial condition in Q. Any orbit starting in

Q, converges to the safe set and remain in it forever. However, if the control is switched off,

the orbit escapes from the safe set and eventually from Q.

We have illustrated the application of this method in the slope-three tent map. For this

map, we have shown how the initial conditions in the interval Q = [0, 1] converges to the

safe set. Both, the average iterations to converge and the average control applied, strongly

depend on how far the initial condition is from the safe set. In any case, after a few iterations,

the orbit enters into the safe set where it can be sustained with minimum control u0.

We have also analyzed how the safe set and the corresponding control u0 change depending

on the disturbance ξ0 and the parameter µ of the tent map. Our results reveal that the larger

the value ξ0, the larger the value u0. In contrast, the variation of u0 with µ is more complex,

showing that the separation d between nearby pieces of the safe set plays an important role.

Finally, we want to emphasize that, although the chaotic map used here was one-

dimensional for simplicity, this control technique can be extended to higher dimensional

maps where safe sets exist. Both, the existence of safe sets and the computation of the
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Figure 6. Safe set variation with µ. In this plot, different safe sets in red have been computed

for different values in the range µ = [2, 15]. The upper disturbance bound ξ0 = 0.05 is kept fixed.

In blue, the upper control bound u0 corresponding to each safe set. The value u0 is lowest where

the separation d between nearby pieces of the safe set is approximately the same as the disturbance

value ξ0 = 0.05.

corresponding safety function for higher dimensions have been shown in previous works

cited above in this manuscript. However the high extra computation required only makes it

possible in practice to apply this control method in low-dimensional systems.
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Appendix: The safety function algorithm

Notation:

i ≡ index of the starting point q[i], i = 1 : N where N = total number of grid points in Q.

s ≡ index of the disturbance ξ[s], s = 1 : M where M = number of disturbed images.

j ≡ index of the arrival point q[j], j = 1 : N .

Map with the index notation: qn+1 = f(qn) + ξn + un → q[j] = f
(
q[i]

)
+ ξ[s] + u [i, s, j].

Computation of the safety function U :

- Initially set U0 [j] = 0, ∀j = 1 : N, k = 0.

while Uk+1 ̸= Uk do

for i = 1 to N do

for s = 1 to Mi do

for j = 1 to N do

u [i, s, j] =
∣∣∣ f(q[i], ξ[s])− q [j]

∣∣∣ ▷ Note that the u [i, s, j] values remain un-

changed every iteration of the while loop

so compute them once and save them.

u∗ [i, s, j] = max
j

(
u[i, s, j], Uk[j]

)
end for

u∗∗ [i, s] = min
j

(
u∗ [i, s, j]

)
end for

Uk+1[i] = max
s

(
u∗∗ [i, s]

)
end for

k = k + 1

end while

Compact formula: Uk+1[i] = max
1≤s≤Mi

(
min

1≤j≤N

(
max

j
(u[i, s, j], Uk[j] )

) )
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