

Escuela Superior de Ciencias Experimentales y Tecnología

GRADO EN INGENIERÍA DE TECNOLOGÍAS INDUSTRIALES

Trabajo de Fin de Grado

DISEÑO DE UN SISTEMA DUAL SOLAR-HIDRÓGENO PARA ABASTECIMIENTO DE UN CENTRO DE ELECTROMOVILIDAD

José Luis Clemente Pinto

Directora: Gisela Orcajo Rincón

Curso Académico 2023/24

Grado en Ingeniería de Tecnologías Industriales

Trabajo de Fin de Grado

El presente trabajo, titulado DISEÑO DE UN SISTEMA DUAL SOLAR-HIDRÓGENO PARA ABASTECIMIENTO DE UN CENTRO DE ELECTROMOVILIDAD, constituye la memoria correspondiente a la asignatura Trabajo de Fin de Grado que presenta D. José Luis Clemente Pinto en Ingeniería de Tecnologías Industriales. Este trabajo ha sido realizado en la Universidad Rey Juan Carlos en la Escuela Superior de Ciencias Experimentales y Tecnología bajo la dirección de Gisela Orcajo Rincón.

Móstoles, 27 de febrero de 2024

ÍNDICE

1. ICD CIVILIA	1
2. INTRODUCCIÓN	3
2.1. SITUACIÓN ENERGÉTICA EN EL CONTEXTO GEOPOLÍTICO .	3
2.2. TRANSICIÓN A FUENTES DE ENERGÍA RENOVABLES	3
2.3. ELECTROMOVILIDAD	
2.3.1. SISTEMA DE CARGA	7
2.3.3. SISTEMA DE PRODUCCIÓN DE HIDRÓGENO Y ENERGÍA COMBUSTIBLE-ELECTROLIZADOR)	•
2.3.4. SISTEMA DE ALMACENAMIENTO DE HIDRÓGENO	12
2.3.5. SITUACIÓN Y PREVISIÓN DE LA ELECTROMOVILIDAD E	N ESPAÑA 13
2.4. ENERGÍA SOLAR FOTOVOLTAICA	15
2.4.1. MÓDULOS FOTOVOLTAICOS	15
2.4.2. REGULADOR DE CARGA	
3. OBJETIVOS	
4. SOLUCIÓN TÉCNICA	
4.1. HIPÓTESIS/SUPOSICIONES	
4.2. SELECCIÓN DE EQUIPOS	
4.3. EMPLAZAMIENTO	
5. RESULTADOS	25
5.1. INFRAESTRUCTURA BASADA EN EL AUTOCONSUMO	25
5.1.1. INSTALACIÓN FOTOVOLTAICA	25
5.1.2. HIDROGENERA	
5.2. INFRAESTRUCTURA SEMINDEPENDIENTE	
5.2.1. INSTALACIÓN FOTOVOLTAICA	31
5.2.2. HIDROGENERA	32
5.3. INFRAESTRUCTURA BASADA EN LA IMPORTACIÓN TOTAL	
5.3.1. HIDROGENERA	33
5.4. DIMENSIONADO DE LOS EQUIPOS	35
5.4.1. ALTERNATIVA AUTOCONSUMO	35
5.4.2. ALTERNATIVA SEMINDEPENDIENTE	41
5.4.3. ALTERNATIVA IMPORTACIÓN TOTAL DE HIDRÓGENO	44
5.3. CÁLCULO DE LA EXTENSIÓN DEL TERRENO	
5.3.1. ALTERNATIVA AUTOCONSUMO	
5.3.2. ALTERNATIVA SEMINDEPENDIENTE	50
5.3.3. ALTERNATIVA IMPORTACIÓN TOTAL DE HIDRÓGENO	52
5.4. ESTUDIO ECONÓMICO	

5.4.1. TA	ABLA DE VENTAS	54
5.4.2. TA	ABLA DE COSTES VARIABLES	55
5.4.3. TA	BLA DE INMOVILIZADO	57
5.4.4. TA	ABLA DE FLUJO DE CAJA	65
5.5. DISCU	SIÓN DE LOS RESULTADOS	68
6. CONCLUS	IONES	71
7. BIBLIOFR	AFÍA	74
8. APÉNDICE	∃	74
8.1. ANEX	O	74
8.1.1. AB	BREVIATURAS	74
8.1.2. EN	ICUESTAS	75
8.1.3. EC	CUACIONES	76
8.1.4. ILU	USTRACIONES Y REFERENCIAS	78
8.1.5. PR	ESUPUESTO	82
8.2. FICHA	TÉCNICA	87
8.2.1. Fic	cha técnica INVERSOR	87
8.2.2. Fie	cha técnica CONTROLADOR DE CARGA	88
8.2.3. Fic	cha técnica PANEL SOLAR	89
8.2.4. Fic	cha técnica PILA DE COMBUSTIBLE	90
8.2.5. Fic	cha técnica ELECTROLIZADOR	91
8.2.6. Fic	cha técnica COMPRESOR	92
8.2.7. Fic	cha técnica DEPÓSITOS DE HIDRÓGENO	95
8.2.8. Fic	cha técnica CARGADOR ELÉCTRICO	96
8.2.9. Fic	cha técnica DISPENSADOR DE HIDRÓGENO	97

1. RESUMEN

En este trabajo de fin de grado se ha diseñado un sistema dual solar-hidrógeno de demanda variable para abastecimiento de un centro de electromovilidad, capaz de suministrar la energía necesaria para los automóviles híbridos (PHEVs); 100% eléctricos (BEVs); y de funcionamiento a base de hidrógeno (FCEVs), ubicada en el kilómetro 57 de la A5 (Autovía del Suroeste) a la altura de Quismondo y Santa Cruz de Retamar.

Específicamente, se centra en el diseño e implementación de una infraestructura de carga sostenible para vehículos eléctricos mediante la instalación de electrolineras para el periodo 2024-2050 y, posteriormente, la introducción de hidrolineras en el periodo comprendido entre 2040 y 2050. Para ello, se propone la utilización de paneles solares y sistemas de hidrógeno (producción de H₂ mediante electrolisis y de producción de electricidad mediante pilas de combustible de H₂) para abastecer estas estaciones de carga, con el objetivo de reducir la dependencia de los combustibles fósiles y mitigar el impacto ambiental del transporte.

El diseño de esta infraestructura se basará en una serie de alternativas:

- Infraestructura basada en el autoconsumo: donde no se requieren compuestos externos para producir la demanda energética necesaria. La infraestructura se diseñará para cubrir la demanda de carga de vehículos eléctricos e hidrógeno dentro de una zona específica, con un énfasis en la autosuficiencia energética y la reducción de costos a largo plazo.
- Infraestructura semindependiente: donde la cantidad demandada de hidrógeno por parte de la hidrolinera será suplida con importación de tanques suministrados. Esta configuración se enfoca en garantizar un suministro estable de hidrógeno, encontrándose en un punto intermedio entre la independencia y la demanda energéticas requerida.
- Infraestructura basada en la importación total de hidrógeno. El hidrógeno importado en depósitos será trasladado en compresores (que se suministrarán de la energía procedente de los módulos solares) y que aumentarán su densidad energética. Aunque el gasto energético de la electrolinera y el gasto de combustible de la hidrolinera se suministrará gracias a los depósitos importados.

En la teórica los tres sistemas son aplicables, debido a que, para la primera propuesta, el funcionamiento de los electrolizadores tiene una inversión energética que puede ser cubierta gracias a la energía solar obtenida por la mañana. De esa manera esta energía reservada irá destinada al funcionamiento del electrolizador y compresores cuyo objetivo es transformar

hidrógeno y almacenarlo. Es decir, se trata del uso de hidrógeno como un sistema de almacenamiento nocturno más eficaz que cualquier tipo de batería.

Para el segundo sistema es más dependiente del uso externo de los depósitos de hidrógeno para el abastecimiento de vehículos FCEVs, pero para el abastecimiento de la electrolinera sigue la misma dinámica. Y, por lo tanto, para la hidrolinera que es aún más dependiente y no usa los electrolizadores está más que garantizado el diseño.

Como se ha mencionado se aprovechará el uso de hidrógeno considerando la creación de un centro de recarga para vehículos con pilas de combustible (FCEVs), esto se dará para un determinado periodo [2040-2050] en el cual se arraigue el potencial de este tipo de vehículos.

En este trabajo se realizará la selección de los equipos utilizados y se dimensionará el sistema basado en el campo fotovoltaico. Estos cálculos se basarán en las necesidades [2024-2050] previsibles para para este tipo de vehículos con el objetivo de que la electrolinera esté operativa al público las 24 horas del día.

El emplazamiento para la nueva estación de servicio (kilómetro 57 de la A5, Autovía del Suroeste) radicó en la presencia de una estación convencional ya existente, la afluencia de vehículos diarios y que contara con el espacio suficiente para albergar todas las instalaciones necesarias en el proyecto (paneles fotovoltaicos, electrolizadores, pilas de combustible, compresores, etc....), de manera de crear un sistema potencialmente aislado, con la posibilidad de conectarse a la red eléctrica en caso de necesidad.

Este trabajo por tanto ha consistido en el estudio de:

- Viabilidad técnica (dimensionamiento) de la instalación dual Solar-Hidrógeno para abastecimiento de una demanda creciente de coches eléctricos (con batería y/o pilas de combustible). Se trata de dimensionar el número de los equipos principales que se adjudicará una instalación de estas características (número de paneles solares, de compresores, de depósitos, de electrolizadores...)
- Viabilidad económica (presupuestaria) de la infraestructura. Gracias al dimensionamiento de los equipos conociendo la economía del sector y los precios establecidos se podrá proponer un análisis basado en el flujo de caja de las distintas alternativas.

2. INTRODUCCIÓN

2.1. SITUACIÓN ENERGÉTICA EN EL CONTEXTO GEOPOLÍTICO

La dependencia de fuentes de energía ha llevado a naciones a competir por el acceso y control de estos recursos, generando tensiones geopolíticas y conflictos armados. Un ejemplo contemporáneo que lo ilustra es la relación entre Rusia y Ucrania, especialmente en el contexto del suministro de gas natural. No obstante, este fenómeno no es único y se repite en diversas regiones del mundo. (Energy5, 2023)

Además, es importante señalar la actual crisis energética global está causada por: la disminución de la disponibilidad de recursos energéticos (petróleo, gas natural, carbón), la influencia política y económica para obtener ventajas en el acceso a recursos energéticos y la falta de inversión en infraestructura energética que interrumpen su producción y distribución. (EcoFlow Blog, 2023)

Como resultado, existe una escasez generalizada de recursos energéticos y un aumento en los precios de la energía, lo que puede tener repercusiones en la economía global y en la calidad de vida de las personas en todo el mundo. (Caja Rural del Sur, 15)

En resumen, los efectos que actualmente se están padeciendo y que probablemente persistirán durante los próximos años se concluyen en el aumento en los precios de materias primas, los problemas de suministro en industrias clave para la economía, los desafíos para empresas de todos los sectores, el incremento en las facturas eléctricas para los hogares y el menor poder adquisitivo debido al encarecimiento de bienes de consumo esenciales. (Caballero, 2023)

2.2. TRANSICIÓN A FUENTES DE ENERGÍA RENOVABLES

Como se ha mencionado anteriormente, es de carácter primordial establecer puntos energéticos seguros para cada sociedad. Por esta misma razón, la alternativa es continuar con el desarrollo de las fuentes de energía renovable.

Las fuentes de energía renovable son aquellas que se obtienen de recursos naturales que son prácticamente inagotables y se renuevan de manera constante. Son fundamentales para abordar los desafíos asociados al cambio climático y la sostenibilidad, puesto que ayudan a reducir las emisiones de gases de efecto invernadero y la dependencia de los combustibles fósiles.

La demanda de la transición a fuentes de energía renovable proviene de diversas organizaciones medioambientales y de la sociedad, que enfatizan la urgencia de reducir las repercusiones agravantes del calentamiento global que ya están teniendo un impacto devastador en todo el

mundo (eventos climáticos extremos como lluvias más intensas y prolongadas en algunas regiones, así como sequías más severas en otras, afectando tanto la disponibilidad de agua dulce como la producción agrícola).

El llamado a la acción se fundamenta en la necesidad imperante de abordar estos desafíos medioambientales y construir un futuro más sostenible y resiliente. No obstante, a pesar de que ha habido una preocupación generalizada por estos motivos notorios, se puede apreciar que no ha sido hasta la formación de diversas crisis energéticas en el plano internacional que esta transición se ha llevado a cabo con el compromiso de actores industriales de verdadera importancia. Esto se debe a que la escasez de recursos o conflictos geopolíticos pueden crear una mayor conciencia de la necesidad de diversificar las fuentes de energía y depender menos de los recursos no renovables.

La transición a nuevas fuentes energéticas es que varía desde preocupaciones medioambientales hasta consideraciones económicas y geopolíticas. Cada país y región puede experimentar este proceso de manera diferente, y múltiples razones pueden contribuir a la transición hacia fuentes de energía más sostenibles.

La situación energética en España debe comprenderse desde un contexto marcado por la Unión Europea, que ha dictado diferentes enfoques para una transición renovable financiando y colaborando con programas en busca de la instalación de centrales renovables.

Algunos de los diversos proyectos son *NextGenerationEU* (2021-2027). Se trata de un plan de recuperación de la UE que sigue a Horizonte 2020. Incluye inversiones significativas en proyectos verdes, sostenibles y digitales para acelerar la transición hacia una economía más verde. Este plan aportará 750.000 millones de euros, de los cuales más de 140.000 millones de euros van dirigidos a España. El proyecto representa más del 11% del PIB de España.

En cuanto al transporte, el Plan de Recuperación incluye un programa de subvenciones a empresas para el apoyo a un transporte sostenible y digital. Este cuenta con una dotación de 800 millones de euros y persigue mejorar la eficiencia del sistema de transporte mediante la digitalización del sector y el apoyo a los modos más sostenibles.

La inversión forma parte del componente 6 del Plan de Recuperación, Transformación y Resiliencia (PRTR), que cuenta con 6.667 millones de euros de los fondos europeos de recuperación (*NextGenerationEU*) para reequilibrar el reparto modal del transporte de mercancías hacia modos menos contaminantes.

Se debe contemplar el conjunto de decisiones tomadas por la Comisión Europea que tienen como fin una Europa con emisiones de carbono nulas como el Pacto Verde. El Pacto Verde tiene como principales objetivos: contribuir a garantizar una transición justa e integrada; desarrollar un

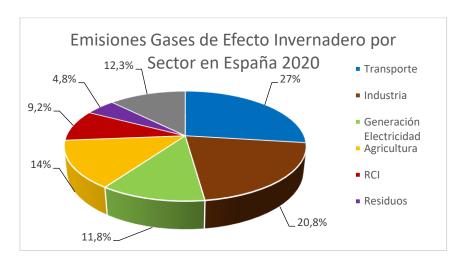
mercado de la energía de la UE plenamente integrado, interconectado y digitalizado; priorizar la eficiencia energética, mejorar el rendimiento energético de nuestros edificios y desarrollar un sector energético basado en gran medida en fuentes renovables; impulsar la utilización eficiente de los recursos al cambiar a una economía limpia y circular; recuperar la biodiversidad y reducir la contaminación; garantizar un suministro energético seguro y asequible para la UE; y un transporte más sostenible.

Para lograr el objetivo de ser el primer continente climáticamente neutro para 2050, se necesita un camino claro para lograr una reducción del 90% de las emisiones de gases de efecto invernadero relacionadas con el transporte para 2050.

Estas medidas incluyen la mejora de la gestión de las infraestructuras ferroviarias, la creación de nuevos incentivos para el uso de camiones de bajas emisiones y una metodología común para que las empresas del sector del transporte de mercancías puedan calcular sus emisiones de gases de efecto invernadero. Además, se propone una movilidad sostenible que fomente el uso de un transporte público y privado más limpio y eficiente. Esto incluye inversiones en eficiencia energética, renovación de edificios, calefacción y refrigeración limpias, e integración de energías renovables, así como en movilidad y transporte de emisión cero y de bajas emisiones, incluido el transporte público.

También se debe destacar la ruta de hidrógeno del gobierno de España, que da las directrices de fomentar el despliegue y desarrollo del hidrógeno renovable en España. El hidrógeno renovable juega un papel significativo en la transición energética hacia la descarbonización de la economía en 2050 (permitiendo integrar la electricidad renovable excedentaria).

Las medidas de mayor relevancia son el soporte a las pymes y centros tecnológicos que estén involucrados en la investigación y el desarrollo en el campo del hidrógeno renovable. Se busca la integración de la producción, transformación y consumo del hidrógeno renovable. De esa manera, se impulsará el desarrollo de proyectos innovadores en el campo del hidrógeno renovable y se promoverá la integración de la cadena de valor del hidrógeno renovable de España en la cadena de valor de la Unión.


Es preceptivo mencionar el Plan Nacional Integrado de Energía y Clima (PNIEC). Consiste en una estrategia nacional propulsada desde el Ministerio de Transición Ecológica y el Reto Demográfico que persigue la descarbonización, incluidas las energías renovables; la eficiencia energética; la seguridad energética; el mercado interior de la energía y la investigación, innovación y competitividad.

Para 2030 se prevé el aumento del uso del transporte público en un 300%, para que las emisiones totales brutas de gases de efecto invernadero (GEI) pasen de 309,8 toneladas métricas

equivalentes de CO2 (MtCO2eq) en el año 2019 a 194,6 MtCO2eq en 2030 (un descenso de 37,19%). Además, se garantizarán infraestructuras en el entorno, es decir, se desarrollará una planificación eléctrica lleva asociada una Evaluación Ambiental Estratégica.

Todos los proyectos y pactos vinculados por la Unión Europea y el gobierno español están en gran medida destinados al sector transporte. Esto se debe a que, a nivel nacional, es el sector que más gases de efecto invernadero emite, tal como como se puede ver en la ilustración.

Gráfica 1. Emisiones de efecto invernadero por Sector en España 2020

Como se muestra en la gráfica 1 el principal sector que emite más gases de efecto invernadero es el transporte con un 27 %.

2.3. ELECTROMOVILIDAD

La electromovilidad es el uso de un vehículo que tiene la capacidad de operar mediante energía almacenada en baterías, con la posibilidad de transmitir la energía química en energía eléctrica. Se trata de la alternativa que sobresale en el panorama actual a los vehículos de motor de combustión interna basada en el uso de combustible fósiles.

En el ámbito del sector de transporte en el centro de recarga podremos tener: PHEV (vehículos híbridos y enchufables), BEV (los 100% eléctricos) y los FCEV (basados en la necesidad de pilas de combustible para generar la electricidad).

- <u>Electrolinera</u>: es una infraestructura que carga las baterías de los vehículos eléctricos con el objetivo principal de cargar los vehículos en ubicaciones adecuadas.
- <u>Hidrolineras</u>: se trata de una instalación diseñada para dispensar hidrógeno; por medio de las hidrogeneras que lo producen, comprimen y almacenan. Constan de estaciones de servicio que surten combustible y se pueden distinguir entre centros que traen el hidrógeno comprimido de fuera y aquellos que producen el hidrógeno y tienen un lugar de almacenamiento.

La producción de hidrógeno definirá su impacto ambiental, y según éste podemos distinguir entre:

- Hidrógeno gris: se obtiene a partir de combustibles fósiles.
- Hidrógeno azul: se adquiere como el gris, pero capturando y almacenando el CO2 resultante de la reformación. Reduce las emisiones de CO2 hasta en un 78% en comparación al hidrógeno gris.
- Hidrógeno verde: tiene su origen en fuentes de energía renovable y es totalmente limpio.
 No emite CO2 equivalente y favorece la autosuficiencia.

Aunque los dos tipos de infraestructura otorgan suministro para motores eléctricos se pueden diferenciar en que unos usan como carga la electricidad y otros el hidrógeno. Otra diferencia destacable son los elementos dentro de un sistema de carga.

2.3.1. SISTEMA DE CARGA

Se debe diferenciar entre el sistema de carga de vehículos PHEVs y BEVs, que serán de carga eléctrica y funcionarán durante el periodo 2024-2050 (electrolineras) y los vehículos FCEVs que otorgarán la carga en combustible de hidrogeno (hidrolineras).

2.3.1.1. ELEMENTOS DE UN SISTEMA DE CARGA: ELECTROLINERA

Constará de inversores capaces de pasar de corriente continua (procedente del módulo solar) a alterna para acceder a los cargadores que pueden funcionar en continua; pero normalmente la energía base la obtienen en alterna por la red y posteriormente se añade la potencia en continua (con el objetivo de que la carga sea más rápida)

INVERSORES	¿QUÉ SON?	VENTAJAS	INCONVENIENTES
De onda	Conversión a alterna se	Fácil de instalar. Sin	Posibilidad de generar
sinusoidal	produce gracias a una onda	necesidad de alto	interferencias con otros
modificada	sinusoidal modificada	mantenimiento	dispositivos. Baja eficiencia
De onda	La transformación CC-AC	No genera interferencias	Precio más alto.
sinusoidal pura	se da mediante una onda	con otros dispositivos.	Mantenimiento de operación
	sinusoidal pura	Mayor eficiencia	más caro.
De red	Tiene la funcionalidad de	Otorga alta eficiencia. No	No funciona cuando hay un
	proporcionar energía	requiere mantenimiento	corte en la red eléctrica
	directamente a la red	regular	
	eléctrica		
Híbrido	Combina las funciones del	Versatilidad al poder	Requiere una conexión a una
	inversor de onda sinusoidal	integrar múltiples fuentes	instalación fotovoltaica y un
	modificada y de red	de energía	

			acceso a la red eléctrica al
			mismo tiempo.
De batería	Sirve para transformar la	Fácil de instalar y son	
	corriente continua	mucha complejidad acerca	
	procedente de una batería a	del mantenimiento	
	corriente alterna		
De frecuencia	Funciona para mantener la	Puede funcionar fuera de	Se trata de uno de los
	eficiencia de un motor	la red eléctrica	inversores más caros
	eléctrico		

Pata el tipo de cargadores se destacarán en el mercado:

TIPO DE	Potencia	Uso de	Tiempo de	APLICACIONES
CARGADORES	Suministrada	corriente	espera	
Nivel 1	Hasta 2 kW	AC	8-20 horas	Carga en el hogar
Nivel 2	3-22 kW	AC	4-8 horas	Hogares y estaciones de servicio
Nivel 3	50-350 kW	DC	80% a 30 min.	Áreas de servicio de autopistas
Inalámbrico	3-20 kW	AC/DC	4-8 horas	Carga con cable NO conveniente

2.3.1.2. ELEMENTOS DE UN SISTEMA DE CARGA: HIDROLINERA

El sistema de carga constará de surtidores de hidrógeno con la capacidad de suministrar hidrógeno a diferentes presiones debido a la capacidad de la infraestructura de la hidrogenera (capacidad de creación de hidrógeno a partir d energía, de compresión y de almacenamiento). Estará destinada a vehículos FCEVs (vehículos que funcionan con celdas de combustible de hidrógeno).

Existen diversos surtidores de hidrógeno:

TIPO DE	VENTAJAS	INCONVENIENTES
SURTIDORES		
Dispensadores	Infraestructura más	Requiere tanques a alta
de hidrógeno	desarrollada para	presión
comprimido	almacenamiento y	
(CH2)	transporte de hidrógeno	
	comprimido.	
Dispensadores	Mayor densidad de	Requiere equipos y
de hidrógeno	almacenamiento de	procesos más complejos.
líquido (LH2)	energía en comparación	Pérdida de hidrógeno
		debido a la evaporación.

	con el hidrógeno comprimido.	
Dispensadores	Integración en la	Altos costos iniciales de
integrados	infraestructura de	construcción y
	estaciones de servicio	mantenimiento de
	existentes.	estaciones de servicio de
		hidrógeno.
Dispensadores	Producción local de	La eficiencia del proceso
de	hidrógeno, lo que reduce	de electrolisis puede ser
electrolizadores	la dependencia de	menor en comparación
	suministros externos.	con otras formas de
		producción de hidrógeno.

2.3.3. SISTEMA DE PRODUCCIÓN DE HIDRÓGENO Y ENERGÍA (PILA DE COMBUSTIBLE-ELECTROLIZADOR)

2.3.3.1. ELECTROLIZADOR

Con el objetivo de producir hidrógeno verde, se encuentran los electrolizadores. Estos dispositivos producen el hidrógeno a partir de la separación de la molécula de agua gracias a una alta demanda energética.

Dentro de cada electrolizador funciona el principio de electrolisis. La electrolisis trata de la separación de la molécula de agua en hidrógeno gaseoso y oxígeno elemental:

SEMIRREACCIÓN DE OXIDACIÓN:
$$2H_2O(l) \rightarrow 4H^+(aq) + O_2(g) + 4e^-$$

SEMIRREACCIÓN DE REDUCCIÓN: $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$
GLOBAL: $6H_2O(l) \rightarrow 4H_2O(l) + O_2(g) + 2H_2(g)$
 $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$

Electrolizador	VENTAJAS	INCONVENIENTES

PEM (De	Alta eficiencia. Respuesta rápida a	Elevados costos de operación.
Membrana de	cambios de carga. Operación a	Sensible a la contaminación por CO.
Intercambio de	temperaturas bajas.	
Protones)		
AEL (De	Menor costo inicial. Indicado para	Menor eficiencia. Respuesta lenta a
Álcali)	operaciones a gran escala.	cambios de carga. Operación a
		temperaturas altas.
SOEC (De	Alta eficiencia. Puede operar a la	Costos iniciales elevados.
Óxido Sólido)	inversa (celda de combustible).	Requerimiento de materiales
		resistentes a temperaturas altas.
MCE (De	Pureza del hidrógeno alta. Alta	Elevado desgaste y corrosión
Membrana de	flexibilidad de fuentes de energía.	(operación a altas temperaturas).
Carbonato		Altos costos de mantenimiento.
Fundido)		
PAE (De Ácido	Costos de electrodos reducidos (uso	Sensible a impurezas en el agua
Fosfórico)	de electrodos no preciosos).	(contaminantes en la alimentación).

Se considerará para el circuito de electrolizador:

- Control de carga: la entrada de un electrolizador es esencial para asegurar que la energía proporcionada al sistema sea adecuada en términos de voltaje y corriente, así como para proteger el electrolizador contra condiciones adversas. También puede contribuir a mejorar la eficiencia y facilitar la integración con diversas fuentes de energía.
- Tanque electrolito: El electrolito KOH (hidróxido de potasio) se utiliza combinado en sistemas de electrolizadores, donde se descompone para facilitar la separación de agua en hidrógeno y oxígeno durante el proceso de electrólisis
- Agua depurada: Es crucial para garantizar la eficiencia, durabilidad y pureza del proceso de electrolisis en un electrolizador. Esto asegura que el hidrógeno producido cumpla con los estándares requeridos para diversas aplicaciones.

2.3.3.2. PILA DE COMBUSTIBLE

Para obtener la energía del hidrógeno, se tienen las pilas de combustible. En la pila de combustible se producirá una combustión controlada electroquímicamente de hidrógeno y oxígeno para la producción de electricidad, agua y calor.

El proceso en una pila de combustible implica la entrada de hidrógeno en una lámina, donde se oxida, generando protones y electrones. Estos electrones viajan a través de un circuito externo desde el ánodo hasta el cátodo, creando una diferencia de potencial que se utiliza para producir

energía eléctrica. Al mismo tiempo, el oxígeno entra en la lámina y se reduce, formando agua, que se recircula para ser reutilizada. La pila de combustible consta de secciones: ánodo, cátodo y electrolito, donde se encuentran protones con carga positiva. En resumen, la reacción global es la combinación de hidrógeno y oxígeno para formar agua. Este proceso permite la generación continua de energía eléctrica con la posibilidad de reutilizar el agua producida en el proceso de electrólisis.

Una pila de combustible se compone de diferentes estructuras

- Electrodos: ubicación donde se transforma la energía química en energía eléctrica.
 Produciéndose en el ánodo la reacción de oxidación del combustible y en el cátodo la de reducción del comburente (aire u oxígeno).
- Electrolito: es el medio que transporta los iones de un electrodo a otro. Se deberá poder extraer el trabajo de la pila.
- Placas bipolares: es la conexión de muchas mono celdas (asociaciones básicas de electrodos y electrolito) en serie para obtener voltajes adecuados.
- Pila: estructura compleja basada en la distribución de diferentes mono celdas que lleva sistemas de evacuación de calor, reformado de combustible, control de humedad, ...

Los tipos de pilas de combustible que podemos hallar en el mercado son:

- Pila de Combustible de Membrana de Intercambio de Protones (PEMFC)
- Pila de Combustible de Alcalina (AFC)
- Pila de Combustible de Carbonato fundido (MCFC)
- Óxido Sólido (SOFC)
- Pila de Combustible de Ácido Fosfórico (PAFC)

Pila De	VENTAJAS	INCONVENIENTES
Combustible		
PEMFC	Rangos de temperaturas de	Necesidad de uso de materiales
(Combustible	operación relativamente bajas.	electrocatalizadores caros para aumentar
Poliméricas)	Altas densidades de potencia.	la velocidad de la cinética.
AFC (Alcalinas)	Menores pérdidas de activación (al	Pérdidas de efectividad por la reducción
	tratarse de una pila ácida). Menor	de concentración del electrolito y
	coste de catalizadores.	pérdidas de carga.
MCFC (Carbonatos	Mayor flexibilidad de	Disolución del cátodo al no ser estable
Fundidos)	combustibles (reformando gas	en condiciones de trabajo. Pérdida del

	natural, gas de vertedero,	electrolito teniendo litiación del cátodo y
	alcoholes, gas sintético).	corrosión de componentes estructurales.
SOFC (Óxidos	Alta cinética de los electrodos y	Problemas tecnológicos asociados al
Sólidos)	elevados rendimientos. La	electrolito, el cátodo, el ánodo, las placas
	composición del electrolito es	bipolares y el material sellante.
	invariante.	
PAFC (Pilas de	Pila más desarrollada. Alto	Baja eficacia debido a la aglomeración
Ácido Fosfóricos)	rendimiento para aplicaciones de	del catalizador). Uso de catalizadores de
	cogeneración.	alto coste.

2.3.4. SISTEMA DE ALMACENAMIENTO DE HIDRÓGENO

Para la infraestructura de recarga va a ser necesario un sistema de almacenamiento de hidrógeno. Ya sea con el fin de suministrar a vehículos PHEV y BEV durante el periodo nocturno para llevarlo a la pila de combustible o con el fin de ser usado en la hidrogenera para vehículos FCEV.

Existen diversas maneras para almacenar el hidrógeno:

- Hidrógeno comprimido
- Hidrógeno Líquido
- Hidruros metálicos
- Nanotubos de carbono

Sistema de	VENTAJAS	INCONVENIENTES
Almacenamiento		
Hidrógeno	Tecnología más madura. Capacidad	Densidades energéticas menores
Comprimido	de uso de infraestructura de gas	(necesidad de aumentar presiones).
	natural.	
Hidrógeno	Altas densidades energéticas.	No está tan extendida. Necesidad de
Líquido	Dedicado al sector transporte.	cámaras de vacío en las paredes.
Hidruros	Capacidad de operación de	Complicaciones para durabilidad.
Metálicos	temperatura y presión ambientales	La absorción del hidruro es
		limitada.
Nanotubos De	Reduce drásticamente la necesidad	No se da para producción a gran
Carbono	de la presión de almacenamiento.	escala. Operaciones altas de
		temperatura.

Es importante tener en cuenta que la selección del tipo y tamaño de los tanques de almacenamiento también depende de factores como la capacidad de producción y consumo de hidrógeno, así como de los requisitos específicos de diseño y seguridad de la instalación. Se debe realizar un análisis detallado para determinar las especificaciones exactas de los tanques necesarios en su sistema de presurización en cascada.

2.3.5. SITUACIÓN Y PREVISIÓN DE LA ELECTROMOVILIDAD EN ESPAÑA

En el contexto nacional, se debe contemplar la capacidad de la sociedad española para el uso del transporte mediante energía almacenada en baterías. Se dividirá este epígrafe en las electrolineras y las hidrogeneras.

2.3.5.1. SITUACIÓN Y PREVISIÓN DE LAS ELECTROLINERAS

Para una distribución de electrolineras como se muestra en la ilustración tenemos:

Ilustración 1. Previsión Electrolineras en España

Fuente: *ElectroMaps* (https://map.electromaps.com/es/)

Teniendo en cuenta todos los tipos de puntos de recarga, en España hay en total 22.760 cargadores de acceso público para coches eléctricos a fecha de 30 de junio de 2023. El 57% de ellos (12.935 puntos) se encuentra dentro de las ciudades y entornos urbanos.

Podrían ser cerca de 30.000, pero hay un dato abrumador: a fecha de 30 de junio de 2023, había 6.704 puntos de carga instalados, pero fuera de servicio, bien sea por encontrarse en mal estado, averiados o porque aún no se han podido conectar a la red de distribución eléctrica. Es el 23% de la infraestructura.

Fuente: Híbridos Y Eléctricos (https://www.hibridosyelectricos.com/coches/cuantos-cargadores-coches-electricos-hay-en-espana-2023_71127_102.html)

2.3.5.2. SITUACIÓN Y PREVISIÓN DE LAS HIDROLINERAS

Actualmente en España existen 12 hidrolineras activas y 11 en construcción. De entre las activas tenemos 3 de uso público:

Fuente: Movilidad Eléctrica (https://movilidadelectrica.com/hidrogeneras-2023-donde-estan-y-como-funcionan-las-estaciones-en-las-que-cargar-un-coche-de-hidrogeno/)

Ilustración 2. Previsión hidrolineras en España

Fuente: GASNAM

(https://www.google.com/maps/d/viewer?mid=1ZtWBcb2bIdXnXliVB3cMY4gHGML7CH26 &femb=1&ll=40.36937489302266%2C-3.798769877561483&z=7)

- Hidrogenera de Manoteras (Madrid): Ubicada en el número 34 de la Avenida de Manoteras, esta hidrogenera tiene una capacidad de suministro a 700 bar/MPa de presión y permite la carga de los vehículos en menos de cinco minutos. Esta instalación fue puesta en marcha mediante la colaboración de Toyota España, Enagás, Urbaser, Carburos Metálicos y la Confederación Española de Empresarios de Estaciones de Servicio (CEEES).
- Hidrogenera del Centro Nacional del Hidrógeno: El Centro Nacional del Hidrógeno cuenta con una hidrogenera de uso público. Dado que en la instalación se genera hidrógeno verde para sus proyectos de investigación, es necesario avisar previamente para garantizar que haya el hidrógeno necesario. Su horario es de 7:00 a 19:00 horas y está ubicada en la sede del Centro Nacional del Hidrógeno, en Puertollano (Ciudad Real).

• Hidrogenera en Zaragoza: Situada en la estación de servicio El Cisne 1, en el km 309 de la A-2, en Zaragoza, la instalación produce hidrógeno verde mediante electrolizadores alimentados por paneles fotovoltaicos. Además, cuenta con un sistema de control inteligente que aportará predicciones de producción y demanda. La hidrogenera tendrá una capacidad de producción renovable mínima de 60 kg de hidrógeno al día.

2.4. ENERGÍA SOLAR FOTOVOLTAICA

Se trata de una energía renovable que consiste en la transformación de la energía solar en electricidad por medio de células fotovoltaicas integrantes en módulos solares. Esta conversión es posible gracias al fenómeno de efecto fotovoltaico, el cual se define como la propiedad de absorber fotones y emir electrones. Al ser los electrones libres capturados, se formará una corriente eléctrica que procederá a la conversión de luz en electricidad.

2.4.1. MÓDULOS FOTOVOLTAICOS

Es la estructura encargada de la captación y conversión de radiación solar en corriente eléctrica. Está compuesto por un material semiconductor (suele ser Silicio) sensible a la luz. Debe ser semiconductor porque al incidir sobre estos la luz rompen el enlace, desplazando de esta manera el electrón. Existen diferentes tipos de paneles:

Módulo	VENTAJAS	INCONVENIENTES
Silicio	Eficiencia alta (15%-18%),	Costo más elevado en comparación
Monocristalino	durabilidad, espacio eficiente.	con otras tecnologías. De difícil
		fabricación
Silicio	Tiene menos fases de cristalización.	Menor eficiencia (12%-14%) y
Policristalino	Más asequibles, ideales para	rendimiento en condiciones de baja
	aplicaciones a gran escala.	luminosidad.
Película	Menor costo de producción,	Menor eficiencia (<10%),
Delgada	flexibilidad. Facilita integración en	degradación más rápida (menor vida
	diversas superficies (flexibilidad).	útil en comparación).
Bifaciales	Pueden captar luz desde ambos	Costo inicial más alto. Eficiencia de
	lados, mayor producción (usados en	los módulos baja. No se aprovechan
	diversas inclinaciones y	si no están en superficies reflectoras
	ubicaciones).	de luz solar.
Perovskita	Rentable y fácil de producir	Desafíos en durabilidad y estabilidad
	(materiales abundantes). Capacidad	para producción a gran escala. La
	para obtener radiación en diferentes	estructura puede contener elementos
	longitudes de onda.	tóxicos.

Orgánicos	Ligeros, flexibles, potencial bajo	En comparación con los silicios
	costo. Procesos de fabricación más	cristalinos eficiencias más bajas.
	rentables.	Sufre en mayor medida la
		degradación.

Los paneles solares están compuestos por celdas solares hechas de Silicio que están dopadas con impurezas para cambiar su comportamiento eléctrico a temperatura ambiente. Esto produce semiconductores extrínsecos de tipo N y tipo P. Las celdas tienen zonas diferenciadas según el tipo de dopaje: con electrones (tipo N, dopado con Fósforo) y con huecos (tipo P, dopado con Boro).

Cuando los fotones generados por la radiación solar inciden sobre los electrones libres, estos se desplazan hacia los huecos libres. Esto crea una acumulación de electrones en la región límite entre las zonas, conocida como la zona de agotamiento. Al conectar un circuito, se crea una diferencia de potencial que permite la circulación de electrones desde la capa P a la N, lo que posibilita la recarga de baterías independientes. Es de notable importancia que la zona de la capa N sea más pequeña que la capa P para mejorar la eficiencia del panel y la energía generada será en forma de corriente continua.

2.4.2. REGULADOR DE CARGA

Tiene la funcionalidad de regular y controlar la carga de las baterías que almacenan la electricidad generada por los paneles solares. Se trata del supervisor del flujo de energía entre los paneles solares y la batería, asegurando un funcionamiento eficiente y protegiendo la integridad de la batería. Monitorea constantemente el valor de la tensión mediante el funcionamiento de microprocesadores, que son capaces también de gestionar la forma en la que se carga la batería (optimizando la energía de los paneles).

Hay diferentes tipos de reguladores de carga según el tipo de diseño:

CONTROLADOR	EFICIENCIA	COSTE Y MANTENIMIENTO
DE CARGA		
MPPT	Alta eficiencia, que se	Alto coste inicial. Aumento de costos
	traduce en un aumento	de mantenimiento debido a un
	significativo de producción	elevado nivel de tecnología

PWM

cuando existen diferencias te tensión elevadas

Poca eficiencia, más aún De manera inicial baratos. Fáciles de instalar y de mantenimiento regular sencillo

- Reguladores De Una Etapa: se trata de un diseño más simple. Al involucrar solo una etapa de control se necesitan dos controladores de carga (para proceso de descarga y otro para carga).
- Reguladores De Dos Etapas: Son más complejos, controlan la carga y descarga simultáneamente siendo más habituales en instalaciones fotovoltaicas.

Se trata del elemento del sistema más demandante energéticamente que deberá ser cuidadosamente seleccionado y planificado durante todos los años. Deberá tener sistemas de baterías acompañados junto a diversos rangos de funcionamiento.

3. OBJETIVOS

El objetivo principal del trabajo realizado es diseñar un centro de recarga de electromovilidad en la estación de servicio ubicada en el kilómetro 57 de la A5 (Autovía del Suroeste), basado en un diseño mixto energía solar fotovoltaica / pilas de combustible para abastecer una estación de servicio pública para vehículos híbridos (PHEVs); 100% eléctricos (BEVs); y a medio plazo también aquellos de hidrógeno con pilas de combustible (FCEVs). El trabajo consistirá en conocer la capacidad de independencia que como centro de recarga tendrá la instalación. Dándose para tres alternativas de proyectos:

- a) PROYECTO DE INFRAESTRUCTURA BASADA EN EL AUTOCONSUMO Funcionamiento de la electrolinera e hidrolinera basada únicamente en el autoconsumo. Es decir, generar el hidrógeno suficiente mediante electrolizadores para el abastecimiento de la demanda de la electrolinera (nocturna) y la hidrolinera gracias usando energía primaria solar.
- b) PROYECTO DE INFRAESTRUCTURA DE REGARGA SEMINDEPENDIENTE Funcionamiento de la instalación fotovoltaica de día y de la hidrogenera por la noche. La demanda de la electrolinera diurna será suplida directamente por paneles fotovoltaicos y la nocturna por el funcionamiento de la hidrogenera a través de pilas de combustible. De esta manera la importación de hidrógeno que junto al funcionamiento de la hidrogenera suplirá la demanda del hidrógeno.
- c) PROYECTO DE INFRAESTRUCTURA DE REGARGA BASADA EN LA IMPORTACIÓN DE HIDRÓGENO.

Funcionamiento de la electrolinera e hidrolinera basado en el consumo completo de la importación de hidrógeno proveniente del exterior, es decir, la demanda energía sólo se centra en el consumo de los compresores para almacenamiento de H2 a 900 bar. El funcionamiento de la hidrogenera será las 24 h del día.

Para las tres alternativas de proyectos se pretenden trabajar en:

- Calcular la demanda energética de manera dinámica, es decir, estudiar la proporción en aumento durante el tiempo de la cantidad de vehículos que necesitan este tipo de servicios en el tramo de la carretera A5 indicado para el periodo2024-2050.
- Estudiar la viabilidad técnica de la electrolinera e hidrolinera que utiliza energía solar fotovoltaica y que funciona de día, abastecido por la propia infraestructura fotovoltaica, y de noche mediante el uso de pilas de combustible para el periodo2024-2050.
- Estudiar la rentabilidad económica del trabajo basado en el centro de recarga de vehículos eléctricos para el periodo 2024-2050.

La estructura del plan de trabajo se definirá de manera anual, es decir, en función del crecimiento de este tipo de vehículos en el mercado automotor de España.

El crecimiento dentro del panorama nacional, por consecuencia, variará la demanda energética y con ello la forma de autoabastecimiento de la terminal de recarga. Esto quiere decir que el plan de funcionamiento de la estación será móvil para cada año.

A la hora de aumentar esta demanda energética se variará para cada año el rango de funcionamiento del electrolizador, el número de celdas a colocar en la pila de combustible y la cantidad de paneles solares.

La programación de las actividades consta de diferentes pasos:

- Dimensionamiento del centro de recarga en función de la cantidad de vehículos diarios en un año que se considerarán que pasarán por la estación de servicio. Se deberá hacer una estimación según varios informes recogidos por diversas fuentes de la llegada de este tipo de vehículos en el panorama nacional para el periodo 2024-2050.
- Selección de equipos que se adecuen a las condiciones previstas. Cálculo del número de módulos solares para cada año.
- Seleccionar el tipo de pila de combustible, depósito de almacenamiento, compresores y
 electrolizadores. Dimensionado de dichos equipos y rango de funcionamiento, de
 manera anual.
- 4. Obtención de resultados acerca de la viabilidad técnica de este tipo de instalaciones renovables para el periodo de tiempo descrito.

 Realización del estudio económico basado en las necesidades energéticas y los ingresos provenientes de la electromovilidad para cada año.

4. SOLUCIÓN TÉCNICA

4.1. HIPÓTESIS/SUPOSICIONES

Se deberán tener en cuenta diversas suposiciones a la hora de realizar el cálculo de los diferentes pronósticos:

1º Hipótesis. La cantidad de vehículos que paran en la estación se servicio lo hará de manera constante y se calculará mediante el índice medio diario de vehículos que pasan por el punto kilométricos donde se hará la estación (véase ilustración en anexo).

IMD	CANTIDAD PROMEDIO VEHÍCULOS QUE PASAN POR GASOLINERA A5		
25848	Pronostico Optimista	Pronostico Pesimista	Pronostico Promedio
Necesidad repostar %	10%	5%	
Cantidad que paran %	50%	20%	776
Cantidad Total	1293	259	

Tabla 1. Cantidad de Vehículos Propuestos

Donde obtenemos un pronóstico para la cantidad de vehículos con la necesidad de parar (5-10) % y la cantidad de esas personas que necesitan parar que realmente lo harían (20-50) %:

Número Vehículos =
$$25848 * (0.1 * 0.5 + 0.05 * 0.2) * \frac{1}{2} = 775,44 \cong 776 \text{ vehículos}$$

2º Hipótesis. El 65% del total de los vehículos pararán en un horario de 8:00-20:00 diurno, mientras que el otro 35% lo hará en un horario de 20:00-8:00 nocturno. Estos se contemplan a través de la encuesta ofrecida para diferentes gasolineras (véase anexo).

3º Hipótesis. Se pondrá en valor la siguiente tabla del crecimiento del número de vehículo eléctricos y de celdas de combustible de hidrógeno en base a la siguiente tabla:

Tabla 2. Dimensionado previsto de vehículos [2024-2050]

Año	%Vehículos PHEVs y BEVs	%Vehículos FCEVs	Vehículos PH	EVs y BEVs	Vehículos FCEVs
	FILVS Y DEVS	FCEVS	(8:00-20:00)	(20:00-8:00)	FCLVS
2024	4,43%	0,00%	21	14	0

2025 4,86% 0,00% 23 16 6 2026 5,29% 0,00% 25 17 6 2027 5,71% 0,00% 27 18 6 2028 6,14% 0,00% 29 20 6 2029 6,57% 0,00% 31 21 6 2030 7,00% 0,02% 33 22 3 2031 8,93% 2,00% 42 28 16 2032 10,87% 3,00% 51 34 2 2033 12,80% 3,50% 60 40 28 2034 14,73% 4,00% 69 46 3 2035 16,67% 5,00% 78 52 3 2036 19,42% 6,00% 91 61 4 2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 11 2039 27,67% 20,00% 129 86 156
2027 5,71% 0,00% 27 18 0 2028 6,14% 0,00% 29 20 0 2029 6,57% 0,00% 31 21 0 2030 7,00% 0,02% 33 22 2 2031 8,93% 2,00% 42 28 16 2032 10,87% 3,00% 51 34 24 2033 12,80% 3,50% 60 40 28 2034 14,73% 4,00% 69 46 32 2035 16,67% 5,00% 78 52 39 2036 19,42% 6,00% 91 61 47 2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95
2028 6,14% 0,00% 29 20 0 2029 6,57% 0,00% 31 21 0 2030 7,00% 0,02% 33 22 3 2031 8,93% 2,00% 42 28 16 2032 10,87% 3,00% 51 34 24 2033 12,80% 3,50% 60 40 28 2034 14,73% 4,00% 69 46 33 2035 16,67% 5,00% 78 52 39 2036 19,42% 6,00% 91 61 47 2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 19 2041 31,63% 26,21% 148 99
2029 6,57% 0,00% 31 21 0 2030 7,00% 0,02% 33 22 3 2031 8,93% 2,00% 42 28 16 2032 10,87% 3,00% 51 34 24 2033 12,80% 3,50% 60 40 28 2034 14,73% 4,00% 69 46 32 2035 16,67% 5,00% 78 52 39 2036 19,42% 6,00% 91 61 40 2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 <th< th=""></th<>
2030 7,00% 0,02% 33 22 33 2031 8,93% 2,00% 42 28 16 2032 10,87% 3,00% 51 34 24 2033 12,80% 3,50% 60 40 28 2034 14,73% 4,00% 69 46 33 2035 16,67% 5,00% 78 52 39 2036 19,42% 6,00% 91 61 47 2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2031 8,93% 2,00% 42 28 16 2032 10,87% 3,00% 51 34 24 2033 12,80% 3,50% 60 40 28 2034 14,73% 4,00% 69 46 32 2035 16,67% 5,00% 78 52 39 2036 19,42% 6,00% 91 61 47 2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2032 10,87% 3,00% 51 34 24 2033 12,80% 3,50% 60 40 28 2034 14,73% 4,00% 69 46 32 2035 16,67% 5,00% 78 52 39 2036 19,42% 6,00% 91 61 47 2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2033 12,80% 3,50% 60 40 28 2034 14,73% 4,00% 69 46 32 2035 16,67% 5,00% 78 52 39 2036 19,42% 6,00% 91 61 47 2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2034 14,73% 4,00% 69 46 32 2035 16,67% 5,00% 78 52 39 2036 19,42% 6,00% 91 61 47 2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2035 16,67% 5,00% 78 52 39 2036 19,42% 6,00% 91 61 47 2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2036 19,42% 6,00% 91 61 47 2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2037 22,17% 10,00% 104 69 78 2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2038 24,92% 15,00% 117 78 117 2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2039 27,67% 20,00% 129 86 156 2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2040 30,42% 25,00% 142 95 194 2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2041 31,63% 26,21% 148 99 204 2042 32,83% 27,41% 153 102 213
2042 32,83% 27,41% 153 102 213
· · · · · · · · · · · · · · · · · · ·
2043 34 04% 28 62% 159 106 223
20,0270
2044 35,25% 29,83% 165 110 232
2045 36,45% 31,04% 170 114 24:
2046 37,66% 32,24% 176 117 253
2047 38,87% 33,45% 181 121 260
2048 40,07% 34,66% 187 125 269
2049 41,28% 35,86% 193 129 279
2050 42,49% 37,07% 198 132 288

Los porcentajes vienen determinados por varios motivos:

"El 3,8% de los vehículos que circulan en España son eléctricos, muy lejos de la media de la Unión Europea, que se sitúa en el 15,1% [...]". (Moreno, 2021)

Según la revista *AutoBild* [véase bibliografía]: "El 3,8% de los vehículos que circulan en España son eléctricos, muy lejos de la media de la Unión Europea, que se sitúa en el 15,1%. Por tanto, aunque el interés del público por los coches eléctricos aumenta, no lo hace en consonancia con nuestros vecinos". Fuente: https://www.autobild.es/opinion/opinion-espana-perdiendo-tren-coche-electrico-1296694

Según la revista *Business Insider* [véase bibliografía]: "Estamos hablando de que aproximadamente el 7% del parque español de vehículos será neutro en carbono en 2030, lo que supondrá situarse alrededor de los 2 millones de unidades". Fuente: [https://www.businessinsider.es/espana-solo-tiene-4-vehiculos-electricos-previstos-2030-946359]

"El hidrógeno se presenta como una alternativa, y la hoja de ruta del Gobierno prevé que en 2030 haya entre 5.000 y 7.500 vehículos de mercancías impulsados por este combustible". Fuente: [https://www.businessinsider.es/espana-debe-tener-100-estaciones-hidrogeno-2030-aun-no-tiene-ninguna-953579]

Se ha supuesto que para 2055 el porcentaje de vehículos eléctricos y de hidrógeno sea el mismo que el porcentaje actual de vehículos diésel y de gasolina. Debido a la prohibición del gobierno nacional español a la circulación para 2050.

4º Hipótesis. Para obtener las características promedio de los diferentes vehículos que pararán en la estación de servicio se establecerá para la electrolinera un promedio entre los diez vehículos más encontrados en España eléctricos:

Tabla 3. Vehículos BEVs y PHEVs más importantes en España

VEHÍCULOS BEVs y PHEVs MÁS IMPORTANTES EN ESPAÑA				
	Consumo (kWh/100	Autonomía	Capacidad de Batería	Tiempo Carga
Marca	km)	(km)	(kWh)	(h)
Tesla Model Y	16,9	491	75	0,583
Tesla Model 3	17,65	351	57,5	0,583
Dacia Spring	14	230	26,8	0,667
Audi Q4	15,8	413	77	0,55
KIA e Niro	16,1	415	60	0,717
Citroen e C4	16	351	46	0,5
CUPRA Born	19,6	392	77	0,55
Volkswagen				
ID.4	17,1	496	77	0,55
MG4 Electric	16	520	51	0,65
Fiat 500 e	13	320	42	1,25

Consumo (kWh/100		Capacidad de Batería	Tiempo Carga
km)	Autonomía(km)	(kWh)	(h)
16,215	397,9	58,93	0,66

Y para la hidrolinera un promedio entre los 2 vehículos actuales:

Tabla 4. Vehículos FCEVs más importantes en España

VEHÍCULOS FHEVs ACTUALES EN ESPAÑA				
Marcas	Consumo (kg H2/100 km)	Autonomía (km)	Carga (kg H)	Tiempo Carga (h)
Hyundai NEXO	0,95	660	6,7	0,083
Toyota Mirai	0,79	650	5,6	0,083

Consumo (kg H2/100 km)	Autonomía(km)	Carga (kg H)	Tiempo Carga (h)
Consumo (kg m2/ 100 km)	Autonomia(kin)	Carga (Ng 11)	Hellipo Carga (II)

0,87	655	6,15	0,083
------	-----	------	-------

5º Hipótesis. Se va a proponer que el funcionamiento de la infraestructura por el día será considerado de 8:00 de la mañana a 20:00 de la tarde para todo el año de promedio. Sin considerar estaciones donde pueda variar la luminosidad. Además, la irradiancia se calculará en promedio del año

6º Hipótesis. Se considera un establecimiento de precios medios calculados en función de notas y revistas científicas para diferente coste de equipos.

Tabla 5. Precio instalado según fichas técnicas y cálculos asociados

EQUIPO INSTALADO		Precio (€/unidad)
Paneles Solares		120,00€
Electrolizadores		1.000.000,00 €
Celdas Combu	stible	300.000,00€
Depósitos	200 bar	10.000,00€
	500 bar	2.000,00€
	900 bar	15.000,00€
Compresores 3-200 bar		80.000,00€
	200-500 bar	300.000,00€
	500-900 bar	600.000,00€
Cargadores eléctricos		24.500,00 €
Surtidores de hidrógeno		200.000,00€
Inversores		500,00€
Reguladores de carga		200,00 €

8° Hipótesis. Se calculará el ISBL en función de los métodos de los porcentajes basados en sistema de plantas a nivel industrial (véase ilustración en anexos)

4.2. SELECCIÓN DE EQUIPOS

INSTALACIÓN FOTOVOLTAICA

• MÓDULO SOLAR: Panel Canadian Solar

monocristalinos con tecnología PERC (mayor absorción de la luz solar). Lo que le otorga mayor eficiencia (mayor absorción de la luz solar, mejor rendimiento en condiciones de poca luz. Además, que los paneles PERC funcionan mejor en condiciones de poca luz solar, como en días nublados o al amanecer y al atardecer.

• INVERSOR: AutoSolar Modelo 5000S.

Es un inversor solar fotovoltaico de tipo monofásico con una alta potencia de salida y una amplia gama de características. Es compatible con una variedad de paneles solares y baterías, y cuenta con una serie de protecciones que garantiza un funcionamiento seguro

 REGULADOR DE CARGA: MPPT RS SmartSolar Aislado. Controlador de carga solar MPPT (Seguimiento del Punto de Máxima Potencia). Cuenta con tecnología Bluetooth Smart integrada para monitorización y configuración; y salida de relé programable. Con protección frente a la sobretensión, el cortocircuito y la temperatura.

HIDROGENERA

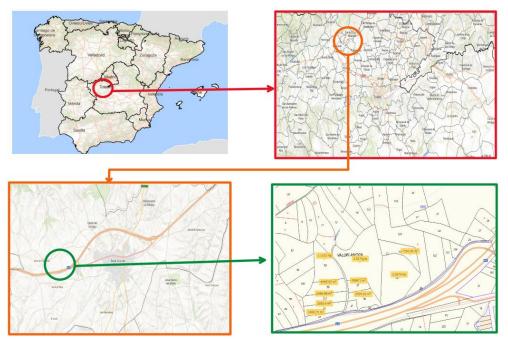
 ELECTROLIZADOR: StarGate Gateway 04 800 Nm3/h Se trata es un electrolizador alcalino de tipo PEM (Membrana de Intercambio Protónico). buena opción para aquellos que buscan un electrolizador de hidrógeno compacto, eficiente y escalable.

COMPRESOR

- 200 BARES: Burckhard Compression Model C3T210.GP

 Es un compresor de pistón reciprocante de alta presión de 3 etapas. Es ideal para estaciones de servicio de hidrógeno, almacenamiento de hidrógeno y aplicaciones industriales.
- o 500 BARES: Hyperbaric 2KS Pro
- 900 BARES: Hyperbaric 1KS Pro 1KS95

 Los compresores de hidrógeno Hyperbaric 2KS Pro son compresores hidráulicos de alta presión. Estos compresores utilizan un sistema hidráulico para comprimir el hidrógeno (funcionan mediante el uso de líquidos en lugar de aire comprimido para generar la presión necesaria).


DEPÓSITO DE ALMACENAMIENTO

- o 200 BARES: Air Liquide Bloque 1400
- o 500 BARES: Hexagon Purus Wystrach Bundle 600
- o 900 BARES: Hexagon Purus Bundle 936
- CELDAS DE COMBUSTIBLE: BALLARD FC Wave 200 kW. Es una celda de combustible de membrana de intercambio de protones (PEM). una buena opción para aplicaciones estacionarias que requieren una alta potencia y eficiencia. Son ideales para cogeneración de energía y calor, y para alimentar sistemas de respaldo.



4.3. EMPLAZAMIENTO

La ubicación de la infraestructura tendrá lugar entre el punto kilométrico 57 y 65 durante la autovía del Suroeste o A-5 (a la altura de Santa Cruz de Retamar):

Plano 1. Plano de Emplazamiento

Plano 2. Plano de Urbanización

Para conseguir obtener la cantidad de terreno necesario para construir la estación de servicio se debe tener en cuenta el número de paneles solares para satisfacer la demanda energética. Por lo tanto, para cada año se tendrá en cuenta el terreno del que se dispone.

Para el plano de urbanización la instalación del campo fotovoltaico será variable dependiendo del tipo de alternativa que se va a proponer. En cambio, el centro de carga y la hidrogenera como se verá más adelante van a ser constantes.

5. RESULTADOS

Durante este epígrafe se hablará de los resultados obtenidos acerca del diseño de la electrolinera e hidrolinera con las alternativas propuestas. Serán resultados basados en un estudio de diseño técnico y presupuestario.

5.1. INFRAESTRUCTURA BASADA EN EL AUTOCONSUMO

Constará de un funcionamiento totalmente independiente del mundo exterior, en el que se incluirán una electrolinera e hidrolinera que funcionará de manera independiente, únicamente debido al abastecimiento de paneles solares.

Los paneles solares cargarán por el día de manera directa los vehículos gracias a los dispensadores eléctricos y por la noche (gracias al hidrógeno almacenado creado por el electrolizador de manera diurna) se pasará ese hidrógeno a energía para los vehículos nocturnos.

La demanda de hidrógeno de la hidrolinera será suplida gracias a los electrolizadores y compresores que funcionan debido a los paneles solares de manera diurna.

5.1.1. INSTALACIÓN FOTOVOLTAICA

10,87%

12,80%

2033

51

60

La instalación fotovoltaica se compone de módulos solares, reguladores de carga e inversores capaces de suministrar la energía demandada a los cargadores establecidos. Se dará para el periodo diurno y se considerará un esquema de trabajo tal que [Esquema 1] (véase anexos ilustraciones y referencias).

Se procederá de esta manera al cálculo de la demanda de vehículos, la demanda energética, la potencia consumida, los módulos solares y el número de cargadores simultáneos para cada año.

Año % PHEVs Vehículos Demanda Potencia **Paneles** y BEVs **PHEVs** (kWh) Consumida **Solares** BEVs [8:00-(**kW**) (8:00-20:00)20:00] 2024 4,43% 1523 21 1237,53 1019,827 2025 23 1355,39 1116,953 1668 4,86% 2026 5,29% 25 1473,25 1214,08 1813 20271591,11 1311,206 1958 5,71% 27 2028 6,14% 29 1708,97 1408,332 2102 2029 6,57% 31 1826.83 1505,459 2247 2030 7,00% 33 1944,69 1602,585 2392 2031 8,93% 42 2475,06 2039,654 3045 2032

3005,43

3535,80

2476,722

2913,791

Tabla 6. Demanda de la Instalación Fotovoltaica

3697

4349

2034	14,73%	69	4066,17	3350,86	5002
2035	16,67%	78	4596,54	3787,928	5654
2036	19,42%	91	5362,63	4419,25	6596
2037	22,17%	104	6128,72	5050,571	7539
2038	24,92%	117	6894,81	5681,892	8481
2039	27,67%	129	7601,97	6264,651	9351
2040	30,42%	142	8368,06	6895,972	10293
2041	31,63%	148	8721,64	7187,351	10728
2042	32,83%	154	9075,22	7478,73	11163
2043	34,04%	159	9369,87	7721,546	11525
2044	35,25%	165	9723,45	8012,925	11960
2045	36,45%	170	10018,10	8255,741	12323
2046	37,66%	176	10371,68	8547,12	12757
2047	38,87%	182	10725,26	8838,499	13192
2048	40,07%	187	11019,91	9081,315	13555
2049	41,28%	193	11373,49	9372,694	13990
2050	42,49%	198	11668,14	9615,51	14352

Previamente se debe calcular la irradiación global que sufrirá la instalación. Se calcula basándose en la información del sistema de información geográfica fotovoltaica que otorga la web de la comisión europea.

Gráfica 2. Irradiación mensual sobre plano fijo de la ubicación

Por lo que la irradiación global media será:

$$G = \frac{\sum_{i=1}^{12} G_i}{12} \left[\frac{kWh}{m^2} \right] * \frac{1}{30} \left[\frac{mes}{dia} \right] = 5,852 \frac{h}{dia}$$

CÁLCULO DE LA DEMANDA ELÉCTRICA

Ahora sí de esta manera se consigue calcular la demanda energética de los vehículos eléctricos (véase el epígrafe de anexos ecuaciones). [Ecuación 1]. Por ejemplo, para el año 2024:

Demanda eléctrica = (21)[vehículos] * (58,93)
$$\left[\frac{kWh}{dia}\right]$$
 = 1237,53 $\left[\frac{kWh}{dia}\right]$

CÁLCULO DE LA POTENCIA CONSUMIDA

Para obtener la potencia consumida se conoce el rendimiento del inversor y del módulo solar (véase ficha técnica); por lo que se usa la fórmula (véase anexos ecuaciones) [Ecuación 2]. Por ejemplo, para el año 2024:

Potencia Consumida =
$$\frac{(1237,53) \left[\frac{\text{kWh}}{\text{dia}}\right]}{5,852 \left[\frac{\text{h}}{\text{dia}}\right] * (0,216) * (0,96)} = 1019,827 \frac{\text{kW}}{\text{dia}}$$

NÚMERO DE PANELES SOLARES (ELECTROLINERA 8:00-20:00)

En el caso de hallar el número de módulos solares, necesitamos la potencia nominal del módulo solar (véase ficha técnica), mediante la ecuación (véase en anexos ecuaciones) [Ecuación 3]. Por ejemplo, para el año 2024:

Paneles Solares =
$$\frac{(1019,827)\left[\frac{kW}{dia}\right]}{(0,67)[kW]} = 1522,13 \approx 1523$$
 paneles

5.1.2. HIDROGENERA

La hidrogenera es la infraestructura que usa el hidrógeno industrial para diferentes usos, en este caso llevará a cabo dos importantes tareas. (Hurtado, 2007)

En primer lugar, va a producir electricidad por la noche mediante la energía que se recibió de los paneles solares durante el periodo [2024-2050]. Después al construir una hidrolinera, toda la demanda será importada en tanques donde se encontrará la función de comprimir el hidrógeno a las presiones correspondientes.

Es por ello por lo que se distinguirán dos periodos, una en la que funcione la electrolinera [2024-2040] y otra en la que se encuentre también operativa la hidrolinera [2040-2050]

5.1.2.1. FUNCIONAMIENTO HIDROGENERA [2024-2039]

La infraestructura se basa en un sistema de almacenamiento fundamentado en el hidrógeno, los equipos son el electrolizador, los compresores, los depósitos de almacenamiento de hidrógeno y las pilas de combustible. Se dará para el periodo nocturno y se considerará un esquema de trabajo tal que [Esquema 2] (véase anexos ilustraciones).

Se corresponderá, pues, al cálculo de la demanda eléctrica de vehículos BEVs y PHEVs que pasan a repostar por la noche, la demanda de hidrógeno de la pila de combustible, la demanda energética del electrolizador y los compresores; la potencia consumida y los paneles solares.

Año Vehículos Demanda Demanda de Demanda Potencia Paneles Solares PHEVs y Energética PHEVs y (kWh) Hidrógeno Consumida Hidrogenera **BEVs** BEVs (kWh) (kW) (kgH₂/día) 2024 4,43% 14 825,020 44,551 2149,675 1771,510 2645 2025 16 942,880 50,916 2456,799 3022 4,86% 2024,605 2026 5,29% 17 1001,810 54,098 2610,337 2151,133 3211 2027 18 1060,740 3400 5,71% 57,280 2763,875 2277,661 2028 20 6,14% 1178,600 63,644 3070,950 2530,716 3778 2029 6,57% 21 1237,530 66,827 3224,536 2657,284 3967 2030 7,00% 22 1296,460 70,009 3378,074 2783,812 4155 2031 8,93% 28 1650,040 4299,350 5289 89,102 3543,019 2032 10,87% 34 2003,620 108,195 4302,226 6422 5220,625 2033 12,80% 40 2357,200 127,289 6141,949 7555 5061,473 2034 14,73% 46 2710,780 146,382 7063,224 5820,679 8688 2035 16,67% 52 3064,360 165,475 7984,500 6579,887 9821 2036 19,42% 61 3594,730 194,115 9366,437 7718,717 11521 2037 22,17% 69 4066,170 219,573 10594,836 8731,019 13032 2038 14732 24,92% 78 4596,540 248,213 11976,774 9869,850 2039 27,67% 86 5067,980 273,671 13205,173 10882,152 16243

Tabla 7. Demanda de la Hidrogenera [2024-2039]

CÁLCULO DE LA DEMANDA DE HIDRÓGENO

Se fundamenta en el consumo de la pila de combustible que es 53,6 Nm³/kWh (véase ficha técnica), que habrá que pasarlo a kgH₂/kWh mediante la ley de los gases ideales añadiendo coeficiente de compresibilidad (véase bibliografía) para condiciones normales 1 atm y 0°C (véase en anexos ecuación) [Ecuación 5]:

$$m = \frac{P * V * Pm}{R * T * z} = \frac{101325 [Pa] * 53,6 \left[\frac{Nm^3}{kWh}\right] * 2,016 * 10^{-3} \left[\frac{kg}{mol}\right]}{8,314 \left[\frac{Pa * m^3}{mol * K}\right] * 273,15[K] * (1,004)} = 0,054 \frac{kgH_2}{kWh}$$

Por lo que es la cantidad de hidrógeno necesario para suplir la demanda eléctrica (véase en anexos ecuación) [Ecuación 6]. Por ejemplo, para el año 2024:

Demanda hidrógeno = (825,02)
$$\left[\frac{kWh}{dia}\right] * (0,054) \left[\frac{kgH_2}{kWh}\right] = 44,551 \frac{kgH_2}{dia}$$

CÁLCULO DE LA DEMANDA ENERGÉTICA

Está basado en la suma del consumo del electrolizador de 4,13 kWh/ Nm³ (véase ficha técnica) y los compresores de 200 bar de 2,153 kWh/ kgH₂ (véase bibliografía). De la misma manera pasamos kWh/ Nm³ a kWh/ kgH₂

$$Consumo_{Electrolizador} = \frac{8,314 \left[\frac{Pa*m^3}{mol*K} \right] * 273,15 [K]*(1,004)}{101325 \left[Pa \right] * \frac{1}{4,13} \left[\frac{Nm^3}{kWh} \right] * 2,016*10^{-3} \left[\frac{kg}{mol} \right]} = 46,099 \frac{kWh}{kgH2}$$

La cantidad de energía que tiene que llegar al electrolizador cada año es (véase anexos ecuaciones) [Ecuación 7]. Por ejemplo, para el año 2024:

Demanda Energética =
$$(44,551) \left[\frac{\text{kgH}_2}{\text{dia}} \right] * ((46,099) + (2,153)) \left[\frac{\text{kWh}}{\text{kgH2}} \right] = 2149,675 \frac{\text{kWh}}{\text{kgH}_2}$$

La potencia consumida y los paneles solares totales se calculan de la misma manera en una instalación fotovoltaica.

5.1.2.2. FUNCIONAMIENTO HIDROGENERA [2040-2050]

Como hemos mencionado a partir del 2040 se incluirá en el proyecto la hidrolinera, que necesitará (aparte de la infraestructura anterior para suplir la electrolinera): compresores y depósitos de almacenamiento capaces de soportar presiones de 500 y 900 bares; compra de tanques para suministrar la importación; y surtidores de hidrógeno.

De esta manera, quedará un esquema de trabajo conjunto dentro de la hidrolinera para estos 10 años reflejada en [Esquema 2] (véase ilustraciones y referencias).

Para la tabla basada en la demanda de la hidrogenera para el periodo [2040-2050] se tiene:

Tabla 8. Demanda de la Hidrogenera [2040-2050]

Año	Vehículos PHEVs y BEVs	Vehículos FCEVs	Demanda (kWh/día)	Demanda H ₂ Hidrolinera (kgH ₂ /día)	Demanda H ₂ Electrolinera (kgH ₂ /día)	Energía Demandada (kWh)	Potencia Consumida (kW)	Pancles Solares Hidrogenera
2040	95	194	5598,35	1193,1	302,311	78445,402	64645,484	96486
2041	99	204	5834,07	1254,6	315,04	82351,266	67864,238	101290
2042	102	213	6010,86	1309,95	324,586	85774,378	70685,165	105501
2043	106	223	6246,58	1371,45	337,315	89680,242	73903,919	110305
2044	110	232	6482,3	1426,8	350,044	93256,939	76851,413	114704
2045	114	241	6718,02	1482,15	362,773	96833,637	79798,907	119103
2046	117	251	6894,81	1543,65	372,32	100585,964	82891,134	123719
2047	121	260	7130,53	1599	385,049	104162,661	85838,627	128118
2048	125	269	7366,25	1654,35	397,778	107739,359	88786,122	132517
2049	128	279	7543,04	1715,85	407,324	111491,637	91878,308	137132

2050 132 288 7778,76 1771,2 420,053 115068,335 94825,803 141532

El cálculo de la demanda de electricidad de vehículos BEVs y PHEVs es el mismo para este periodo que para: [2024-2040]

CÁLCULO DE LA DEMANDA DE HIDRÓGENO REQUERIDO POR HIDROLINERA

Se trata de un procedimiento de cálculo muy semejante al de los eléctricos, es relacionar la capacidad de carga promedio de vehículos FCEVs (véase suposiciones) y el número total de estos vehículos durante todo un día (véase anexos ecuaciones) [Ecuación 8]. Por ejemplo, para el año 2040:

Demanda Hidrógeno
$$\left[\frac{\text{kgH}_2}{\text{dia}}\right] = (194)[\text{vehículos}] * (6,15) \left[\frac{\text{kgH}_2}{\text{dia}}\right] = 1193,1 \frac{\text{kgH}_2}{\text{dia}}$$

<u>CÁLCULO DE LA DEMANDA DE HIDRÓGENO REQUERIDO POR ELECTROLINERA</u>

Se realiza de la misma manera que en el periodo anterior (sólo que está reservado para vehículos de la electrolinera).

CÁLCULO DE LA ENERGÍA DEMANDADA

Es la suma de la procedente de la electrolinera y la hidrolinera

• Para la hidrolinera al estar importado el hidrógeno es necesario fijarse en el consumo del electrolizador de 46,099 kWh/ kgH₂, así como en el consumo de los compresores de 200, 500 y 900 bares de 2,153 kWh/ kgH₂; de 2,871 kWh/ kgH₂; y de 2,4 kWh/ kgH₂ respectivamente (véase bibliografía). Para la ecuación (véase anexos ecuación) [Ecuación 9]. Por ejemplo, para el año 2040:

Energía Demandada = (1193,1)
$$\left[\frac{\text{kgH}_2}{\text{dia}}\right] * \left((46,099) + (2,153) + (2,871) + (2,4)\right) \left[\frac{\text{kWh}}{\text{kgH}_2}\right]$$

= 63858,291 $\frac{\text{kWh}}{\text{dia}}$

• Para la electrolinera la energía demandada se obtiene de la misma forma que para el periodo [2024-2039], usando el consumo del electrolizador compresor a 200 bar.

Una vez tenemos ambas, sumamos las demandas energéticas. Por ejemplo, para el año 2040:

Demanda Energética =
$$(63858,291) + (14587,11) = 78445,402 \frac{\text{kWh}}{\text{dia}}$$

5.2. INFRAESTRUCTURA SEMINDEPENDIENTE

Esta alternativa consiste en la independencia energética de la electrolinera (funcionamiento análogo al epígrafe anterior), pero en este caso la demanda de hidrógeno será cubierto gracias a la importación de hidrógeno a 30 bares en tanques de 36 kilogramos de la empresa Lapesa (véase ficha técnica).

5.2.1. INSTALACIÓN FOTOVOLTAICA

Al tratarse de una instalación basado en la independencia energética para la electrolinera. La instalación fotovoltaica (que incluirá el funcionamiento de la electrolinera de manera diurna) será análoga a la infraestructura de autoconsumo [Esquema 1] y para los cuales los datos serán:

Año	% PHEVs y BEVs	Vehículos PHEVs y BEVs	Demanda (kWh)	Potencia Consumida (kW)	Paneles Solares (8:00-20:00)
2024	4,43%	21	1237,53	1034,663	1545
2025	4,86%	23	1355,39	1133,202	1692
2026	5,29%	25	1473,25	1231,741	1839
2027	5,71%	27	1591,11	1330,281	1986
2028	6,14%	29	1708,97	1428,82	2133
2029	6,57%	31	1826,83	1527,359	2280
2030	7,00%	33	1944,69	1625,899	2427
2031	8,93%	42	2475,06	2069,326	3089
2032	10,87%	51	3005,43	2512,753	3751
2033	12,80%	60	3535,80	2956,179	4413
2034	14,73%	69	4066,17	3399,606	5075
2035	16,67%	78	4596,54	3843,033	5736
2036	19,42%	91	5362,63	4483,539	6692
2037	22,17%	104	6128,72	5124,044	7648
2038	24,92%	117	6894,81	5764,55	8604
2039	27,67%	129	7601,97	6355,786	9487
2040	30,42%	142	8368,06	6996,291	10443
2041	31,63%	148	8721,64	7291,909	10884
2042	32,83%	154	9075,22	7587,527	11325
2043	34,04%	159	9369,87	7833,875	11693
2044	35,25%	165	9723,45	8129,493	12134
2045	36,45%	170	10018,10	8375,842	12502
2046	37,66%	176	10371,68	8671,46	12943
2047	38,87%	182	10725,26	8967,078	13384
2048	40,07%	187	11019,91	9213,426	13752
2049	41,28%	193	11373,49	9509,044	14193
2050	42,49%	198	11668,14	9755,392	14561

5.2.2. HIDROGENERA

La hidrogenera hasta el año 2040, incluirá el funcionamiento exclusivo de la electrolinera de manera nocturna. Por lo tanto, será igual al epígrafe de la infraestructura de autoconsumo. Aunque al añadir la hidrolinera se debe tener en cuenta los tanques importados.

5.2.2.1. FUNCIONAMIENTO HIDROGENERA [2024-2039]

Seguirá el mismo funcionamiento que [Esquema 2]. De manera análoga al apartado de autoconsumo se calculan:

Año	% PHEVs y BEVs	Vehículos PHEVs y BEVs	Demanda (kWh)	Demanda de Hidrógeno (kgH ₂ /día)	Demanda Energética (kWh)	Potencia Consumida (kW)	Paneles Solares Hidrogenera
2024	4,43%	14	825,020	44,551	2149,675	1771,510	2645
2025	4,86%	16	942,880	50,916	2456,799	2024,605	3022
2026	5,29%	17	1001,810	54,098	2610,337	2151,133	3211
2027	5,71%	18	1060,740	57,280	2763,875	2277,661	3400
2028	6,14%	20	1178,600	63,644	3070,950	2530,716	3778
2029	6,57%	21	1237,530	66,827	3224,536	2657,284	3967
2030	7,00%	22	1296,460	70,009	3378,074	2721,040	4062
2031	8,93%	28	1650,040	89,102	4299,350	3463,128	5169
2032	10,87%	34	2003,620	108,195	5220,625	4205,215	6277
2033	12,80%	40	2357,200	127,289	6141,949	4947,342	7385
2034	14,73%	46	2710,780	146,382	7063,224	5689,430	8492
2035	16,67%	52	3064,360	165,475	7984,500	6431,518	9600
2036	19,42%	61	3594,730	194,115	9366,437	7544,669	11261
2037	22,17%	69	4066,170	219,573	10594,836	8534,145	12738
2038	24,92%	78	4596,540	248,213	11976,774	9647,296	14399
2039	27,67%	86	5067,980	273,671	13205,173	10636,772	15876

5.2.2.2. FUNCIONAMIENTO HIDROGENERA [2040-2050]

A partir de los tanques de hidrógeno, la única demanda energética establecida para la hidrolinera es la compresión a 200, 500 y 900 bares de los tanques de hidrógeno importados. De tal manera se obtiene. Es por ello por lo que será [Esquema 3] (véase anexos ilustración).

Tabla 9. Demanda de la Hidrogenera [2040-2050]

Año	Vehículos PHEVs y BEVs	Vehículos FCEVs	Demanda (kWh/día)	Demanda H ₂ Hidrolinera (kgH ₂ /día)	Demanda H ₂ Electrolinera (kgH ₂ /día)	Energía Demandada (kWh)	Potencia Consumida (kW)	Paneles Solares Hidrogenera
2040	95	194	5598,35	1193,1	302,311	23444,685	19320,355	28837
2041	99	204	5834,07	1254,6	315,04	24515,46	20202,762	30154

2042	102	213	6010,86	1309,95	324,586	25386,992	20920,976	31226
2043	106	223	6246,58	1371,45	337,315	26457,768	21803,384	32543
2044	110	232	6482,3	1426,8	350,044	27482,886	22648,166	33804
2045	114	241	6718,02	1482,15	362,773	28508,004	23492,948	35065
2046	117	251	6894,81	1543,65	372,32	29425,242	24248,827	36193
2047	121	260	7130,53	1599	385,049	30450,36	25093,609	37454
2048	125	269	7366,25	1654,35	397,778	31475,478	25938,391	38715
2049	128	279	7543,04	1715,85	407,324	32392,668	26694,231	39843
2050	132	288	7778,76	1771,2	420,053	33417,786	27539,013	41104

Para esta alternativa en la tabla 9 se muestra el resultado de la demanda de electricidad de los vehículos PHEVs y BEVs, además de la demanda de hidrógeno requerido por la electrolinera (debido a que en este caso la demanda de hidrógeno por hidrolinera está suplida gracias a la importación de tanques de hidrógeno). Tanto de la energía demandada para comprimir el hidrógeno hasta 900 bares con el fin de uso para la hidrolinera, como la demanda creada por el electrolizador y el compresor hasta 200 bares para la electrolinera.

5.3. INFRAESTRUCTURA BASADA EN LA IMPORTACIÓN TOTAL DE HIDRÓGENO.

Para este caso toda la demanda vendrá determinada gracias a la importación de tanques de hidrógeno de 36 kg a 40 bares de presión. Se trata de la opción menos independiente a partir de la cual se depende de factores externos para el funcionamiento de la infraestructura.

En este caso tanto para la hidrogenera como para la instalación fotovoltaica cambia la percepción del consumo. Para la hidrogenera la demanda energética vendrá determinada por los compresores, mientras que el uso de los paneles solares se encontrará en hacer funcionar los compresores (ya sea para el uso de electrolinera como el de hidrolinera)

5.3.1. HIDROGENERA

Al no depender si es para el uso nocturno y diurno, debido a que el hidrógeno importado no depende de ello y son sólo los compresores dependientes de los módulos solares. Seguirá un esquema basado en [Esquema 4] (véase en ilustraciones).

Se realizarán los cálculos para el funcionamiento de la hidrogenera [2024-2039] y el funcionamiento de la hidrogenera [2040-2050].

Tabla 10. Demanda de la hidrogenera Alternativa importación total de H2

A	Vehículos PHEVs y	Vehículos FCEVs	Demanda Eléctrica	Demanda hidro	ógeno (kgH ₂)	Energía Demandada	Potencia consumida	Paneles Solares
	BEVs totales	TCLVS	(kWh)	Electrolinera	Hidrolinera	(kWh)	(kW)	Solutes

2024	35	0	2062,55	111,378	0	239,797	197,613	295
2025	38	0	2239,34	120,924	0	260,349	214,549	321
2026	42	0	2475,06	133,653	0	287,755	237,134	354
2027	45	0	2651,85	143,2	0	308,31	254,073	380
2028	48	0	2828,64	152,747	0	328,864	271,011	405
2029	51	0	3005,43	162,293	0	349,417	287,948	430
2030	55	0	3241,15	175,022	0	376,822	310,532	464
2031	70	16	4125,10	222,755	0	479,592	395,223	590
2032	85	23	5009,05	270,489	0	582,363	479,915	717
2033	100	27	5893,00	318,222	0	685,132	564,605	843
2034	115	31	6776,95	365,955	0	787,901	649,295	970
2035	130	39	7660,90	413,689	0	890,672	733,987	1096
2036	151	47	8898,43	480,515	0	1034,549	852,554	1273
2037	173	78	10194,89	550,524	0	1185,278	976,767	1458
2038	194	116	11432,42	617,351	0	1329,157	1095,335	1635
2039	215	155	12669,95	684,177	0	1473,033	1213,901	1812
2040	237	194	13966,41	754,186	1193,1	10481,337	8637,487	12892
2041	246	203	14496,78	782,826	1248,45	10953,917	9026,931	13474
2042	255	213	15027,15	811,466	1309,95	11472,155	9454,002	14111
2043	265	222	15616,45	843,288	1365,3	11951,586	9849,093	14701
2044	274	231	16146,82	871,928	1420,65	12424,167	10238,539	15282
2045	283	241	16677,19	900,568	1482,15	12942,405	10665,61	15919
2046	293	250	17266,49	932,39	1537,5	13421,836	11060,7	16509
2047	302	260	17796,86	961,03	1599	13940,074	11487,771	17146
2048	311	269	18327,23	989,67	1654,35	14412,654	11877,216	17728
2049	321	278	18916,53	1021,493	1709,7	14892,087	12272,308	18317
2050	330	288	19446,90	1050,133	1771,2	15410,325	12699,379	18955

Para la elección más dependiente de hidrógeno no se cuenta con una tabla específica para la instalación fotovoltaica, porque el cálculo se basará en función del hidrógeno importado desde el exterior.

En la tabla 10 se establece la demanda eléctrica en función de los vehículos PHEVs y BEVs y la demanda de hidrógeno para la electrolinera (cantidad de hidrógeno que requiere la pila de combustible para cargar la electrolinera) y la hidrolinera (capacidad de hidrógeno para la demanda de vehículos FCEVs).

Por último, la demanda energética que constituirá la compresión del hidrógeno para los diferentes depósitos. Esto con el objetivo de aumentar su densidad energética.

5.4. DIMENSIONADO DE LOS EQUIPOS

5.4.1. ALTERNATIVA AUTOCONSUMO

En primer lugar, se establecerá la necesidad de los diferentes equipos para cada año: módulos solares, inversores, reguladores de carga, electrolizadores, pilas de combustibles, compresores, depósitos de hidrógeno, cargadores, surtidores de hidrógeno.

Para los módulos solares, cargadores eléctricos, inversores y reguladores de carga tenemos:

	INFRA	ESTRUCTURA B	ASADA EN	N EL AUTOCC	ONSUMO	
Año	Paneles Solares Electrolinera (8:00-20:00)	Paneles Solares Hidrogenera	Paneles Solares Totales	Reguladores de Carga	Inversores	Cargadores
2024	1523	2645	4168	345	559	1
2025	1668	3022	4690	388	629	1
2026	1813	3211	5024	416	674	1
2027	1958	3400	5358	444	718	1
2028	2102	3778	5880	487	788	2
2029	2247	3967	6214	514	833	2
2030	2392	4155	6547	542	878	2
2031	3045	5289	8334	690	1117	2
2032	3697	6422	10119	837	1356	3
2033	4349	7555	11904	985	1596	3
2034	5002	8688	13690	1133	1835	4
2035	5654	9821	15475	1280	2074	4
2036	6596	11521	18117	1499	2428	5
2037	7539	13032	20571	1702	2757	6
2038	8481	14732	23213	1921	3111	6
2039	9351	16243	25594	2117	3430	7
2040	10293	96486	106779	8833	14308	8
2041	10728	101290	112018	9266	15010	8
2042	11163	105501	116664	9650	15633	8
2043	11525	110305	121830	10077	16325	9
2044	11960	114704	126664	10477	16973	9
2045	12323	119103	131426	10871	17611	9
2046	12757	123719	136476	11289	18288	10
2047	13192	128118	141310	11689	18935	10
2048	13555	132517	146072	12083	19573	10
2049	13990	137132	151122	12500	20250	11
2050	14352	141532	155884	12894	20888	11

NÚMERO DE MÓDULOS SOLARES

La suma de los módulos requeridos para la electrolinera para el funcionamiento diurno más el nocturno y más la hidrolinera darán los paneles solares totales (véase anexos ecuaciones) [Ecuación 10]. Por ejemplo, para 2024:

Módulos solares =
$$(1523) + (2645) = 4168$$
 paneles solares

Los inversores y reguladores de carga se van a calcular estableciendo una relación contemplada por la potencia máxima admitida por cada uno de los equipos en función del panel solar

<u>NÚMERO DE REGULADORES DE CARGA</u>

Se sabe que la máxima corriente de entrada operativa FV es 18 A por rastreador y la tensión FV CC máxima es 450 V (ver ficha técnica).

Potencia
$$_{\text{Máxima Admisible}} = I_{\text{máx}} * V_{\text{máx}} = (18)[A] * (45)[V] = 8100W$$

$$\frac{\text{Paneles Solares}}{\text{Reguladores de Carga}} = \frac{\text{P}_{\text{Máx.Adm.}}}{\text{P}_{\text{NOM.}}} = \frac{8100 \text{ [W]}}{670 \text{ [W]}} = 12,09 \frac{\text{Paneles Solares}}{\text{Reguladores de Carga}}$$

Mediante (véase anexo ecuaciones) [Ecuación 11]. Por ejemplo, para el año 2024 (se debe redondear para arriba):

#Reguladores de carga =
$$\frac{(4168) \text{Paneles Solares}}{12,09 \frac{\text{Paneles Solares}}{\text{Reguladores de Carga}}} = 344,748$$

≈ 345 reguladores de carga

NÚMERO DE INVERSORES

Al escoger un inversor 5000S tiene un "Rated Power" de 5000W (ver ficha técnica):

$$\frac{\text{Paneles Solares}}{\text{Inversor}} = \frac{P_{\text{Máx.Adm.}}}{P_{\text{NOM}}} = \frac{5000 \text{ [W]}}{670 \text{ [W]}} = 7,463 \frac{\text{Paneles Solares}}{\text{Inversor}}$$

Para (véase anexo ecuaciones) [Ecuación 12]Por ejemplo, para el año 2024 (se debe redondear para arriba):

#Inversores =
$$\frac{(4168)\text{Paneles Solares}}{7,463\frac{\text{Paneles Solares}}{\text{Inversor}}} = 558,489 \approx 559 \text{ inversores}$$

NÚMERO CARGADORES SIMULTÁNEOS

Como durante el periodo diurno se encuentran más vehículos (el 60% del total) se determinará la cantidad de cargadores simultáneos que debe aparecer para cada año (conociendo el promedio de tiempo de carga) mediante (véase anexos ecuaciones) [Ecuación 13]. Por ejemplo, para el año 2040 (se debe redondear para arriba):

Cargadores =
$$\frac{21 \text{ [vehículos]} * 0,66 \text{ } \left[\frac{\text{h}}{\text{vehículo}}\right]}{24 \text{ [h]}} = 0,578 \approx 1 \text{ cargador}$$

Para el conjunto de equipos que forman parte de la hidrogenera: electrolizadores, celdas de combustibles, compresores y depósitos de hidrógeno (cada uno con una presión), se puede llegar a calcular la necesidad de cada uno de estos equipos.

Tabla 11. Dimensionado Paneles Solares, Reguladores de Carga, Inversores y Cargadores

Año	Demanda Energética (kWh/día)	Demanda de (kgH2		Electrolizador	Celdas De Combustible	COM	PRESC	ORES	DE	PÓSIT	os
		Electrolinera	Hidrolinera			200 bar	500 bar	900 bar	200 bar	500 bar	900 bar
2024	825,02	44,551	0	1	1	1	0	0	3	0	0
2025	942,88	50,916	0	1	1	1	0	0	3	0	0
2026	1001,81	54,098	0	1	1	1	0	0	3	0	0
2027	1060,74	57,28	0	1	1	1	0	0	3	0	0
2028	1178,6	63,644	0	1	1	1	0	0	4	0	0
2029	1237,53	66,827	0	1	1	1	0	0	4	0	0
2030	1296,46	70,009	0	1	2	1	0	0	4	0	0
2031	1650,04	89,102	0	1	2	1	0	0	5	0	0
2032	2003,62	108,195	0	1	2	1	0	0	6	0	0
2033	2357,2	127,289	0	1	2	1	0	0	7	0	0
2034	2710,78	146,382	0	1	3	1	0	0	8	0	0
2035	3064,36	165,475	0	1	3	1	0	0	9	0	0
2036	3594,73	194,115	0	1	3	1	0	0	10	0	0
2037	4066,17	219,573	0	1	4	1	0	0	11	0	0
2038	4596,54	248,213	0	1	4	1	0	0	13	0	0
2039	5067,98	273,671	0	1	4	1	0	0	14	0	0
2040	5598,35	302,311	1193,1	3	5	2	2	4	74	65	26
2041	5834,07	315,04	1254,6	3	5	2	2	4	78	68	27
2042	6010,86	324,586	1309,95	3	5	2	2	4	81	71	28
2043	6246,58	337,315	1371,45	4	5	2	2	4	85	75	30
2044	6482,3	350,044	1426,8	4	6	2	2	4	88	78	31
2045	6718,02	362,773	1482,15	4	6	3	2	5	91	81	32
2046	6894,81	372,32	1543,65	4	6	3	3	5	95	84	33
2047	7130,53	385,049	1599	4	6	3	3	5	98	87	34
2048	7366,25	397,778	1654,35	4	6	3	3	5	102	90	36
2049	7543,04	407,324	1715,85	4	6	3	3	5	105	93	37
2050	7778,76	420,053	1771,2	4	7	3	3	5	109	96	38

CÁLCULO DE ELECTROLIZADORES

Para obtener el número de electrolizadores se establecerá el rango máximo del hidrógeno (100 %) conociendo el caudal nominal (864[(kg Hidrógeno cada día]) y el rendimiento del 65% (véase

ficha técnica). Teniendo en cuenta que el electrolizador opera para las 12 horas que se aplican sobre la placa. Por lo cual, se dará para un tiempo de operación de 12 horas cada día.

C. Nominal
$$\left[\frac{\text{kg H}_2}{\text{h}}\right] = \frac{864 \left[\frac{\text{kg H}_2}{\text{día}}\right]}{24 \left[\frac{\text{h}}{\text{día}}\right]} = 72 \frac{\text{kg H}_2}{\text{h}}$$

$$\text{Caudal M\'{a}ximo } \left[\frac{\text{kg H}_2}{\text{d\'{a}}}\right] = \text{C. Nominal } \left[\frac{\text{kg H}_2}{\text{h}}\right] * \text{tiempo operaci\'{o}n} \left[\frac{\text{h}}{\text{d\'{a}}}\right] * \eta_{\text{ Electrolizador}}$$

Caudal Máximo = (72)
$$\left[\frac{\text{kg H}_2}{\text{h}}\right] * (12) \left[\frac{\text{h}}{\text{dia}}\right] * (0,65) = 561,6 \frac{\text{kg H}_2}{\text{día}}$$

Para el caudal máximo determinamos la cantidad de electrolizadores a partir de la demanda de hidrógeno total de la hidrogenera gracias a (véase anexo ecuaciones) [Ecuación 14]. Por ejemplo, para el año 2040 (se debe redondear para arriba):

$$\text{\#Electrolizadores} = \frac{(302,311+1193,1)\left[\frac{\text{kg H}_2}{\text{día}}\right]}{(561,6)\left[\frac{\text{kg H}_2}{\text{día}}\right]} = 2,663 \approx 3 \text{ Electrolizadores}$$

CÁLCULO DE CELDAS DE COMBUSTIBLE

Para conseguir averiguar el número de celdas de combustible se conoce la potencia nominal (200 kW cada celda]) y el rendimiento del 54% (véase ficha técnica). Teniendo en cuenta que las celdas operan para las 12 horas que se abre la electrolinera de manera nocturna, se seguirá dando para un tiempo de operación de 12 horas cada día.

Demanda Máxima
$$\left[\frac{kWh}{dia}\right]$$

= $P.Nominal [kW] * tiempo operación \left[\frac{h}{dia}\right] * \eta_{Celda Combustible}$

Demanda Máxima =
$$(200)[kW] * (12) \left[\frac{h}{dia}\right] * (0,535) = 1284 \frac{kWh}{día}$$

Análogamente para la demanda máxima se determina el número necesario, esto se hace a partir de la demanda energética producida por la electrolinera durante el periodo nocturno mediante (véase anexos ecuaciones) [Ecuación 15]. Por ejemplo, para el año 2040 (se debe redondear para arriba):

#Celdas de Combustible =
$$\frac{(5598,35) \left[\frac{kWh}{d\acute{a}}\right]}{(1284) \left[\frac{kWh}{d\acute{a}}\right]} = 4,36 \approx 5 \text{ Celdas de Combustible}$$

CÁLCULO DE COMPRESORES

A la hora de calcular los compresores los depósitos de almacenamiento de hidrógeno se deberán tener en cuenta que va a estar comprimido tanto a 200, 500 y 900 bares.

Para el compresor de 200 bar según su capacidad de caudal tendrá 850 Nm³/h (véase ficha técnica), podemos pasarlo a kilos de hidrógeno usando la ecuación de los gases ideales con el factor de compresibilidad (véase bibliografía) para 1 atm y 0°C (condiciones normales).

$$m = \frac{P * V * Pm}{R * T * z} = \frac{101325 [Pa] * 800 \left[\frac{Nm^3}{h}\right] * 2,016 * 10^{-3} \left[\frac{kg}{mol}\right]}{8,314 \left[\frac{Pa * m^3}{mol * K}\right] * 273,15[K] * (1,0004)} = 917,112 \frac{kgH_2}{h}$$

A partir de la capacidad máxima obtenida y la demanda de hidrógeno por la infraestructura de carga (la suma de electrolinera más hidrolinera), obtenemos (véase anexo ecuaciones) [Ecuación 16]. Por ejemplo, para el año 2040 (se debe redondear para arriba):

$$\# \text{Compresores}_{\text{200 bares}} = \frac{(302,311+1193,1) \left[\frac{\text{kg H}_2}{\text{día}}\right]}{(917,112) \left[\frac{\text{kg H}_2}{\text{día}}\right]} = 1,632 \approx 2 \text{ compresores}$$

En el caso de calcular los números de compresores de 500 y 900 bar se debe mirar que solo van a funcionar para la hidrolinera, nos interesa elevar tanto la presión para vehículos FCEVs. Es decir, no se tendrá en cuenta la demanda de hidrógeno de la electrolinera nocturna

Para el compresor de 500 bar y 900 bar los caudales máximos son de 64 y 30 kilos de hidrógeno cada hora respectivamente (véase ficha técnica); podemos pasarlo a kilos de hidrógeno al día:

Caudal Máximo_{500 bar} = (64)
$$\left[\frac{\text{kg H}_2}{\text{h}}\right] * (12) \left[\frac{\text{h}}{\text{dia}}\right] = 768 \frac{\text{kg H}_2}{\text{día}}$$

Caudal Máximo_{900 bar} = (30)
$$\left[\frac{\text{kg H}_2}{\text{h}} \right] * (12) \left[\frac{\text{h}}{\text{dia}} \right] = 360 \frac{\text{kg H}_2}{\text{día}}$$

Como se ha mencionado anteriormente, se valora la demanda de la hidrolinera. Por ejemplo, para el año 2040 (se debe redondear para arriba):

#Compresores_{500 bares} =
$$\frac{1193,1 \left[\frac{\text{kg H}_2}{\text{día}} \right]}{768 \left[\frac{\text{kg H}_2}{\text{día}} \right]} = 1,554 \approx 2 \text{ compresores}$$

$$\text{\#Compresores}_{900 \text{ bares}} = \frac{1193,1 \left[\frac{\text{kg H}_2}{\text{d\'ia}}\right]}{360 \left[\frac{\text{kg H}_2}{\text{d\'ia}}\right]} = 3,314 \approx 4 \text{ compresores}$$

CÁLCULO DE DEPÓSITOS DE ALMACENAMIENTO

Se obtienen el número de depósitos de 200 bar según su capacidad de almacenamiento que serán botellas de 1400 L (véase ficha técnica), podemos pasarlo a kilos de hidrógeno usando la ecuación de los gases ideales con el factor de compresibilidad (véase bibliografía) para 200 bar y 25°C.

$$m = \frac{P * V * Pm}{R * T * z} = \frac{200 * 10^{5} [Pa] * 1,4 [m^{3}] * 2,016 * 10^{-3} \left[\frac{kg}{mol}\right]}{8,314 \left[\frac{Pa * m^{3}}{mol * K}\right] * 298,15 [K] * (1,1232)} = 20,274 kgH_{2}$$

Como en el caso del compresor calculamos a partir de la suma de la demanda de hidrógeno por la electrolinera y la hidrolinera (véase anexo ecuaciones) [Ecuación 17]. Por ejemplo, para el año 2040 (se debe redondear para arriba):

$$\# \text{Dep\'ositos}_{200 \text{ bares}} = \frac{(302,311+1193,1) \left[\frac{\text{kg H}_2}{\text{d\'ia}}\right]}{(20,274)[\text{kg H}_2]} = 73,76 \approx 74 \text{ dep\'ositos}$$

Para hallar los números de depósitos de 500 y 900 bar se debe mirar que solo van a funcionar para la hidrolinera, por la misma razón que con los compresores.

Los depósitos de 500 bar y 900 bar pueden almacenar hasta 600 L H₂ y 47,2 kg H₂ respectivamente (véase ficha técnica). Para pasar los litros a kilos podemos usar la ecuación de los gases ideales añadiendo el factor de compresibilidad, para 500 bares (capacidad tanque) y 25°C

$$P * V = R * \frac{m}{Pm} * T * z \rightarrow$$

$$m = \frac{P * V * Pm}{R * T * z} = \frac{500 * 10^5 [Pa] * 600[L] * \frac{1}{1000} [\frac{m^3}{L}] * 2,016 * 10^{-3} [\frac{kg}{mol}]}{8,314 [\frac{Pa * m^3}{mol * K}] * 298,15[K] * (1,3178)}$$

$$= 18,514 kgH_2$$

Para el resto de los depósitos es igual. Por ejemplo, para el año 2040 (se debe redondear para arriba):

Para el cálculo del número de tanques importados y surtidores de hidrógeno que deberán para cada año con el objetivo de suministrar a la hidrolinera:

Tabla 12. Dimensionado de Tanques importados y Surtidores de Hidrógeno

Año	%FCEVs	Vehículos FCEVs	Demanda H ₂ Hidrolinera (kgH ₂ /día)	Tanques Suministrados Diarios	Surtidores de Hidrógeno
2040	25,00%	194	1193,1	0	1
2041	26,21%	204	1254,6	0	1
2042	27,41%	213	1309,95	0	1
2043	28,62%	223	1371,45	0	1
2044	29,83%	232	1426,8	0	1
2045	31,04%	241	1482,15	0	1
2046	32,24%	251	1543,65	0	1
2047	33,45%	260	1599	0	1
2048	34,66%	269	1654,35	0	1
2049	35,86%	279	1715,85	0	1
2050	37,07%	288	1771,2	0	1

Los tanques suministrados serán nulos para cada año, debido a que la primera alternativa es acerca del autoabastecimiento. Y los surtidores de hidrógeno funcionan de forma análoga a los cargadores eléctricos (véase anexo ecuaciones) [Ecuación 18]. Por ejemplo, para el año 2040 (se debe redondear para arriba):

#Surtidores hidrógeno =
$$\frac{(194)[\text{vehículo}] * (0,083) \left[\frac{\text{h}}{\text{vehículo}}\right]}{24 \left[\text{h}\right]} = 0,671 \approx 1 \text{ surtidor}$$

5.4.2. ALTERNATIVA SEMINDEPENDIENTE

La variación se dará debido a la cantidad de hidrógeno que se debe convertir por parte del electrolizador para la hidrolinera. Ya que para esta alternativa los tanques de hidrógeno suministran el requerimiento de la hidrolinera (el número de paneles variará a partir de 2040).

Tabla 13. Dimensionado Paneles Solares, Reguladores de Carga, Inversores y Cargadores

	INFRAESTRUCTURA SEMINDEPENDIENTE										
Año	Paneles Solares Electrolinera (8:00-20:00)	Paneles Solares Hidrogenera	Paneles Solares Totales	Reguladores de Carga	Inversores	Cargadores					
2024	1545	2645	4190	347	562	1					
2025	1692	3022	4714	390	632	1					
2026	1839	3211	5050	418	677	1					
2027	1986	3400	5386	446	722	1					
2028	2133	3778	5911	489	793	2					
2029	2280	3967	6247	517	838	2					
2030	2427	4062	6489	537	870	2					

2031	3089	5169	8258	684	1107	2
2032	3751	6277	10028	830	1344	3
2033	4413	7385	11798	976	1581	3
2034	5075	8492	13567	1123	1818	4
2035	5736	9600	15336	1269	2055	4
2036	6692	11261	17953	1485	2406	5
2037	7648	12738	20386	1687	2732	6
2038	8604	14399	23003	1903	3083	6
2039	9487	15876	25363	2098	3399	7
2040	10443	27552	37995	3143	5092	8
2041	10884	28810	39694	3284	5319	8
2042	11325	29835	41160	3405	5516	8
2043	11693	31092	42785	3539	5733	9
2044	12134	32297	44431	3676	5954	9
2045	12502	33502	46004	3806	6165	9
2046	12943	34580	47523	3931	6368	10
2047	13384	35785	49169	4067	6589	10
2048	13752	36990	50742	4198	6800	10
2049	14193	38067	52260	4323	7003	11
2050	14561	39272	53833	4453	7214	11

Para calcular el número de electrolizadores, celdas de combustible, compresores y depósitos se calcula de manera similar al autoconsumo, aunque el electrolizador únicamente debe atender a la demanda de hidrógeno de la electrolinera.

Tabla 14. Dimensionado Electrolizadores, Celdas de combustible, Compresores y Depósitos

Año	Demanda Energética (kWh/día)	Demanda de (kgH ₂		Electroliz.	Celdas De Comb.	COM	PRES(ORES	Di	EPÓSI'	ΓOS
		Electrolinera	Hidrolinera			200 bar	500 bar	900 bar	200 bar	500 bar	900 bar
2024	825,02	44,551	0	1	1	1	0	0	3	0	0
2025	942,88	50,916	0	1	1	1	0	0	3	0	0
2026	1001,81	54,098	0	1	1	1	0	0	3	0	0
2027	1060,74	57,28	0	1	1	1	0	0	3	0	0
2028	1178,6	63,644	0	1	1	1	0	0	4	0	0
2029	1237,53	66,827	0	1	1	1	0	0	4	0	0
2030	1296,46	70,009	0	1	2	1	0	0	4	0	0
2031	1650,04	89,102	0	1	2	1	0	0	5	0	0
2032	2003,62	108,195	0	1	2	1	0	0	6	0	0
2033	2357,2	127,289	0	1	2	1	0	0	7	0	0
2034	2710,78	146,382	0	1	3	1	0	0	8	0	0
2035	3064,36	165,475	0	1	3	1	0	0	9	0	0

2036	3594,73	194,115	0	1	3	1	0	0	10	0	0
2037	4066,17	219,573	0	1	4	1	0	0	11	0	0
2038	4596,54	248,213	0	1	4	1	0	0	13	0	0
2039	5067,98	273,671	0	1	4	1	0	0	14	0	0
2040	5598,35	302,311	1193,1	1	5	2	2	4	74	65	26
2041	5834,07	315,04	1254,6	1	5	2	2	4	78	68	27
2042	6010,86	324,586	1309,95	1	5	2	2	4	81	71	28
2043	6246,58	337,315	1371,45	1	5	2	2	4	85	75	30
2044	6482,3	350,044	1426,8	1	6	2	2	4	88	78	31
2045	6718,02	362,773	1482,15	1	6	3	2	5	91	81	32
2046	6894,81	372,32	1543,65	1	6	3	3	5	95	84	33
2047	7130,53	385,049	1599	1	6	3	3	5	98	87	34
2048	7366,25	397,778	1654,35	1	6	3	3	5	102	90	36
2049	7543,04	407,324	1715,85	1	6	3	3	5	105	93	37
2050	7778,76	420,053	1771,2	1	7	3	3	5	109	96	38

Se realiza el cálculo del número de electrolizadores para la demanda de hidrógeno sólo para el requerimiento de la electrolinera y el número de electrolizadores que se dimensionarán únicamente para la electrolinera (para transformar la energía en hidrógeno para la nocturnidad).

Tabla 15. Dimensionado de Tanques importados y Surtidores de Hidrógeno

Año	%FCEVs	Vehículos FCEVs	Demanda H ₂ Hidrolinera (kgH ₂ /día)	Tanques Suministrados Diarios	Surtidores de Hidrógeno
2040	25,00%	194	1193,1	34	1
2041	26,21%	204	1254,6	35	1
2042	27,41%	213	1309,95	37	1
2043	28,62%	223	1371,45	39	1
2044	29,83%	232	1426,8	40	1
2045	31,04%	241	1482,15	42	1
2046	32,24%	251	1543,65	43	1
2047	33,45%	260	1599	45	1
2048	34,66%	269	1654,35	46	1
2049	35,86%	279	1715,85	48	1
2050	37,07%	288	1771,2	50	1

TANQUES SUMINISTRADOS

Los tanques suministrados importados tendrán un tamaño de 36 kgH₂ (véase ficha técnica) y conociendo la demanda existente de la hidrolinera según la ecuación (véase en anexo ecuaciones) [Ecuación 19]. Por ejemplo, para el año 2040 (se debe redondear para arriba):

#Depósitos importados =
$$\frac{(1193,1)\left[\frac{kgH_2}{día}\right]}{(36)[kgH_2]} = 33,142 \approx 34 \text{ depósitos importados}$$

5.4.3. ALTERNATIVA IMPORTACIÓN TOTAL DE HIDRÓGENO

Se trata de la alternativa menos dependiente que existe. En el cual la demanda energética va a ir encaminada en la compresión de hidrógeno a diferentes presiones. Es por ello que la demanda de paneles solares será mucho menor (y con ello el resto de los equipos relacionados con éstos).

Tabla 16. Dimensionado Paneles Solares, Reguladores de Carga y Cargadores

Año	Paneles Solares Totales	Reguladores de Carga	Inversores	Cargadores
2024	295	25	40	1
2025	321	27	44	1
2026	354	30	48	1
2027	380	32	51	1
2028	405	34	55	2
2029	430	36	58	2
2030	464	39	63	2
2031	590	49	80	2
2032	717	60	97	3
2033	843	70	113	3
2034	970	81	130	4
2035	1096	91	147	4
2036	1273	106	171	5
2037	1458	121	196	6
2038	1635	136	220	6
2039	1812	150	243	7
2040	12892	1067	1728	8
2041	13474	1115	1806	8
2042	14111	1168	1891	8
2043	14701	1216	1970	9
2044	15282	1265	2048	9
2045	15919	1317	2134	9
2046	16509	1366	2213	10
2047	17146	1419	2298	10
2048	17728	1467	2376	10
2049	18317	1516	2455	11
2050	18955	1568	2540	11

La tabla 16 muestra que al no tener que transformar la energía en hidrógeno, no hay necesidad de contar con electrolizadores. Eso si el resto de los equipos relacionados con la compresión, almacenamiento y conversión del hidrógeno en energía debe ser igual que en las otras alternativas.

Tabla 17. Dimensionado Electrolizadores, Celdas de Combustible, Compresores y Depósitos

Año	Demanda Energética (kWh/día)	Demanda de Hidrógeno (kgH2/día)		Electrolizador	Celdas De Combustible	COMPRESORES		ORES	DEPÓSITOS		
		Electrolinera	Hidrolinera			200 bar	500 bar	900 bar	200 bar	500 bar	900 bar
2024	825,02	44,551	0	0	1	1	0	0	3	0	0
2025	942,88	50,916	0	0	1	1	0	0	3	0	0
2026	1001,81	54,098	0	0	1	1	0	0	3	0	0
2027	1060,74	57,28	0	0	1	1	0	0	3	0	0
2028	1178,6	63,644	0	0	1	1	0	0	4	0	0
2029	1237,53	66,827	0	0	1	1	0	0	4	0	0
2030	1296,46	70,009	0	0	2	1	0	0	4	0	0
2031	1650,04	89,102	0	0	2	1	0	0	5	0	0
2032	2003,62	108,195	0	0	2	1	0	0	6	0	0
2033	2357,2	127,289	0	0	2	1	0	0	7	0	0
2034	2710,78	146,382	0	0	3	1	0	0	8	0	0
2035	3064,36	165,475	0	0	3	1	0	0	9	0	0
2036	3594,73	194,115	0	0	3	1	0	0	10	0	0
2037	4066,17	219,573	0	0	4	1	0	0	11	0	0
2038	4596,54	248,213	0	0	4	1	0	0	13	0	0
2039	5067,98	273,671	0	0	4	1	0	0	14	0	0
2040	5598,35	302,311	1193,1	0	5	2	2	4	74	65	26
2041	5834,07	315,04	1254,6	0	5	2	2	4	78	68	27
2042	6010,86	324,586	1309,95	0	5	2	2	4	81	71	28
2043	6246,58	337,315	1371,45	0	5	2	2	4	85	75	30
2044	6482,3	350,044	1426,8	0	6	2	2	4	88	78	31
2045	6718,02	362,773	1482,15	0	6	3	2	5	91	81	32
2046	6894,81	372,32	1543,65	0	6	3	3	5	95	84	33
2047	7130,53	385,049	1599	0	6	3	3	5	98	87	34
2048	7366,25	397,778	1654,35	0	6	3	3	5	102	90	36
2049	7543,04	407,324	1715,85	0	6	3	3	5	105	93	37
2050	7778,76	420,053	1771,2	0	7	3	3	5	109	96	38

Para la tabla 17 no hay electrolizadores, porque toda la importación de hidrógeno será comprada y en ningún caso transformada. Para el resto es lo mismo que para la alternativa semindependiente.

Tabla 18. Dimensionado de Tanques Suministrados y Surtidores de Hidrógeno

Año	Vehículos BEVs PHEVs	Vehículos FCEVs	Demanda H ₂ Electrolinera (kgH ₂ /día)	Demanda H ₂ Hidrolinera (kgH ₂ /día)	Tanques Suministrados	Surtidores de Hidrógeno
2024	21	0	111,378	0	4	0
2025	23	0	120,924	0	4	0
2026	25	0	133,653	0	4	0
2027	27	0	143,2	0	4	0
2028	29	0	152,747	0	5	0
2029	31	0	162,293	0	5	0
2030	33	0	175,022	0	5	0
2031	42	9	222,755	0	7	0
2032	51	14	270,489	0	8	0
2033	60	16	318,222	0	9	0
2034	69	19	365,955	0	11	0
2035	78	23	413,689	0	12	0
2036	91	28	480,515	0	14	0
2037	104	47	550,524	0	16	0
2038	117	70	617,351	0	18	0
2039	129	93	684,177	0	20	0
2040	142	117	754,186	1193,1	55	1
2041	148	122	782,826	1248,45	57	1
2042	154	128	811,466	1309,95	59	1
2043	159	133	843,288	1365,3	62	1
2044	165	139	871,928	1420,65	64	1
2045	170	145	900,568	1482,15	67	1
2046	176	150	932,39	1537,5	69	1
2047	182	156	961,03	1599	72	1
2048	187	161	989,67	1654,35	74	1
2049	193	167	1021,493	1709,7	76	1
2050	198	173	1050,133	1771,2	79	1

Con respecto a la tabla 18 los tanques que deben ser importados de hidrógeno ya no son requeridos simplemente para la hidrolinera (alternativa semindependiente) sino que también afecta a la electrolinera.

5.3. CÁLCULO DE LA EXTENSIÓN DEL TERRENO

Con el propósito de obtener la extensión del terreno para hacer la infraestructura, se va a determinar la superficie requerida para colocar los paneles solares.

En primer lugar, se conoce para una ubicación: 40°07'18.3"N 4°17'24.7"W

Se debe calcular el área efectiva del panel, según la disposición (véase ilustración). Para hallar el ángulo de inclinación del panel solar se dará para una latitud de ubicación 40°

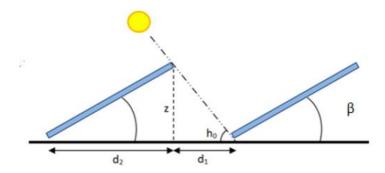


Ilustración 3 Disposición teórica de paneles solares

$$\beta = \phi + (10 - 15)^{\circ} = 40^{\circ} (10 - 15)^{\circ} = (50 - 55)^{\circ}$$

Pero como máximo debe ser 40°

Donde la altura Z del panel se relaciona con la longitud de la placa que es de 2,384 m (véase ficha técnica) y la declinación solar más desfavorable (para el hemisferio norte -23,45 °):

$$Z = L_{panel} * sen(\beta) = (2,384)[m] * sen(40) = 1,532 m$$

Al calcular el ángulo de la altitud solar:

$$h_0 = (90 - \phi) + \delta = (90 - 40) - 23,45 = 26,55^{\circ}$$

Una vez están hallados todos los parámetros se calcula el área efectiva como la multiplicación de la anchura del panel 1,303 m (véase ficha técnica) junto con una distancia de separación de 0,1 m y las distancias mostradas en la figura, calculadas como:

$$d = d_1 + d_2 = \frac{Z}{\tan{(h_0)}} + \frac{Z}{\tan{(\beta)}} = \frac{(1,532)}{\tan{(26.55^\circ)}} + \frac{(1,532)}{\tan{(40^\circ)}} = 4,892 \text{ m}$$

Teniendo entonces un área efectiva de panel:

Área
$$_{Panel\ Solar} = (Ancho + dist._{Separación}) * d = (1,303 + 0,1) * (4,892) = 6,863 \text{ m}^2$$

Teniendo las dimensiones de los diferentes equipos que forman parte de la hidrogenera (véase ficha técnica); más unos márgenes asociados (redondear hacia arriba a las unidades o décimas):

- Celdas de combustible: 1210 mm x 738 mm \rightarrow 1,5m x 1,5m = 11,25 m²
- Electrolizador: 12,192 m x 2,4384 m \rightarrow 12,5 m x 3 m = 37,5 m²
- Compresor:
 - \circ 200 bares: 5,2 m x 3,2 m \Rightarrow 5,5 m x 3,5 m = 19,25 m²
 - \circ 500 bares: 4 m x 2,2 m \rightarrow 4,5 m x 2,5 m = 11,25 m²

 \circ 900 bares: 4 m x 2,2 m \rightarrow 4,5 m x 2,5 m = 11,25 m²

• Depósitos de almacenamiento:

 \circ 200 bares: 1,795 m x 1,795 m \Rightarrow 2 m x 2 m = 4 m²

○ 500 bares: 0,77 m x 0,76 m \rightarrow 1 m x 1 m = 1 m²

 \circ 900 bares: 1,2 m x 1,2 m \rightarrow 1,5 m x 1,5 m = 2,25 m²

Los terrenos demandados necesarios que se van a necesitar cada año para las diferentes alternativas serán:

5.3.1. ALTERNATIVA AUTOCONSUMO

Tabla 19. Cálculo de la extensión del terreno para alternativa Autoconsumo

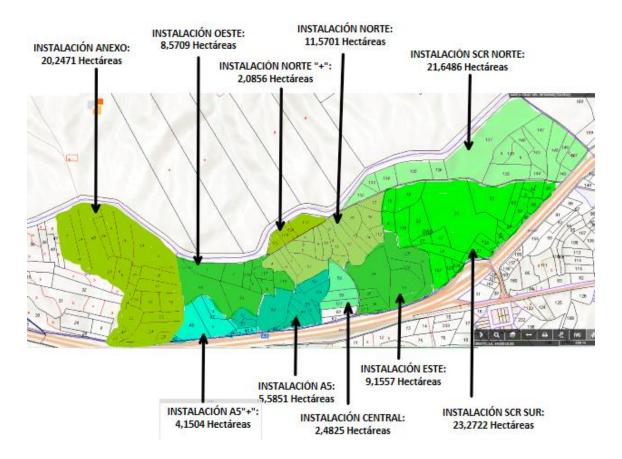
INFRAESTRUCTURA BASADA EN EL								
	AUT	OCONSUMO						
Año	Paneles Solares	Extensión de la	Extensión de la					
	Totales	instalación	Hidrogenera					
		fotovoltaica (m²)	(m^2)					
2024	4168	28604,984	80					
2025	4690	32187,47	80					
2026	5024	34479,712	80					
2027	5358	36771,954	80					
2028	5880	40354,44	84					
2029	6214	42646,682	84					
2030	6547	44932,061	95,25					
2031	8334	57196,242	99,25					
2032	10119	69446,697	103,25					
2033	11904	81697,152	107,25					
2034	13690	93954,47	122,5					
2035	15475	106204,925	126,5					
2036	18117	124336,971	130,5					
2037	20571	141178,773	145,75					
2038	23213	159310,819	153,75					
2039	25594	175651,622	157,75					
2040	106779	732824,277	670,85					
2041	112018	768779,534	691,02					
2042	116664	800665,032	707,19					
2043	121830	836119,29	767,75					
2044	126664	869295,032	795,17					
2045	131426	901976,638	841,84					
2046	136476	936634,788	873,26					
2047	141310	969810,53	889,43					
2048	146072	1002492,136	911,85					
2049	151122	1037150,286	928,02					

2050 15588	1069831,892	959,44
-------------------	-------------	--------

Los terrenos requeridos para cada infraestructura se obtienen gracias al cálculo de la extensión de la instalación fotovoltaica [Ecuación 20] y el de la extensión de la hidrogenera [Ecuación 21 para márgenes] (véase anexos ecuaciones). Para la extensión máxima2050:

Instalación Fotovoltaica =
$$(6,863)$$
[m²] * (155884) = $1069831,892$ m²

Instalación Hidrogenera


$$= (19,25)[m^2] * (3) + (11,25)[m^2] * (3) + (11,25)[m^2] * (5) + (4)[m^2]$$

$$* (109) + (0,64)[m^2] * (96) + (2,25)[m^2] * (38) + (37,5)[m^2] * (4)$$

$$+ (11,25)[m^2] * (7) = 959,44 m^2$$

INSTALACIÓN FOTOVOLTAICA

Para la ilustración de compra de los terrenos para el campo de paneles solares:

Terreno Módulos Solares

Que es espacio suficiente con respecto al requerido el último año (106,983 Hectáreas).

HIDROGENERA

Para la hidrogenera se establecerá cerca de la instalación de carga:

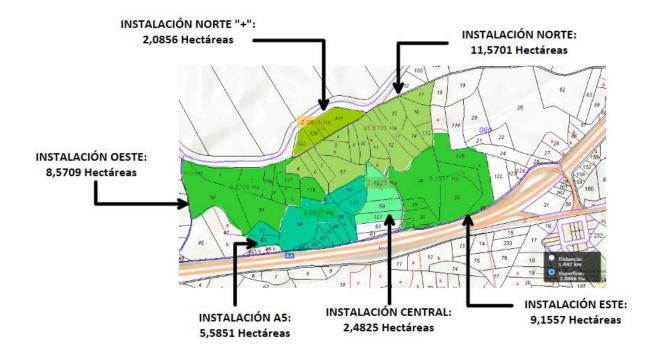
Para la hidrogenera la parcela obtenida ya es más que suficiente (1549,73 m²) de los 959,44 m² requeridos para el último año.

5.3.2. ALTERNATIVA SEMINDEPENDIENTE

Para la alternativa semindependiente en el cual se usa el hidrógeno importado para la hidrolinera, se tiene una extensión de terreno basado en la instalación fotovoltaica y la hidrogenera tal que:

Tabla 20. Cálculo de la extensión del terreno en función de la infraestructura para la alternativa semindependiente

INFRAESTRUCTURA SEMINDEPENDIENTE								
Año	Paneles Solares Totales	Extensión de la instalación fotovoltaica (m²)	Extensión de la Hidrogenera (m²)					
2024	4168	28604,984	80					
2025	4690	32187,47	80					
2026	5024	34479,712	80					
2027	5358	36771,954	80					
2028	5880	40354,44	84					
2029	6214	42646,682	84					
2030	6547	44932,061	95,25					
2031	8334	57196,242	99,25					
2032	10119	69446,697	103,25					
2033	11904	81697,152	107,25					



2034	13690	93954,47	122,5
2035	15475	106204,925	126,5
2036	18117	124336,971	130,5
2037	20571	141178,773	145,75
2038	23213	159310,819	153,75
2039	25594	175651,622	157,75
2040	39130	268549,19	595,85
2041	40882	280573,166	616,02
2042	42389	290915,707	632,19
2043	44068	302438,684	655,25
2044	45764	314078,332	682,67
2045	47388	325223,844	729,34
2046	48950	335943,85	760,76
2047	50646	347583,498	776,93
2048	52270	358729,01	799,35
2049	53833	369455,879	815,52
2050	55456	380594,528	846,94

Una vez están calculados los requerimientos (tabla 20), se miden las hectáreas necesarias tanto para la instalación fotovoltaica como la hidrogenera. Para la compra final se ha requerido de la sede electrónica del catastro (véase bibliografía).

INSTALACIÓN FOTOVOLTAICA

En el caso de esta alternativa contaremos con 6 zonas de campos fotovoltaicos:

Terreno Módulos Solares = 2,4825 Ha + 5,5851 Ha + 8,5709 Ha + 11,5701 Ha + 2,0856 Ha + 9,1557 Ha = 39,4499 Ha

Que con diferencia es espacio suficiente con respecto al requerido el último año (38,059 Hectáreas).

HIDROGENERA

La hidrogenera se establecerá de la misma forma para el resto de las alternativas, por lo que la parcela obtenida sigue siendo más que suficiente (1549,73 m²) de los 846,94 m² requeridos para el último año.

5.3.3. ALTERNATIVA IMPORTACIÓN TOTAL DE HIDRÓGENO

Para la alternativa más dependiente del exterior todo lo producido será requerido gracias a la importación de tanques de hidrógeno.

Tabla 21. Cálculo de la extensión del terreno en función de la infraestructura basado en importación H2

INFR	AESTRUCTURA	BASADO IMPO	RTACIÓN H ₂
Año	Paneles Solares Totales	Extensión de la instalación fotovoltaica (m²)	Extensión de la Hidrogenera (m²)
2024	295	2024,585	42,5
2025	321	2203,023	42,5
2026	354	2429,502	42,5
2027	380	2607,94	42,5
2028	405	2779,515	46,5
2029	430	2951,09	46,5
2030	464	3184,432	57,75
2031	590	4049,17	61,75
2032	717	4920,771	65,75
2033	843	5785,509	69,75
2034	970	6657,11	85
2035	1096	7521,848	89
2036	1273	8736,599	93
2037	1458	10006,254	108,25
2038	1635	11221,005	116,25
2039	1812	12435,756	120,25
2040	12892	88477,796	558,35
2041	13474	92472,062	578,52
2042	14111	96843,793	594,69
2043	14701	100892,963	617,75
2044	15282	104880,366	645,17

2045	15919	109252,097	691,84
2046	16509	113301,267	723,26
2047	17146	117672,998	739,43
2048	17728	121667,264	761,85
2049	18317	125709,571	778,02
2050	18955	130088,165	809,44

Vamos a distinguir dos instalaciones previstas para esta alternativa:

Terreno Módulos Solares = 2,4825 Ha + 11,5701 Ha = 14,0526 Ha

Que con diferencia es espacio suficiente con respecto al demandado (13,009 Hectáreas). Para el dimensionamiento de la hidrogenera será análoga al resto de alternativas y por ello se podrá establecer en el emplazamiento previsto (para la hidrolinera la parcela obtenida es de 1549,73 m² de los 846,94 m² requeridos para el último año).

5.4. ESTUDIO ECONÓMICO

Para el estudio económico nos centraremos en considerar una tabla basada en el coste de equipamiento, una tabla de ventas y una tabla de costes para cada alternativa. Por último, se realizará un flujo de caja apreciando la rentabilidad dentro de un modelo dinámico.

5.4.1. TABLA DE VENTAS

La tabla de ventas es aquella que está asociada las proyecciones de ingresos basadas en las ventas previstas de la electrolinera e hidrolinera durante los periodos especificados. Será el mismo para las diferentes alternativas

Tabla 22. Tabla de Ventas

Año	Vehículo	Tarifa	Vehículo	Tarifa	Precio	Precio Año
	s diarios	Eléctrico	s diarios	Hidrógen	Bruto	(€/anual)
	BEVs y	S	FCEVs	О	(€/día)	
	PHEVs	(€/kWh)		(€/kgH2)		
2024	35	0,89	0	11,25	1.835,67 €	670.294,72 €
2025	39	0,89	0	11,25	2.045,46 €	746.899,83 €
2026	42	0,89	0	11,25	2.202,80 €	804.353,66 €
2027	45	0,89	0	11,25	2.360,15 €	861.807,49 €
2028	49	0,89	0	11,25	2.569,94 €	938.412,61 €
2029	52	0,89	0	11,25	2.727,28 €	995.866,44 €
2030	55	0,89	0	11,25	2.884,62 €	1.053.320,27 €
2031	70	0,89	0	11,25	3.671,34 €	1.340.589,44 €
2032	85	0,89	0	11,25	4.458,05 €	1.627.858,60 €
2033	100	0,89	0	11,25	5.244,77 €	1.915.127,77 €
2034	115	0,89	0	11,25	6.031,49 €	2.202.396,93 €
2035	130	0,89	0	11,25	6.818,20€	2.489.666,10 €
2036	152	0,89	0	11,25	7.972,05 €	2.910.994,20 €
2037	173	0,89	0	11,25	9.073,45 €	3.313.171,03 €
2038	195	0,89	0	11,25	10.227,30 €	3.734.499,14 €
2039	215	0,89	0	11,25	11.276,26 €	4.117.524,70 €
2040	237	0,89	194	11,25	25.852,48 €	9.440.033,04 €
2041	247	0,89	204	11,25	27.068,83 €	9.884.183,97 €
2042	256	0,89	213	11,25	28.163,55 €	10.283.919,81 €
2043	265	0,89	223	11,25	29.327,45 €	10.708.919,46 €
2044	275	0,89	232	11,25	30.474,62 €	11.127.806,58 €
2045	284	0,89	241	11,25	31.569,33 €	11.527.542,42 €
2046	293	0,89	251	11,25	32.733,24 €	11.952.542,07 €
2047	303	0,89	260	11,25	33.880,40 €	12.371.429,19 €
2048	312	0,89	269	11,25	34.975,12 €	12.771.165,03 €
2049	321	0,89	279	11,25	36.139,02 €	13.196.164,69 €
2050	330	0,89	288	11,25	37.233,74 €	13.595.900,53 €

5.4.2. TABLA DE COSTES VARIABLES

Se especifica como los costos asociados con la prestación de servicios, al tratarse de la variable va en consecuencia con el nivel de producción. En nuestro caso se trata del sueldo de los trabajadores e importes de los tanques de hidrógeno para la hidrolinera.

La tabla de costes será diversa para cada tipo de alternativa, es por ello que es necesario el cálculo de los costes variables para:

5.4.2.1. ALTERNATIVA AUTOCONSUMO

Tabla 23. Tabla de Costes alternativa de Autoconsumo

	INFRAESTRUCTURA DE AUTOCONSUMO							
Año	Vehículos Totales diarios	Precio Bruto Anual (€/año)	Número Trabajadores	Precio Bruto Tanques Hidrógeno (€/depósito)	Tanques Importados Hidrógeno	Coste Total (€/año)		
2024	35	18.000,00 €	5	216,00 €	0	90.000,00 €		
2025	39	18.000,00 €	5	216,00 €	0	90.000,00 €		
2026	42	18.000,00 €	5	216,00 €	0	90.000,00 €		
2027	45	18.000,00 €	5	216,00 €	0	90.000,00 €		
2028	49	18.000,00 €	5	216,00 €	0	90.000,00 €		
2029	52	18.000,00 €	8	216,00 €	0	144.000,00 €		
2030	55	18.000,00 €	8	216,00 €	0	144.000,00 €		
2031	70	18.000,00 €	8	216,00 €	0	144.000,00 €		
2032	85	18.000,00 €	8	216,00 €	0	144.000,00 €		
2033	100	18.000,00 €	11	216,00 €	0	198.000,00 €		
2034	115	18.000,00 €	11	216,00 €	0	198.000,00 €		
2035	130	18.000,00 €	11	216,00 €	0	198.000,00 €		
2036	152	18.000,00 €	14	216,00 €	0	252.000,00 €		
2037	173	18.000,00 €	14	216,00 €	0	252.000,00 €		
2038	195	18.000,00 €	14	216,00 €	0	252.000,00 €		
2039	215	18.000,00 €	17	216,00 €	0	306.000,00 €		
2040	431	18.000,00 €	23	216,00 €	0	414.000,00 €		
2041	451	18.000,00 €	26	216,00 €	0	468.000,00 €		
2042	469	18.000,00 €	26	216,00 €	0	468.000,00€		
2043	488	18.000,00 €	26	216,00 €	0	468.000,00 €		
2044	507	18.000,00€	29	216,00 €	0	522.000,00 €		
2045	525	18.000,00 €	29	216,00 €	0	522.000,00 €		
2046	544	18.000,00 €	29	216,00 €	0	522.000,00 €		
2047	563	18.000,00 €	32	216,00 €	0	576.000,00 €		
2048	581	18.000,00€	32	216,00 €	0	576.000,00€		
2049	600	18.000,00 €	35	216,00 €	0	630.000,00 €		
2050	618	18.000,00 €	35	216,00 €	0	630.000,00 €		

Se ha propuesto un sueldo bruto anual de 18.000,00 € que se ha considerado promedio para este tipo de trabajo. Además, se ha contactado con la empresa proveedora del depósito en el cual se ha fijado un precio el tanque de 36 kilos de hidrógeno de alrededor de 216,00 €

Para el resto de las alternativas al ir ligadas a la importación de hidrógeno, se van a incluir estos tanques dentro de la tabla de costes.

5.4.2.2. ALTERNATIVA SEMINDEPENDIENTE

Tabla 24. Tabla de Costes alternativa Semindependiente

		INFRAES	STRUCTURA S	EMINDEPENDI	ENTE	
Año	Vehículos Totales diarios	Precio Bruto Anual (€/año)	Número Trabajadores	Precio Bruto Tanques Hidrógeno (€/depósito)	Tanques Importados Hidrógeno	Coste Total (€/año)
2024	35	18.000,00 €	5	216,00 €	0	90.000,00 €
2025	39	18.000,00 €	5	216,00 €	0	90.000,00 €
2026	42	18.000,00 €	5	216,00 €	0	90.000,00 €
2027	45	18.000,00 €	5	216,00 €	0	90.000,00 €
2028	49	18.000,00 €	5	216,00 €	0	90.000,00 €
2029	52	18.000,00 €	8	216,00 €	0	144.000,00 €
2030	55	18.000,00 €	8	216,00 €	0	144.000,00 €
2031	70	18.000,00 €	8	216,00 €	0	144.000,00 €
2032	85	18.000,00 €	8	216,00 €	0	144.000,00 €
2033	100	18.000,00 €	11	216,00 €	0	198.000,00 €
2034	115	18.000,00 €	11	216,00 €	0	198.000,00 €
2035	130	18.000,00 €	11	216,00 €	0	198.000,00 €
2036	152	18.000,00 €	14	216,00 €	0	252.000,00 €
2037	173	18.000,00 €	14	216,00 €	0	252.000,00 €
2038	195	18.000,00 €	14	216,00 €	0	252.000,00 €
2039	215	18.000,00 €	17	216,00 €	0	306.000,00 €
2040	431	18.000,00 €	23	216,00 €	34	421.344,00 €
2041	451	18.000,00 €	26	216,00 €	35	475.560,00 €
2042	469	18.000,00 €	26	216,00 €	37	475.992,00 €
2043	488	18.000,00 €	26	216,00 €	39	476.424,00 €
2044	507	18.000,00 €	29	216,00 €	40	530.640,00 €
2045	525	18.000,00 €	29	216,00 €	42	531.072,00 €
2046	544	18.000,00 €	29	216,00 €	43	531.288,00 €
2047	563	18.000,00 €	32	216,00 €	45	585.720,00 €
2048	581	18.000,00 €	32	216,00 €	46	585.936,00 €
2049	600	18.000,00 €	35	216,00 €	48	640.368,00 €
2050	618	18.000,00 €	35	216,00 €	50	640.800,00 €

5.4.2.2. ALTERNATIVA IMPORTACIÓN TOTAL DE HIDRÓGENO

Tabla 25. Tabla de Costes infraestructura basada en la importación de hidrógeno

	INFRAESTRUCTURA DE IMPORTACIÓN DE HIDRÓGENO							
Año	Vehículos	Precio Bruto	Número	Precio Bruto	Tanques	Coste Total (€/año)		
	Totales diarios	Anual (€/año)	Trabajadores	Tanques Hidrógeno (€/depósito)	Importados Hidrógeno			
2024	35	18.000,00 €	5	216,00 €	4	90.864,00 €		
2025	39	18.000,00 €	5	216,00 €	4	90.864,00 €		
2026	42	18.000,00 €	5	216,00 €	4	90.864,00 €		
2027	45	18.000,00 €	5	216,00 €	4	90.864,00 €		
2028	49	18.000,00 €	5	216,00 €	5	91.080,00 €		
2029	52	18.000,00 €	8	216,00 €	5	145.080,00 €		
2030	55	18.000,00 €	8	216,00 €	5	145.080,00 €		
2031	70	18.000,00 €	8	216,00 €	7	145.512,00 €		
2032	85	18.000,00 €	8	216,00 €	8	145.728,00 €		
2033	100	18.000,00 €	11	216,00 €	9	199.944,00 €		
2034	115	18.000,00 €	11	216,00 €	11	200.376,00 €		
2035	130	18.000,00 €	11	216,00 €	12	200.592,00 €		
2036	152	18.000,00 €	14	216,00 €	14	255.024,00 €		
2037	173	18.000,00 €	14	216,00 €	16	255.456,00 €		
2038	195	18.000,00 €	14	216,00 €	18	255.888,00 €		
2039	215	18.000,00 €	17	216,00 €	20	310.320,00 €		
2040	431	18.000,00 €	23	216,00 €	55	425.880,00 €		
2041	451	18.000,00 €	26	216,00 €	57	480.312,00 €		
2042	469	18.000,00 €	26	216,00 €	59	480.744,00 €		
2043	488	18.000,00 €	26	216,00 €	62	481.392,00 €		
2044	507	18.000,00 €	29	216,00 €	64	535.824,00 €		
2045	525	18.000,00€	29	216,00 €	67	536.472,00 €		
2046	544	18.000,00€	29	216,00 €	69	536.904,00 €		
2047	563	18.000,00€	32	216,00 €	72	591.552,00 €		
2048	581	18.000,00€	32	216,00 €	74	591.984,00 €		
2049	600	18.000,00€	35	216,00 €	76	646.416,00 €		
2050	618	18.000,00€	35	216,00 €	79	647.064,00 €		

5.4.3. TABLA DE INMOVILIZADO

En primer lugar, se consigue descifrar los costes de los equipos que formarán parte en la infraestructura, obtenido los precios a través del apartado de hipótesis y suposiciones:

INSTALACIÓN FOTOVOLTAICA

• MÓDULO SOLAR: Panel Canadian Solar. Para un precio de 120,00 € la unidad.

- INVERSOR: AutoSolar Modelo 5000S. Para un precio de 500,00 € la unidad.
- REGULADOR DE CARGA: MPPT RS SmartSolar Aislado. Para un precio de 200,00 € la unidad.

HIDROGENERA

• ELECTROLIZADOR: StarGate Gateway 04 800 Nm3/h. Para un precio de 1.000.000,00 € la unidad

COMPRESOR

- 200 BARES: Burckhard Compression Modelo C3T210.GP. Para un precio de 80.000,00 € la unidad
- o 500 BARES: Hyperbaric 2KS Pro. Para un precio de 300.000,00 € la unidad.
- 900 BARES: Hyperbaric 1KS Pro 1KS95. Para un precio de 600.000,00 € la unidad.

• DEPÓSITO DE ALMACENAMIENTO

- o 200 BARES: Air Liquide Bloque 1400. Para un precio de 10.000,00 € la unidad
- 500 BARES: Hexagon Purus Wystrach Bundle 600. Para un precio de 2.000 € la unidad.
- o 900 BARES: Hexagon Purus Bundle 936. Para un precio de 15.000 € la unidad.
- CELDAS DE COMBUSTIBLE: BALLARD FC Wave 200 kW. Para un precio de 300.00,00 € la unidad.

Posteriormente se introduce una tabla donde se colocan las compras en unidades de los equipos que se tienen que hacer para cada año. Y después se marcarán 4 años de inversión para establecer la compra de los equipos:

- 1° INVERSIÓN. Para 2024 se adquirirán los equipos de hasta 2033
- 2º INVERSIÓN. Para 2032 se adquirirán los equipos de hasta 2039
- 3º INVERSIÓN. Para 2038 se adquirirán los equipos de hasta 2042
- 4º INVERSIÓN. Para 2041 se adquirirán los equipos de hasta 2050

Estas 4 inversiones se dan para cualquier alternativa de infraestructura, obteniéndose la tabla de requerimiento y la tabla de inversión.

5.4.3.1. ALTERNATIVA AUTOCONSUMO

Tabla 26. Tabla de Equipamiento Requerido alternativa Autoconsumo

	INMOV	ILIZADO R	EQUERII	OO PARA CADA AÑ	O INFRAESTRUCTU	JRA DE 2	AUTOCONSUMO	
Año				Depósitos	Compresores		Inv.	

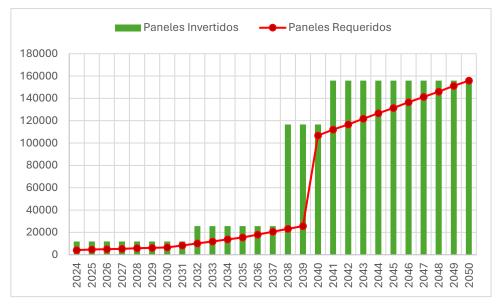

	Paneles Solares	Electroliz .	Celdas Comb.	200 bar	500 bar	900 bar	200 bar	500 bar	900 bar	Carg. Electr	Surt. H2		Reg. Carga
2024	4168	1	1	3	0	0	1	0	0	1	0	559	345
2025	522	0	0	0	0	0	0	0	0	0	0	70	43
2026	334	0	0	0	0	0	0	0	0	0	0	45	28
2027	334	0	0	0	0	0	0	0	0	0	0	44	28
2028	522	0	0	1	0	0	0	0	0	1	0	70	43
2029	334	0	0	0	0	0	0	0	0	0	0	45	27
2030	333	0	1	0	0	0	0	0	0	0	0	45	28
2031	1787	0	0	1	0	0	0	0	0	0	0	239	148
2032	1785	0	0	1	0	0	0	0	0	1	0	239	147
2033	1785	0	0	1	0	0	0	0	0	0	0	240	148
2034	1786	0	1	1	0	0	0	0	0	1	0	239	148
2035	1785	0	0	1	0	0	0	0	0	0	0	239	147
2036	2642	0	0	1	0	0	0	0	0	1	0	354	219
2037	2454	0	1	1	0	0	0	0	0	1	0	329	203
2038	2642	0	0	2	0	0	0	0	0	0	0	354	219
2039	2381	0	0	1	0	0	0	0	0	1	0	319	196
2040	81185	2	1	60	65	26	1	2	4	1	1	1087 8	6716
2041	5239	0	0	4	3	1	0	0	0	0	0	702	433
2042	4646	0	0	3	3	1	0	0	0	0	0	623	384
2043	5166	1	0	4	4	2	0	0	0	1	0	692	427
2044	4834	0	1	3	3	1	0	0	0	0	0	648	400
2045	4762	0	0	3	3	1	1	0	1	0	0	638	394
2046	5050	0	0	4	3	1	0	1	0	1	0	677	418
2047	4834	0	0	3	3	1	0	0	0	0	0	647	400
2048	4762	0	0	4	3	2	0	0	0	0	0	638	394
2049	5050	0	0	3	3	1	0	0	0	1	0	677	417
2050	4762	0	1	4	3	1	0	0	0	0	0	638	394

Tabla 27. Tabla de Equipamiento Invertido alternativa Autoconsumo

	INMOV	/ILIZAI	OO INVER	TIDO P	'ARA CA	ADA AÑ	O INFR.	AESTRU	JCTUR <i>A</i>	A DE AUT	OCONS	UMO	
Año	Paneles Solares	Elect roliz.	Celdas Comb.	200	Depósito:	900	200	ompresor	900	Carg. Electr.	Surt. H2	Inv.	Reg. Carga
2024	11904	1	2	bar 7	bar 0	bar 0	bar 1	bar 0	bar 0	3	0	1596	985
2032	13690	0	2	7	0	0	0	0	0	4	0	1834	1132
2038	91070	2	1	67	71	28	1	2	4	1	1	1220	7533
2041	39220	1	2	28	25	10	1	1	1	3	0	5255	3244
2050	4762	0	0	0	0	0	0	0	0	0	0	0	0

Obteniéndose un requerimiento de paneles solares en función del invertido para cada año:

Conociendo los precios mostrados anteriormente se puede hallar el valor de los equipos para cada año, y también gracias al método de los porcentajes el total del valor del ISBL, que se trata del límite físico de la instalación. Por lo que abarcará todo el equipo y los procesos directamente involucrados en la producción de la electrolinera e hidrolinera.

El método de los porcentajes en el que se basará la infraestructura es el 60% del coste de los equipos en el coste de los materiales, el 15% de la suma del coste de los equipos y de materiales en el coste de ingeniería de los materiales; el 5% de la suma de equipos y materiales en costes de construcción; y por último el 10% de la suma equipos y materiales en costes de supervisión.

Tabla 28. Tabla de Coste de ISBL

	INMOVILIZADO INVERTIDO PARA CADA AÑO INFRAESTRUCTURA DE AUTOCONSUMO												
Año	Coste Equipos (€/año)	Coste Materiales (€/año)	Coste ingeniería de materiales (€/año)	Coste de construcción (€/año)	Coste de supervisión (€/año)	Coste ISBL (€/año)							
2024	4.246.980,00 €	2.548.188,00 €	1.019.275,20 €	3.397.584,00 €	679.516,80€	11.891.544,00 €							
2032	3.554.200,00€	2.132.520,00 €	853.008,00€	2.843.360,00 €	568.672,00€	9.951.760,00 €							
2038	25.373.000,00€	15.223.800,00 €	6.089.520,00€	20.298.400,00€	4.059.680,00€	71.044.400,00 €							
2041	11.116.200,00€	6.669.720,00 €	2.667.888,00€	8.892.960,00 €	1.778.592,00€	31.125.360,00 €							

Una vez se tiene el ISBL, también con el método de los porcentajes donde el 2% del ISB va en servicios auxiliares, otro 2 % del ISBL en gastos de puesta en marcha y un 4% del ISBL en imprevistos. Todo esto según la tabla del método de los porcentajes (véase anexos ilustración).

Tabla 29. Tabla de Inmovilizado alternativa Autoconsumo

INMOVILIZADO INVERTIDO PARA CADA AÑO INFRAESTRUCTURA DE AUTOCONSUMO

Año	COSTE DE ISBL (€)	COSTE DE	GASTO de	COSTE	COSTE TOTAL
		Servicios Aux. (€)	puesta en	Imprevistos (€)	INMOVILIZADO (€)
			marcha (€)		
2024	11.891.544,00€	237.830,88 €	237.830,88 €	475.661,76 €	12.842.867,52 €
2032	9.951.760,00 €	199.035,20€	199.035,20€	398.070,40 €	10.747.900,80 €
2038	71.044.400,00 €	1.420.888,00€	1.420.888,00€	2.841.776,00€	76.727.952,00 €
2041	31.125.360,00 €	622.507,20€	622.507,20€	1.245.014,40 €	33.615.388,80 €

5.4.3.2. ALTERNATIVA SEMINDEPENDIENTE

Tabla 30. Tabla de Equipo Requerido alternativa Semindependiente

	INMOVII	LIZADO RE	QUERIDO	PARA	CADA	AÑO I	NFRAI	ESTRU	CTUR/	SEMIN	DEPENI	DIENTE	
Año	Paneles	Electroliz	Celdas	Г	Depósito	s	Co	mpreso	res	Carg.	Surt.	Inv.	Reg.
	Solares	•	Comb.	200 bar	500 bar	900 bar	200 bar	500 bar	900 bar	Electr	H2		Carga
2024	4168	1	1	0	1	3	0	0	1	0	0	1	0
2025	522	0	0	0	0	0	0	0	0	0	0	0	0
2026	334	0	0	0	0	0	0	0	0	0	0	0	0
2027	334	0	0	0	0	0	0	0	0	0	0	0	0
2028	522	0	0	0	0	1	0	0	0	0	0	1	0
2029	334	0	0	0	0	0	0	0	0	0	0	0	0
2030	333	0	1	0	1	0	0	0	0	0	0	0	0
2031	1787	0	0	0	0	1	0	0	0	0	0	0	0
2032	1785	0	0	0	0	1	0	0	0	0	0	1	0
2033	1785	0	0	0	0	1	0	0	0	0	0	0	0
2034	1786	0	1	0	1	1	0	0	0	0	0	1	0
2035	1785	0	0	0	0	1	0	0	0	0	0	0	0
2036	2642	0	0	0	0	1	0	0	0	0	0	1	0
2037	2454	0	1	0	1	1	0	0	0	0	0	1	0
2038	2642	0	0	0	0	2	0	0	0	0	0	0	0
2039	2381	0	0	0	0	1	0	0	0	0	0	1	0
2040	13536	0	1	0	1	60	65	26	1	2	4	1	1
2041	1752	0	0	0	0	4	3	1	0	0	0	0	0
2042	1507	0	0	0	0	3	3	1	0	0	0	0	0
2043	1679	0	0	0	0	4	4	2	0	0	0	1	0
2044	1696	0	1	0	1	3	3	1	0	0	0	0	0
2045	1624	0	0	0	0	3	3	1	1	0	1	0	0
2046	1562	0	0	0	0	4	3	1	0	1	0	1	0
2047	1696	0	0	0	0	3	3	1	0	0	0	0	0
2048	1624	0	0	0	0	4	3	2	0	0	0	0	0
2049	1563	0	0	0	0	3	3	1	0	0	0	1	0
2050	1623	0	1	0	1	4	3	1	0	0	0	0	0

Tabla 31. Tabla de Equipo Invertido alternativa Semindependiente

	INMOVILIZADO INVERTIDO PARA CADA AÑO INFRAESTRUCTURA SEMINDEPENDIENTE												
Año	Paneles Solares	Electroliz	Celdas Comb.]	Depósitos	5	C	ompresor	res	Carg. Eléctr.	Surt. H ₂	Inv.	Reg. Carga
	Solates	•	Comb.	200 bar	500 bar	900 bar	200 bar	500 bar	900 bar	Electi.	112		Carga
2024	11904	1	2	7	0	0	1	0	0	3	0	1596	985
2032	13690	0	2	7	0	0	0	0	0	4	0	1834	1132
2038	16795	0	1	67	71	28	1	2	4	1	1	2250	1390
2041	13067	0	2	28	25	10	1	1	1	3	0	1751	1080

Para el invertido:

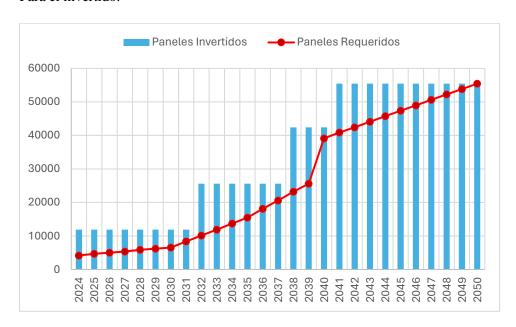


Tabla 32. Tabla de Coste de ISBL

	INMOVILIZA	ADO INVERTIDO P	'ARA CADA AÑO II	NFRAESTRUCTUR/	A SEMINDEPENDII	ENTE
Año	Coste Equipos (€/año)	Coste Materiales (€/año)	Coste ingeniería de materiales (€/año)	Coste de construcción (€/año)	Coste de supervisión (€/año)	Coste ISBL (€/año)
2024	4.246.980,00€	2.548.188,00 €	1.019.275,20€	3.397.584,00 €	679.516,80€	11.891.544,00 €
2032	3.554.200,00€	2.132.520,00 €	853.008,00€	2.843.360,00 €	568.672,00€	9.951.760,00€
2038	8.254.900,00€	4.952.940,00 €	1.981.176,00€	6.603.920,00€	1.320.784,00€	23.113.720,00 €
2041	4.793.040,00€	2.875.824,00 €	1.150.329,60 €	3.834.432,00 €	766.886,40 €	13.420.512,00 €

Tabla 33. Tabla de Inmovilizado alternativa Semindependiente

INMOVILIZADO INVERTIDO PARA CADA AÑO INFRAESTRUCTURA SEMINDEPENDIENTE

Año	COSTE DE ISBL (€)	COSTE DE	GASTO de	COSTE	COSTE TOTAL
		Servicios Aux. (€)	puesta en	Imprevistos (€)	INMOVILIZADO (€)
			marcha (€)		
2024	11.891.544,00€	237.830,88€	237.830,88 €	475.661,76 €	12.842.867,52 €
2032	9.951.760,00€	199.035,20€	199.035,20€	398.070,40 €	10.747.900,80 €
2038	23.113.720,00 €	462.274,40 €	462.274,40 €	924.548,80 €	24.962.817,60 €
2041	13.420.512,00 €	268.410,24 €	268.410,24 €	536.820,48 €	14.494.152,96 €

5.4.3.3. ALTERNATIVA IMPORTACIÓN TOTAL DE HIDRÓGENO

Tabla 34. Tabla de Equipo Requerido alternativa basada en Importación H2

		NMOVILIZADO	REQUERIDO		DA ANO II	NFRAESTR	OCTORA E	JAJADA LI	N IIVIPOKI	ACION HZ			
Año	Paneles Solares	Electroliz.	Celdas Comb.		Depósitos		Co	ompresore	!S	Carg.	Surt. H2	Inv.	Reg.
	Solares		Comb.	200 bar	500 bar	900 bar	200 bar	500 bar	900 bar	Electr	HZ		Carga
2024	295	0	1	3	0	0	1	0	0	1	0	40	25
2025	26	0	0	0	0	0	0	0	0	0	0	4	2
2026	33	0	0	0	0	0	0	0	0	0	0	4	3
2027	26	0	0	0	0	0	0	0	0	0	0	3	:
2028	25	0	0	1	0	0	0	0	0	0	0	4	2
2029	25	0	0	0	0	0	0	0	0	0	0	3	2
2030	34	0	1	0	0	0	0	0	0	0	0	5	3
2031	126	0	0	1	0	0	0	0	0	1	0	17	10
2032	127	0	0	1	0	0	0	0	0	0	0	17	11
2033	126	0	0	1	0	0	0	0	0	0	0	16	10
2034	127	0	1	1	0	0	0	0	0	0	0	17	11
2035	126	0	0	1	0	0	0	0	0	1	0	17	10
2036	177	0	0	1	0	0	0	0	0	0	0	24	15
2037	185	0	1	1	0	0	0	0	0	0	0	25	15
2038	177	0	0	2	0	0	0	0	0	1	0	24	15
2039	177	0	0	1	0	0	0	0	0	0	0	23	14
2040	11080	0	1	60	65	26	1	2	4	0	1	85	917
2041	582	0	0	4	3	1	0	0	0	1	0	78	48
2042	637	0	0	3	3	1	0	0	0	0	0	85	53
2043	590	0	0	4	4	2	0	0	0	0	0	79	48
2044	581	0	1	3	3	1	0	0	0	0	0	78	49
2045	637	0	0	3	3	1	1	0	1	0	0	86	52
2046	590	0	0	4	3	1	0	1	0	0	0	79	49
2047	637	0	0	3	3	1	0	0	0	1	0	85	53
2048	582	0	0	4	3	2	0	0	0	0	0	78	48
2049	589	0	0	3	3	1	0	0	0	0	0	79	49
2050	638	0	1	4	3	1	0	0	0	0	0	85	52

Tabla 35. Tabla de Equipo Invertido alternativa basada en Importación H2

		INMOVILIZA	DO INVERT	IDO PAR	A CADA	AÑO IN	FRAESTI	RUCTUR	A BASAI	DA EN IMPOR	TACIÓN H2		
Año	Paneles Solares	Electroliz.	Celdas Comb.	ı	Depósito	S	Со	mpreso	res	Carg. Electr.	Surt. H2	Inv.	Reg. Carga
	Solares		Comb.	200 bar	500 bar	900 bar	200 bar	500 bar	900 bar	Liecti.	112		Carga
2024	843	0	2	7	0	0	1	0	0	2	0	113	70
2032	969	0	2	7	0	0	0	0	0	2	0	130	80
2038	12299	0	1	67	71	28	1	2	4	1	1	1648	1018
2041	4844	0	2	28	25	10	1	1	1	1	0	649	400

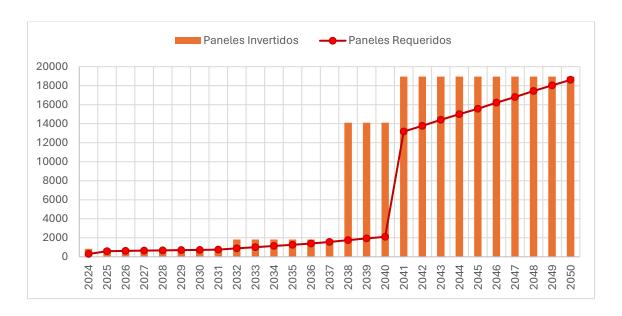


Tabla 36. Tabla de Costes ISBL

	INMOVILIZADO INVERTIDO PARA CADA AÑO INFRAESTRUCTURA IMPORTACIÓN H2												
Año	Coste Equipos (€/año)	Coste Materiales (€/año)	Coste ingeniería de materiales (€/año)	Coste de construcción (€/año)	Coste de supervisión (€/año)	Coste ISBL (€/año)							
2024	970.660,00€	582.396,00€	232.958,40 €	776.528,00 €	155.305,60€	2.717.848,00 €							
2032	916.280,00€	549.768,00€	219.907,20 €	733.024,00 €	146.604,80€	2.565.584,00 €							
2038	7.339.980,00€	4.403.988,00 €	1.761.595,20 €	5.871.984,00 €	1.174.396,80 €	20.551.944,00 €							
2041	3.070.280,00 €	1.842.168,00 €	736.867,20 €	2.456.224,00 €	491.244,80€	8.596.784,00 €							

Tabla 37. Tabla de Inmovilizado alternativa basada en Importación H2

INMOVILIZADO INVERTIDO PARA CADA AÑO INFRAESTRUCTURA IMPORTACIÓN H2

Año	COSTE DE ISBL (€)	COSTE DE Servicios	GASTO de puesta	COSTE Imprevistos	COSTE TOTAL
		Aux. (€)	en marcha (€)	(€)	INMOVILIZADO (€)
2024	2.717.848,00 €	54.356,96 €	54.356,96 €	108.713,92 €	2.935.275,84 €
2032	2.565.584,00€	51.311,68€	51.311,68 €	102.623,36 €	2.770.830,72 €
2038	20.551.944,00€	411.038,88€	411.038,88 €	822.077,76€	22.196.099,52 €
2041	8.596.784,00€	171.935,68€	171.935,68 €	343.871,36 €	9.284.526,72 €

5.4.4. TABLA DE FLUJO DE CAJA

Esta tabla muestra las entradas y salidas de efectivo previstas para el periodo [2024-2050], de manera anual. Como objetivo está el de prever la disponibilidad de efectivo en diferentes momentos y garantizar las obligaciones financieras de la infraestructura. Antes de considerar nada, se debe establecer un periodo de un año de construcción de la infraestructura, en el cual la tabla de costes y ventas van a ser nulas.

Según la institución española de la caja de ahorros FUNCAS: "Para 2024, se espera una tasa media del 3,6% en el índice general (revisada al alza una décima porcentual) y un 3% para la subyacente (se mantiene la previsión)" por lo tanto se adjudicará una tasa de inflación anual del 3,4%.

Al ser considerado un proyecto de grandes dimensiones a nivel industrial se ha propuesto una tasa de descuento del 10 %.

Para obtener los flujos de caja actualizado en primer lugar se deben colocar: los fondos invertidos obtenidos (a partir de la inversión adquirida para los diferentes años en una inversión escalonada considerando la inflación anual); las ventas y los costes (adquiridos a partir de la tabla de ventas y costes respectivamente considerando la inflación anual); la amortización (se va a considerar una amortización a 10 años sobre el inmovilizado); los beneficios antes de impuestos (será la resta de las ventas y la suma de los costes y amortización). Todo ello se encuentra establecido para las tres alternativas en el epígrafe de anexos presupuestos: [Tabla 39], [Tabla 41] y [Tabla 43].

Aparte de ello se considerarán: los impuestos (sobre el 25% de los beneficios brutos); los beneficios después de impuestos (que será la resta entre los beneficios antes de impuesto y los de después de impuestos); los fondos generados (será la suma de los fondos generados y la amortización); el flujo de caja (la resta de los fondos generados y los fondos invertidos); y el flujo de caja actualizado (el flujo de caja considerando la tasa de descuento propuesta). Se establecen de igual manera para las tres propuestas dentro del epígrafe anexos presupuestos: [Tabla 40], [Tabla 42] y [Tabla 44].

Por último, se establecen para las diversas alternativas el flujo de caja actualizado al 10 % de tasa de interés o descuento para cada año (tabla 38).

Tabla 38 Flujo de Caja Actualizado para las distintas propuestas

AÑO	Flujo de Caja Actualizado (Tasa de Descuento: 10 %)					
	(Autoconsumo)	(Semindependiente)	(Importación Total H ₂)			
2024	-12.842.867,52 €	-12.842.867,52 €	-2.935.275,84 €			
2025	1.630.647,79 €	1.630.647,79 €	729.348,52 €			
2026	1.265.267,62 €	1.265.267,62 €	594.860,90 €			
2027	1.445.691,86 €	1.445.691,86 €	700.781,62 €			
2028	1.373.983,08 €	1.373.983,08 €	696.648,83 €			
2029	1.266.332,18 €	1.266.332,18 €	650.554,23 €			
2030	1.195.430,82 €	1.195.430,82 €	635.614,31 €			
2031	1.241.013,25 €	1.241.013,25 €	731.861,77 €			
2032	-5.274.071,65 €	-5.274.071,65 €	-874.483,97 €			
2033	1.738.407,83 €	1.738.407,83 €	979.088,16 €			
2034	1.719.225,10 €	1.719.225,10 €	1.028.734,16 €			
2035	1.246.907,19 €	1.246.907,19 €	966.331,51 €			
2036	1.291.563,26 €	1.291.563,26 €	1.036.309,84 €			
2037	1.338.424,21 €	1.338.424,21 €	1.106.197,33 €			
2038	-30.884.503,59 €	-9.116.064,14 €	-8.163.882,46 €			
2039	3.224.100,71 €	1.984.884,55 €	1.726.406,05 €			
2040	4.419.110,79 €	3.290.504,02 €	3.055.423,79 €			
2041	-7.543.851,91 €	-1.891.315,85 €	-285.503,42 €			
2042	4.595.026,92 €	3.318.105,27 €	3.029.998,95 €			
2043	4.174.644,34 €	3.013.645,65 €	2.882.076,12 €			
2044	3.947.791,46 €	2.892.230,85 €	2.772.539,64 €			
2045	3.741.983,33 €	2.782.236,31 €	2.673.347,08 €			
2046	3.553.084,16 €	2.680.487,99 €	2.581.422,12 €			
2047	3.363.942,85 €	2.570.540,35 €	2.480.408,06 €			
2048	3.191.922,36 €	2.470.556,37 €	2.388.548,65 €			
2049	2.316.854,47 €	2.138.717,53 €	2.089.669,00 €			
2050	2.228.254,46 €	2.066.195,77 €	2.021.543,93 €			
VAN	-1.035.684,62 €	2.066.195,77 €	25.298.568,86 €			
TIR	9,64%	16,30%	32,90 %			

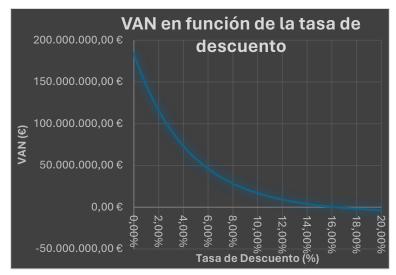
La obtención del VAN y el TIR una vez conseguido el flujo de caja actualizado para cada gráfica se resuelve mediante:

CALCULO DEL VAN

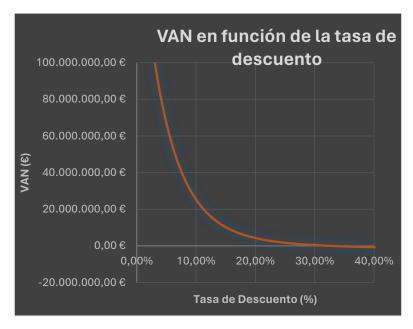
Se trata de la suma del flujo de caja actualizado de todos los años, para la [Ecuación 22] (véase anexos ecuaciones):


En nuestro caso:


```
VAN = -12.842.867,52  € + 1.630.647,79 € + 1.265.267,62 € + 1.445.691,86 € 
+ 1.373.983,08 € + 1.266.332,18 € + 1.195.430,82 € + 1.241.013,25 € 
- 5.274.071,65 € + 1.738.407,83 € + 1.719.225,10 € + 1.246.907,19 € 
+ 1.291.563,26 € + 1.338.424,21 € - 30.884.503,59 € + 3.224.100,71 € 
+ 4.419.110,79 € - 7.543.851,91 € + 4.595.026,92 € + 4.174.644,34 € 
+ 3.947.791,46 € + 3.741.983,33 € + 3.553.084,16 € + 3.363.942,85 € 
+ 3.191.922,36 € + 2.316.854,47 € + 2.228.254,46 € = -1.035.684,62 €
```


CÁLCULO DEL TIR

Para calcular el TIR se establece una gráfica del VAN en función de la tasa de descuento, de esa manera la intersección de la curva formada con el eje X (es decir cuando VAN=0) establece de manera visual la Tasa Interna de Rentabilidad.



La intersección otorgada de la curva con el eje de la tasa de descuento (cuando el VAN es 0) se da para 9,64%.

La intersección otorgada de la curva con el eje de la tasa de descuento (cuando el VAN es 0) se da para 16,30%.

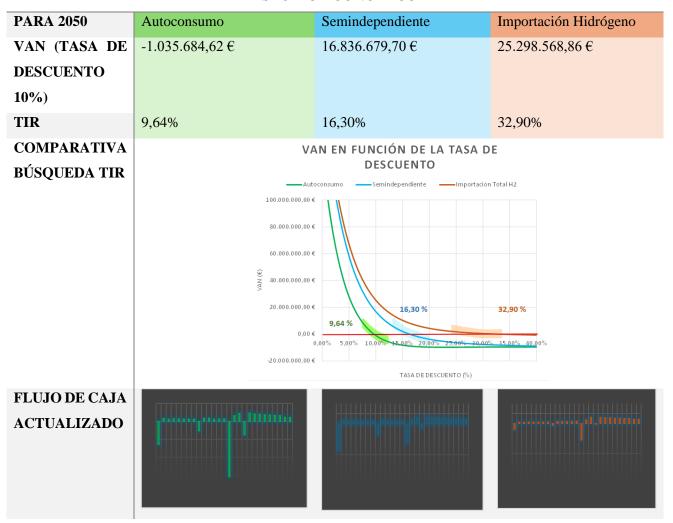
La intersección otorgada de la curva con el eje de la tasa de descuento (cuando el VAN es 0) se da para 32,90%.


5.5. DISCUSIÓN DE LOS RESULTADOS

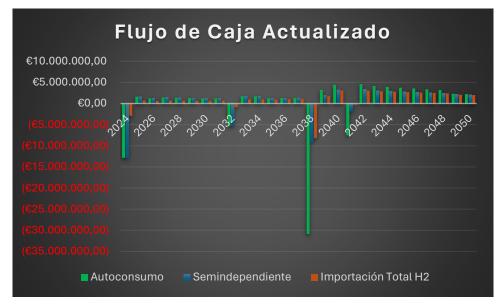
Para este epígrafe se establecerán las discusiones de las diferentes tablas obtenidas para el capítulo de resultados, comparando, es esta manera, tanto el dimensionado de los equipos como el estudio económico para las distintas alternativas:

EXTENSIÓN DEL TERRENO							
PARA 2050	Autoconsumo	Semindependiente	Importación Hidrógeno				

Extensión	959,44 m ²	846,94 m ²	809,44 m ²
Hidrogenera			
Extensión	1.069.831,892 m ²	380.594,528 m ²	130.088,165 m ²
Instalación			
Fotovoltaica			
Extensión	1.070.791,332 m ²	381.441,468 m ²	130.897,605 m ²
TOTAL			
	Transverse Street, Colored Str	INSTALACON NORTE ** 2,0856 Recisions NOTALACON NORTE 13,707 Instirem NOTALACON DESTE 8,5709 Instirem NOTALACON AS: NOTALACON CENTRAL NOTAL	TT-20.0 Herefress INSTALLOON CORRESS. A 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-


Con respecto a la viabilidad técnica la primera alternativa, es decir, la alternativa basada en el autoconsumo es poco viable a nivel de espacio del terreno. Prácticamente equivaldría a 108 campos de fútbol (estandarizado a una hectárea el campo) son necesarios para implementar esta opción. Es de proporciones inimaginables encontrándose como la décima propuesta de campo fotovoltaico de mayores dimensiones; superando la central solar fotovoltaica de *Paraje de las Flotas de los Áramos* (ubicada en Totana- Región de Murcia) de 71 hectáreas y 85 MW de potencia.

Y, aunque es cierto que, la selección semindependiente de 381 hectáreas es comparativamente al resto de infraestructuras dimensionadas (parques fotovoltaicos comunes españoles) muy elevada. Hasta cierto punto es asumible y más conociendo la alternativa más autosuficiente; se trata de una opción intermedia seleccionable si no se quiere arriesgar el suministro de la electrolinera.


Por último, para la elección basada en importar él hidrógeno en depósitos y usar los paneles fotovoltaicos para la compresión a diferentes presiones, se trata de un dimensionamiento aceptable para una infraestructura que se fundamenta en la carga de vehículos.

ESTUDIO ECONÓMICO

Con respecto a la comparación de las alternativas para los diagramas de flujo acumulados:

Para el aspecto económico fundamentarse en la necesidad de implementar un riesgo de tasa de descuento del 10 %. Debido a que el 10 % es una cifra comúnmente utilizada para proyectos industriales de largo periodo.

Como la alternativa de autoconsumo obtiene un VAN negativo para esa tasa de descuento se puede decir que el proyecto es inviable a nivel presupuestario y por lo tanto descartado.

Tanto para la elección semindependiente como para la importación total de hidrógeno el VAN es positivo y por lo tanto a nivel presupuestario viable con un TIR de 16,3 % y 36,9 % respectivamente (con margen sobre la tasa de descuento).

Para la tabla de flujo de caja actualizado a partir de las diversas alternativas, además de apreciar los años de inversión implicados (2024, 2032, 2038, 2042)

Se puede apreciar como la creación de la hidrolinera (inversión de 2038) sucumbe gastos más desproporcionados en la alternativa del autoconsumo que del resto. Esto se debe al consumo excesivo en el uso de electrolizadores (para convertir energía eléctrica en hidrógeno) que se limitaría con la importación de hidrógeno (destinado a hidrolinera para la alternativa semindependiente y para toda la infraestructura de recarga para la alternativa de importación total de hidrógeno).

6. CONCLUSIONES

Del trabajo realizado pueden extraerse varias conclusiones, a acuerdo con las alternativas propuestas:

a) PROYECTO DE INFRAESTRUCTURA BASADA EN EL AUTOCONSUMO

A nivel de diseño técnico basado en la extensión del terreno se puede determinar como un proyecto francamente inviable rondando las 107 Hectáreas (colocándose como uno de los proyectos acerca de campos fotovoltaicos más ambiciosos a nivel nacional). Más si cabe si se trata de un centro de electromovilidad.

Según los resultados, esta alternativa no es viable económicamente para el periodo 2024-2050, marcada por un Valor Actualizado Neto negativo y un TIR previsto menor que la tasa de descuento impuesta para este tipo de proyectos. Esta tasa de descuento es común a la implicada para diseños industriales renovables a largo plazo (26 años vista).

Como resultado esta alternativa aun teniendo ventajas como la independencia energética, debido a que es capaz de suministrar su propio hidrógeno, todavía no puede considerarse como una opción real para el diseño de este tipo de centro.

b) PROYECTO DE INFRAESTRUCTURA DE REGARGA SEMINDEPENDIENTE

La extensión del terreno es muy elevada (alrededor de 38 hectáreas) para una infraestructura dedicada exclusivamente a la movilidad de vehículos eléctricos. Aunque lo cierto es que, en vistas a un futuro donde aumenten tanto las capacidades técnicas de los equipos (aumento de la potencia nominal de los paneles solares, mejora de los rendimientos de los electrolizadores, pilas de combustibles...); como la irradiación solar (debido al calentamiento global) las expectativas de estos centros hacen bajar su requerimiento dimensional.

En el ámbito presupuestario adquiere un VAN positivo y con una tasa interna de rentabilidad del 16,3% haciendo que la alternativa sea un proyecto rentable de manera económica.

Se llega a la conclusión que a nivel de diseño (extensión del terreno) es una operación no descartable en un futuro próximo, pero a nivel económico es rentable. Por lo que en líneas generales considerando una dependencia parcial de la importación de hidrógeno es una buena alternativa a tener en cuenta en un futuro próximo.

c) PROYECTO DE INFRAESTRUCTURA DE REGARGA BASADA EN LA IMPORTACIÓN DE HIDRÓGENO

El dimensionado del terreno, que es de algo más de 13 hectáreas, se puede comparar a otro tipo de campos fotovoltaicos de rango mayores dentro del territorio nacional. Y aunque es alto para poder vigilar y controlar, también es necesario para suplir los márgenes otorgados por días más nublosos.

Con respecto a la rentabilidad económica el proyecto (con un TIR de 32,90 %) supera los márgenes otorgados por la tasa de descuento y la incertidumbre del precio del hidrógeno. El precio del hidrógeno establecido que se ha marcado es constante y simplemente se le ha añadido para

cada año la tasa de inflación anual prevista, y como esta alternativa es dependiente globalmente de este suministro se deben marcar márgenes de rentabilidad.

Para concluir esta alternativa es ligeramente aceptable a nivel de extensión de terreno y para el plano del estudio económicos es muy recomendable.

7. BIBLIOFRAFÍA

Caballero, Ana. 2023. Climate Consulting. [En línea] 5 de Septiembre de 2023. [Citado el: 2023 de Diciembre de 4.] https://climate.selectra.com/es/actualidad/precio-luz-subida.

Caja Rural del Sur. 15. [En línea] 2022 de Febrero de 15. [Citado el: Febrero de 1 de 2024.] https://blog.cajaruraldelsur.es/las-consecuencias-de-la-crisis-energetica-en-2022..

EcoFlow Blog. 2023. Blog.ecoflow. [En línea] 14 de Noviembre de 2023. [Citado el: 2023 de Diciembre de 2.] https://blog.ecoflow.com/es/importancia-independencia-energetica/.

Energy5. 2023. Energy5. [En línea] Agosto de 23 de 2023. [Citado el: Diciembre de 5 de 2023.] https://energy5.com/es/independencia-energetica-y-seguridad-nacional-la-importancia-del-gas-natural#anchor-0.

Estatal. 2021. Estimacion y evolución mapas de tráfico. *Transportes Gobierno*. [En línea] 2021. [Citado el: 2 de Octubre de 2023.] https://www.transportes.gob.es/carreteras/trafico-velocidades-y-accidentes-mapa-estimacion-y-evolucion/mapas-de-trafico/2021.

Hurtado, José Ignacio Linares. 2007. *El hidrógeno y la energía*. s.l. : Asociación Nacional de Ingenieros del ICAI, 2007. 978-84-932772-9-1.

Moreno, Miguel Ángel. 2021. Buisness Insider. [En línea] 25 de Octubre de 2021. [Citado el: 2 de Noviembre de 2023.] https://www.businessinsider.es/espana-debe-tener-100-estaciones-hidrogeno-2030-aun-no-tiene-ninguna-953579.

8. APÉNDICE

8.1. ANEXO

8.1.1. ABREVIATURAS

BEVs: Battery Electric Vehicles

FCEVs: Fuel Cell Electric Vehicles

GASNAM: Asociación Ibérica de Gas Natural, Hidrogeno y Gas Renovable para la Movilidad

IMD: Índice Medio Diario de Vehículos

ISBL: Inside Battery Limits

PEM: Proton Exchange Membrane

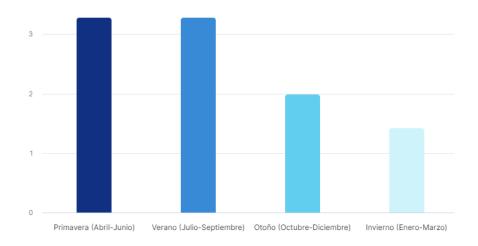
PEMFC: Proton Exchange Membrane Fuel Cell

PERC: Passivated Emitter Rear Cell

PHEVs: Plug Hybrid Electric Vehicles

TIR: Tasa Interna de Rentabilidad

VAN: Valor Actualizado Neto


8.1.2. ENCUESTAS

Con el objetivo de suponer condiciones reales que puede sufrir la infraestructura en un futuro se ha contactado con diferentes gasolineras de la A5 para realizar las siguientes preguntas:

• ¿En qué época del año la demanda de vehículos es mayor?

A lo que se ha respondido:

1. En qué época del año la demanda de vehículos es mayor

Encuesta 1. Estación del año más frecuentada

Para una alternativa de 4 puntos para el mayor hasta 1 punto para el menor se ha hecho un promedio en función de las 7 gasolineras que han contestado las preguntas. Considerando primavera y verano las estaciones en las cuáles se ubican más vehículos.

• ¿Qué porcentaje de vehículos reposta durante esta franja horaria (8:00-20:00)?

2. ¿Qué porcentaje de vehículos reposta durante ésta franja horaria (8:00-20:00)?

RESPUESTA	NÚMERO	RATIO
Más del 90%	0	0%
(80-89)%	0	0%
(70-79)%	1	14.3%
(50-59)%	1	14.3%
Menos del 50%	1	14.3%
(60-69)%	4	57.1%

Encuesta 2. Porcentaje de vehículos diurnos

Para las 7 gasolineras que han contestado dicha pregunta. La mayoría (57 %) considera que entre un 60 y 65 % de vehículos paran en una franja de horario diurna

8.1.3. ECUACIONES

Ecuación 1.

Demanda eléctrica (día)
$$\left[\frac{kWh}{dia}\right] = \# \text{ vehículos PHEVs y BEVs} * \text{Capacidad energética } \left[\frac{kWh}{dia}\right]$$

Ecuación 2. :

$$\text{Potencia Consumida } \left[\frac{\text{kWh}}{\text{dia}} \right] = \frac{\text{Demanda eléctrica } \left[\frac{\text{kWh}}{\text{dia}} \right] }{\text{Irradiancia Global Media } \left[\frac{\text{h}}{\text{dia}} \right] * \eta_{\text{Modulo Solar}} * \eta_{\text{Inversor}} }$$

Ecuación 3.

Paneles Solares =
$$\frac{\text{Potencia Consumida } \left[\frac{\text{kW}}{\text{dia}}\right]}{\text{Potencia Nominal Modulo Solar [kW]}}$$

Ecuación 4. :

Ecuación 5. :

$$P * V = R * \frac{m}{Pm} * T * z$$

Ecuación 6.

Ecuación 7.

$$\text{Dem. Energ\'etica } \left[\frac{\text{kgH}_2}{\text{dia}} \right] = \text{Dem. Hidr\'ogeno} \left[\frac{\text{kgH}_2}{\text{dia}} \right] * \left(\text{Cons.}_{\text{Electroliz.}} + \text{Cons.}_{\text{Compresor}} \right) \left[\frac{\text{kWh}}{\text{kgH}_2} \right]$$

Ecuación 8. :

$$\label{eq:definition} \text{Demanda Hidrógeno}\left[\frac{kgH_2}{dia}\right] = \text{\#vehículos FCEVs}*\text{Capacidad carga}\left[\frac{kgH_2}{dia}\right]$$

Ecuación 9.

$$\text{Energ\'{i}a Dem.} \left[\frac{kWh}{dia} \right] = \text{Dem.} \, H_2 \quad \left[\frac{kgH_2}{dia} \right] * \left(\text{Cons.}_{\text{Electrolizador}} + \text{Cons.}_{\text{200 bar}} + \text{Cons.}_{\text{500 bar}} + \text{Cons.}_{\text{900 bar}} \right) \left[\frac{kWh}{kgH_2} \right]$$

Ecuación 10.

Módulos solares = # Módulos_{Instalación Diurna} + # Módulos_{Hidrogenera}

Ecuación 11.

$$\# Reguladores \ de \ carga = \frac{\# Paneles \ Solares}{12,09 \frac{Paneles \ Solares}{Reguladores \ de \ Carga}}$$

Ecuación 12.

$$#Inversores = \frac{\text{#Paneles Solares}}{7,463 \frac{\text{Paneles Solares}}{\text{Inversor}}}$$

Ecuación 13.

Cargadores =
$$\frac{\text{# vehículos PHEVs y BEVs * tiempo de carga (h)}}{\text{tiempo de operación (h)}}$$

Ecuación 14.

$$\#Electrolizadores = \frac{(Demanda \ H_2 \ Electrolinera \ Noct. + Demanda \ H_2 \ Hidrolinera) \left[\frac{kg \ H_2}{d fa}\right]}{Caudal \ Máximo \left[\frac{kg \ H_2}{d fa}\right]}$$

Ecuación 15. :

$$\text{\#Celdas de Combustible} = \frac{\text{Demanda Energética } \left[\frac{\text{kWh}}{\text{día}}\right]}{\text{Demanda Máxima } \left[\frac{\text{kWh}}{\text{día}}\right]}$$

Ecuación 16. :

$$\# Compresores_{200 \; bares} = \frac{\left(\text{Dem. H}_2 \; \text{Electrolinera} + \text{Dem. H}_2 \; \text{Hidrolinera} \; \right) \left[\frac{\text{kg H}_2}{\text{día}}\right]}{\text{Capacidad Máxima} \left[\frac{\text{kg H}_2}{\text{día}}\right]}$$

Ecuación 17.

$$\# Dep\'{o}sitos_{200 \ bares} = \frac{ \left(Dem. \ H_2 \ Electrolinera + Dem. \ H_2 \ Hidrolinera \, \right) \left[\frac{kg \ H_2}{d\'{a}} \right] }{ Capacidad \ M\'{a}xima \ [kg \ H_2] }$$

Ecuación 18.

$$\#Surtidores\ hidrógeno = \frac{\#Vehículos\ FCEVs\ [vehículo]*\ Tiempo\ de\ Espera\ [\frac{h}{vehículo}]}{Tiempo\ de\ Operación\ [h]}$$

Ecuación 19.

$$\label{eq:definition} \text{\#Dep\'ositos importados} = \frac{\text{Demanda H}_2\text{Hidrolinera}\left[\frac{\text{kgH}_2}{\text{d\'ia}}\right]}{\text{Capacidad Almacenada}[\text{kgH}_2]}$$

Ecuación 20.

Instalación Fotovoltaica $[m^2]$ = Área efectiva módulo $[m^2]$ * #módulos solares Ecuación 21. :

Instalación Hidrogenera [m²]

= Área Compresor 200 bar [m²] * #compresor 200 bar

+ Área Compresor 500 bar [m²] * #compresor 500 bar

+ Área Compresor 900 bar [m²] * #compresor 900 bar

+ Área Depósito 200 bar [m²] * #depósito 200 bar

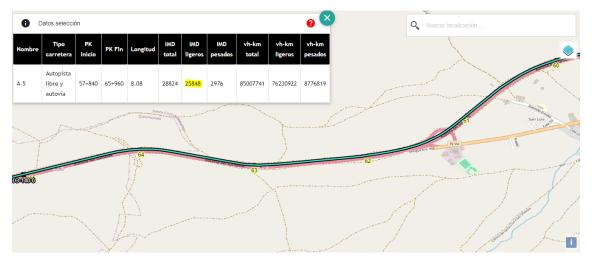
+ Área Depósito 500 bar [m²] * #depósito 500 bar

+ Área Depósito 900 bar [m²] * #depósito 900 bar

+ Área Electrolizador [m²] * #electrolizador 500 bar

+ Área Celda combustible [m²] * #celda de combustible

Ecuación 22.

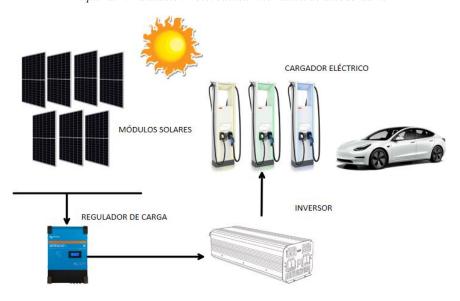

$$VAN = \sum_{i=1}^{n} F. C. Actualizado_{i}$$

8.1.4. ILUSTRACIONES Y REFERENCIAS

[Ilustración mapa IMD]:

Según el mapa de tráfico de la DGT durante el año 2021 el IMD ligeros del tramo considerado es de 25848 vehículos, que si lo consideramos para todo el periodo [2024-2050]

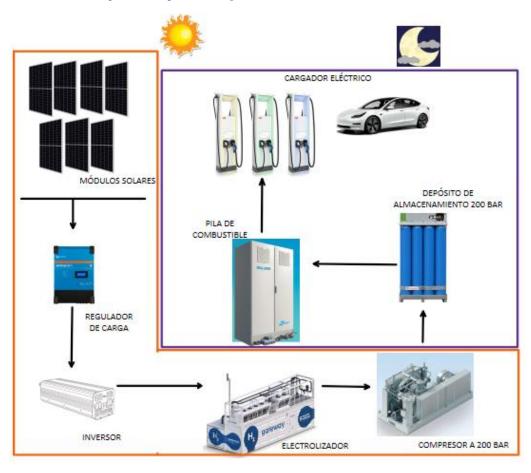
Fuente: https://www.transportes.gob.es/carreteras/trafico-velocidades-y-accidentes-mapa-estimacion-y-evolucion/mapas-de-trafico/2021 (Estatal, 2021)


[Tabla basada en el método de los porcentajes]:

<u>Partida</u>	<u>Porcentaje</u>
Equipo (E)	E
Materiales (M)	(60%-70%) E
Obra Civil y Edificios	28%
Tuberías y estructuras	45%
Instrumentación	10%
Electricidad	10%
Aislamiento	5%
Pintura	2%
Ingeniería de Detalle:	
Proyectos grandes	15-20% (E+M)
Proyectos pequeños	40-50% (E+M)
Ingeniería de Proceso, licencias, catalizadores	No evaluable como %
Construcción	50-70 % (E+M)
Supervisión de la Construcción	10% (E+M)
Servicios auxiliares	4% ISBL
Almacenamiento	8% ISBL
Gastos de puesta en marcha	3-4% ISBL
Contingencias e imprevistos	5-15% ISBL

[Esquema 1]:

Esquema 1. Instalación Fotovoltaica Alternativa de autoconsumo



[Tabla Factor de Compresibilidad]:

	Temperatura (K)							
Presión (bar)	233,15	250	273,15	298,15	350	400	450	500
1	1,176890647	1,0007	1,0004	1,006	1,00055	1,00047	1,00041	1,0041
5	1,180030747	1,00337	1,00319	1,00304	1,0027	1,00241	1,00219	1,00196
10	1,183970573	1,00672	1,00643	1,00605	1,0054	1,00484	1,00435	1,00395
50	1,215900803	1,03387	1,03235	1,03037	1,02701	1,02411	1,02159	1,01957
100	1,256969076	1,06879	1,0652	1,06127	1,05369	1,04807	1,04314	1,03921
150	1,298425452	1,10404	1,09795	1,09189	1,0807	1,072	1,06523	1,05836
200	1,341375433	1,14056	1,13177	1,1232	1,10814	1,09631	1,08625	1,07849
250	1,385278029	1,17789	1,16617	1,15499	1,13543	1,12034	1,10793	1,08764
300	1,430003873	1,21592	1,20101	1,18716	1,163	1,14456	1,12957	1,11699
350	1,47550592	1,25461	1,23652	1,21936	1,19051	1,16877	1,15112	1,13648
400	1,521584241	1,29379	1,2722	1,25205	1,21842	1,19317	1,17267	1,15588
450	1,568074185	1,33332	1,3082	1,28487	1,24634	1,21739	1,19439	1,17533
500	1,614552369	1,37284	1,34392	1,31784	1,27398	1,24173	1,21583	1,19463
600	1,707508736	1,45188	1,41618	1,38797	1,3301	1,29014	1,2592	1,23373
700	1,80127659	1,53161	1,4888	1,44991	1,38593	1,33914	1,30236	1,27226
800	1,881072763	1,59946	1,56	1,51063	1,43929	1,3869	1,34549	1,31047
1000	2,059	1,75075	1,702	1,63877	1,54939	1,48371	1,43186	1,38807

[Esquema 2]:

Esquema 2. Esquema Hidrogenera [2024-39] alternativa Autoconsumo



[Esquema 3]:

Esquema 3. Esquema Hidrogenera [2040-50] alternativa Autoconsumo

[Esquema 4]:

CARGADOR ELÉCTRICO

DEPÓSITO DE ALMACENAMIENTO 200 BAR

PEGULADOR
DE CARGA

DEPÓSITO DE ALMACENAMIENTO 500 BAR

REGULADOR
DE CARGA

ELECTROLIZADOR

COMPRESOR A 200 BAR

COMPRESOR A 500 BAR

COMPRESOR A 500 BAR

COMPRESOR A 500 BAR

COMPRESOR A 500 BAR

Esquema 4. Esquema Infraestructura basada en la importación total de Hidrógeno

8.1.5. PRESUPUESTO

Tabla 39. Flujo de Caja Autoconsumo (1/2)

	FLUJO DE CAJA INFRAESTRUCTURA DE AUTOCONSUMO							
AÑO	Fondos Invertidos	Ventas	Costes	Amortización	Beneficio Antes de Impuestos			
2024	12.842.867,52€	0,00€	0,00€	0,00€	0,00€			
2025	0,00€	772.294,42 €	93.060,00€	1.284.286,75 €	679.234,42 €			
2026	341.659,54 €	859.979,54€	96.224,04 €	1.284.286,75 €	763.755,50€			
2027	0,00€	952.734,48 €	99.495,66 €	1.284.286,75 €	853.238,82 €			
2028	0,00€	1.072.694,34 €	102.878,51 €	1.284.286,75 €	969.815,83 €			
2029	0,00€	1.177.074,06 €	170.202,21 €	1.284.286,75 €	1.006.871,86€			
2030	0,00€	1.287.311,58€	175.989,08 €	1.284.286,75 €	1.111.322,49 €			
2031	0,00€	1.694.102,03 €	181.972,71 €	1.284.286,75 €	1.512.129,32 €			
2032	14.043.907,47 €	2.127.066,11 €	188.159,78 €	1.284.286,75 €	1.938.906,33 €			
2033	0,00€	2.587.513,36 €	267.516,17 €	2.359.076,83 €	2.319.997,19 €			
2034	0,00€	3.076.812,14 €	276.611,72 €	2.359.076,83 €	2.800.200,42 €			
2035	0,00€	3.596.392,07 €	286.016,52 €	1.074.790,08€	3.310.375,55 €			
2036	0,00€	4.347.982,68 €	376.397,74 €	1.074.790,08€	3.971.584,94 €			
2037	0,00€	5.116.946,30 €	389.195,26 €	1.074.790,08€	4.727.751,04€			
2038	122.529.637,57€	5.963.756,55€	402.427,90 €	1.074.790,08€	5.561.328,65 €			
2039	0,00€	6.798.988,30€	505.276,97 €	8.747.585,28€	6.293.711,33 €			

2040	0,00€	16.117.665,35 €	706.852,77 €	8.747.585,28€	15.410.812,58€
2041	59.345.432,28 €	17.449.780,93 €	826.218,68€	8.747.585,28€	16.623.562,24€
2042	0,00€	18.772.770,85€	854.310,12 €	12.109.124,16€	17.918.460,74 €
2043	0,00€	20.213.237,96€	883.356,66€	11.034.334,08€	19.329.881,30€
2044	0,00€	21.718.025,74€	1.018.782,04 €	11.034.334,08€	20.699.243,70€
2045	0,00€	23.263.124,39€	1.053.420,62 €	11.034.334,08€	22.209.703,77€
2046	0,00€	24.940.900,73 €	1.089.236,93 €	11.034.334,08€	23.851.663,81 €
2047	0,00€	26.692.685,24€	1.242.781,77 €	11.034.334,08€	25.449.903,46 €
2048	0,00€	28.492.033,56 €	1.285.036,35 €	11.034.334,08€	27.206.997,20€
2049	0,00€	30.441.159,86 €	1.453.295,80€	3.361.538,88€	28.987.864,06€
2050	0,00€	32.429.629,44 €	1.502.707,86 €	3.361.538,88€	30.926.921,58€

Tabla 40. Flujo de Caja Autoconsumo (2/2)

		FLUJO DE CAJA INFR	AESTRUCTURA DE A	UTOCONSUMO	
AÑO	Impuestos	Beneficio DI	Fondos Generados	Flujo de Caja	Flujo de Caja Actualizado
2024	0,00€	0,00€	0,00€	-12.842.867,52 €	-12.842.867,52 €
2025	169.808,61€	509.425,82 €	1.793.712,57€	1.793.712,57 €	1.630.647,79€
2026	190.938,88€	572.816,63€	1.857.103,38€	1.515.443,84 €	1.265.267,62€
2027	213.309,71 €	639.929,12€	1.924.215,87€	1.924.215,87€	1.445.691,86 €
2028	242.453,96 €	727.361,87€	2.011.648,62€	2.011.648,62 €	1.373.983,08€
2029	251.717,96 €	755.153,89€	2.039.440,64 €	2.039.440,64 €	1.266.332,18 €
2030	277.830,62 €	833.491,87€	2.117.778,62€	2.117.778,62 €	1.195.430,82 €
2031	378.032,33 €	1.134.096,99 €	2.418.383,75 €	2.418.383,75 €	1.241.013,25 €
2032	484.726,58 €	1.454.179,75 €	2.738.466,50€	-11.305.440,97 €	-5.274.071,65 €
2033	579.999,30€	1.739.997,90€	4.099.074,73 €	4.099.074,73 €	1.738.407,83 €
2034	700.050,11 €	2.100.150,32 €	4.459.227,15€	4.459.227,15 €	1.719.225,10 €
2035	827.593,89 €	2.482.781,66 €	3.557.571,74€	3.557.571,74 €	1.246.907,19 €
2036	992.896,24 €	2.978.688,71€	4.053.478,79€	4.053.478,79 €	1.291.563,26 €
2037	1.181.937,76 €	3.545.813,28 €	4.620.603,36 €	4.620.603,36 €	1.338.424,21 €
2038	1.390.332,16 €	4.170.996,49 €	5.245.786,57€	-117.283.851,00 €	-30.884.503,59 €
2039	1.573.427,83 €	4.720.283,50 €	13.467.868,78€	13.467.868,78 €	3.224.100,71 €
2040	3.852.703,15 €	11.558.109,44 €	20.305.694,72€	20.305.694,72 €	4.419.110,79€
2041	4.155.890,56 €	12.467.671,68 €	21.215.256,96 €	-38.130.175,31 €	-7.543.851,91 €
2042	4.479.615,18€	13.438.845,55 €	25.547.969,71 €	25.547.969,71 €	4.595.026,92 €
2043	4.832.470,33 €	14.497.410,98 €	25.531.745,06 €	25.531.745,06 €	4.174.644,34 €
2044	5.174.810,93 €	15.524.432,78€	26.558.766,86€	26.558.766,86 €	3.947.791,46 €
2045	5.552.425,94 €	16.657.277,83 €	27.691.611,91€	27.691.611,91€	3.741.983,33 €
2046	5.962.915,95 €	17.888.747,86 €	28.923.081,94€	28.923.081,94 €	3.553.084,16 €
2047	6.362.475,87 €	19.087.427,60 €	30.121.761,68 €	30.121.761,68 €	3.363.942,85 €
2048	6.801.749,30 €	20.405.247,90 €	31.439.581,98€	31.439.581,98 €	3.191.922,36 €
2049	7.246.966,02 €	21.740.898,05 €	25.102.436,93 €	25.102.436,93 €	2.316.854,47 €
2050	7.731.730,39 €	23.195.191,18€	26.556.730,06€	26.556.730,06 €	2.228.254,46 €

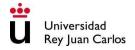



Tabla 41. Flujo de Caja Semindependiente (1/2)

	FLUJO DE CAJA INFRAESTRUCTURA SEMINDEPENDIENTE						
AÑO	Fondos Invertidos	Ventas	Costes	Amortización	Beneficio Antes de Impuestos		
2024	12.842.867,52 €	0,00€	0,00€	0,00€	0,00€		
2025	0,00€	772.294,42 €	93.060,00€	1.284.286,75 €	679.234,42 €		
2026	326.129,56 €	859.979,54€	96.224,04€	1.284.286,75 €	763.755,50€		
2027	0,00€	952.734,48 €	99.495,66€	1.284.286,75 €	853.238,82 €		
2028	0,00€	1.072.694,34 €	102.878,51€	1.284.286,75 €	969.815,83 €		
2029	0,00€	1.177.074,06 €	170.202,21 €	1.284.286,75 €	1.006.871,86 €		
2030	0,00€	1.287.311,58 €	175.989,08 €	1.284.286,75 €	1.111.322,49 €		
2031	0,00€	1.694.102,03 €	181.972,71 €	1.284.286,75 €	1.512.129,32 €		
2032	14.043.907,47 €	2.127.066,11 €	188.159,78 €	1.284.286,75 €	1.938.906,33 €		
2033	0,00€	2.587.513,36 €	267.516,17 €	2.359.076,83€	2.319.997,19€		
2034	0,00€	3.076.812,14 €	276.611,72 €	2.359.076,83 €	2.800.200,42 €		
2035	0,00€	3.596.392,07 €	286.016,52 €	1.074.790,08€	3.310.375,55€		
2036	0,00€	4.347.982,68 €	376.397,74 €	1.074.790,08€	3.971.584,94 €		
2037	0,00€	5.116.946,30 €	389.195,26 €	1.074.790,08€	4.727.751,04€		
2038	39.864.024,95 €	5.963.756,55€	402.427,90€	1.074.790,08€	5.561.328,65€		
2039	0,00€	6.798.988,30 €	505.276,97 €	3.571.071,84€	6.293.711,33€		
2040	0,00€	16.117.665,35 €	719.391,72 €	3.571.071,84€	15.398.273,63 €		
2041	25.588.333,31 €	17.449.780,93 €	839.565,29 €	3.571.071,84€	16.610.215,63 €		
2042	0,00€	18.772.770,85 €	868.899,11 €	5.020.487,14€	17.903.871,75€		
2043	0,00€	20.213.237,96 €	899.257,08 €	3.945.697,06€	19.313.980,88€		
2044	0,00€	21.718.025,74 €	1.035.644,63 €	3.945.697,06€	20.682.381,10€		
2045	0,00€	23.263.124,39 €	1.071.728,35 €	3.945.697,06€	22.191.396,04€		
2046	0,00€	24.940.900,73 €	1.108.617,83 €	3.945.697,06€	23.832.282,90 €		
2047	0,00€	26.692.685,24 €	1.263.753,71 €	3.945.697,06€	25.428.931,52 €		
2048	0,00€	28.492.033,56 €	1.307.203,23 €	3.945.697,06 €	27.184.830,33 €		
2049	0,00€	30.441.159,86 €	1.477.212,90 €	1.449.415,30€	28.963.946,97 €		
2050	0,00€	32.429.629,44 €	1.528.468,56 €	1.449.415,30€	30.901.160,87 €		

Tabla 42. Flujo de Caja Semindependiente (2/2)

	FLUJO DE CAJA INFRAESTRUCTURA SEMINDEPENDIENTE							
AÑO	Impuestos	Beneficio DI	Fondos Generados	Flujo de Caja	Flujo de Caja Actualizado			
2024	0,00€	0,00€	0,00€	-12.842.867,52 €	-12.842.867,52 €			
2025	169.808,61€	509.425,82 €	1.793.712,57€	1.793.712,57€	1.630.647,79€			
2026	190.938,88€	572.816,63€	1.857.103,38€	1.530.973,82 €	1.265.267,62€			
2027	213.309,71 €	639.929,12 €	1.924.215,87€	1.924.215,87€	1.445.691,86 €			
2028	242.453,96 €	727.361,87€	2.011.648,62€	2.011.648,62 €	1.373.983,08 €			

2029	251.717,96 €	755.153,89 €	2.039.440,64 €	2.039.440,64 €	1.266.332,18€
2030	277.830,62 €	833.491,87€	2.117.778,62€	2.117.778,62 €	1.195.430,82 €
2031	378.032,33 €	1.134.096,99 €	2.418.383,75€	2.418.383,75 €	1.241.013,25 €
2032	484.726,58€	1.454.179,75 €	2.738.466,50€	-11.305.440,97 €	-5.274.071,65€
2033	579.999,30€	1.739.997,90€	4.099.074,73 €	4.099.074,73 €	1.738.407,83 €
2034	700.050,11 €	2.100.150,32 €	4.459.227,15€	4.459.227,15 €	1.719.225,10€
2035	827.593,89€	2.482.781,66 €	3.557.571,74€	3.557.571,74 €	1.246.907,19€
2036	992.896,24€	2.978.688,71€	4.053.478,79€	4.053.478,79€	1.291.563,26 €
2037	1.181.937,76€	3.545.813,28 €	4.620.603,36€	4.620.603,36 €	1.338.424,21 €
2038	1.390.332,16€	4.170.996,49 €	5.245.786,57€	-34.618.238,39 €	-9.116.064,14€
2039	1.573.427,83 €	4.720.283,50 €	8.291.355,34€	8.291.355,34 €	1.984.884,55 €
2040	3.849.568,41 €	11.548.705,22 €	15.119.777,06€	15.119.777,06 €	3.290.504,02 €
2041	4.152.553,91 €	12.457.661,72 €	16.028.733,56€	-9.559.599,74 €	-1.891.315,85 €
2042	4.475.967,94 €	13.427.903,81 €	18.448.390,95€	18.448.390,95 €	3.318.105,27 €
2043	4.828.495,22 €	14.485.485,66 €	18.431.182,72 €	18.431.182,72 €	3.013.645,65 €
2044	5.170.595,28 €	15.511.785,83 €	19.457.482,88€	19.457.482,88 €	2.892.230,85 €
2045	5.547.849,01 €	16.643.547,03 €	20.589.244,09€	20.589.244,09 €	2.782.236,31 €
2046	5.958.070,73 €	17.874.212,18 €	21.819.909,23 €	21.819.909,23 €	2.680.487,99€
2047	6.357.232,88 €	19.071.698,64 €	23.017.395,70€	23.017.395,70€	2.570.540,35 €
2048	6.796.207,58€	20.388.622,75 €	24.334.319,80 €	24.334.319,80 €	2.470.556,37 €
2049	7.240.986,74 €	21.722.960,22 €	23.172.375,52€	23.172.375,52€	2.138.717,53 €
2050	7.725.290,22 €	23.175.870,65 €	24.625.285,95€	24.625.285,95 €	2.066.195,77 €

Tabla 43. Flujo de Caja Importación Total Hidrógeno (1/2)

	FLUJO DE CAJA INFRAESTRUCTURA DE IMPORTACIÓN TOTAL DE HIDRÓGENO						
AÑO	Fondos Invertidos	Ventas	Costes	Amortización	Beneficio Antes de Impuestos		
2024	2.935.275,84€	0,00€	0,00€	0,00€	0,00€		
2025	0,00€	772.294,42 €	93.953,38€	293.527,58€	678.341,05€		
2026	145.869,70 €	859.979,54€	97.147,79€	293.527,58€	762.831,75€		
2027	0,00€	952.734,48 €	100.450,82 €	293.527,58€	852.283,66 €		
2028	0,00€	1.072.694,34 €	104.113,05€	293.527,58€	968.581,28€		
2029	0,00€	1.177.074,06€	171.478,72 €	293.527,58€	1.005.595,34 €		
2030	0,00€	1.287.311,58€	177.309,00€	293.527,58€	1.110.002,58 €		
2031	0,00€	1.694.102,03 €	183.883,42 €	293.527,58€	1.510.218,61 €		
2032	3.620.547,95 €	2.127.066,11 €	190.417,70€	293.527,58€	1.936.648,41€		
2033	0,00€	2.587.513,36 €	270.142,69 €	570.610,66€	2.317.370,67€		
2034	0,00€	3.076.812,14€	279.931,06€	570.610,66€	2.796.881,08€		
2035	0,00€	3.596.392,07€	289.760,74 €	277.083,07€	3.306.631,33 €		
2036	0,00€	4.347.982,68€	380.914,51€	277.083,07€	3.967.068,17€		
2037	0,00€	5.116.946,30 €	394.532,80 €	277.083,07€	4.722.413,51 €		
2038	35.445.752,93 €	5.963.756,55€	408.636,79€	277.083,07€	5.555.119,76€		

2039	0,00€	6.798.988,30€	512.410,30 €	2.496.693,02€	6.286.578,01€
2040	0,00€	16.117.665,35 €	727.136,37 €	2.496.693,02€	15.390.528,98 €
2041	16.391.131,30 €	17.449.780,93 €	847.954,59 €	2.496.693,02€	16.601.826,33 €
2042	0,00€	18.772.770,85€	877.573,64 €	3.425.145,70€	17.895.197,21€
2043	0,00€	20.213.237,96€	908.634,25 €	3.148.062,62€	19.304.603,71 €
2044	0,00€	21.718.025,74€	1.045.762,19€	3.148.062,62€	20.672.263,54 €
2045	0,00€	23.263.124,39€	1.082.625,80€	3.148.062,62€	22.180.498,59€
2046	0,00€	24.940.900,73 €	1.120.336,52 €	3.148.062,62€	23.820.564,21 €
2047	0,00€	26.692.685,24€	1.276.336,88€	3.148.062,62€	25.416.348,36 €
2048	0,00€	28.492.033,56€	1.320.696,11 €	3.148.062,62€	27.171.337,45 €
2049	0,00€	30.441.159,86€	1.491.164,54 €	928.452,67€	28.949.995,33 €
2050	0,00€	32.429.629,44 €	1.543.409,77 €	928.452,67€	30.886.219,66 €

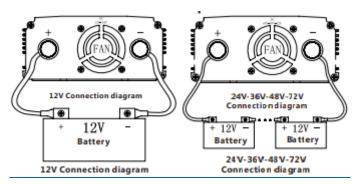
Tabla 44. Flujo de Caja Importación Total Hidrógeno (2/2)

FLUJO DE CAJA INFRAESTRUCTURA DE IMPORTACIÓN TOTAL DE HIDRÓGENO								
AÑO	Impuestos	Beneficio DI	Fondos Generados	Flujo de Caja	Flujo de Caja Actualizado			
2024	0,00€	0,00€	0,00€	-2.935.275,84 €	-2.935.275,84€			
2025	169.585,26€	508.755,79€	802.283,37 €	802.283,37€	729.348,52 €			
2026	190.707,94€	572.123,81€	865.651,40 €	719.781,69€	594.860,90 €			
2027	213.070,92€	639.212,75€	932.740,33€	932.740,33€	700.781,62 €			
2028	242.145,32€	726.435,96€	1.019.963,55€	1.019.963,55€	696.648,83 €			
2029	251.398,84 €	754.196,51 €	1.047.724,09€	1.047.724,09€	650.554,23 €			
2030	277.500,64 €	832.501,93€	1.126.029,52€	1.126.029,52 €	635.614,31 €			
2031	377.554,65 €	1.132.663,96 €	1.426.191,54€	1.426.191,54€	731.861,77 €			
2032	484.162,10 €	1.452.486,31 €	1.746.013,89€	-1.874.534,06 €	-874.483,97 €			
2033	579.342,67€	1.738.028,00€	2.308.638,66€	2.308.638,66 €	979.088,16 €			
2034	699.220,27 €	2.097.660,81 €	2.668.271,47 €	2.668.271,47 €	1.028.734,16 €			
2035	826.657,83€	2.479.973,50€	2.757.056,57€	2.757.056,57 €	966.331,51 €			
2036	991.767,04€	2.975.301,13 €	3.252.384,20€	3.252.384,20€	1.036.309,84 €			
2037	1.180.603,38 €	3.541.810,13 €	3.818.893,20€	3.818.893,20€	1.106.197,33 €			
2038	1.388.779,94 €	4.166.339,82 €	4.443.422,89€	-31.002.330,04 €	-8.163.882,46 €			
2039	1.571.644,50€	4.714.933,50€	7.211.626,53€	7.211.626,53 €	1.726.406,05 €			
2040	3.847.632,25 €	11.542.896,74 €	14.039.589,76€	14.039.589,76€	3.055.423,79€			
2041	4.150.456,58 €	12.451.369,75 €	14.948.062,77€	-1.443.068,53 €	-285.503,42 €			
2042	4.473.799,30€	13.421.397,91€	16.846.543,61€	16.846.543,61€	3.029.998,95 €			
2043	4.826.150,93 €	14.478.452,78 €	17.626.515,41€	17.626.515,41 €	2.882.076,12 €			
2044	5.168.065,89€	15.504.197,66 €	18.652.260,28€	18.652.260,28€	2.772.539,64 €			
2045	5.545.124,65€	16.635.373,94 €	19.783.436,57€	19.783.436,57€	2.673.347,08 €			
2046	5.955.141,05 €	17.865.423,16 €	21.013.485,78€	21.013.485,78 €	2.581.422,12 €			
2047	6.354.087,09€	19.062.261,27 €	22.210.323,89€	22.210.323,89€	2.480.408,06 €			
2048	6.792.834,36 €	20.378.503,08 €	23.526.565,71€	23.526.565,71 €	2.388.548,65 €			
2049	7.237.498,83 €	21.712.496,49 €	22.640.949,17€	22.640.949,17€	2.089.669,00 €			

2050

7.721.554,92 €

23.164.664,75 €


24.093.117,42€

24.093.117,42 € **2.021.543,93** €

8.2. FICHA TÉCNICA

8.2.1. Ficha técnica INVERSOR

 $\underline{https://cdn.autosolar.co/pdf/datasheet-inversor-belttt.pdf}$

MODEL		BEP100 0S	BEP1500S	BEP2000S	BEP3000S	BEP5000S			
output	Rated	1000W	1500W	2000W	3000W	5000W			
_	Power								
	Peak Power	2000W	3000W	4000W	6000W	10000W			
	Frequency		50	OHz / 60Hz(O ₁	otional)				
	WaveForm			Pure Sine W	ave				
input	Battery		12V / 24V /	48V(Optional)) 1	2V / 24V			
	Voltage				(Optional)			
	Voltage		10-15V(12V	/) / 20-30V(24	V) / 40-60V(4	8V)			
	Range								
	No load	0.8A(12	1.8A(12V)	3.0A(12V)	3.8A(12V)	2.5A(24V)			
	Current	V)	1.0A(24V)	1.5A(24V)	2.0A(24V)	1.4A(48V)			
		0.6A(24	0.5A(48V)	0.8A(48V)	1.2A(48V)				
		V)							
		0.3A(48							
		V)							
	Efficiency	≥90%							
Battery	Low		11(12)	V) / 21V(24V)	21V(24V) / 42V(48V)				
input	Voltage								
protectio	Alarm								
n	Battery low	10V±0.5V(12V) / 20V±0.5V21V(24V) / 40V±0.5V(48V)							
	voltage								
	protection								
	Battery high	15V±0.5V(12V) / 30V±0.5V21V(24V) / 60V±0.5V(48V)							
	voltage								
	protection								
	Battery			NO					
	reverse								
	polarity								
	protection								

Other protection	High temperature protection, Shortcircuit Protection, Overload						
	Protection	Protection					
USB			5V / 500m	A			
FAN	Smart fan	Smart fan, Automatic startup of high temperature and load Smart					
	fan, Automatic startup of high temperature and load						
Operating environment	Temperat	ure 0°C~40°C	@100%load, H	Iumidity 20%~	-90%RH,No		
	refrigerat	ion					
Size(mm)	367*15	452*150*1	454*180*1	529*180*1	585*180*16		
	0*76	42	42	42	7		
Weight(g)	2750	4000	4900	6020	8000		

8.2.2. Ficha técnica CONTROLADOR DE CARGA

 $\underline{https://cdn.autosolar.es/pdf/Victron-MPPT-RS-Smart-ES.pdf}$

MPPT RS SmartSolar aislado	450 100	450 200		
CARC	GADOR			
Tensión de la batería	48 V			
Corriente de carga nominal	100 A	200 A		
Potencia de carga máxima	5,8 kW a 57,6 V	11,5 kW a 57,6 V		
Tensión de carga de "absorción"	Valores predeterminad	los: 57,6 V (regulable)		
Tensión de carga de "flotación"	Valores predeterminad	los: 55,2 V (regulable)		
Rango de tensión programable	Mínima: 36 V Máxima: 62 V			
Algoritmo de carga	Adaptativo multifase (regulable)			
Sensor de temperatura de la batería	Incluido			
Eficiencia máxima	96 %			
Autoconsumo	15 mA			
SOLAR				
Tensión FV CC máxima	450 V			
Tensión de arranque	120 V			
Rango de tensión de trabajo del MPPT	80 – 450 V (1)			
Número de rastreadores	2	4		
Máxima corriente de entrada operativa FV	18 A por rastreador			
Máxima corriente de corto circuito FV (2)	20 A por rastreador			

Tamaño máximo del conjunto FV por	7200 Wp (450 V x 20	A) (3)		
rastreador (3)				
Nivel de fallo del aislamiento FV (4)	100 kΩ			
GEN	ERAL			
Funcionamiento en paralelo sincronizado	Sí, hasta 25 unidades o	con VE.Can		
Relé programable (5)	Sí			
Protección	Polaridad inversa FV (Cortocircuito de salida		
	Sobretemperatura			
Comunicación de datos	Puerto VE.Direct, puer	rto VE.Can y		
	Bluetooth (6)	·		
Puerto de entrada analógico/digital de uso	da analógico/digital de uso Sí, 2			
general				
On/Off remoto	Sí			
Rango de temperatura de trabajo	-40 a +60°C (refrigera	do por ventilador)		
Humedad (sin condensación)	máx. 95%			
CARCASA				
Material y color	acero, azul RAL 5012			
Grado de protección	IP21			
Conexión de la batería	Pernos M8			
Peso	7,9 kg	13,7 kg		
Dimensiones (al x an x p) en mm	440 x 313 x 126	487 x 434 x 146		
NOR	MAS			
Seguridad	EN-IEC 62109-1, EN-	IEC 62109-2		

8.2.3. Ficha técnica PANEL SOLAR

 $https://albasolar.es/wp-content/uploads/2021/11/CS-Datasheet-HiKu7_CS7N-MS-635-665W.pdf$

ELECTRICAL DATA | STC*

CS7N	640MS	645MS	650MS	655MS	660MS	665MS	670MS
Nominal Max. Power (Pmax)	640 W	645 W	650 W	655 W	660 W	665 W	670 W
Opt. Operating Voltage (Vmp)	37.5 V	37.7 V	37.9 V	38.1 V	38.3 V	38.5 V	38.7 V
Opt. Operating Current (Imp)	17.07 A	17.11 A	17.16 A	17.20 A	17.24 A	17.28 A	17.32 A
Open Circuit Voltage (Voc)	44.6 V	44.8 V	45.0 V	45.2 V	45.4 V	45.6 V	45.8 V
Short Circuit Current (Isc)	18.31 A	18.35 A	18.39 A	18.43 A	18.47 A	18.51 A	18.55 A
Module Efficiency	20.6%	20.8%	20.9%	21.1%	21.2%	21.4%	21.6%
Operating Temperature	-40°C ~	+85°C					
Max. System Voltage	1500V	(IEC/UL)) or 100	OV (IEC	/UL))		
Module Fire Performance	TYPE 1 or CLAS	(UL 617 SS C (IEC	30 1500 61730	(V) or T\	/PE 2 (U	L 61730	1000V)
Max. Series Fuse Rating	30 A						
Application Classification	Class A						
Power Tolerance	0 ~ + 10	0 W					
* Under Standard Test Conditions (STC)	of irradia	nce of 100	0 W/m², sp	pectrum A	M 1.5 and	cell tempe	erature of

ELECTRICAL DATA | NMOT*

CS7N	640MS	645MS	650MS	655MS	660MS	665MS	670MS
Nominal Max. Power (Pmax)	480 W	484 W	487 W	491 W	495 W	499 W	502 W
Opt. Operating Voltage (Vmp)	35.2 V	35.3 V	35.5 V	35.7 V	35.9 V	36.1 V	36.3 V
Opt. Operating Current (Imp)	13.64 A	13.72 A	13.74 A	13.76 A	13.79 A	13.83 A	13.85 A
Open Circuit Voltage (Voc)	42.2 V	42.3 V	42.5 V	42.7 V	42.9 V	43.1 V	43.3 V
Short Circuit Current (Isc)	14.77 A	14.80 A	14.83 A	14.86 A	14.89 A	14.93 A	14.96 A
* Under Nominal Module Operating Te temperature 20°C, wind speed 1 m/s.	mperature	(NMOT),	irradiance	of 800 W/	m² spectru	ım AM 1.5	, ambient

MECHANICAL DATA

Specification	Data			
Cell Type	Mono-crystalline			
Cell Arrangement	132 [2 x (11 x 6)]			
Discouries	2384 × 1303 × 35 mm			
Dimensions	(93.9 × 51.3 × 1.38 in)			
Weight	34.4 kg (75.8 lbs)			
Front Cover	3.2 mm tempered glass			
F	Anodized aluminium alloy,			
Frame	crossbar enhanced			
J-Box	IP68, 3 bypass diodes			
Cable	4 mm2 (IEC), 10 AWG (UL)			
Cable Length (Including Connector)	460 mm (18.1 in) (+) / 340 mm (13.4 in) (-) (supply additional jumper cable: 2 lines / Pallet) or customized length*			
Connector	T4 series or MC4-EVO2			
Per Pallet	31 pieces			
Per Container (40' HQ)	527 pieces			
* For detailed information, ple technical representatives.	ease contact your local Canadian Solar sales and			

TEMPERATURE CHARACTERISTICS

Specification	Data
Temperature Coefficient (Pmax)	-0.34 % / °C
Temperature Coefficient (Voc)	-0.26 % / °C
Temperature Coefficient (Isc)	0.05 % / °C
Nominal Module Operating Temperature	41 ± 3°C

8.2.4. Ficha técnica PILA DE COMBUSTIBLE

Pila Combustible:

https://www.ballard.com/fuel-cell-solutions/fuel-cell-power-products/backup-power-systems

Características clave:

- El diseño flexible y modular minimiza los requisitos de espacio
- Salida de potencia CC escalable de 200 kW a 1,2 MW
- Configuraciones de gabinete con puertas de fácil acceso y todas las conexiones de las interfaces situadas en el frente para servicio y mantenimiento accesibles.
- Se encuentran disponibles soluciones independientes, montadas sobre patines o en contenedores.
- >25.000 horas de funcionamiento entre revisiones (o remodelaciones)

Celdas combustibles:

 $\frac{https://www.ballard.com/docs/default-source/spec-sheets/fcwave-xd-for-stationary.pdf?sfvrsn=5917d980\ 2$

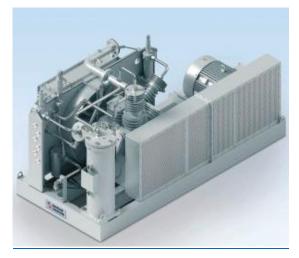
Performance	
Rated power	200kW
Minimum power	50kW
Peak fuel Efficiency	53.5 %
Operating voltage	350 - 720 V DC
Rated current ¹	2 x 300 A or 1 x 550
System cooling output	Max 65° C
Stack technology	
Heat management	Liquid cooled
H2 Pressure	3.5 - 6.5 Barg
Physical	
Dimensions (l x w x h) ²	1210 mm x 738 mm x 2195 mm
Weight (estimate) ³	1050 kg
Environmental protection	IP44
Engine room (DNV CG-0339)	+0°C - +45°C
Minimum start-up temperature	0°C
Short-term storage temp	-20°C − +60°C
Reactants and Coolant	
Туре	Gaseous hydrogen
Composition	As per SAE spec. J2719. ISO 14687:2019, grade D or GB/T 3244-2018
Oxidant	Air
Composition	Particulate, Chemical and Salt filtered
Coolant 4	Water or 50/50 glycol

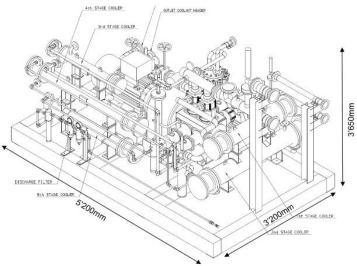
8.2.5. Ficha técnica ELECTROLIZADOR

StarGate Gateway 02

 $\underline{https://stargatehydrogen.com/wp-content/uploads/2022/08/Stargate-Gateway-Specifications-July-2022.pdf?ssp=1\&darkschemeovr=1\&setlang=es-ES\&safesearch=moderate}$

Technical specifications


Product	Gateway 01	Gateway 02	Gateway 04	Gateway 08	Gateway 10
Hydrogen hourly production rate [Nm3/h]	200	400	800	1600	2000
Hydrogen daily production rate [kg/day]	432	864	1728	3456	4320
Hydrogen pressure [barg]	30	30	30	30	30
Hydrogen purity [%]	> 99.999%	> 99.999%	> 99.999%	> 99.999%	> 99.999%
Oxygen purity [%]	> 99.7%	> 99.7%	> 99.7%	> 99.7%	> 99.7%
Installed electrical power [MVA]	1	2	4	8	10
Stack Consumption [kWh/Nm3]	4.13	4.13	4.13	4.13	4.13
System efficiency (HHV) [%]	71.6%	71.6%	71.6%	71.6%	71.6%
System efficiency (LHV) [%]	60.5%	60.5%	60.5%	60.5%	60.5%
Operating range [%]	10-100%	10-100%	5-100%	5-100%	5-100%
Electrolyte	КОН	КОН	КОН	КОН	KOH
Electrical interface	0.4 kV, 50/60 Hz, > 0.9 PF	0.4 kV, 50/60 Hz > 0.9 PF			
Pure water requirement [I/h]	164	328	656	1312	1640
System installation location	Outdoors (containerized)	Outdoors (containerized)	Outdoors (containerized)	Outdoors (containerized)	Outdoors (containerized)
Ambient temperature range [°C]	-20 to +40	-20 to +40	-20 to +40	-20 to +40	-20 to +40
Communication interface	Ethernet / Modbus	Ethernet / Modbus	Ethernet / Modbus	Ethernet / Modbus	Ethernet / Modbu


8.2.6. Ficha técnica COMPRESOR

Para aumentar la presión de 30 bar a 200 bar: C3T210.3 GP

 $\underline{https://www.burckhardtcompression.com/wp-content/uploads/2021/11/bc_fly_SHP-H2_210701_en.pdf}$

Туре	Compressor Speed	Motor Rating kW	Suction Pressure	Capacity Nm3/hr	Shaft Powe	r at Discharg	je Pressure
	rpm		bar a		151 bar a	201 bar a	221 bar a
		125	6	500	100	109	112
3 GP		150	8	680	116	126	131
C3T210.3 GP	1 045	160	10	850	129	142	147
ES TE		180	12	1 020	142	157	-
		180	13	1 100	148	164	-
		55	8	235	41	45	47
			10	290	46	45 47 51 53 56 58 60 63	53
	970	75	12	355	50	56	58
		75	14	410	54	60	63
			16	475	58	65	67
		45	8	195	34	37	38
2 GP		55	10	245	38	42	43
C3U207.2 GP	820	20	12	295	41	46	48
C3U		75	14	345	45	50	52
		75	16	395	48	54	56
		37	8	155	27	31	32
		45	10	200	31	34	35
	685	40	12	240	34	38	40
		55	14	280	36	41	43
		33	16	325	39	44	46

Typical performance range (+/- 5 % tolerance) of a Standard High-Pressure Compressor package for hydrogen applications based on suction gas temperature from 10 °C to 35 °C and ambient temperature from 0 °C to 35 °C. Certified calculation available on request.

Para aumentar la presión de 200 bar a 500 bar: 2KS50 Pro

Para aumentar la presión de 500 bar a 900 bar: 1KS50 Pro - 1KS95

https://hyjack.tech/ecosystem/business/93

 $\frac{https://www.hannovermesse.de/apollo/hannover_messe_2023/obs/Binary/A1250743/Hydrogen_920Compression\%20Flyer_Hiperbaric.pdf$

Modelo	Presión	Caudal de	Caudal de	Demanda	Total
	Salida	Hidrógeno	Hidrógeno	Energética	installed
	Máxima	(kg / h)	(kg / day)	(kWh/kg of	power (up
				H ₂)	tokW)
1KS50	500	24	565	1,3	75
1KS50 Pro		32	772	1,3	105
2KS50		47	1130	1,4	120
2KS50 Pro		64	1544	1,4	180
1KS95	900	10	236	4,6	75
2KS95		20	471	4,6	120
1KS50 Pro -		30	756	2,4	110
1KS95					

8.2.7. Ficha técnica DEPÓSITOS DE HIDRÓGENO

Depósitos de Tanque de compra:

https://lapesa.es/sites/default/files/ficha_depositos_hidrogeno_h2_2201-01_es.pdf

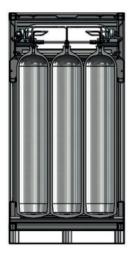
MODELOS Y CARACTERÍSTICAS PRINCIPALES

MODELOS HORIZONTALES	LH 10H	LH 25H	LH 50H	LH 100H	LH 145H	LH 200H
Volumen nominal (m³)	10	25	50	100	145	200
Diámetro exterior D (mm)	1.500	2.200	2.450	3.000	3.000	3.500
Longitud total L (mm)	5.950	7.350	11.550	15.350	21.850	22.300
Peso en vacío (Ton)	3,5	8,9	18,2	34,7	48,3	66,8
Peso contenido de H, (kg)1	36	90	180	360	522	720

MODELOS VERTICALES	LH 10V	LH 25V	LH 50V	LH 100V	LH 145V	LH 200V
Volumen nominal (m³)	10	25	50	100	145	200
Diámetro exterior D (mm)	1.500	2.200	2.450	3.000	3.000	3.500
Altura total L (mm)	6.300	7.850	12.000	15.850	22.350	22.800
Peso en vacío (Ton)	3,7	10,1	19,2	36	49,6	69
Peso contenido de H ₂ (kg) ¹	36	90	180	360	522	720

(1) Peso del gas a 40 bar y 0°C.

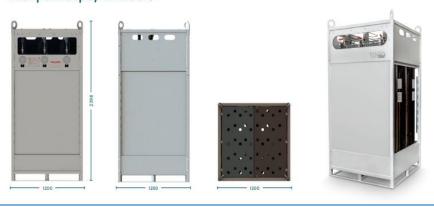
Depósitos de Tanque de 200 bares:


https://mygas.airliquide.es/files/a52d700a7b7a78d7cbacb1add1c84b2981c22ae2 HIDR GEN O es ES_v1.6.pdf

Pureza	Impurezas	Modo de	Tipo de	Presión	Capacidad	Referencia de
(% Vol.	(ppm v/v)	suministro	envase		(m^3)	producto
abs) H2						
≥ 99,9	H2O (5	Botella	50L	200 bar	8,8 m³	I7001L50R2A001
%	$bar) \le 40$					
	ppm v/v					
	O2 ≤ 10	Bloque	V16*50L	200 bar	141 m³	I7001V16R2A001
	ppm v/v					
		Bloque	V28*50L	200 bar	246,4 m³	I7001V28R2A001

Depósitos de Tanque de 500 bares: https://d2unncwr0d5wwb.cloudfront.net/purus/500-bar-Bundle-Hexagon-Purus-Datasheet.pdf

Standard/options	Approval	Bundle 600/500
Standard	ADR	X
Standard	TPED	X
Standard	PED	500 bar
Standard	Regulation	EN ISO 10961
Standard	Cylinder	Type 1
Standard	Cylinder valve	Brass
Standard	Manifold	Stainless steel
Standard	Filling connection	M20X1,5LH
Standart	Gauge filling pressure	x
Option 1	Gauge discharging pressure	х
Option 1	Pressure regulator	500/200
Option 1	Safety valve	PED



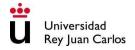
Description	Cylinder size	Cylinder/Rack	Bundle capacity	Working pressure	Test pressure	Weight
	L		L	bar	bar	kg
Bundle 600/500	50	12	600	500	787	2,500

Depósitos de Tanque de 1000 bares: https://s3.eu-central-1.amazonaws.com/hexagonpurus-website/1000-bar-Bundle-Hexagon-Purus-Datasheet.pdf

Description	Cylinder size	Cylinders	Bundle volume	H2 capacity	Working pressure	Test pressure	Weight	Allowable temperature range
	L		L	kg	bar	bar	kg	°C
1000 bar stationary	104	3	312	15.2	1000	1430	500	-40 to +65
storage bundle	104	9	936	47.2	1000	1430	1300	-40 to +65

Exemplaric display bundle of 9

8.2.8. Ficha técnica CARGADOR ELÉCTRICO



Cabina de potencia	
Potencia de salida	175 kW hasta 40°C
Reducción de la potencia	5% por cada 5 grados adicionales
Corriente de salida	1 cabinet: 375 A 2 cabinets: 500 A
Conexión AC	L1, L2, L3, GND (no neutral)
Versión CE	400 V AC ± 10%, 50 Hz (opción: 60 Hz) 277 A, 192 kVA nominal Interruptor recomendado : 315 A
Versión UL	480Y/277 V AC +/-10%, 60 Hz 231 A, 192 kVA nominal Interruptor recomendado: 300 A
Versión CSA	600 V AC ± 10%, 60 Hz 185 A, 192 kVA nominal Interruptor recomendado: 250 A
Corto Circuito	CE: 25 kAIC UL/CSA: 65 kAIC
Sobretensión	CAT III
Eficiencia	≥ 94% a carga completa
Factor de potencia	≥ 0.97
THDi	≤ 8%
EMC emission	Estándar: Clase A (industrial) Opcional: Clase B (residencial) con filtro externo
Nivel de ruido	≤67 dB(A) a 1 m
Dimensiones (H x W x D)	2030 x 1170 x 770 mm
Peso	1340 kg

8.2.9. Ficha técnica DISPENSADOR DE HIDRÓGENO

 $\underline{https://www.gilbarco.com/eu/sites/gilbarco.com.eu/files/pdfs/hydrogen-dispenser-data-sheet-eu-july-2022-digital.pdf}$

CONFIGURATION OPTIONS	
CABINET	Modular Gilbarco Design, available as Encore 700S (H-frame) and SK700-II (C-frame)
# OF SIDES	Single sided or dual sided
HOSE ORIENTATION	Lane oriented or island oriented design
# OF INLET LINES	Single line inlet configuration (available in buffer or one inlet per hose configuration) Three line inlet configuration
# OF HOSES PER SIDE	One hose per side or two hoses per side
FILLING PRESSURE	H35 – 350 BAR (5,000 PSI) H70 – 700 BAR (10,000 PSI) Multi-pressure configurations available
FLOW CAPACITY	Standard flow (3.6 kg/min) High flow (7.2 kg/min) - H35 filling pressure only Split flow configurations available
METER TECHNOLOGY	Coriolis mass flow metering
COOLING TECHNOLOGY	Diffusion bonded internal heat exchanger - single or dual channel
FLOW CONTROL	Emerson flow control valve
FUELLING PROTOCOLS	SAE J2601 SAE J2601-2
NOZZLE OPTIONS	Multiple nozzle and breakaway configurations available
DISPENSER-TO-VEHICLE COMMUNICATIONS	Communicative and non-communicative fuelling (compliant to requirements of applicable fuelling protocol)
FILTRATION	One hydrogen filter included per hose