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Abstract

We analyze the oscillatory dynamics of a time-delayed dynamical system subjected to a periodic

external forcing. We show that, for certain values of the delay, the response can be greatly enhanced

by a very small forcing amplitude. This phenomenon is related to the presence of a Bogdanov-

Takens bifurcation and displays some analogies to other resonance phenomena, but also substantial

differences.
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I. INTRODUCTION

Different resonance phenomena play a key role in the sciences. Examples, beyond the

simplest case of a linear system forced at its natural frequency, include stochastic resonance

[1, 2], chaotic resonance [3], coherence resonance [4] and vibrational resonance (VR) [5]. For

a recent monograph dealing with all these phenomena, see [6]. The stochastic resonance

of a bistable system is triggered by the cooperation between a weak periodic forcing and

noise. The noise can be replaced by a chaotic signal to obtain chaotic resonance. It is

also possible to have noise–induced resonance in absence of external periodic forces, a phe-

nomenon called coherence resonance. A nonlinear system driven by a biharmonic forcing

with different frequencies can show VR. Resonances appear not only in systems described by

standard differential equations, but also in time-delayed systems. Time-delay effects arise

frequently in practical problems and have received much attention in recent years [7–11].

Hereditary effects are sometimes unavoidable and may easily turn a well-behaved system

into one displaying very complex dynamics. A simple example is provided by Gumowski

and Mira [12], who demonstrate that the presence of delays may destroy stability and cause

periodic oscillations in systems governed by differential equations. Vibrational resonance

occurs in time-delayed systems with two harmonic forcings of different frequencies [13–16].

Furthermore delay systems often possess oscillatory behavior even in the absence of forcing

and for this reason VR and related phenomena may occur even in the presence of only one

external excitation [17, 18].

In this work we present a new resonance phenomenon that may appear in systems with

delay. The addition of a very small external forcing may result in the solution changing

from a damped, small amplitude oscillation to a sustained, large amplitude oscillation. The

sustained response takes place for a range of values of the frequency Ω of the external forcing

(as distinct from phenomena that require well-defined values of Ω). The resonance occurs for

a (narrow) interval of values of the delay and is related to the presence of a Bogdanov-Takens

bifurcation in the model. We therefore will refer to it as Bogdanov-Takens resonance.
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II. THE SYSTEM

The model that we use to describe and analyze the Bogdanov-Takens resonance is the

apparently simple system called delayed action oscillator [19]. It is a single variable system

with a double-well potential and a linear delayed feedback term with a constant time delay

τ ≥ 0. The oscillator can be written as:

ẋ = αxτ + x− (1 + α)x3 + F sin Ωt (1)

xτ = x(t− τ), (2)

where α measures the influence of the returning signal relative to that of the local feedback

and represents a negative feedback, τ is the time delay, and F and Ω are the amplitude

and frequency of the external periodic forcing. The constants α, τ , F and Ω are real and

the interest is in the case α ∈ (−1, 0). Without the delayed term, this system would be

a one-dimensional ODE and could not oscillate, but the linear delayed feedback converts

the system into an infinite-dimensional one, allowing oscillatory dynamics. The system is

interesting, among other things, for its analogy with the El Niño Southern Oscillator (ENSO)

[20, 21] and the well-known Duffing oscillator ẍ+ γẋ+ x(x− 1) = 0, as discussed in [19].

We begin by studying the unforced system with F = 0:

ẋ = x+ αxτ − (1 + α)x3. (3)

This has the equilibrium points x = 0 and x = ±1. The equilibrium x = 0 is always unstable

as may be easily shown by studying the corresponding linearization of Eq. (3). The equilibria

at ±1 are stable in the absence of delay (τ = 0), but undergo Hopf bifurcations [22] in the

delayed system. For x = 1 (and for symmetry reasons for x = −1), the characteristic

equation of the linearization is

λ = −3α− 2 + αe−λτ . (4)

If α < −1 or α > −1/2, then, for any τ > 0, all roots of the this equation have negative

real parts and x = 1 and x = −1 are asymptotically stable. If −1 < α < −1/2, there

is a sequence τ = τk, k = 0, 1, 2, . . . of values of the delay for which Eq. (4) has a pair

of imaginary roots ±iω0, ω0 =
√
α2 − (3α + 2)2. The delays τk and the frequency ω0 are

related by the following expression:

τk =
sin−1(−ω0/α) + 2kπ

ω0

. (5)
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FIG. 1: Phase portrait of the system, Eq. (1), for α = −0.925, and for τ = 1, 1.122, 1.13 and 1.7,

respectively. In the figures different trajectories are arise from different history functions.

If τ ∈ [0, τ0), then all roots of Eq. (4) have negative real parts. For τ = τ0, the roots of

Eq. (4) have real parts < 0, except for the pair ±iω0. If τ ∈ (τ0, τ1], Eq. (4) has one pair of

complex conjugate roots with positive real parts. Thus, for −1 < α < −1/2, the equilibria

x = 1 and x = −1 undergo a Hopf bifurcation at τ = τ0, where, as τ increases, they turn

from being asymptotically stable into being unstable. Additional Hopf bifurcations occur at

τk, k = 1, 2, . . ., but we shall not be concerned with them. For the value α = −0.925 used

in [19] and in the experiments below, τ0 ≈ 1.1436 and ω0 ≈ 0.5050.

The panels in Fig. 1 show ‘phase portraits’ in the plane x, xτ (see Ref. [24]). In each panel

there are different solutions corresponding to different constant history functions xτ (t) = u0,

t ∈ [−τ, 0], u0 a constant. Bear in mind that this is different from a true phase portrait

of an ODE system because in the delayed case it is not true that each point in the plane

defines a unique trajectory. In the panels the solutions move counterclockwise. Panel (a)

corresponds to the case of “small” τ ; solutions are generically attracted to a stable equilibrum
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Solutions as a function of τ. The Bogdanov −Takens bifurcation

τ < τc The equilibrium points ±1 attract (most) solutions.

Periodic saddle–node bifurcation at τc.

A stable loop Ls and a smaller unstable loop Lu are born.

τc < τ < τh The equilibrium points attract solutions inside Lu.

Outside Lu solutions are attracted to Ls.

Homoclinic bifurcation at τ = τh.

The loop Lu gives rise to two unstable loops L±1 around ±1 respectively.

τh < τ < τ0 Solutions inside L±1 attracted to corresponding equilibrium.

Other solutions are attracted to Ls.

Hopf bifurcation at τ = τ0.

The loops L±1 merge with the corresponding equilibrium.

Large τ Ls attracts most solutions.

TABLE I: Behaviour of the solutions of the unforced system (3) as a function of τ .

±1. For τ “large”, solutions are generically attracted to a single big loop Ls as in panel

(d). As τ → ∞, solutions on Ls are approximately square waves where x(t) jumps from

a = +
√

(1− α)/(1 + α) to −a and back, and simultaneously x(t− τ) jumps from −a to a

and back. The orbitally stable loop Ls is born at a saddle-node bifurcation at τ = τc (for

α = −0.0925, τc ≈ 1.119). The saddle-node bifurcation point τc is smaller than the Hopf

bifurcation point τ0 discussed above, so that for τ ∈ (τc, τ0) the attracting big loop Ls coexists

with the attractors at x = ±1. This is the regime of interest for our purposes. The interval

(τc, τ0) contains two subintervals (τc, τh), (τh, τ0) corresponding to different dynamics. In the

first of these subintervals (panel (b)), there is an unstable loop Lu surrounding the equilibria;

Lu is of course born, together with Ls, at the saddle-node bifurcation at τ = τc. At τ = τh,

Lu becomes a homoclinic connection of the equilibrium at x = 0 and a further increase of τ

turns the homoclinic connection into a couple of unstable orbits L±1 , one around x = 1 and

the other around −1 (panel (c)). These unstable orbits disappear at the subcritical Hopf

bifurcation at τ = τ0, where each of them merges with the corresponding equilibrium. The

bifurcations at τc, τh and τ0 clearly correspond to a Bogdanov-Takens scenario. A summary
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of the possible behaviors of the solutions as τ varies appears in Table I.

III. RESONANCE

The forced system ẋ = x − x3 + A cosωt shows small-amplitude sustained oscillations

around one of the equilibrium points x = ±1, which are only possible due to the slow

forcing A cosωt. Then, by adding a fast forcing B cos Ωt, with Ω � ω the oscillations

may go from one well to the other. This is the phenomenon of vibrational resonance [5, 25].

Equations like (1) may exhibit something extremely similar [18, 26]. The autonomous system

ẋ+x((1+α)x2−1)−αxτ = 0 shows slowly damped oscillations around +1 or −1, induced by

the delay. Then, the addition of a forcing term F sin Ωt may give rise to sustained oscillations

that go from one well to the other. The phenomenon that we study here is considerably

different. We illustrate it in the case with α = −0.925, τ = 1.14 and constant history

u0 = 1.1. For this value of τ , the equilibria ±1 coexist with the attractor Ls. Figure 2

corresponds to the unforced case F = 0. The solution is a marginally damped oscillation

with angular frequency approximately equal to ωn = 0.50, as the position of the peak in

Fig. 2(b) shows. Then, we add a very small forcing value F = 0.01 of angular frequency

Ω = 0.50 (the exact value of the forcing frequency Ω is not critical, as we will discuss later).

As we show in Fig. 3(a), the solution is a sustained oscillation of large amplitude and angular

frequency ωn = 0.40, as shown by the position of the peak in Fig. 3(b). Therefore, there is a

huge impact of the small forcing term. The resulting sustained oscillation is triggered by the

forcing, but it is not a direct response to it, because the frequency of the interwell oscillation

does not match the forcing frequency Ω, as we see by comparing Figs. 2(b) and 3(b). In a

phase portrait the forcing would cause the solution to jump from the neighbourhood of the

equilibrium x = 1 to the stable loop Ls. Figure 4 shows the amplitude of the solution as

a function of τ , without forcing (red line) and with F = 0.01 (blue line). The numerical

experiments support the analysis in the previous section. In fact, it is possible to appreciate

the enhancement of the amplitude A for τ in range 1.119 < τ < 1.143 where Ls coexists

with the stable equilibria. If τ is larger than 1.143, then the equilibrium points ±1 loose

their stability so that the damped oscillations around them no longer exist, and the system

shows an interwell oscillation without any need for an external forcing. On the other hand,

if τ is below 1.119, the solution will eventually settle in one of the wells, even if in a transient
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phase it oscillates between both wells.

FIG. 2: The unforced (F = 0) system (1) with α = −0.925, τ = 1.14, and a constant history

function u0 = 1.1. Panel (a): The solution x(t). Panel (b): Fourier analysis.

FIG. 3: As in Fig. 2, except that a small forcing F = 0.01, Ω = 0.5 has been added; the solution

is now a sustained oscillation of large amplitude. When comparing with Fig. 2(b) note the change

in the vertical scale for A.
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FIG. 4: The figure shows the amplitude of the oscillatory solution of the system, Eq. (1), as a

function of τ for two different values of the external periodic forcing. We have considered values

of τ close to the critical values where the bifurcations occur. Here Ω = 0.5, α = −0.925 and the

history function is the constant u0 = 1.1.

It is important to point out that the phenomenon that we are discussing is very different

from well-known cases where a forcing with a moderate value of F gives a solution that,

upon Fourier analysis, is seen to consist of modes cos(Ωt+φ1) (the fundamental harmonic),

cos(3Ωt+φ3) (the third harmonic) or cos(Ωt/3+φ1) (subharmonic) (odd numbered overtones

are expected in view of the cubic nonlinearity).

In order to show that the phenomenon is not specific to the particular model (1), we have

also analyzed the equation

ẋ = αxτ + x− 3(1 + α)xx2τ + 2(1 + α)x3τ + F sin Ωt (6)

xτ = x(t− τ), (7)

that undergoes a Bogdanov-Takens bifurcation [24]. The resonance studied here also occurs,

as seen in Fig. 5: the introduction of a very small external forcing induces again interwell

oscillations.
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FIG. 5: Model (6) with τ = 1.19, α = −0.9, and a constant history function u0 = 1.1. On the left:

damped oscillations in the absence of forcing (F = 0). On the right: large amplitude oscillations

for a small forcing, F = 0.015, Ω = 0.45.

IV. DYNAMICS OF THE RESONANCE

We now study the impact on the resonance of changes in the forcing frequency Ω, the

parameter α and the history function u0.

Figure 6(a) depicts the amplitude (maximum value of the Fourier spectrum) of the re-

sponse x as a function of Ω; the resonance manifests itself for a range of values of Ω around

FIG. 6: The figures show (a) the amplitude of the oscillation and (b) the frequency ωmax as a

function of Ω, corresponding to the system, Eq. (1), for F = 0.01, τ = 1.14, α = −0.925, and a

constant history function u0 = 1.1. In (a) a well-defined peak appears around Ω = 0.4, that shows

that the resonance phenomenon takes place for suitable values of the forcing frequency.
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0.4. Panel (b) gives the frequency ωn for which the Fourier spectrum of the signal attains its

maximum value. Note the little correlation between ωn and Ω; for Ω large, ωn corresponds

to the frequency on Ls.

In Fig. 7 we use the alternative value α = −0.8 in order to check the occurrence of the

resonance. Note that the value of the critical τ0 for which the resonance appears increases,

in agreement with Eq. (5).

It is of interest to study numerically the changes of the critical τ0 as α varies, as shown

in Fig. 8, that plots the amplitude of the oscillation as a function of Ω for different values

of α, from α = −0.5, panel (a) to α = −0.9, panel (e). We note that for larger values of α,

the critical value of τ that triggers the resonance increases. The figures also show that the

shape of the peak in the (Ω, A) plane and the range of Ω leading to resonance change with

α, although not as much as the value of τ0.

Another important factor in the study of delayed systems is the history function. We

have carried out numerical experiments changing the history function and found that the

phenomenon is robust against the variation of the history. In fact, none of the figures shown

above changes if we alternatively use linear, quadratic or sinusoidal histories.

V. CONCLUSIONS

In conclusion, we have shown the phenomenon of Bogdanov-Takens resonance in time-

delayed systems. This resonance is produced when a periodic signal of a very small ampli-

tude applied to a delayed system produces sustained oscillations of large amplitude. The

frequency of the resulting sustained oscillation is not related to the frequency Ω of the forc-

ing. Resonance takes places for Ω in a suitable interval, rather than at critical values of Ω.

The phenomenon also appears in systems without delay as we shall describe in a forthcoming

paper.
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FIG. 8: Amplitude of the solution of Eq. (1) as a function of Ω for different values of the parameter

α. Panel (a): τ = 12.8 and α = −0.5. Panel (b): τ = 3.3 and α = −0.6. Panel (c): τ = 2.01 and

α = −0.7. Panel (d): τ = 1.51 and α = −0.8. Panel (e): τ = 1.2 and α = −0.9. As α decreases,

the values of τ that trigger the resonance decrease.
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