

RUBEN CAPEANS

has attended the XLIII Dynamics Days Europe

3-8 September 2023 - Naples, Italy

the Advisory Committee

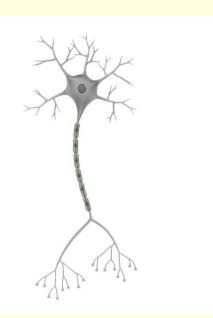
Controlling the bursting size in the two-dimensional Rulkov model

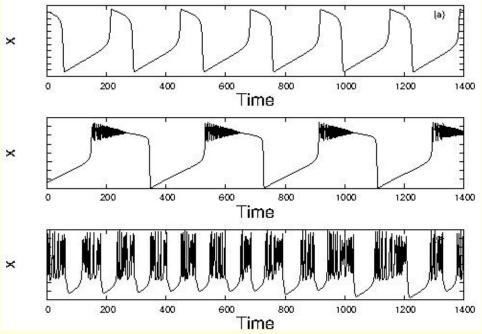
Rubén Capeáns

Nonlinear Dynamics, Chaos and Complex Systems Group Dept. of Physics, Universidad Rey Juan Carlos, Madrid, Spain

The Rulkov map

$$x_{n+1} = \frac{\alpha}{(1+x_n^2)} + y_n$$
$$y_{n+1} = y_n - \sigma x_n - \beta,$$





The Rulkov map

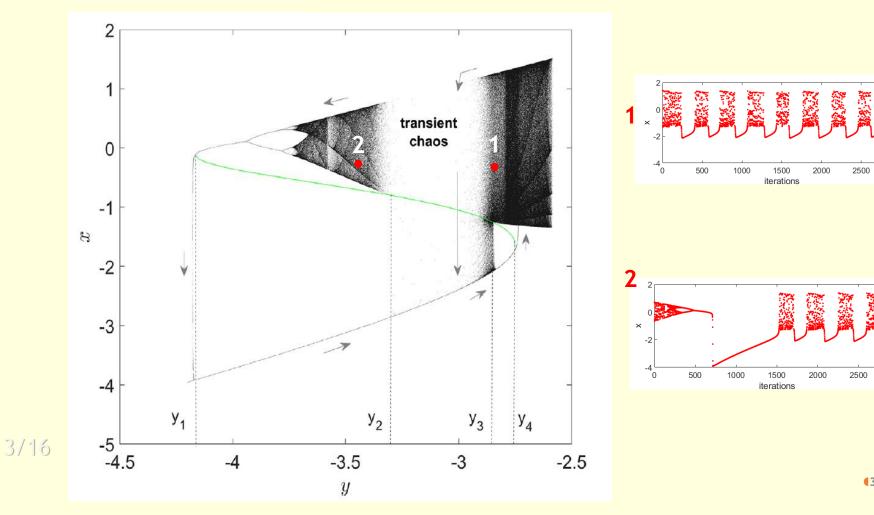
$$x_{n+1} = \frac{\alpha}{(1+x_n^2)} + y_n \qquad \qquad \alpha = 4.1$$
$$y_{n+1} = y_n - \sigma x_n - \beta, \qquad \qquad \sigma = \beta = 0.001$$

Slow variable

3000

3000

(3

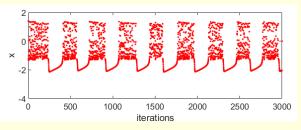


Adding noise

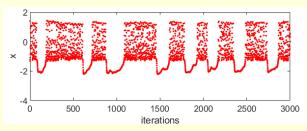


$$x_{n+1} = \frac{\alpha}{(1+x_n^2)} + y_n + \xi_n^x$$
$$y_{n+1} = y_n - \sigma x_n - \beta + \xi_n^y,$$
$$\sqrt{(\xi_n^x)^2 + (\xi_n^y)^2} \le \xi_n^y$$

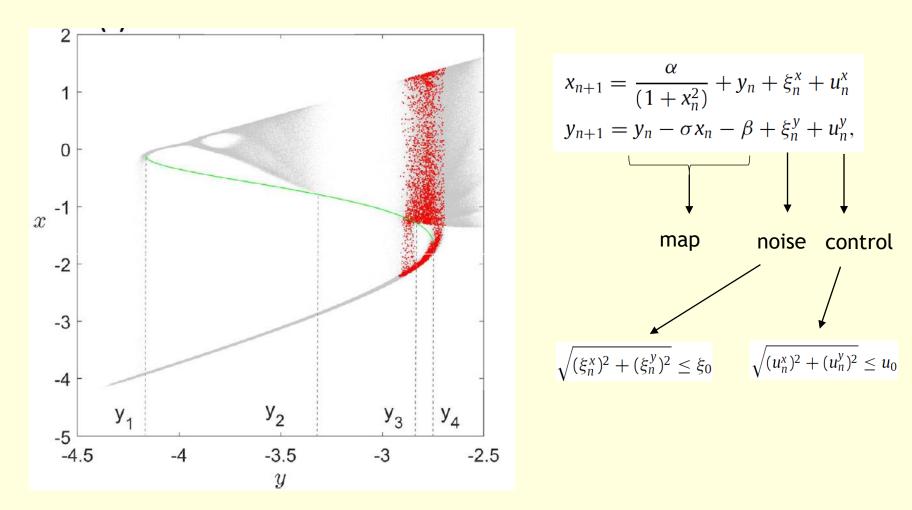
No noise



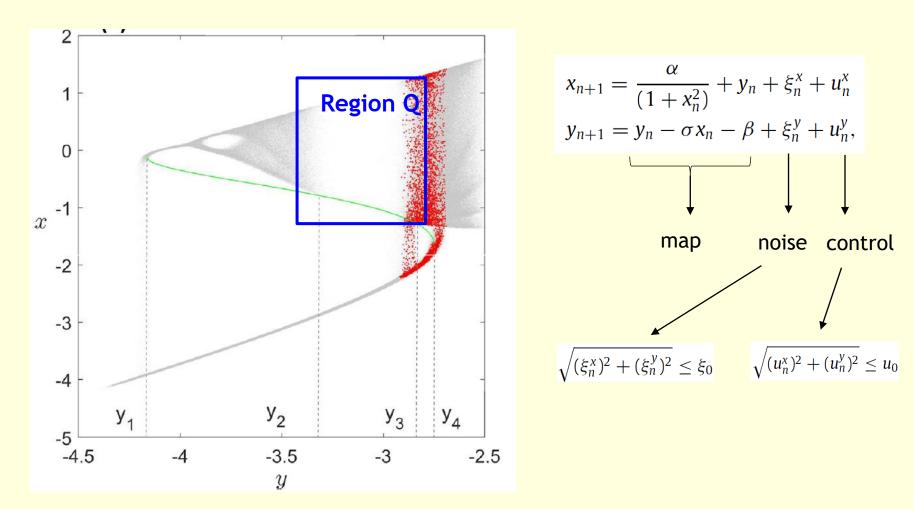
With bounded noise



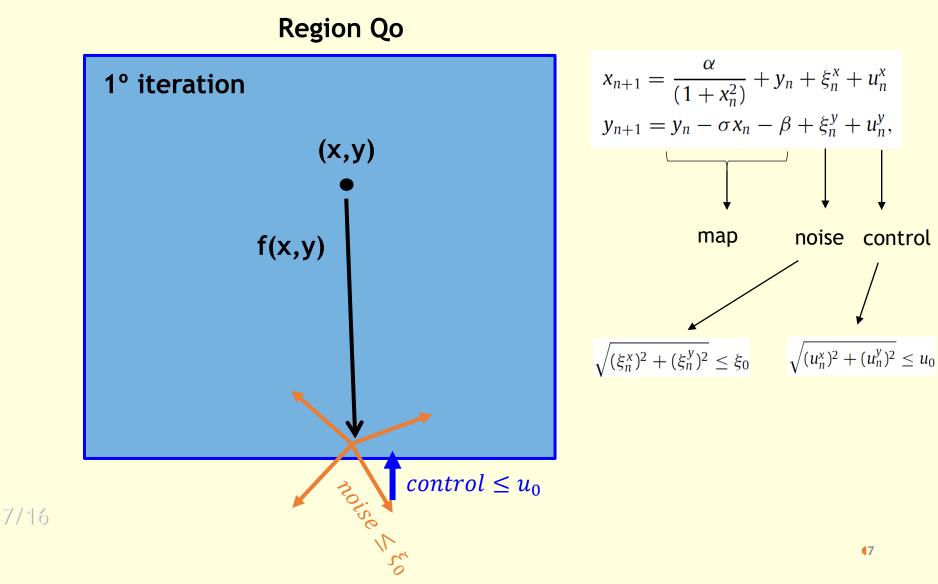
Control goal: increase the bursting size



Control goal: increase the bursting size



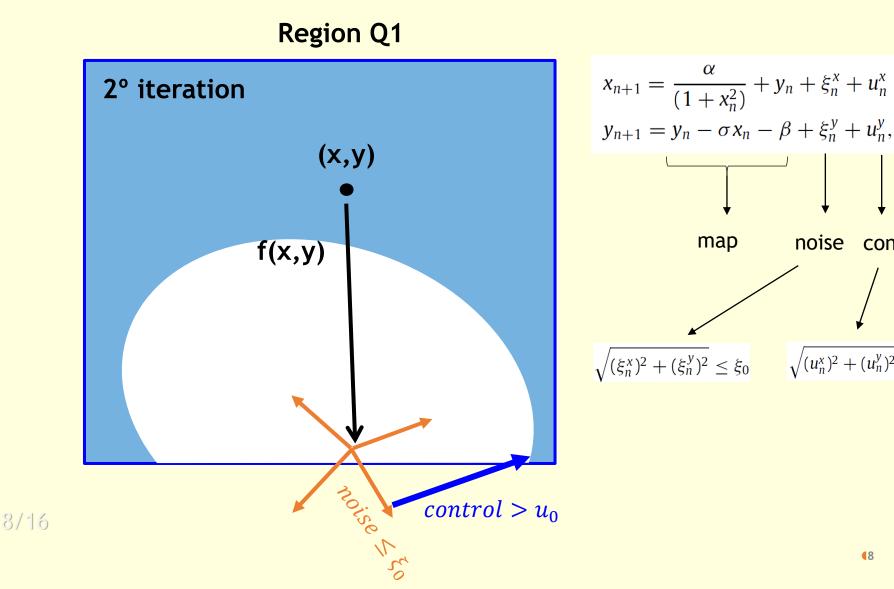
Sculpting algorithm



noise

control

Sculpting algorithm



 $\sqrt{(\xi_n^x)^2 + (\xi_n^y)^2} \le \xi_0 \qquad \sqrt{(u_n^x)^2 + (u_n^y)^2} \le u_0$

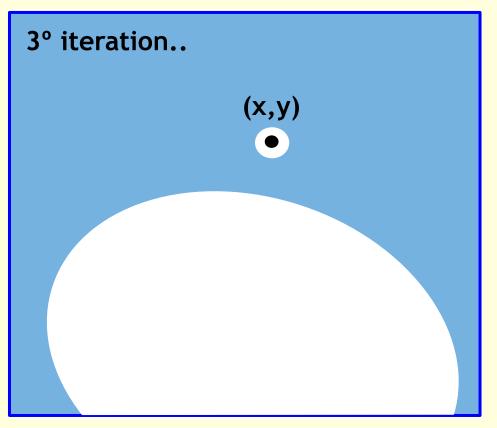
noise

control

map

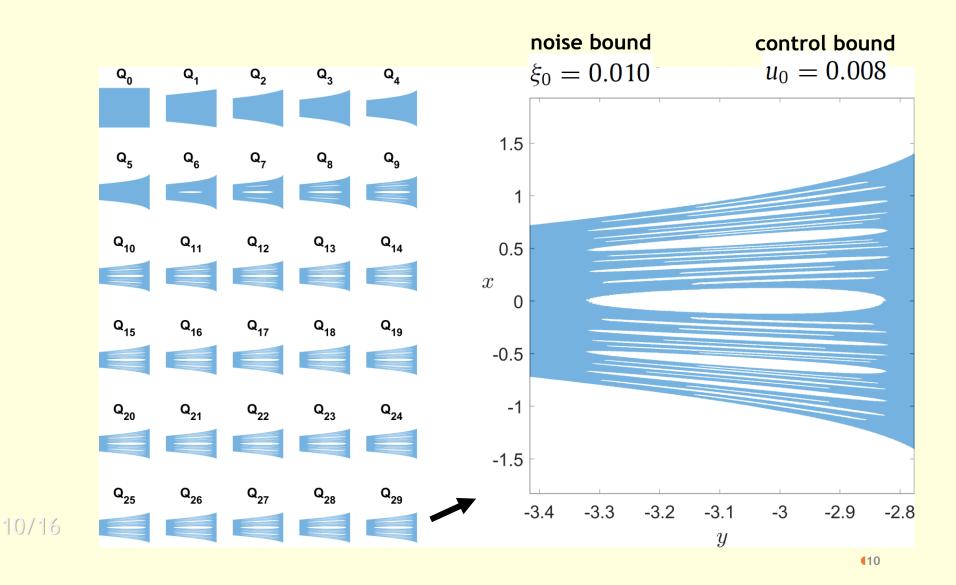
Sculpting algorithm

Region Q2

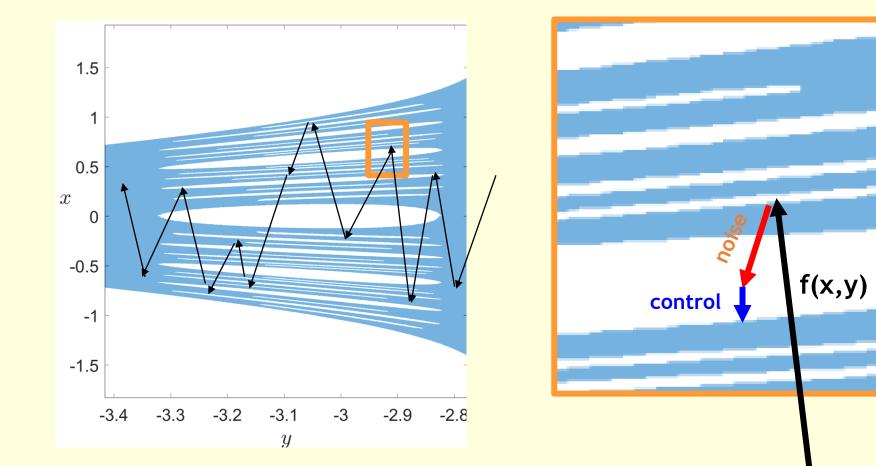


$$x_{n+1} = \frac{\alpha}{(1+x_n^2)} + y_n + \xi_n^x + u_n^x$$
$$y_{n+1} = y_n - \sigma x_n - \beta + \xi_n^y + u_n^y$$
$$map \quad noise \quad control$$
$$\sqrt{(\xi_n^x)^2 + (\xi_n^y)^2} \le \xi_0 \quad \sqrt{(u_n^x)^2 + (u_n^y)^2} \le u_0$$

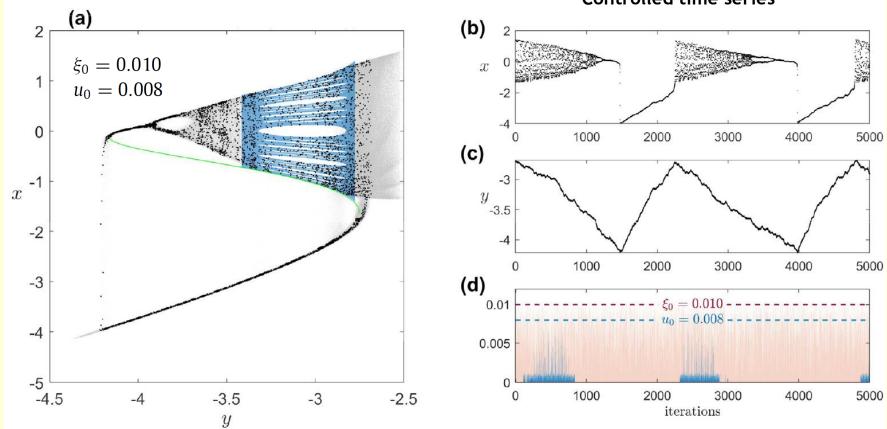
Sculpting algorithm: final set



Control in the final set

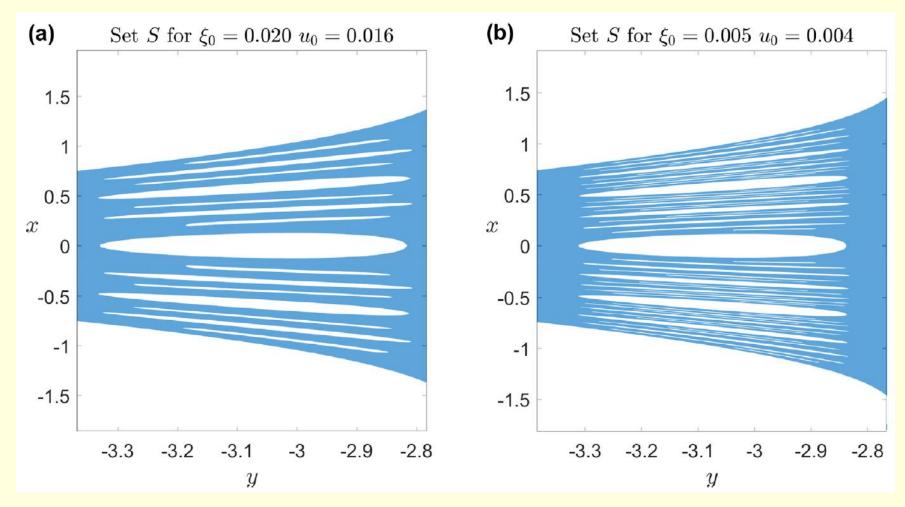


Control:long bursting



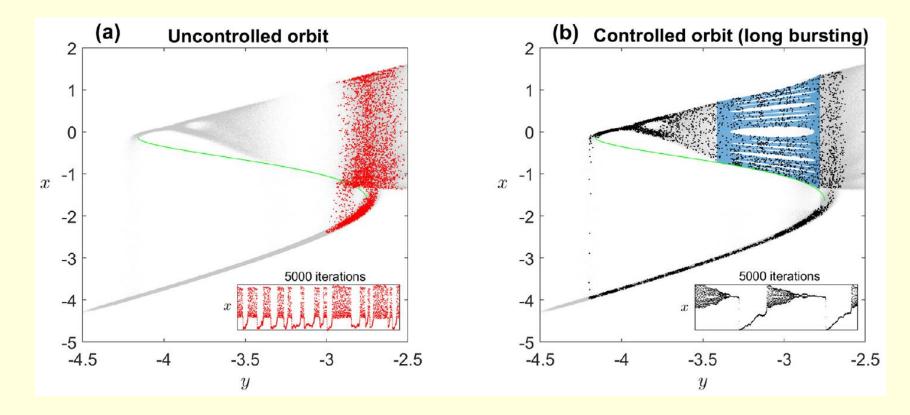
Controlled time series

Different noise -> Different sets

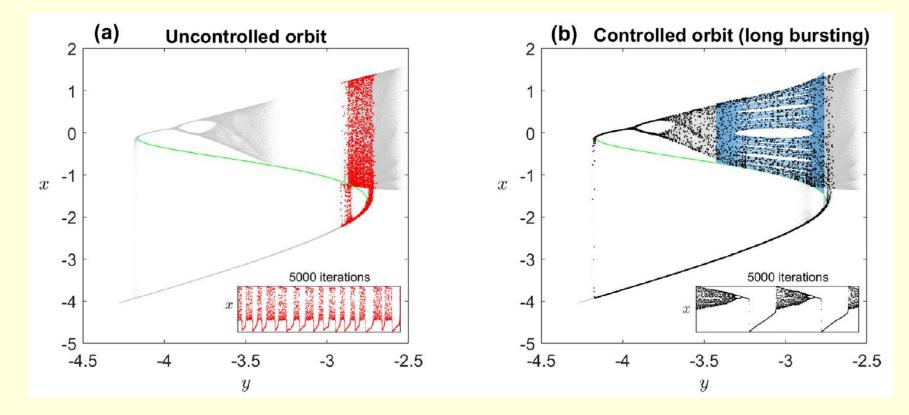


Different noise -> Different sets

Set S for $\xi_0 = 0.020 \ u_0 = 0.016$



Set S for $\xi_0 = 0.005 \ u_0 = 0.004$



Contents lists available at ScienceDirect

Communications in Nonlinear Science and Numerical Simulation

journal homepage: www.elsevier.com/locate/cnsns

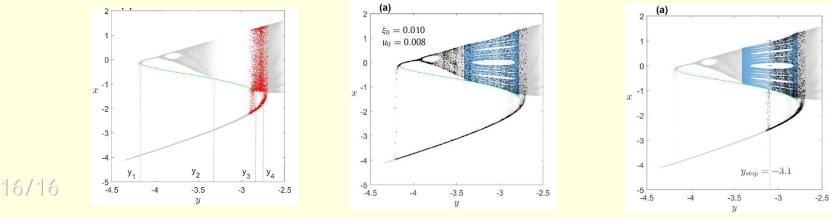
Research paper

Controlling the bursting size in the two-dimensional Rulkov model

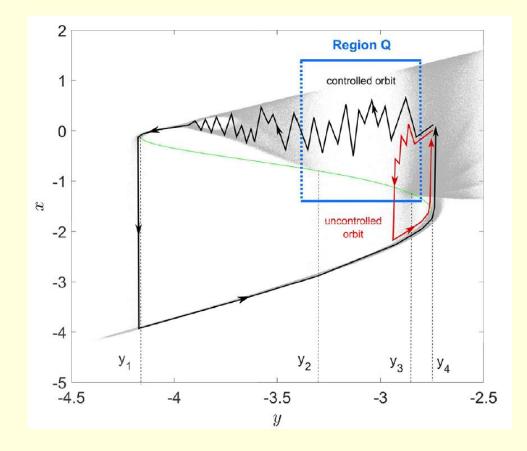
Jennifer López^a, Mattia Coccolo^{a,*}, Rubén Capeáns^a, Miguel A.F. Sanjuán^{a,b}

^a Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain

^b Department of Applied Informatics, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania

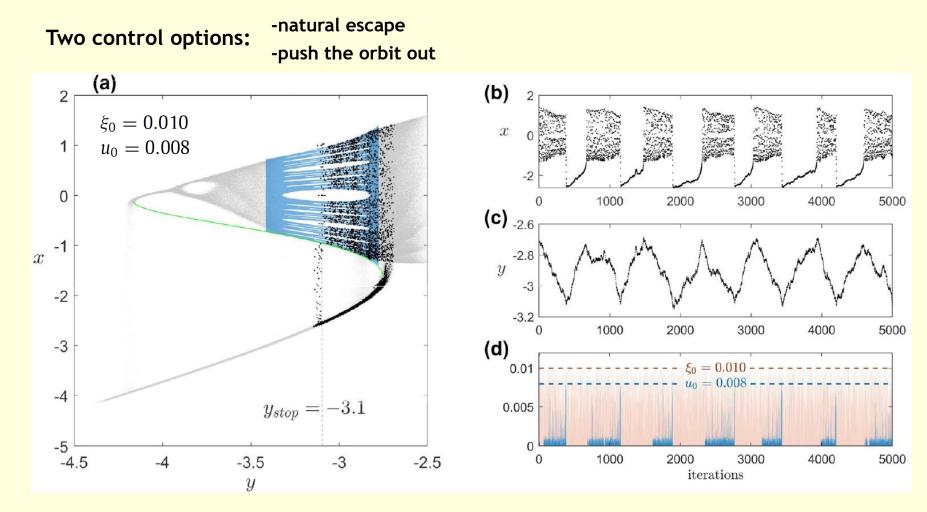


Control Goal



$$x_{n+1} = \frac{\alpha}{(1+x_n^2)} + y_n + \xi_n^x + u_n^x$$
$$y_{n+1} = y_n - \sigma x_n - \beta + \xi_n^y + u_n^y$$
$$map \quad noise \quad control$$
$$\sqrt{(\xi_n^x)^2 + (\xi_n^y)^2} \le \xi_0 \quad \sqrt{(u_n^x)^2 + (u_n^y)^2} \le u_0$$

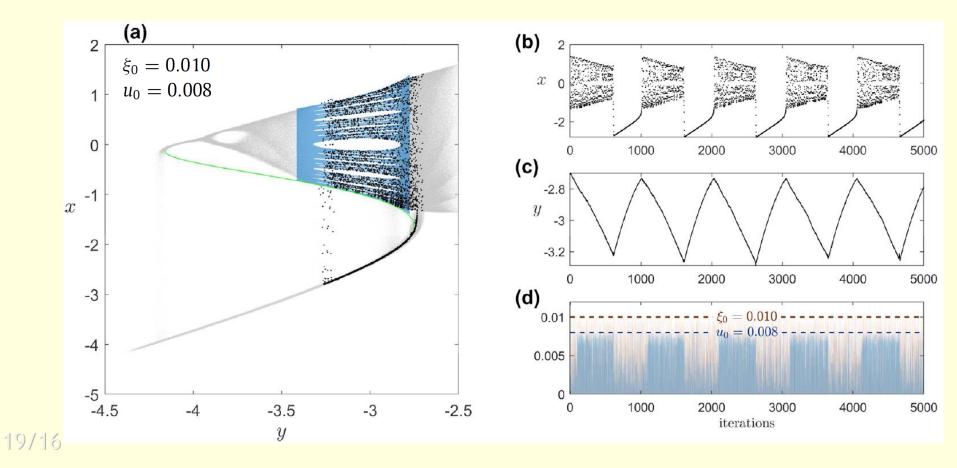
Control:stopped bursing



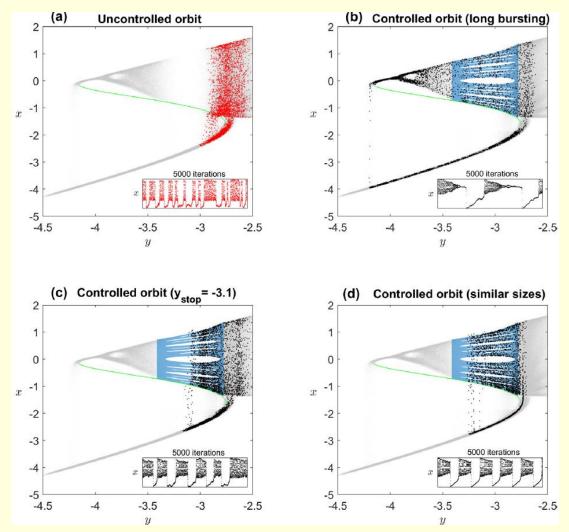
Control: similar bursting size

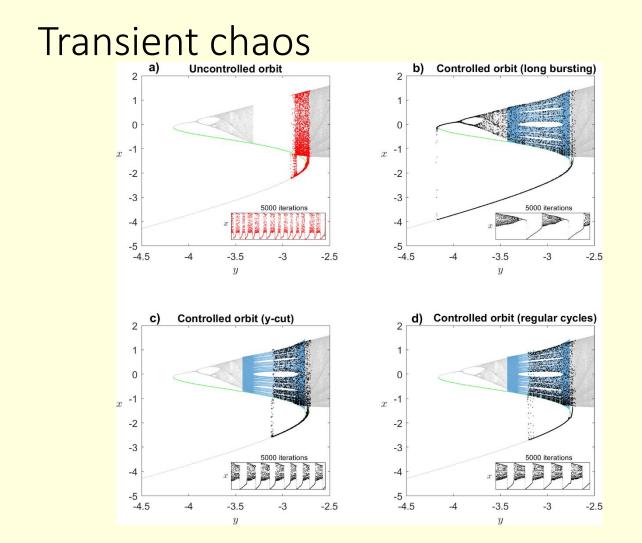
Additional control over 'y' to follows the deterministic 'y'

Each 5000 iterations the control ceases

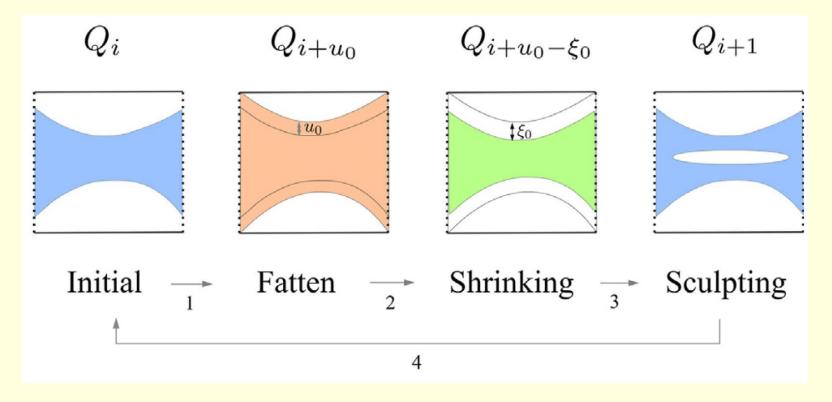


Transient chaos





Transient chaos



Step 1. Fatten the set Q_i by u_0 except the right and left boundaries, obtaining the set denoted by $(Q_i + u_0)$.

Step 2. Shrink the set $(Q_i + u_0)$ by ξ_0 except the right and left boundaries, obtaining the set denoted by $(Q_i + u_0 - \xi_0)$.

Step 3. Let Q_{i+1} be the points $q \in Q_i$, for which f(q) fall inside the set denoted $(Q_i + u_0 - \xi_0)$, or the points $q \in Q_i$ for which f(q) abandon Q through the right or left boundaries.

Step 4. Return to step 1, unless $Q_{i+1} = Q_i$. We call this final region, the set *S*.

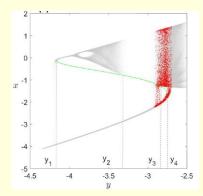
Conclusions

•The control method presented is applied on maps that exibits transient chaotic dynamics and are affected by noise.

The control is applied with the goal to sustain the orbit in certain región Q of the phase space.

To apply we need to define Q, the bound of noise and the bound of control applied. Through an iterative algorithm the región Q is sculpted to obtain a subset S where the orbits are controlled.

uncontrolled



controlled

