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I have learned throughout my life as a composer chiefly through my
mistakes and pursuits of false assumptions, not by my exposure to

founts of wisdom and knowledge.

— Igor Stravinsky





A B S T R A C T

Upcoming active space debris removal missions will most likely at-
tempt to remove several objects per mission. The design of such mis-
sions involves the selection of the objects to be removed, as well as
the optimization of the visit sequence and the orbital transfers inter-
connecting them.

This thesis focuses on the efficient resolution of optimization prob-
lems that involve the aforementioned kind of missions. In particular,
the considered candidate pools of objects have to be large enough to
be representative of the distribution of the most hazardous objects
in the region of interest. Thus providing a more realistic view of the
actual deorbiting capabilities of multi-target missions.

The efficient resolution of such large-scale instances poses three
particular challenges, namely, the combinatorial complexity resulting
from the size of the candidate object pool, the optimization of the
orbital maneuvers and the interaction between the object selection
and the maneuver optimization.

The combinatorial complexity of the problems has been addressed
with a Mixed Integer Linear Programming formulation that prevents
the appearance of solutions with disjoint subtours.

Regarding the maneuver optimization, both impulsive and low-
thrust transfers have been considered. For impulsive maneuvers, a
general Nonlinear Programming model has been proposed. More-
over, a dual-based method that is able to efficiently solve specific
instances of multi-impulse maneuvers, while guaranteeing the con-
vergence and the global optimality of the solutions, has been devised.
For low-thrust maneuvers, this work presents a methodology to com-
pute J2-perturbed low-thrust transfers between circular orbits that
achieves an advantageous trade-off between the fidelity of the orbital
dynamics, the optimality of the transfers and the computational effi-
ciency.

The interaction between the combinatorial decisions and the orbital
dynamics has been handled with a two-stage approach that encapsu-
lates each component of the problem in a stage. Conversely, an in-
tegrated Mixed Integer Linear Programming model that seamlessly
coordinates the maneuver optimization and object selection has also
been proposed. Furthermore, a Constraint Programming framework
has been devised to deal with general mission analysis problems.
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R E S U M E N

antecedentes

El ritmo de crecimiento del número de objetos en órbita alrededor
de la Tierra es un tema que requiere una gran atención, especial-
mente en las regiones más pobladas, las órbitas bajas terrestres (LEO)
y las órbitas geoestacionarias, ya que para una densidad de objetos
lo suficientemente grande existe cierta probabilidad de que se pro-
duzca una cadena de colisiones que genere nuevos objetos los cuales,
a su vez, aumenten la probabilidad de que se produzcan nuevas coli-
siones, fenómeno que limitaría gravemente las operaciones en dichas
regiones.

Para mitigar el crecimiento descontrolado de la basura espacial, el
Inter-Agency Space Debris Coordination Commitee publicó una serie
de recomendaciones. Entre tales recomendaciones, se aconseja que
los objetos en la región LEO hayan reentrado en la atmosfera a los 25

años después de la finalización de su vida útil. Sin embargo, se han
llevado a cabo investigaciones que indican que la aplicación estricta
de esta medida sería insuficiente para que se estabilizara el número
de objetos en órbita LEO; por lo tanto, asignando un determinado
valor de amenaza a los objetos en función de su masa y probabilidad
de colisión, proponen la eliminación de un determinado número de
objetos, con grandes valores de amenaza, cada año para estabilizar el
número total de objetos en dicha región.

Este interés por la eliminación activa de basura espacial ha mo-
tivado la investigación sobre la optimización de trayectorias de mi-
siones en las que un satélite efectúa visitas a una serie de objetos para
eliminarlos, bien deorbitándolos, o bien reubicándolos en órbitas en
las que no supongan una peligro.

A la vista de los artículos publicados a fecha de inicio de esta tesis
sobre optimización de trayectorias para la eliminación de basura es-
pacial, no se ha explorado satisfactoriamente la posibilidad de elegir
entre un gran número de objetos a eliminar con características or-
bitales diversas, ni se ha abordado el problema con las herramientas
de optimización más apropiadas ni las más novedosas disponibles, lo
que proporciona una clara oportunidad de mejora en el estudio de
este caso práctico. Por lo tanto, el estudio de este problema no solo
resulta de gran interés, sino que ofrece margen de mejora respecto
al actual estado del arte. Explorando ambas vías de mejora, se de-
berían lograr unos mejores algoritmos que permitan tratar de manera
efectiva un conjunto de objetos suficientemente representativos como
para poder diseñar misiones de eliminación activa de basura espa-
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cial que supongan un impacto global en la estabilización del número
de objetos en órbitas LEO, condicionado a los recursos de los que se
disponga para la realización de dichas misiones.

objetivos

El objetivo de esta tesis es la resolución de problemas de optimización
de trayectorias de satélites para llevar a cabo misiones de eliminación
de basura espacial en órbitas bajas terrestres, tal que, los objetos
a eliminar se obtengan a partir de un conjunto lo suficientemente
grande como para ser representativo de la distribución de los objetos
más peligrosos en la región de interés.

La resolución eficiente de este tipo de problemas presenta tres difi-
cultades. La más evidente es la complejidad combinatoria que con-
lleva elegir entre un número grande de objetos. Por ello, una ex-
ploración completa del espacio de posibles secuencias de objetos re-
quiere del uso de técnicas que reduzcan considerablemente el número
de dichas secuencias a evaluar.

Por otro lado, la determinación de la factbilidad de cada una de
las secuencias evaluadas implica la optimización de las maniobras a
realizar en la misión. A su vez, dicha optimización evalúa repetida-
mente la mecánica orbital que modela el movimiento de cada uno de
los objetos implicados, generando así una carga computacional con-
siderable. A consecuencia de esto, es importante hacer uso de algorit-
mos de optimización que consigan un compromiso entre la fidelidad
de la dinámica orbital, la optimalidad de las maniobras y la eficiencia
computacional del método.

Finalmente, hay que tener en cuenta que la selección de objetos y
la optimización de las maniobras involucran decisiones de naturaleza
diametralmente opuesta. Ya que, mientras la selección de objetos re-
quiere la determinación de un conjunto de variables discretas, la op-
timización de maniobras implica la determinación de un conjunto de
variables continuas sujetas al modelo no lineal y no convexo descrito
por la dinámica orbital. La resolución de problemas de optimización
no convexa con variables discretas es, en general, complicado. Por esa
razón, la interacción entre la selección de objetos y la optimización
de maniobras es un reto a superar. Las metodologías propuestas en
esta tesis tienen que ser capaces de lidiar con estas tres dificultades,
de cara a poder resolver de forma eficiente los problemas de opti-
mización mencionados anteriormente.

metodología

Los métodos propuestos en esta tesis se basan principalmente en
la resolución de modelos de Programación Entera Mixta y Progra-
mación No Lineal, los cuales se han complementado con técnicas de
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control óptimo y programación con restricciones, así como con méto-
dos heurísticos y metaheurísticos. De esa forma, se han configurado
algoritmos compuestos capaces de cumplir los objetivos propuestos
anteriormente.

resultados

Se ha tratado la complejidad combinatoria de los problemas por medio
de una formulación de Programación Entera Mixta que evita la apari-
ción de ciclos disjuntos. Esto da lugar a relajaciones lineales muy
ventajosas, las cuales permiten reducir considerablemente el número
de posibles soluciones a evaluar.

Respecto a la optimización de maniobras, por un lado, se ha de-
sarrollado una metodología que explota las propiedades de la duali-
dad para la optimización de casos particulares de maniobras impul-
sivas con múltiples impulsos. Por otro lado, se ha formulado una
técnica para optimizar maniobras de bajo empuje, sometidas a la per-
turbación gravitatoria del armónico J2, para transferir satélites entre
órbitas circulares. Esta técnica es capaz de conseguir un compromiso
muy ventajoso entre la fidelidad de la dinámica orbital, la optimali-
dad de las maniobras y el tiempo computacional necesario para cal-
cularlas.

Por último, se han definido dos formas de enfocar la interacción en-
tre la selección de objetos y la optimización de maniobras. La primera
de ellas consiste en usar dos etapas para encapsular cada una de las
dos componentes del problema. La otra técnica unifica ambas com-
ponentes, consiguiendo así un único modelo de Programación Entera
Mixta.

conclusiones

Se ha conseguido tratar de forma eficiente problemas de optimización
de alta complejidad computacional relacionados con el diseño prelim-
inar de misiones de eliminación de basura espacial, cubriendo así un
hueco existente en la en la literatura. De esa forma, se han desarrol-
lado técnicas capaces de abordar problemas de aplicación muy elab-
orados y de gran relevancia para el futuro desarrollo de las misiones
espaciales en cuestión.
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Part I

I N T R O D U C T I O N

It is a laborious madness and an impoverishing one,
the madness of composing vast books;

setting out in five hundred pages an idea that can be
perfectly related orally in five minutes.

The better way to go about it is to pretend that those
books already exist, and offer a summary,

a commentary on them...
A more reasonable, more inept, and more lazy man,

I have chosen to write notes on imaginary books.

— Jorge Luis Borges, The Garden of Forking Paths, 1962





1
I N T R O D U C T I O N

1.1 the space debris predicament

Since the commissioning of the Sputnik 1 satellite in 1957, thousands
of objects have been launched into Earth orbit. Most of those objects
are concentrated in certain privileged orbital regions with properties
that favour the scientific and commercial exploitation of the space
operations. A high density of objects in these regions can result in
collisions that generate new objects, thus increasing the possibility of
subsequent collisions, and potentially leading to a cascade effect that
can severely impact future space operations [65].

Other alarming phenomena that remarkably endanger the sustain-
ability of the future space operations are the break-ups of spaceborne
objects. Such explosions are mainly produced by the chemical insta-
bility of batteries and left-over fuel, but several cases of deliberate
military-related cases have also been carried out [60]. In particular,
one of the most concerning break-up incidents was the spontaneous
explosion of an Ariane 1 upper stage in 1986, which generated the
largest debris cloud to that date and led to the eventual creation of
the Inter-Agency Space Debris Coordination Committee (IADC) in
1993 [61].

The purpose of the IADC is to coordinate the activities regarding
space debris as well as to cooperate with member space agencies to
identify possible debris mitigation strategies. Specifically, the IADC
published the first version of its debris mitigation guidelines in 2002

[37]. Those guidelines include recommendations to limit the debris re-
leased during normal operations, minimize the potential for on-orbit
break-ups, to carry out the post mission disposal and to prevent on-
orbit collisions.

However, further research has concluded that those mitigation strate-
gies are not enough to achieve the stabilisation of the number of res-
ident space objects in the most populated zones. Hence, those miti-
gation strategies have to be complemented with the active removal
of a number of high-criticality pieces of debris [71, 75]. This, along
with the occurrence of two catastrophic events in the late 2000s, has
motivated the research on the feasibility of carrying out active debris
removal missions.

The first of such catastrophic events was the Chinese test of an anti-
satellite weapon against the FengYun 1C weather satellite in 2007. As
a result of this test, more than 2000 trackable fragments were gener-
ated. In turn, the NASA Orbital Debris Program Office estimated that

3
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it produced over 35000 pieces of debris with a diameter larger than
1 centimeter [63]. The second of such events is the collision between
the Iridium 33 and Cosmos 2251 satellites in 2009. This incident con-
stitutes the first known collision of two satellites in orbit, where more
than 1000 trackable fragments were produced [64].

Currently, the feasibility of diverse technologies that will allow to
remove single pieces of space debris is being evaluated. In particu-
lar, the RemoveDebris mission, launched the 2nd of April 2018, per-
formed in-orbit demonstrations of net and harpoon capture, as well
as vision-based navigation [1, 46]. Moreover, the ELSA-d mission,
launched the 22nd of March 2021 and currently operating, is per-
forming demonstrations of capture with a magnetic docking mecha-
nism and rendezvous and proximity operation technologies [20, 21].
Finally, the ClearSpace-1 mission is expected to demonstrate a series
of debris removal technologies by means of removing a VEGA Sec-
ondary Payload Adapter upper part, with a total mass greater than
100 kg, by no later than the end of 2025 [19].

1.2 thesis objectives

As previously stated, current missions are focusing on demonstrat-
ing the feasibility of removing single pieces of space debris. However,
it is expected that future missions will target several objects with a
single servicing satellite. Thus, the preliminary design of multi-target
debris removal missions has become the object of extensive research
[28, 30, 31, 38, 40, 43, 44, 58, 73, 74, 76, 77, 83, 85, 95, 99, 105–108,
115]. In particular, the preliminary design of these missions involves
the selection of the objects to be removed, their associated removal se-
quence, as well as the necessary maneuvers that the servicing satellite
has to perform to carry out the mission.

Interestingly, the resolution of problem instances that consider a
large candidate pool of objects has not been thoroughly explored in
the aforementioned literature. This provides a fruitful line of research,
as the development of methods capable of dealing with a pool of
objects that is large enough to be representative of the distribution of
the most hazardous objects in the region of interest, would provide a
more realistic view of the actual deorbiting capabilities of multi-target
missions.

Specifically, the efficient resolution of such large-scale instances
poses three particular challenges. The most evident of such difficul-
ties is the combinatorial complexity resulting from the size of the
candidate object pool. Hence, a thorough exploration of all the possi-
ble object combinations requires the development of a methodology
to extensively prune the combinatorial search space.

Moreover, the determination of the feasibility of each of the ex-
plored mission sequences involves of the the optimization of the ma-
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neuvers to transfer between each of the concerning pairs of objects. In
turn, such optimization requires the repeated evaluation of the orbital
mechanics that governs the motion of each of the involved objects,
thus generating a considerable computational burden. Therefore, it
is of capital importance to devise maneuver optimization algorithms
that achieve and advantageous trade-off between the fidelity of the or-
bital dynamics, the optimality of the transfers and the computational
efficiency.

Finally, it has to be noted that the object selection and the maneu-
ver optimization involve decisions of radically dissimilar nature. In
particular, the object selection involves the determination of a set of
discrete design variables. Conversely, the maneuver optimization en-
tails the determination of a set of continuous design variables subject
to the nonlinear and nonconvex model that describes the orbital dy-
namics. It turns out that the optimization of nonconvex models with
discrete variables is a particularly difficult endeavor. Hence, the in-
teraction between the object selection and the maneuver optimization
is a challenge that the methods presented in this thesis have to over-
come.

All in all, the methodologies developed in this thesis are able to
successfully address the aforementioned challenges. Thus providing
valuable mission design tools, not only for active debris removal mis-
sions, but also for other applications that entail decisions with char-
acteristics similar to the ones considered in this thesis.

1.3 thesis outline

The structure of this thesis comprises four different parts. Part i con-
tains the present chapter and provides a general introduction to the
content covered in this thesis.

Part ii introduces computationally efficient methods to optimize or-
bital transfers. Each of the chapters contained in this part correspond
to a particular thesis publication:

• Chapter 2 (Ref. [10]): Optimization problems involving multiple
impulsive maneuvers are, in general, nonlinear and nonconvex.
This implies that their resolution is prone to local optimality
and convergence issues. This work proposes an optimization
method to exploit a specific structure of single-constraint non-
linear programming problems. The proposed algorithm is able
to transform an optimization problem with an arbitrary number
of variables into a root-finding problem of a univariate algebraic
equation. Moreover, it can readily overcome the aforementioned
local optimality and convergence issues. This methodology has
been applied to three practical application examples. The first
application involves the inclination optimization for change of
plane maneuvers using drifting orbits with a relative nodal pre-
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cession. The second application performs the semi-major axis
optimization of phasing orbits, using a two-stage approach to
solve it; specifically, the dual-based method yields a solution
with phasing orbits that perform a fractional number of revo-
lutions, which is then corrected to provide the appropriate in-
tegrality condition. The third application carries out the opti-
mization of multi-impulse Hohmann-like transfers with an in-
clination change, relying on a conservation law that allows to
compute a multi-impulse transfer from the solution of a two-
impulse transfer. Finally, two highly relevant mission scenarios
are described and numerically solved: the first scenario consid-
ers a geostationary transfer orbit with a phasing optimization
to locate a satellite into a prescribed slot in geostationary orbit;
the second scenario considers a multi-target rendezvous of a
servicing spacecraft to visit several satellites of a constellation
for debris removal or refueling operations.

• Chapter 3 (Ref. [12]): A novel J2-perturbed continuous-thrust
transfer between circular orbits is proposed. Specifically, this
transfer considers tangential and out-of-plane thrust, with the
thrust yaw angle being the sole control variable. Moreover, the
dynamics of the transfer is described by two state variables,
namely, the semimajor axis and the relative inclination with re-
spect to the target orbit. The optimal solution of this problem
involves finding a root of a function of the thrust yaw angle.
Two heuristic control laws provide initial guesses for this root-
finding problem. The convergence of this solution can be guar-
anteed with the use of bracketing root-finding methods, assum-
ing that the function is continuous. Furthermore, a thrust-coast-
thrust strategy has been formulated. Its first propulsive arc cor-
responds to an Edelbaum transfer, while the second one per-
forms the aforementioned relative inclination change transfer.
This results in a three-variable NLP problem. The performance
of this strategy for time-constrainted ∆v-optimal transfers has
been compared with the solutions of other relevant methods
available in the literature. It has been shown that the proposed
three-arc strategy provides an advantageous trade-off between
solution quality and computational complexity, thus being suit-
able for the formulation of large-scale combinatorial problems.
Finally, it has been shown that the use of the proposed heuristic
control laws in the second propulsive arc results in near-optimal
solutions, while further accelerating the resolution process.

Part iii presents different frameworks for the preliminary analysis
of active debris removal missions, with a special focus on the the ef-
ficient treatment of the combinatorial complexity and the interaction
of the maneuver optimization with the combinatorial decisions. Each
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of the chapters contained in this part correspond to a particular thesis
contribution:

• Chapter 4 (Ref. [8]): Upcoming active space debris removal mis-
sions will most likely attempt to remove several objects per
mission. The design of such missions involves the selection of
the objects to be removed, as well as the optimisation of the
visit sequence and the orbital transfers interconnecting them. In
this chapter a branch-and-bound-based algorithm is presented
for the preliminary design of multi-target space debris removal
missions. The proposed algorithm comprises two different lev-
els. The upper level, modelled as an Integer Linear Program-
ming problem, deals with the combinatorial complexity of the
problem. The lower level, modelled as a Mixed Integer Non-
linear Programming problem, encapsulates the orbital dynam-
ics. Throughout the problem resolution, the upper level selects
promising subsets of a pool of candidate objects of space de-
bris, so that a removed threat value is maximised. Each of these
subsets is passed through to the lower level, which ensures that
there is a feasible trajectory that allows to rendezvous, in a spe-
cific sequence, with each and every object in the subset, while
prescribed mission duration and ∆v constraints are fulfilled.
This framework is able to exploit the structure of the problem
so that instances with large pools of candidate objects can be
efficiently solved while achieving the certificates of optimality
that branch-and-bound methods provide.

• Chapter 5 (Ref. [9]): The modelling of multi-target active de-
bris removal missions requires the use of continuous as well
as discrete decision variables. This, along with the nonlinear-
ity of the orbital mechanics that governs the motion of the in-
volved objects, results in highly nonlinear and nonconvex prob-
lems which are prone to the appearance of a great number of
local optimal solutions. This chapter proposes an exact method-
ology, based on Mixed Integer Programming techniques, for the
global optimization of multi-target active debris removal mis-
sions. Specifically, the proposed method integrates the combi-
natorial decisions (concerning the target and sequence selection)
and the orbital mechanics (regarding the computation of the ∆t
and ∆v spent during each of the transfers) into a single Mixed
Integer Linear Programming (MILP) problem. It is necessary for
the MILP formulation to comprise exclusively linear constraints,
while the expressions that determine the consumed ∆t and ∆v
are clearly nonlinear. Thus, a piecewise linear approximation of
such expressions is considered. Branch-and-bound techniques
are used to solve the resulting MILP problem. The linear relax-
ation of the model provides an efficient pruning of the search
tree by means of the obtention of optimistic bounds for each
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of the considered branches. This way, a global optimum of arbi-
trary precision, i.e., according to the number and position of the
nodes used to approximate the ∆t and ∆v functions, is achieved.

• Chapter 6 (Ref. [11]): A two-stage methodology for the prelimi-
nary design of active debris removal missions comprising a ser-
vicing satellite and a fuel station is proposed. The upper stage
explores promising values of the station location. The lower
stage determines the objects to be removed, the removal se-
quence and the maneuvers of the servicing satellite so that the
aggregated criticality of the selected objects is maximized. This
is modelled as a Mixed Integer Linear Programming problem
and solved using a branch-and-bound method. Both stages are
iterated until the optimal station location is found. Two practical
cases involving prominent debris clusters have been analyzed.

• Chapter 7 (Ref. [7]): Constraint Programming is a classical artifi-
cial intelligence paradigm characterised by its flexibility for the
modelling of complex problems. In the field of space operations,
this approach has been successfully used for mission planning
and scheduling. This chapter proposes a framework that lever-
ages the strengths of Constraint Programming for the prelimi-
nary analysis of space missions. Specifically, it uses constraint
propagation and search techniques to thoroughly explore the
configuration space of a mission in an efficient manner. Conse-
quently, it is able to quantify the performance of precomputed
mission choices with respect to the mission requirements, as
well as generate new ones that optimise such performance. The
proposed methodology has been particularised for two appli-
cation cases involving active debris removal missions for large
constellations in low Earth orbit, namely, a chaser case and a
mothership case. The chaser case considers a servicing satellite
that rendezvouses with the failed satellites of the constellation
and directly transports them to a disposal orbit. The mothership
case comprises a servicing satellite that installs deorbiting kits
in each of the failed satellites, except for the one removed in the
last place. This way, the servicing satellite will only transport
this object, while the deorbiting kits will carry out the disposal
of the rest of them. This methodology has been successfully
used to evaluate a preliminary mission analysis of both applica-
tion cases developed under ESA’s Sunrise project.

Finally, Part iv contains Chapter 8 and exposes the global conclu-
sions that can be drawn from the content included in the preceding
Parts.
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M A N E U V E R O P T I M I Z AT I O N

Go uses the most elemental materials and concepts;
line and circle, wood and stone, black and white;

combining them with simple rules to generate subtle
strategies and complex tactics that stagger the

imagination.

— Iwamoto Kaoru, professional Go player





2
D U A L - B A S E D M E T H O D F O R I M P U L S I V E O R B I TA L
M A N E U V E R S

2.1 introduction

In the literature there are numerous, well-proven algorithms to solve
general Nonlinear Programming (NLP) problems [15]. However, spe-
cialized algorithms that exploit particular problem structures, albeit
limited in scope, can provide a meaningful edge with respect to gen-
eral purpose methods. Specifically, they may enable to solve the prob-
lems at hand more efficiently, or provide an insight on the mathemat-
ical properties of the optimal solution.

One of the most prominent mathematical tools to develop such spe-
cialized algorithms is the concept of duality [51]. It entails that, given
a constrained mathematical programming problem (referred to as pri-
mal problem), there exists another optimization problem (referred to
as dual problem) whose optimal solution is an optimistic bound of
the optimal solution of the primal problem. Moreover, if the primal
problem is convex, both problems achieve the same solution. The re-
lation between such problems lies in the fact that the optimization
variables of said dual problem are the Lagrange multipliers of the
constraints of the primal problem, which are used to define the La-
grangian function of the latter and, consequently, appear in its opti-
mality conditions. Hence, the mathematical properties derived from
duality are particularly useful for the resolution of problems with a
small number of constraints, as they generate dual problems with
such number of optimization variables.

This work proposes an optimization method to exploit a specific
structure of single-constraint NLP problems. The proposed algorithm
is able to transform an optimization problem with an arbitrary num-
ber of variables into a root-finding problem of a univariate algebraic
equation. The variable to be solved for is the dual variable (i.e., the
Lagrange multiplier) of the single constraint of the problem, from
which the optimal solution of the problem is retrieved. Consequently,
this technique can be referred to as a dual-based method. This term
has often been used in literature to refer to optimization algorithms
that take advantage of the resolution of the dual problem; this led
to a variety of such methods applied to classical optimization prob-
lems like facility location problems [42], network design problems [4],
transportation problems [92] and assignment problems [54].

More recently, dual-based methods have proven useful for diverse
applied optimization problems such as the reconstruction of sparse

11
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signals [102], the operation of telecommunication networks [56] or
the management of chemical reactors [79].

However, the proposed methodology is essentially distinct in na-
ture from the aforementioned techniques, in the sense that it is not
the dual problem what is being solved, but instead the primal prob-
lem, only that it is formulated in terms of the dual variable. This is
particularly beneficial because, for general nonlinear problems, the
optimal solution of the dual problem is not the primal solution, but
an optimistic bound of it. Thus, the proposed method is able to ob-
tain the optimal solution while taking advantage of the properties of
duality, since it is the primal problem that is being solved all along.

Interestingly enough, many optimization problems in orbital me-
chanics, specifically those related to orbital transfers with impulsive
maneuvers, can actually be reduced to a mathematical model that
abides by the described structure. Therefore, optimization problems
such as fuel-minimum Hohmann-like transfers combined with incli-
nation changes and phasing maneuvers, or the optimization of time-
minimal sequences of phasing maneuvers or change of plane maneu-
vers with a prescribed ∆V budget, are but a few example applications
that can benefit from the proposed approach. Although it is acknowl-
edged that these are classical problems for which solutions and algo-
rithms already exist in the literature, the methodology presented in
this manuscript still provides a novel, alternative approach that offers
an insightful, complementary view to these problems, by proposing
a methodology that can be easily and conveniently extended to other
optimization problems that conform to the same mathematical struc-
ture of a single-constraint NLP problem.

After the derivation of the proposed mathematical methodology is
detailed in Section 2.2, three practical application examples of this
methodology are presented in Section 2.3, based on typical impulsive
maneuver optimization problems, namely: 1) the inclination optimiza-
tion for change of plane maneuvers using drifting orbits with a rela-
tive nodal precession; 2) the semi-major axis optimization of phasing
orbits; and 3) the optimization of combined, multi-impulse Hohmann-
like transfers with an inclination change. To illustrate the applicability
of the proposed methodology to mission-related problems, the afore-
mentioned application examples are combined and re-purposed to
solve two relevant mission scenarios, which are described and numer-
ically solved in Section 2.4: the first scenario considers a geostationary
transfer orbit with a phasing optimization to locate a satellite into a
prescribed slot in geostationary orbit; the second scenario considers
a multi-target rendezvous of a servicing spacecraft to visit several
satellites of a constellation. Finally, Section 2.5 summarizes the main
conclusions of this work.
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2.2 mathematical model and solution approach

The proposed approach is focused on processes that comprise differ-
ent stages, which may be indexed by k P K. Each of these stages has
a dependence on a single decision variable, ak, and the aim is to de-
termine the values of the decision variables such that a performance
index F is minimized while complying with a given cost G.

The aforementioned problem can be modelled as an optimization
problem featuring the performance index, F, as objective function:

F “ min
ÿ

kPK

fk pakq , (1)

where functions fk pakq denote the contribution of each of the stages
to the performance index. The objective function of the problem is
also subject to an equality constraint:

ÿ

kPK

gk pakq “ G , (2)

where gk pakq are the contributions of each of the stages to the cost
G.

The Lagrangian function of this problem can be stated as

Lpa1,a2, . . . ,a|K|, λq “
ÿ

kPK

fk pakq ´ λ

˜

ÿ

kPK

gk pakq ´G

¸

, (3)

where λ is the dual variable of Eq. (2), and thus the optimality condi-
tions of the problem are obtained by nullifying the gradient of the La-
grangian function, which yields the following system of scalar equa-
tions:

dfk
dak

´ λ
dgk
dak

“ 0 , @k P K (4a)
ÿ

kPK

gk pakq ´G “ 0 . (4b)

If functions gk are invertible, then their inverse functions, g´1
k pakq “

ak pgkq, allow to transform fk pakq into fk pgkq, and consequently,
Eq. (4a) becomes:

dfk
dgk

“ λ , @k P K (5)

Eq. (5) has a clear interpretation: the derivative of the performance
index with respect to the cost is constant for every stage, and this
constant turns out to be the dual variable, λ. Interestingly, this prop-
erty can be exploited to obtain the solution of the proposed problem,
basically by determining the value of the dual variable. To this end,
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the cost function of each of the stages, gk pakq, may be reformulated
as a function of λ:

inv
ˆ

dfk
dgk

pgkq

˙

“ gk

ˆ

dfk
dgk

˙

“ gk pλq . (6)

Replacing gk pakq by gk pλq into the left-hand side of Eq. (2), the fol-
lowing univariate function is obtained:

ϕ pλq “
ÿ

kPK

gk pλq ´G (7)

Obviously, a root of Eq. (7) readily provides an optimal solution to the
problem, as it simultaneously fulfills the optimality conditions given
by Eqs. (4). Consequently, the single-variable equation ϕ pλq “ 0 as
defined by Eq. (7), becomes the new optimality condition, which can
be numerically solved for the dual variable λ using a suitable root-
finding algorithm. Finaly, gk pλq can be introduced into the function
ak pgkq to recover the decision variables that describe the original
optimization problem.

It is worth nothing that, despite the problem defined by Eqs. (1-
2) being readily solved by general NLP techniques, the methodol-
ogy proposed in this manuscript improves on two usual difficulties
proper to the NLP approach: the convergence of the method, and the
local optimality of non-convex problems. The dual-based method ap-
proach circumvents the convergence issues by relying on bracketing
root-finding algorithms (e.g., Brent’s method [24]), which guarantee
the convergence for bounded and continuous functions ϕpλq. Regard-
ing the optimality of non-convex problems, the fact that multiple lo-
cal optima exist implies that, in the dual-based approach, the inverse
of any of the dfk{dgk functions may not be unique; however, as op-
posed to NLP problems, the dual-based approach still provides an
edge, since a careful study of these functions based on well-known
functional analysis techniques provides means of removing this multi-
plicity issue, and selecting the correct inverse functions that do result
in the global optimum. Therefore, the dual-based method does offer
interesting advantages over a classical NLP approach.

2.3 practical applications examples

This section details the application of the proposed dual-based opti-
mization method to three types of impulsive orbital transfers, which
can be mathematically described as a single-constraint optimization
problem, thus allowing the application of the proposed methodology.
Although these problems are simple and of a mainly academic in-
terest, they illustrate the use of the dual-based methodology, which
can be extended to optimization problems of higher complexity and
relevance, as will be shown later in Section 2.4.



2.3 practical applications examples 15

2.3.1 Inclination optimization for minimum-time orbital drift

In this first application, a spacecraft is intended to visit a series of k
orbits, identical in shape to the departure orbit, but shifted in their
right ascension of the ascending node, such that the difference be-
tween one orbit (k) and its preceding one (k´ 1) is represented by
∆Ωk. The nodal precession produced by the Earth’s J2 perturbation
is exploited to accomplish these shifts, so the required change of rel-
ative precession is achieved by performing an impulsive maneuver
that modifies the inclination of the spacecraft orbit, thus varying its
nodal precession rate and allowing it to advance until the right as-
cension of the next target orbit is matched. This modified orbit is
referred as a drifting orbit. The spacecraft has a predefined ∆Vtot bud-
get, which has to be allocated to the different impulses such that the
mission time is minimized.

The ∆V required to perform an inclination change of ∆i is given by

∆V “ 2V sin
ˆ

∆i

2

˙

, (8)

where V stands for the orbital velocity at the moment of performing
the impulse. The time, ∆t, that it takes the spacecraft to reach a target
orbit with a right ascension ∆Ω away is given by

∆t “
δ∆Ω

9Ωtgt ´ 9Ωdrift
, (9)

where 9Ω stands for the nodal precession, and the subindices ‘tgt’ and
‘drift’ label the target orbit and the drifting orbit, respectively. The
parameter δ has been introduced so that the quantities ∆V , ∆t, ∆i
and ∆Ω are always positive; hence, this parameter takes care of the
appropriate sign depending on whether the drifting orbit is leading
(δ “ 1) or trailing (δ “ ´1) the target orbit in ∆Ω.

The nodal precessions of the target orbit and the drifting orbit, re-
spectively are defined as:

9Ωtgt “ ´
3

2

nR2‘J2

p2
cospiq , (10)

9Ωdrift “ ´
3

2

nR2‘J2

p2
cospi´ δ∆iq , (11)

where i is the inclination of the target orbit, n stands for the mean
orbital motion, p is the semilatus rectum, R‘ is the reference radius
of the Earth, and J2 is the coefficient associated to the degree 2 and
order 0 spherical harmonic of the Earth’s gravity field.

This optimization problem can be formulated with the dual-based
methodology by identifying the ∆t required for each maneuver with
the functions fkpakq, i.e., the contributions to the objective function
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F as defined in Eq. (1), which here represents the total mission time
it takes to visit all target orbits; the role of the decision variables, ak,
is here played by the variable ∆i, that defines each of the inclination
change maneuvers. Likewise, the cost for each of these maneuvers,
represented by their ∆V , can be matched to the functions gkpakq that
comprise the equality constraint of Eq. (2), so that the aggregated
∆V for all the considered maneuvers is equal to the ∆V budget, i.e.,
G “ ∆Vtot.

By differentiating Eqs. (8-11) and using the chain rule, the dual
variable λ can be readily obtained:

λ “
d∆t
d∆V

“
d∆t

d 9Ωdrift

d 9Ωdrift

d∆i
d∆i
d∆V

, (12)

where each of the factors is given by the following expressions:

d∆t
d 9Ωdrift

“
δ∆Ω

´

9Ωtgt ´ 9Ωdrift

¯2
(13)

d 9Ωdrift

d∆i
“ ´

3

2

nR2‘J2

p2
δ sinpi´ δ∆iq (14)

d∆i
d∆V

“
1

V cos
`

∆i
2

˘ . (15)

Thus, the dual variable λ is naturally expressed as an implicit function
of the variable ∆i and, ultimately, of the variable ∆V through Eq. (8).
Therefore, particularizing Eq. (7) to this problem yields:

ϕ pλq “ 2
ÿ

kPK

∆Vk pλq ´∆Vtot (16)

where ∆Vk pλq is the inverse function of Eq. (12) for each of the k
target orbits. These functions are multiplied by a factor 2 because the
inclination change is performed twice, i.e., once to initiate the rela-
tive nodal precession, and for a second time when the target orbit is
reached in order to match its inclination and nullify the relative nodal
precession rate. In brief, solving the algebraic equation of Eq. (16)
with a suitable root-finding technique readily provides the optimal
solution of the problem; once its root is computed, evaluating Eqs. (8)
and (12) allows to recover the optimal inclination changes (i.e., the de-
cision variables), ∆i, along with their associated ∆V for visiting each
of the target orbits in the minimum time with the available propellant.

A simple numerical example is subsequently discussed so as to il-
lustrate the aforementioned resolution process, as well as to obtain
additional insight about the qualitative behavior of d∆t{d∆V as com-
puted by Eq. (12). Specifically, given a circular orbit around the Earth
with an altitude of 550 km and an inclination of 53 deg, the problem
at hand involves the optimal distribution of a ∆V budget of 50 m s´1

between two consecutive drifting maneuvers with associated ∆Ω val-
ues of 5 and 10 deg, respectively, such that the aggregated transfer
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Figure 1: Solution of the orbital drift numerical example

time is minimized. Moreover, the initial orbit is trailing both target
orbits in right ascension of the ascending node and, likewise, the first
target orbit is trailing the second one. Hence, δ is given a value of ´1

for both transfers.
Fig. 1 shows, for each of the transfers, d∆t{d∆V as a function of

the ∆V spent to generate the relative nodal precession as well as
to subsequently match the inclination of the target orbit (i.e., 2∆Vk,
as shown in Eq. (16)). Furthermore, solving Eq. (16) results in λ “

´5.124978 ¨ 106 s2 m´1, which is represented by the dashed black
line. It can be seen that the intersection of this line with the afore-
mentioned functions provides the optimal ∆V allocation for their cor-
responding transfers. Further details of the solution are provided in
Table 1.

Table 1: Numerical example for the minimum-time orbital drift application.

∆Ω [deg] ∆V [m s´1] ∆i [deg] ∆t [s]

5 20.71 7.818 ¨ 10´2 5.3043635 ¨ 107

10 29.29 1.106 ¨ 10´1 7.4999114 ¨ 107

Finally, the qualitative behavior of the functions showed in Fig. 1

can be compared with the individual tendencies of the derivatives
described by Eqs. (13-15) to obtain a better insight about the structure
of d∆t{d∆V (as defined in Eq. (12)). At first sight, it seems that the
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functions in Fig. 1 asymptotically approach minus infinity and zero
when ∆V tends to zero and infinity, respectively.

On the one hand, if ∆V tends to zero, so does ∆i. In that case,
Eqs. (10-11) determine that 9Ωdrift and 9Ωtgt are identical. Thus, the
derivative in Eq. (13) tends to minus infinity, while the derivatives in
Eqs. (14-15) tend to positive finite numbers. Therefore, d∆t{d∆V has
a vertical asymptote when ∆V tends to 0.

On the other hand, according to Eq. (8), ∆V has a finite maximum
value so it is not possible for d∆t{d∆V to have the hypothesized hori-
zontal asymptote. The maximum ∆V is achieved when ∆i “ π. In that
case, the derivative in Eq. (15) tends to infinity while the derivatives
in Eqs. (13-14) tend to negative finite numbers. Therefore, d∆t{d∆V
has a vertical asymptote when ∆V tends to 4V (i.e., twice the maxi-
mum ∆V of Eq. (8) to represent the maximum value of 2∆Vk). How-
ever, the positive values of d∆t{d∆V are not relevant for this analysis,
as they entail that spending additional ∆V will increase the mission
time. Therefore, the maximum relevant ∆V for this analysis is the one
that nullifies d∆t{d∆V . In particular, this ∆V magnitude results from
imposing that ∆i “ π´ i, thus nullifying the derivative in Eq. (14)
while the derivatives in Eqs. (13,15) are finite numbers.

2.3.2 Semi-major axis optimization for minimum-time orbit phasing

In this application, a spacecraft initially located on a circular orbit
has to perform a rendezvous with k target spacecraft located on the
same orbit, but shifted in mean anomaly. The shift between one object
(k) and its preceding one (k´ 1) is represented by ∆Mk. A relative
mean motion between the spacecraft and the targets can be triggered
to perform the needed orbital repositioning maneuvers. Each of these
phasing maneuvers is achieved with an impulsive burn that modifies
the semi-major axis of the spacecraft orbit, which results in an elliptic
orbit, tangent to the original one, referred to as a phasing orbit, where
the spacecraft will coast until the phase difference with the target
spacecraft is nullified; at that moment, another impulse is applied
to recover the initial semi-major axis, thus returning the departure
orbit in phase with the target. The spacecraft has a predefined ∆Vtot

budget, which has to be allocated to the different impulses so that the
mission time is minimized.

The ∆V spent to move from the target’s orbit into the the phasing
orbit, and back to the target’s orbit (once the phasing is complete), is
given by:

∆V “ 2δ

˜d

2µ

atgt
´

µ

apha
´

c

µ

atgt

¸

, (17)

where atgt and apha are the semi-major axes of the target and phas-
ing orbits, respectively, and µ stands for the gravitational parameter;
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the parameter δ, as in Section 2.3.1, is used to make all increments
positive, and its value depends on whether the spacecraft is leading
(δ “ 1) or trailing (δ “ ´1) the considered target spacecraft in mean
anomaly ∆M. The time it takes the spacecraft to intercept a given
target, ∆t, is given by:

∆t “
δ∆M

ntgt ´npha
, (18)

where ntgt and npha are the mean orbital motions of the target and
phasing orbits, respectively.

Again, this optimization problem can be formulated with the dual-
based methodology by identifying the ∆t of each phasing maneu-
ver with the functions fkpakq, where decisions variables are now de-
scribed by the semi-major axis of each of the phasing orbits, namely
apha. Likewise, the ∆V of each of these phasing maneuvers can be
matched to the functions gkpakq in the equality constraint of Eq. (2),
so that the aggregated ∆V for all the considered maneuvers is equal
to the ∆V budget, i.e., G “ ∆Vtot.

Proceeding as in Section 2.3.1, the derivative chain rule provides
the dual variable as follows:

λ “
d∆t
d∆V

“
d∆t

dnpha

dnpha

dapha

dapha

d∆V
(19)

where each of the factors are given by:

d∆t
dnpha

“
δ∆M

`

ntgt ´npha
˘2

(20)

dnpha

dapha
“ ´

3npha

2apha
(21)

dapha

d∆V
“

8a2tgt µ

ˆ

2δ
b

µ
atgt

`∆V

˙

ˆ

4atgt∆V δ
b

µ
atgt

` atgt∆V2 ´ 4µ

˙2
. (22)

Thus, the dual variable λ is naturally expressed as an implicit function
of the semi-major axis of the phasing orbit, apha, which is ultimately
a function of the variable ∆V through Eq. (17). Therefore, particular-
izing Eq. (7) to this problem yields

ϕ pλq “
ÿ

kPK

∆Vk pλq ´∆Vtot (23)

where ∆Vk pλq is the inverse function of Eq. (19) for each of the k
target spacecraft. Solving for the root of Eq. (23) readily provides the
optimal solution of the problem. However, this solution neglects the
fact that the spacecraft can only complete an integer number of rev-
olutions in the phasing orbit before it can return to the target orbit.
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Hence, this solution has to be corrected to take into account this ad-
ditional constraint.

The number of fractional revolutions, C P R, that the spacecraft
spends in the phasing orbit, is computed as:

C “
∆t

Tpha
. (24)

Since the number of revolutions must be an integer number, assign-
ing a semi-major axis corresponding to the ceiling of C, for each of
the k phasing orbits, would readily result in a feasible solution. How-
ever, the new phasing orbits would require less ∆V than the original
ones, resulting in an unused ∆V surplus. This spare ∆V could be re-
assigned among the phasing orbits such that a feasible solution could
be obtained, which further minimizes the mission duration.

In particular, the problem at hand is to decide, for each phasing
orbit, whether the satellite spends a number of revolutions ceilpCq on
the phasing orbit. This can be modelled with the following Integer
Linear Programming problem:

min
ÿ

kPK

∆t̃k Xk (25a)

ÿ

kPK

∆Ṽk Xk ď ∆Vsur (25b)

where Xk is a binary variable that is either 0 or 1, depending on
whether the number of revolutions performed at the orbit k corre-
sponds to the ceiling or the floor of C, respectively; ∆t̃k and ∆Ṽk

are the differences of ∆t and ∆V , respectively, resulting from choos-
ing Xk “ 1 instead of Xk “ 0; and ∆Vsur is the ∆V surplus obtained
when selecting Xk “ 0 for every orbit. This kind of problems is known
as a Knapsack problem [78].

Nevertheless, the particular properties of ∆t̃k can be exploited to
further simplify this correction problem. Substituting ∆t from Eq. (18)
into Eq. (24) and isolating Tpha results in the following relation:

Tpha “ Ttgt

ˆ

1`
δ∆M

2πC

˙

. (26)

According to Eq. (24), multiplying both sides of Eq. (26) by C allows
to obtain ∆t as a function of C, i.e.:

∆tpCq “ Ttgt

ˆ

C`
δ∆M

2π

˙

. (27)

Thus, ∆t̃k can be obtained by subtracting ∆tpCq for two values of C
that differ in one revolution, which yields:

∆t̃k “ ∆tpCq ´∆tpC` 1q “ ´Ttgt @k P K . (28)
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Interestingly, the latter equations reveals that ∆t̃k does not depend
on the parameters of the phasing orbit, nor the number of revolutions
necessary to perform the rendezvous. Thus, ∆t̃k is constant, i.e., it is
the same for the k phasing orbits, and therefore it is not necessary
to solve the Knapsack problem of Eqs. (25) to obtain the corrected
solution. In brief, this solution can be directly obtained by ordering
the phasing orbits in increasing value of ∆Ṽk and making Xk “ 1 in
that order, for as long as Eq. (25b) remains feasible.

A simple numerical example is subsequently discussed so as to il-
lustrate the resolution process of this application, as well as to obtain
additional insight about the qualitative behavior of d∆t{d∆V as com-
puted by Eq. (19). Specifically, given a circular orbit around the Earth
with an altitude of 550 km, the problem at hand involves the optimal
distribution of a ∆V budget of 5 m s´1 to perform two consecutive
phasing maneuvers with associated ∆M values of 16.36 and 32.72 deg,
respectively, such that the aggregated transfer time is minimized. More-
over, the initial position of the spacecraft is trailing both targets and,
likewise, the first target is trailing the second one. Hence, δ is given a
value of ´1 for both phasing maneuvers.

Fig. 2 shows, for each of the phasing maneuvers, d∆t{d∆V as a
function of the ∆V spent to perform such maneuvers, as defined in
Eq. (17). Furthermore, solving Eq. (23) results in λ “ ´3.072195 ¨

105 s2 m´1, which is represented by the dashed black line. It can
be seen that the intersection of this line with the aforementioned
functions provides the optimal ∆V allocation for their correspond-
ing transfers. Further details of the solution are provided in Table 2.
It can be seen that the computed phasing maneuvers require a frac-
tional number of revolutions, which is not feasible. Therefore, the
solution has been adjusted using the previously described correction
algorithm, resulting in the corrections displayed in Table 3. Hence, the
feasible solution can be obtained by means of the addition of these
corrections to the infeasible one. It has to be noted that the computed
∆V corrections are very small, which indicates that the infeasible so-
lution represents a good estimation of the optimal feasible solution.

Table 2: Numerical example for the minimum-time phasing application.

∆M [deg] ∆V [m s´1] a [m] ∆t [s] Revolutions

16.36 2.07 6.919122 ¨ 106 6.36269 ¨ 105 111.08

32.72 2.93 6.918340 ¨ 106 8.99822 ¨ 105 157.12

Finally, the qualitative behavior of the functions showed in Fig. 2

can be compared with the individual tendencies of the derivatives
described by Eqs. (20-22) to obtain a better insight about the structure
of d∆t{d∆V (as defined in Eq. (19)). At first sight, it seems that the
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Figure 2: Solution of the phasing numerical example

Table 3: Revolution correction of the minimum-time phasing application.

∆M [deg] ∆V Corr. [m s´1] a Corr. [m] ∆t Corr. [s] Revolutions

16.36 1.576 ¨ 10´3 ´1.436 ¨ 100 ´4.8384 ¨ 102 111

32.72 ´1.625 ¨ 10´2 1.480 ¨ 101 5.0196 ¨ 103 158

functions in Fig. 2 asymptotically approach minus infinity and zero
when ∆V tends to zero and infinity, respectively.

On the one hand, if ∆V tends to zero, the target and phasing orbits
are identical and so are their respective ntgt and npha. In that case, the
derivative in Eq. (20) tends to minus infinity, while the derivatives in
Eqs. (21-22) tend to negative finite numbers. Therefore, d∆t{d∆V has
a vertical asymptote when ∆V tends to 0.

On the other hand, according to Eq. (17), ∆V has a finite maxi-
mum value of 2

a

µ{atgt when δ “ ´1. Thus, it is not possible for
d∆t{d∆V to have the hypothesized horizontal asymptote. If that ∆V
magnitude is applied, the derivative in Eq. (22) vanishes, while the
derivatives in Eqs. (20-21) are finite numbers. Consequently, the value
of d∆t{d∆V will also vanish in that particular instance. However, it
has to be noted that the application of that ∆V magnitude results in
an orbit with a null radius of perigee, hence being a degenerate case
and not being relevant for this analysis. Specifically, the maximum
relevant ∆V should be chosen such that it results in a phasing orbit
with an operationally feasible radius of perigee.
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2.3.3 Optimization of multi-impulse, combined maneuvers

It is well known that when performing a two-impulse, Hohmann-
like transfer between two circular, non-coplanar orbits, the minimum
∆V is achieved when optimally distributing the relative inclination
change between the two performed impulses [34, 100]. The technique
described in Section 2.2 is able to solve this problem not only for the
usual two-impulse transfer, but also for for the case in which each
of these two impulses were divided into a set of subimpulses; these
subimpulses achieve orbital velocities with values ranging between the
circular and elliptic orbital velocities of the impulse they divide. This
capability of the dual-based method provides a good opportunity to
revisit this classical problem and analyze the relation between the
two-impulse and multi-impulse transfers.

First, the solution of a problem that considers and arbitrary number
of impulses is detailed. The ∆V spent at each of these impulses can
be computed as a function of the ∆i change they accomplish:

∆V p∆iq “

b

V2
1 ` V2

2 ´ 2V1V2 cos p∆iq , (29)

where V1 and V2, i.e., the orbital velocities before and after an im-
pulse, are interchangeable; for the sake of notation, they are assigned
such that V1 ă V2. This optimization problem can be formulated with
the dual-based methodology by identifying the ∆V at each impulse
with the functions fk, i.e., the contributions to the objective function
F as defined in Eq. (1), which here represents the sum of the ∆V for
all the performed impulses, namely ∆Vtot. Likewise, the change of
inclination achieved by each impulse, ∆i, can be matched to the func-
tions gk that comprise the equality constraint of Eq. (2), such that the
sum of all considered impulses delivers the desired total change of
inclination G “ ∆itot.

The dual-based method involves the derivative dfk{dgk, which de-
fines the dual variable λ following Eq. (5). This requires the derivation
of Eq. (29) with respect to ∆i, which yields:

d∆V
d∆i

p∆iq “
V1V2 sin p∆iq

b

V2
1 ` V2

2 ´ 2V1V2 cos p∆iq
“
V1V2 sin p∆iq

∆Vp∆iq
. (30)

The latter equation vanishes for ∆i “ t0,πu and has a maximum for
∆i “ arccos pV1{V2q, which yields a value of d∆V{d∆i “ V1. This
implies that the inverse of this function is not unique; as a matter
of fact, the inverse has two possible branches. Defining the param-
eter ρ “ t1, ´1u to identify each of these two branches, the inverse
function can be written as follows:

∆i

ˆ

d∆V
d∆i

˙

“ ∆i pλ; ρq “ arccos

¨

˝

λ2 ` ρ
b

`

λ2 ´ V2
1

˘ `

λ2 ´ V2
2

˘

V1V2

˛

‚,
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(31)

where λ P r0,V1s is the dual variable and ρ “ 1 corresponds to
the increasing interval of d∆V{d∆i, namely ∆i P r0, arccos pV1{V2qs,
whereas ρ “ ´1 represents the decreasing interval after the maxi-
mum, i.e., ∆i P rarccos pV1{V2q,πs.

As a result, from the application of the dual-based method to this
particular problem, Eq. (7) provides the following algebraic equations:

ϕ pλq “
ÿ

kPK

∆ik pλ; ρ˚
kq ´∆itot , (32)

where the subscript k indexes the different impulses, and ρ˚
k stands

for the right value of the parameter ρ that, for each impulse k, yields
the global optimum of the problem. Thus, the values of ρ˚

k have to be
determined for each impulse.

For the sake of notation, k “ 1 is associated to the impulse with
the minimum value of V1, depicted as V1,min. Also, for a given value
of λ, the minimum aggregated ∆i is obtained when ρk “ 1 for every
impulse. Therefore, the following quantity can be defined:

η “
ÿ

kPK

∆ik pV1,min; ρk “ 1q . (33)

where η represents the maximum aggregated value of ∆i for these
values of ρk, which is achieved when λ is equal to the lowest maxi-
mum of d∆V{d∆i associated to one of the impulses (i.e., V1,min). Thus,
an aggregated ∆i ă η requires all ρk to be equal to 1. Likewise, an
aggregated ∆i ą η requires at least one ρk to be equal to ´1. As a
result, if η´∆itot ě 0, any solution with at least one ρk “ ´1 is in-
feasible; therefore, the optimal ρ˚

k combination is ρ˚
k “ 1, @k P K. In

turn, if η´ ∆itot ď 0, then the solution corresponding to ρk “ 1 for
every impulse is infeasible. In order to determine which ρ˚

k is equal
to ´1 for this case, it is useful to regard d∆Vk{d∆ik as the marginal
∆Vk cost of increasing the the inclination an amount ∆ik by means
of an impulse k. Hence, when the aggregated ∆i to be distributed is
infinitesimally greater than η, the marginal cost of increasing ∆i1 has
a decreasing trend, unlike the cost associated to the rest of impulses.
Thus, in that situation, the optimal allocation of an increasing quan-
tity of the aggregated ∆i requires increasing ∆i1, while decreasing
the ∆ik associated to the rest of impulses. Therefore, this implies that
the optimal ρ˚

k combination is the following:

ρ˚
1 “ ´1, ρ˚

k “ 1, @k P K : k ‰ 1 . (34)

This expression holds true for as long as the marginal cost associated
to any of the other impulses does not fall below the cost of ∆i1 for
an interval long enough so as to compensate for the previous greater



2.3 practical applications examples 25

V1

V2

�V

V'

�V'

�V''

�i'

�i

(a) Non-optimal configuration

V1

V2

�V

V'

�V'
�

(b) Optimal configuration

Figure 3: Geometry of velocity vectors on the rectifying plane for the change
of inclination with subimpulses.

cost. As a result, each particular problem has to be analyzed to as-
certain the range of validity of the aforementioned expression and to
choose the correct ρ˚

k values when Eq. (34) no longer holds true.
Once the general solution for an arbitrary number of impulses has

been introduced, we can discuss the relation between the optimal two-
impulse transfer, and the case where each of these two impulses are
divided into a series of subimpulses. Fig. 3a illustrates the geometry
described by the orbital velocity vectors of a two-impulse transfer on
the rectifying plane at the orbital location where one of the two im-
pulses is performed. The orbital velocity vectors before and after the
impulse, of magnitude V1 and V2 respectively, are indicated in black,
along with the magnitude of the impulse ∆V that completes the veloc-
ity triangle. The ∆i change performed at this impulse results from the
resolution of the problem with the previously described methodol-
ogy. Now, assume this impulse is decomposed into two subimpulses
of magnitude ∆V 1 and ∆V 2, respectively (indicated in red), and such
that the orbital velocity after the first subimpulse is V 1, which corre-
sponds to an change of inclination of ∆i 1.

It is clear from the geometry of the velocity vectors that the min-
imum total ∆V to accomplish the desired inclination change, ∆i, is
accomplished when the velocity and inclination changes provided by
the first subimpulse are such that the velocity increments ∆V 1 and
∆V 2 are both parallel to the original ∆V vector; as a result, the ag-
gregated optimal ∆V consumed by the two subimpulses is identical
to the one consumed by the original impulse. Such geometry is de-
picted in Fig. 3b, where the angle β is seen to be preserved between



26 dual-based method for impulsive orbital maneuvers

the original impulse and the first subimpulse. Using the law of sines
yields:

sinβ “
V2 sin p∆iq

∆V
“
V 1 sin p∆i 1q

∆V 1
(35)

and from Eq. (30) the dual variable can be easily obtained for both,
the original impulse (denoted as λ) and the subimpulse case (denoted
as λ 1):

λ “
V1V2 sin∆i

∆V
(36a)

λ 1 “
V1V

1 sin∆i 1

∆V 1
. (36b)

Finally, substituting Eq. (35) into Eqs. (36) provides:

λ “ λ 1 “ V1 sinβ . (37)

Therefore, λ is conserved and, given the solution of the two-impulse
problem, ∆i 1 can be computed replacing V2 by V 1 in Eq. (31) while
using the values of λ from the two-impulse problem along with the
suitable values of ρ˚

k.
A simple numerical example is subsequently discussed. Specifi-

cally, it involves the geostationary transfer example described in [62],
which comprises a transfer between two circular orbits of radii 7000 km
and 42166 km, respectively, and a ∆itot of 28.5 deg. First, the example
is solved with a straightforward two-impulse transfer. After that, it
is considered that the operational constraints of such transfer require
the spacecraft to spend a certain amount of time in an intermedi-
ate orbit with a semimajor axis of 8500 km. This requirement can be
achieved by simply decomposing the first impulse of the two-impulse
transfer into two subimpulses.

The solution of the optimal two-impulse transfer, characterized by
the impulses termed as 1{2 (i.e., first impulse out of two) and 2{2 (i.e.,
second impulse out of two), is summarized in Table 4. Fig. 4 depicts
the optimal λ, along with the functions d∆V{d∆i as a function of ∆i
as obtained from Eq. (30) for each of the impulses. It turns out that η´

∆itot ě 0, so the optimal ρ˚
k combination is ρ˚

k “ 1, @k P K. Solving
Eq. (32) for that ρ˚

k combination results in λ “ 1.26643 ¨ 103 m s´1.
However, it must be noted that the value that Eq. (30) provides for
the impulse 2{2 is always less than, or equal to the rest of impulses;
this implies that for every value of ∆itot such that η´ ∆itot ď 0, ρ˚

k

would be defined by Eq. (34).
For the three-impulse case, the fist impulse is subdivided into two

subimpulses, namely the impulses 1{3 (i.e., first impulse out of three)
and 2{3 (i.e., second impulse out of three); the third impulse of this
problem, 3{3, is thus identical to the impulse 2{2. Just like in the two-
impulse problem, η´ ∆itot ě 0 and the optimal ρ˚

k combination is
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Figure 4: Solution of the multi-impulse combined maneuver

ρ˚
k “ 1, @k P K. The values of ρ˚

k and λ are substituted into Eq. (31),
resulting in the solution shown in Table 4. Eq. (30) for the impulses
1{3 and 2{3 is also displayed in Fig. 4.

It can be seen that d∆V{d∆i behaves as previously stated. In par-
ticular, it vanishes for ∆i “ t0,πu and has a maximum for ∆i “

arccos pV1{V2q, which yields a value of d∆V{d∆i “ V1. Consequently,
as the impulses 1/2 and 1/3 have the same V1 but a different V2, they
achieve the same maximum value but for different values of ∆i.

2.4 application to mission scenarios

The practical application examples discussed in Section 2.3 are recast
in this section into two realistic mission scenarios of practical rele-
vance. In both cases the optimization problem has been approached
with the dual-based method and reduced to an algebraic equation
equivalent to Eq. (7), which is then solved numerically using Brent’s
method [24].

2.4.1 Geostationary transfer orbit with a phasing maneuver

Due to the high demand of the geostationary orbit, it is divided into
a series of slots. Consequently, the satellites that operate in such orbit
are assigned to a slot, such that more than one satellite can be allo-
cated to a single slot [26]. Hence, when performing a geostationary
transfer, it is of great importance to consider the position in which
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Table 4: Numerical example for the multi-impulse combined maneuver case.

Type of transfer Impulse ∆V rm s´1s ∆i [deg]

Two-impulse
1/2 2362 2.30

2/2 1759 26.20

Total 4121 28.50

Three-impulse

1/3 647 0.76

2/3 1715 1.54

3/3 1759 26.20

Total 4121 28.50

the geostationary orbit is reached. Therefore, this first practical case
considers the optimization of a combined geostationary transfer with
a phasing maneuver.

Possibly the most straightforward application of the subimpulse
problem studied in Section 2.3.3 is precisely to split one of the im-
pulses into two subimpulses, thus providing an additional impulse
that can be used to simultaneously accomplish a phasing maneu-
ver without additional ∆V consumption. In particular, the problem
at hand involves four different orbits, namely, an initial orbit, the fi-
nal geostationary orbit, a transfer orbit and a phasing orbit. At the
beginning, the satellite will be coasting in the initial orbit. After an
impulse, it will achieve the phasing orbit, where it will remain for
an integer number of revolutions. Then, it will perform a subsequent
impulse to achieve the transfer orbit and, after half an orbital period,
another impulse will inject the satellite into the correct slot within the
final orbit.

To solve this problem, it is necessary to analyze the transfer ge-
ometry resulting from the application of the aforementioned three-
impulse transfer strategy. The first step to perform such analysis is to
define the position of the target slot as a function of the arrival time,
which can be computed as follows:

utgt “ u0tgt `ntgttf , (38)

where u0tgt and utgt represent the argument of latitude of the target
slot at the initial and arrival time, respectively, ntgt is the mean motion
of the target orbit and tf is the arrival time.

The description of the three-impulse maneuver entails an arrival
time of the following form:

tf “ tcst `CTpha `
Ttra

2
, (39)
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where tcst is the time spent during the coasting phase, C is the number
of revolutions spent in the phasing orbit, Tpha is the period of the
phasing orbit and Ttra is the period of the transfer orbit.

Likewise, the angular position of the satellite at the arrival time can
be derived from the geometry of the maneuver:

usat “ u0sat `ninitcst ` π , (40)

where u0sat and usat represent the argument of latitude of the satellite
at the initial and arrival time, respectively, and nini is the mean motion
of the initial orbit.

Moreover, the inclination changes have to be performed at the line
of nodes. Hence, tcst has to be chosen such that the satellite is located
at one of the nodes when the first impulse is performed, as imposed
by the following expression:

tcst “
πK´ u0sat
nini

, (41)

where K is a natural number that defines the set of feasible values
of tcst. In particular, for odd values of K, the satellite will perform
the first impulse at the descending node. Likewise, the satellite will
perform the first impulse at the ascending node for even values of K.

It can be seen that the design variables that have to be determined
to reach the target slot are Tpha, C and K. Therefore, the next step is to
formulate an analytical condition that relates these design variables.
The following parameter can be defined to facilitate that process:

∆M 1 “ u0tgt ´ π`ntgt

ˆ

Ttra

2
´
u0sat
nini

˙

, (42)

where ∆M 1 is the aforementioned parameter. It provides a measure-
ment of the initial relative position between the satellite and the target
slot, but corrected to take into account the effects in the angular posi-
tion produced by the different phases of the maneuver.

A feasible solution of the problem at hand entails that the angu-
lar position of the satellite and the target slot have to be congruent
modulo 2π at the arrival time, which can be modelled as:

utgt “ usat ` 2πκ , (43)

where κ is an integer variable that imposes such congruence.
It has to be noted that the integer variables K and κ can be unified

into a single variable without loss of generality. Such combination can
be carried out as follows:

πK 1 “ πK` 2πκ , (44)

where K 1 is the new design variable that substitutes K and κ.
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Substituting Eqs. (38-42,44) into Eq. (43) makes it possible to deter-
mine K 1 as a function of the rest of the design variables:

K 1 “ nini
∆M 1 `ntgtCTpha

π
`

nini ´ntgt
˘ . (45)

In addition, it has to be noted that, if the first impulse is the one
being split into two subimpulses, Tpha can take any value between
the periods of the initial orbit and the transfer orbit. Likewise, if the
second impulse is the one being decomposed, Tpha can take any value
between the periods of the transfer orbit and the final orbit. However,
in the latter case, the phasing orbit would intersect the final orbit at
each revolution, hence generating a potential risk of collision with the
objects operating in geostationary orbit. Thus, the first impulse is the
one being split and the corresponding range of values of the period
of the phasing orbit is Tpha P rTini, Ttras, where Tini is the period of the
initial orbit.

All in all, the process to compute the optimal three-impulse transfer
is as follows:

1. Chose an integer value of K 1.

2. Isolate C in Eq. (45) and substitute the chosen K 1 and the ex-
tremes of the range of feasible values of Tpha into two instances
of that equation. This provides an interval of values of C. The
integers within that interval are its feasible values.

3. If there are not integer values within that interval, go back to
step 1 and choose a new value for K 1. Otherwise, assign to C an
integer value contained in such interval.

4. Tpha is then obtained by means of isolating it in Eq. (45) and
substituting the selected values of K 1 and C.

5. Compute the semimajor axis of the phasing orbit from Tpha.

6. Known the semimajor axis of the phasing orbit, use the dual-
based methodology to determine the optimal ∆i distribution
among the three impulses, as explained in Section 2.3.3.

Just like in the numerical example within Section 2.3.3, the geo-
stationary transfer example described in [62] has been used to set
up this case, which involves a transfer between two circular orbits
of radii 7000 km and 42166 km, respectively, and a ∆itot of 28.5 deg.
Moreover, both the satellite that is performing the transfer and the
target slot in geostationary orbit have an initial argument of latitude
of 0 deg. The application of the aforementioned algorithm to this mis-
sion scenario yields:

• tf “ 86170 s.
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• K 1 “ 1.

• K “ 1.

• κ “ 0.

• C “ 2.

• Tpha “ 32038 s.

• Semimajor axis of the phasing orbit: 21802359 m.

Finally, the three-impulse maneuver has been optimized, resulting
in the solution depicted in Table 5.

Table 5: Numerical example for the geostationary transfer case.

Type of transfer Impulse ∆V rm s´1s ∆i [deg]

Two-impulse
1/2 2362 2.30

2/2 1759 26.20

Total 4121 28.50

Three-impulse

1/3 2256 2.22

2/3 106 0.08

3/3 1759 26.20

Total 4121 28.50

2.4.2 Constellation multi-target rendezvous

The proliferation of large constellations has risen the interest in on-
orbit services such as the removal of defunct satellites [47, 57, 70] or
satellite refueling [96, 109, 111]. Both situations demand for precise
calculation of rendezvous maneuvers and careful planning of optimal
rendezvous sequences. Therefore, this second practical case considers
a multi-target rendezvous of one servicing spacecraft with several
satellites in a constellation.

Both the drifting problem and the phasing applications studied in
Sections 2.3.1 and 2.3.2, respectively, intended to optimally distribute
a predefined ∆Vtot budget among a set of maneuvers so as to min-
imize the total ∆t associated to the overall duration of the orbital
transfers. Consequently, both applications can be integrated into a
single practical case. In this case, a single servicing spacecraft has to
rendezvous with several satellites situated within a constellation.

The considered constellation comprises several spacecraft in identi-
cal, circular orbits distributed on orbital planes shifted in their right
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ascension of the ascending node, Ω. Each of these orbits contains sev-
eral satellites shifted in their mean anomaly, M. This case has been
inspired and built upon a shell of the Starlink constellation [29], in
which the satellites are located at an altitude of 550 km and an incli-
nation of 53 deg.

Specifically, this mission scenario considers three different orbital
planes, each of them containing three defunct satellites. The situation
of each of the planes at the initial mission time is determined by
their right ascension of the ascending node, while the position of the
defunct satellites within their orbital plane is represented by their
initial argument of latitude. Table 6 specifies such initial positions,
where the planes are ordered according to the sequence in which
they are visited and ui represents the initial argument of latitude of
the i-th object to be visited within its corresponding orbital plane.

Table 6: Initial geometry of the multi-target rendezvous case.

Plane Ω [deg] u1 [deg] u2 [deg] u3 [deg]

1 36.32 21.37 119.55 135.91

2 46.32 65.46 98.18 179.99

3 51.32 34.29 99.74 148.83

In addition, a ∆V budget of 100 m s´1 is considered. It has to be
noted that the servicing satellite is expected to spend several months
in each of the drifting orbits. For such long transfers, an arbitrary fi-
nal argument of latitude can be achieved with a very small change
of the semimajor axis of the drifting orbit, thus requiring a negligible
amount of additional ∆V . Hence, it can be assumed that, after each
drifting phase, the satellite reaches the target plane in conjunction
with the first of its corresponding objects. Moreover, it is assumed
that the launcher is able to inject the satellite into an arbitrary orbit.
As a result, the servicing satellite is considered to start the mission
in conjunction with the first concerning object within the first orbital
plane. Therefore, the problem at hand can be modelled as the opti-
mal allocation of the ∆V budget among two drifting orbits (i.e., from
Plane 1 to Plane 2 and from Plane 2 to Plane 3) and six phasing orbits
(i.e., from u1 to u2 and from u2 to u3, for the three orbital planes).

Table 7: Multi-target rendezvous case results: drifting orbits.

∆Ω [deg] ∆V [m s´1] ∆i [deg] ∆t [s]

5 37.32 1.409 ¨ 10´1 2.9423180 ¨ 107

10 52.78 1.992 ¨ 10´1 4.1594779 ¨ 107
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Table 8: Multi-target rendezvous case results: phasing orbits.

∆M ∆V a ∆t ∆V Corr. a Corr. ∆t Corr.

[deg] [m s´1] [m] [s] [m s´1] [m] [s]

16.36 0.91 6.920177 ¨ 106 1.442049 ¨ 106 ´1.07 ¨ 10´3
9.73 ¨10´1 1.69 ¨ 103

32.72 1.29 6.919832 ¨ 106 2.039420 ¨ 106 6.83 ¨ 10´6 ´6.23 ¨ 10´3 ´1.08 ¨ 101

49.09 1.58 6.919567 ¨ 106 2.497778 ¨ 106 1.39 ¨ 10´4 ´1.27 ¨ 10´1 ´2.19 ¨ 102

65.45 1.83 6.919344 ¨ 106 2.884196 ¨ 106 1.89 ¨ 10´3 ´1.72 ¨ 100 ´2.98 ¨ 103

81.81 2.04 6.919147 ¨ 106 3.224631 ¨ 106 ´8.58 ¨ 10´5 7.82 ¨ 10´2 1.35 ¨ 102

98.18 2.24 6.918969 ¨ 106 3.532419 ¨ 106 ´9.59 ¨ 10´4 8.74 ¨ 10´1 1.51 ¨ 103

Table 7 shows the ∆Ω associated to each drifting orbit, as well as
the obtained solution. In turn, Table 8 does the same with the ∆M
associated to each phasing orbit. It can be seen that the majority of
∆V has been assigned to modify the inclination of the drifting orbits;
this is expected since, for any given ∆V value, the marginal cost of
assigning additional ∆V to the drifting orbits is much lower than for
the phasing orbits, as can be appreciated from Fig. 5. Table 8 also de-
picts the corrections applied to the ∆V , a and ∆t associated to each
phasing orbit so that an integer number of revolutions is performed
(i.e., the solution of the combinatorial optimization problem defined
by Eqs. (25)). These ∆V and a corrections are remarkably small and
the aggregated ∆t correction amounts to around 128 s, which implies
that the solution directly obtained by the dual-based optimization
method, though infeasible, represents a good estimation of the opti-
mal feasible solution.

Fig. 5 shows the optimal λ, along with the functions d∆t{d∆V as
a function of ∆V , as obtained from Eqs. (12,19) for each of the con-
cerning orbits. It can bee seen that every single one of these functions
is strictly monotonically increasing, thus the obtained solution is a
global optimum and the inverse functions of Eqs. (12,19) can be eas-
ily computed because of the bijective relation between them.

2.5 conclusions

This manuscript proposes a novel optimization method for single-
constraint Nonlinear Programming problems with a specific struc-
ture. Its main advantage is the ability to transform an optimization
problem with an arbitrary number of variables into a root-finding
problem of a univariate algebraic equation.

Three practical application examples of this methodology, based
upon typical impulsive maneuver optimization problems, have been
introduced and developed in detail to illustrate the application of
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Figure 5: Multi-target rendezvous solution

this methodology. First, the optimization of inclination changes for
sequences of drifting orbits has been addressed. Second, the optimiza-
tion of the semi-major axes for sequences of phasing orbits has been
discussed; since the resolution of the latter yields phasing maneuvers
that provide fractional numbers of revolutions, an efficient correction
method has been devised, which overcomes this issue by providing
optimal solutions for a integer numbers of revolutions on the phasing
orbit. In the third place, the optimization of combined, multi-impulse
maneuvers has been explored, where the dual-based methodology
has provided an insightful approach to demonstrate that the value
of the only dual variable of the problem is conserved when splitting
impulses into several subimpulses.

Finally, the utility of the proposed methodology has been assessed
by solving two more complex practical cases related to potential mis-
sion scenarios. On the one hand, the conservation of the dual vari-
able λ has been exploited to compute the optimal ∆i distribution of
a three-impulse geostationary transfer orbit combined with a phas-
ing maneuver, thus readily performing a phasing maneuver without
additional ∆V consumption. On the other hand, a multi-target ren-
dezvous problem for satellites distributed in different orbital planes
of a constellation has been solved by simultaneously optimizing the
values of the inclinations of two drifting orbits, along with the semi-
major axes of six phasing orbits as a function of a single decision
variable.

All in all, these examples illustrate the potential of the proposed
dual-based methodology for practical optimization problems involv-
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ing impulsive maneuvers. It has to be noted that all the aforemen-
tioned examples constitute nonconvex NLP problems. Therefore, gen-
eral NLP solvers are not able to prove the global optimality of their so-
lution and might even fail to converge to a local optimum. In turn, the
proposed methodology has been able to readily obtain their global
optima.

Regarding the minimum-time orbit phasing and drift examples,
the obtention of the global optimum is guaranteed because the func-
tions d∆t{d∆V are monotonic, thus resulting in a unique solution
that fulfills the conservation of the dual variable λ. Regarding the
multi-impulse combined maneuvers examples, the global optimum
is obtained according to the analysis of d∆V{d∆i described in Sec-
tion 2.3.3, where the fact that such functions have a single maximum
is exploited. A future line of work will consider problems involving
dfk{dgk functions with more complex structures (i.e., non monotonic
and with multiple maxima and minima), so as to provide a more gen-
eral discussion about the obtention of their global optima.

An additional future line of work will explore the possibility of ex-
tending the methodology to deal with functions fk and gk of more
than one variable. This is of particular interest for the minimum-time
orbital drift example, as it would allow to decide, not only the in-
clination, but also the semimajor axis of the drifting orbit. Moreover,
this would open the possibility to integrate that example with the
multi-impulse combined maneuver example, which would allow to
achieve the correct phasing at the arrival in the target orbit (i.e., after
the drift). Interestingly, the constellation multi-target rendezvous ex-
ample assumed that the spacecraft reached the target orbits with the
correct phasing and neglected the ∆V necessary to achieve it. There-
fore, this extension would guarantee that this assumption is true and
would allow to enhance the fidelity of the solution of this example.





3
R E L AT I V E I N C L I N AT I O N S T R AT E G Y F O R
L O W- T H R U S T T R A N S F E R S

3.1 introduction

The high concentration of space debris in particular zones of Low
Earth Orbit (LEO) constitutes a considerable risk for the future of
space operations. Specifically, it enhances the likelihood of a colli-
sion cascade phenomenon that would produce an uncontrollable gen-
eration of debris fragments [65]. Further studies have determined
that the active removal of hazardous pieces of debris is necessary
to achieve the stabilization of the number of objects within the zones
of interest [71, 75]. In particular, it is expected that Active Debris Re-
moval (ADR) missions will be able to remove several objects with
a single servicing spacecraft. The use of low thrust propulsion con-
stitutes a promising approach to ameliorate the substantial fuel re-
quirements of such multi-target missions. Zuiani and Vasile [115] de-
veloped a first-order solution of the perturbed Keplerian motion to
model low thrust transfers for multi-target ADR missions. This ap-
proach was later extended with the introduction of the effect of the
J2 perturbation as well as the atmospheric drag by means of the use
of asymptotic analytical solutions of the Keplerian motion [40].

The most relevant candidate objects in LEO describe near-circular
orbits. Thus, it is reasonable to consider transfers between circular
orbits during the preliminary mission design. The classic Edelbaum
approach [41] makes use of an averaged orbital dynamics to obtain
an analytical solution of a minimum-time continuous-thrust transfer
between two circular orbits. The Edelbaum solution was later refor-
mulated as an optimal control problem [62] and extended to consider
richer transfer models [27, 50, 66].

Moreover, such candidate objects are concentrated among different
clusters of orbits with similar altitude and inclination. However, the
objects within a cluster are, in general, arbitrarily spread in right as-
cension of the ascending node (RAAN). The usual strategy to traverse
large RAAN differences during a transfer is to leverage the RAAN
drift produced by the J2 perturbation. To that end, Cerf [32] formu-
lates an optimal control problem that extends the Edelbaum problem
by means of considering the magnitude of the thrust acceleration as
an additional control variable. Specifically, this problem considers tan-
gential and out-of-plane thrust with a reversal of the thrust direction
in the antinodes of the orbit. Hence, the control variables of the prob-
lem are the thrust yaw angle and the magnitude of the thrust acceler-

37
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ation, which are exclusively used to modify the semimajor axis and
inclination of the orbit. In turn, the whole RAAN difference between
the initial and target orbits is overcome by the effect of the J2 pertur-
bation. It is demonstrated that the optimal control law of the thrust
magnitude follows a thrust-coast-thrust profile with maximum thrust
acceleration during the propulsive arcs. Thus, the optimal solution of
this problem uses the first thrust arc to increase the nodal precession,
which is exploited during the coasting arc. Finally, another thrust arc
achieves the terminal values of the semimajor axis and inclination.
An indirect optimization method is proposed to solve this problem.

Wen et al. [104] extend the Cerf approach by introducing the orbital
position of the thrust reversal as a control variable. This new variable
determines the effect of the thrust in the inclination and RAAN. In
particular, if the thrust reversal is made at the antinodes of the orbit,
only the inclination will be modified. In turn, if it is performed at the
orbital nodes, only the RAAN will be changed. Hence, intermediate
values of the new control variable result in different proportions of
the influence of the thrust in said orbital parameters. This new ap-
proach, referred to as Yaw Switch Steering (YSS), is able to achieve
significant improvements in fuel consumption (with respect to the
Cerf approach) for time-constrained transfers, especially for restric-
tive values of such maximum time.

The optimal target selection for ADR missions might require the
consideration of pools of hundreds of relevant objects [8, 74], as well
as the computation of a substantial amount of possible transfers. Hence
the importance of developing fast and reliable evaluation methods for
such transfers. In addition to the Cerf approach, Ref. [32] presents
another relevant method, referred to as the Split Edelbaum Strat-
egy (SES). In particular, it is a simplification of the Cerf approach
in which the thrust arcs are independently computed using the Edel-
baum analytical solution. Hence, the ∆v of the propulsive arcs is an-
alytically computed, while the RAAN variation produced by the J2
perturbation during those arcs is obtained by numerically integrating
its corresponding differential equation. The merging of the coasting
and propulsive arcs results in a two-variable Nonlinear Programming
problem (NLP). This method is presented as a tool to obtain initial
guesses for the Cerf approach. However, it is of remarkable relevance
for the formulation of large-scale combinatorial problems because of
its accuracy and computational efficiency.

More recently, Shen [94] developed two explicit analytical approxi-
mations for the aforementioned three-arc transfers. On the one hand,
the Shen(a,i) solution considers that the whole RAAN is exclusively
modified by the effect of the J2 perturbation, just like the Cerf ap-
proach. On the other hand, the Shen(a,i,Ω) solution also considers an
active use of the thrust to modify the RAAN. It is shown that both
solutions achieve a good approximation of the ∆v consumed during
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this kind of transfers, with the Shen(a,i,Ω) solution being marginally
better. Moreover, the evaluation time of this kind of analytical approx-
imations is potentially several orders of magnitude smaller than the
resolution time of other numerical methods.

All in all, the possibility of directly modifying the RAAN for the
aforementioned kind of transfers seems like a promising approach
that merits further investigation. As the YSS approach provides a
high-quality solution at a high computational cost and the Shen method-
ology provides a remarkably computationally-efficient approximation
of the ∆v consumption, the question is if it is possible to devise a
methodology that exploits the direct RAAN modification concept,
while achieving a trade-off between solution quality and computa-
tional efficiency.

This work proposes a methodology that fulfills such purpose by
means of taking advantage of maneuvers that modify the relative in-
clination with respect to the target orbit (i.e., the angle of the current
orbital plane with the target orbital plane). The first step to configure
such methodology is to devise a computationally-efficient technique
to solve continuous-thrust transfers that modify the relative inclina-
tion. To that end, this work adds the effect of the J2 perturbation to
the Edelbaum approach, while considering the semimajor axis and
relative inclination as the state variables (as opposed to the Cerf and
YSS approaches, that need to introduce an additional state variable
into the Edelbaum model in order to consider the effect of the J2 per-
turbation). The optimal solution of this problem, albeit not analytical,
only requires the determination of the initial value of the thrust yaw
angle.

Additionally, two heuristic control laws for such continuous-thrust
transfers are defined to further accelerate the resolution time of the
problem. Specifically, those suboptimal control laws are derived by
ignoring some basic properties of the optimal solution and have been
empirically chosen because they achieve solutions very similar to the
optimal trajectory for short thrust arcs.

Finally, the SES methodology is a notable example of solution qual-
ity and computational efficiency trade-off. Hence, the proposed ap-
proach replaces the final thrust arc of the SES approach with the pro-
posed relative-inclination continuous-thrust transfer. This results in
a three-variable NLP problem. Therefore, this methodology is able
to exploit the RAAN change executed by the thrust to obtain poten-
tial ∆v improvements, while maintaining a computational complexity
similar to the one of the SES approach.

The remainder of this manuscript is organized as follows. Section 3.2
describes the resolution method of the continuous-thrust optimal con-
trol problem. Section 3.3 defines the three-arc transfer NLP problem.
Section 3.4 shows numerical experiments of the proposed methodol-
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ogy and provides a comparison with other relevant approaches. Fi-
nally, Section 3.5 summarizes the main conclusions of this work.

3.2 continuous-thrust transfer

The problem at hand is to provide a time-optimal solution for a par-
ticular class of continuous-thrust transfers between circular orbits.
Specifically, the proposed maneuver involves the application of tan-
gential and out-of-plane thrust with the thrust yaw angle as the sole
control variable. Moreover, the out-of-plane thrust is reversed when
traversing the antinodes of the relative line of nodes with respect to
the target orbit. Thus, the considered thrust produces changes in the
semimajor axis and in the relative inclination with respect to the tar-
get orbit. Additionally, the effect of the average J2 perturbation in the
RAAN is also considered.

3.2.1 Problem dynamics

The Edelbaum analytical solution is equally valid to represent incli-
nation changes as well as changes of relative inclination with respect
to the target orbit. The reason for it is that both kinds of maneuvers
are geometrically identical, but seen from reference frames with dif-
ferent orientation, that is, the usual equatorial coordinate system and
a reference frame such that its XY plane is the target plane and its
Z axis goes along the angular momentum of the target orbit, respec-
tively. However, this is not true when considering the effect of the
J2 perturbation, as its contribution is not invariant under reference
frame rotations. Thus, the dynamics equations that model the prob-
lem at hand are equivalent to the ones in [62] but with an additional
term (γ) that quantifies the effect of the RAAN drift on the relative in-
clination. In particular, they represent the average rate of change per
orbital revolution of the semimajor axis and relative inclination un-
der the effect of tangential and out-of-plane thrust and the averaged
J2 perturbation. It is assumed that such averaged orbit will remain cir-
cular throughout the whole transfer. Moreover, the thrust will keep a
constant yaw angle per revolution, with a thrust reversal performed
at the antinodes corresponding to the relative line of nodes with re-
spect to the target orbit, thus resulting in the variation of the relative
inclination with respect to such orbit (instead of the usual inclina-
tion defined with respect to the equatorial plane). Finally, the thrust
acceleration magnitude is considered to remain constant throughout
the whole transfer. All in all, the dynamics equations are defined as
follows:

da
dt

“ 2

d

a3

µ
f cosβ (46)
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di˚

dt
“
2

π

c

a

µ
f sinβ` γ (47)

where a and i˚ are the semimajor axis and the relative inclination
of the current orbit, respectively; f is the thrust acceleration; β is the
thrust yaw angle; and µ is the gravitational parameter of the Earth.

The averaged RAAN drift produced by the J2 perturbation for a
circular orbit is:

dΩ
dt

“ ´
3

2
R2‘J2

c

µ

a7
cos i (48)

where Ω is the RAAN, R‘ is the equatorial radius of the Earth, and
J2 is the coefficient of the spherical harmonic of degree 2 and order 0

of the Earth’s gravity field.
Consequently, the determination of γ requires two tasks. On the

one hand, the term cos i has to be redefined as a function of orbital
parameters associated with the target orbit reference frame. On the
other hand, the rate of change of Ω has to be turned into a rate of
change of i˚.

Regarding the first task, the ascending nodes of the current (N) and
target (Nf) orbits as well as the relative ascending node (N˚) consti-
tute the spherical triangle shown in Fig. 6, resulting in the following
trigonometry laws:

cos i˚ “ cos i cos if ` sin i sin if cos∆Ω (49)

cos i “ cos if cos i˚ ´ cosϖ sin if sin i˚ (50)

sin i˚

sin∆Ω
“

sin i
sinϖ

(51)

where ∆Ω “ Ωf ´Ω; ϖ “ ωf `Ω˚; Ω˚ is the RAAN associated with
the target orbit reference frame; and if,Ωf, andωf are the inclination,
RAAN, and argument of perigee of the target orbit, respectively.

Regarding the second task, as γ quantifies the rate of change of i˚

strictly produced by the RAAN drift of the current and target orbits,
the subsequent chain rule can be applied:

γ “
di˚

dt

ˇ

ˇ

ˇ

ˇ

J2

“
Bi˚

B∆Ω

d∆Ω
dt

(52)

Taking the corresponding partial derivative of Eq. (49) and substi-
tuting Eq. (51) yields:
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Figure 6: Spherical triangle formed by ascending nodes.

Bi˚

B∆Ω
“ sin if sinϖ (53)

In turn, subtracting the RAAN drifts experienced by the target and
the current orbits [Eq. (48)] and substituting Eq. (50) results in:

d∆Ω
dt

“ ´
3

2
R2‘J2

ˆ

c

µ

a7f
cos if ´

c

µ

a7
pcos if cos i˚ ´ cosϖ sin if sin i˚q

˙

(54)

It has to be noted that the termϖ appears in the definition of γ, but
the differential equation that describes its temporal evolution is not
considered in the problem dynamics. Therefore, given the value of γ
at a certain orbital revolution, the propagation of Eqs. (46) and (47) is
not enough to determine its value at the subsequent one. Fortunately,
the following properties of the considered transfer can be exploited
to propagate γ without the need for adding an additional differential
equation to the problem dynamics:

1. i is modified exclusively by the thrust.

2. ϖ is modified exclusively by the J2 perturbation.
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3. ∆Ω is modified by both the thrust and the J2 perturbation.

Thus, given the averaged values of all the variables for the current
orbital revolution (i.e., a, i˚, i, ∆Ω, ϖ, β, and γ), their propagation to
the subsequent one can be performed as follows:

1. The values of a and i˚ can be obtained with a straightforward
propagation of Eqs. (46) and (47). Specifically, substituting a, i˚,
β, and γ into those equations gives the average rates of change
of a and i˚ during the current revolution. Then, multiplying
those rates of change by the orbital period and adding the re-
sulting quantities to the current values of a and i˚ results in
the desired averaged values for the subsequent revolution. This
integration scheme is analogously used for the propagation of
all the differential equations considered during the resolution
of this problem.

2. When considering Keplerian dynamics,ϖ remains constant, while
the obtained i would be identical to the one of the J2-perturbed
case. Consequently, computing i˚ for the Keplerian case (i.e.,
with γ “ 0) and introducing it, together with ϖ, into Eq. (50)
would result in the desired value of i.

3. The Keplerian value of ∆Ω results from substituting the Keple-
rian values of i, ϖ, and i˚ in Eqs. (49) and (51). Then, its corre-
sponding nodal precession [Eq. (48)] can be added to obtain its
J2-perturbed counterpart.

4. Subsequently, the J2-perturbed value ofϖ results from Eqs. (50) and (51).

5. Finally, Eq. (52) is used to compute γ.

3.2.2 Optimality conditions

The optimal control formulation of the problem at hand involves the
minimization of the transfer time, as depicted in the following objec-
tive function:

J “ min
ż tf

t0

dt (55)

where t0 is the fixed initial time and tf is a free final time, subjected to
the dynamics defined by Eqs. (46) and (47) and the following bound-
ary conditions:

apt0q “ a0 i˚pt0q “ i˚0

aptfq “ af i˚ptfq “ 0
(56)
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where a0 and af are the initial and final values of the semimajor
axis, respectively, and i˚0 is the initial relative inclination. It has to
be noted that, as the thrust acceleration magnitude is considered to
remain constant throughout the whole transfer, the minimization of
the transfer time is equivalent to the minimization of the consumed
∆v. In addition, such ∆v can be computed by simply multiplying the
transfer time by the thrust acceleration magnitude.

The Pontryagin’s minimum principle states that the optimal solu-
tion of this problem requires the selection of a control law of β such
that the following Hamiltonian function is minimized throughout the
whole optimal trajectory:

H “ 1` λa

˜

2

d

a3

µ
f cosβ

¸

` λi

ˆ

2

π

c

a

µ
f sinβ` γ

˙

(57)

where λa and λi are the costate variables associated to Eqs. (46) and (47),
respectively. The Euler-Lagrange equations determine the rates of
change of the costate variables:

dλa
dt

“ ´
BH

Ba
“ ´

f
?
µ

ˆ

3λa
?
a cosβ`

λi
π

?
a

sinβ
˙

´ λi
Bγ

Ba
(58)

dλi
dt

“ ´
BH

Bi˚
“ ´λi

Bγ

Bi˚
(59)

The necessary condition for the Hamiltonian function minimiza-
tion is:

BH

Bβ
“ ´2λa

d

a3

µ
f sinβ`

2

π
λi

c

a

µ
f cosβ “ 0 (60)

resulting in the following optimal control law:

tanβ “
λi
λaπa

(61)

It has to be noted that time does not explicitly appear in the Hamil-
tonian function [Eq. (57)]. Hence, H is constant throughout the whole
optimal trajectory. Furthermore, tf is a free variable and its associated
boundary conditions are time-independent. Consequently, Hptfq “ 0

and, by extension, is null during the whole trajectory. This condition,
along with the optimal control law [Eq. (61)], can be used to unam-
biguously define the sine and cosine of β as functions of the costate
variables:
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sinβ “ ´
2λi

?
af

π
?
µ p1` λiγq

(62)

cosβ “ ´
2λa

?
a3f

?
µ p1` λiγq

(63)

The costate variables can be also given as functions of β as follows:

λi “ ´
sinβ

2
π

b

a
µf` γ sinβ

(64)

λa “ ´
cosβ

2
b

a3

µ f` γπa sinβ
(65)

Finally, the strong Legendre–Clebsch condition guarantees that a lo-
cal minimum is obtained (as opposed to a maximum or saddle point).

B2H

Bβ2
“ ´2λa

d

a3

µ
f cosβ´

2

π
λi

c

a

µ
f sinβ ą 0 (66)

Recalling that H “ 0 and using Eq. (57) yields:

λiγ ą ´1 (67)

Then, substituting λi from Eq. (64) gives:

γ sinβ
2
π

b

a
µf` γ sinβ

ă 1 (68)

This expression implies that the signs of its denominator and the
first term of such denominator have to be identical. By definition,
such first term is positive. Hence, the condition to obtain a local min-
imum is:

2

π

c

a

µ
f` γ sinβ ą 0 (69)



46 relative inclination strategy for low-thrust transfers

3.2.3 Heuristic control laws

When focusing on the computational efficiency of the resolution of
optimal control problems, it is worth investigating promising heuris-
tic control laws. Specifically, control laws independent of the costates
that, albeit suboptimal, can achieve near-optimal solutions under suit-
able circumstances. This way, such near-optimal solutions can be ob-
tained by simply propagating the state equations to the desired fi-
nal state. Two promising heuristic control laws are subsequently pre-
sented, namely, the proportional control law and the corrected Edel-
baum strategy.

Such heuristic control laws have been derived by means of ne-
glecting some basic properties of the optimal solution. In particu-
lar, the proposed control laws have been empirically chosen because
they achieve solutions very similar to the optimal trajectory for short
thrust arcs. Hence, if it is expected that this hypothesis will be true,
such heuristic control laws should be used instead of the aforemen-
tioned optimal solution, further improving the computational effi-
ciency while obtaining solutions very close to the optimal. However,
it has to be taken into account that the quality of the heuristic so-
lutions can be significantly deteriorated by the length of the thrust
arc.

Proportional control law

The selection of β involves a trade-off between the magnitude of the
in-plane (to modify a) and out-of-plane (to change i˚) thrust compo-
nents. The proportional control law allocates the thrust components
such that the rates of change of the state variables are proportional to
their difference with the target values, that is:

da{dt
di˚{dt

“
a´ af
i˚

(70)

For the sake of simplicity, Eq. (70) is reformulated as follows:

ϕa cosβ
ϕi sinβ` γ

“ d (71)

where d is the right hand side of Eq. (70) and ϕa, ϕi are the factors
that multiply cosβ, sinβ in Eqs. (46) and (47), respectively.

Using the Pythagorean trigonometric identity, the sine and cosine
of β can be isolated. This results in two possible solutions of Eq. (71).
Nevertheless, one of those solutions increases the gap between both
of the current states and the target orbit, while the other solution does
the opposite. Thus, the only relevant solution is:
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sinβ “ ´
ϕiγd

2 `ϕa

b

ϕ2
a ` pϕ2

i ´ γ2qd2

ϕ2
a `ϕ2

id
2

(72)

cosβ “

d
´

ϕaγ´ϕi

b

ϕ2
a ` pϕ2

i ´ γ2qd2
¯

ϕ2
a `ϕ2

id
2

(73)

Corrected Edelbaum control law

For short thrust arcs, it is reasonable to assume that the effect of the
J2 perturbation will be very small. Thus, another promising heuristic
control law can be obtained by neglecting the influence of such per-
turbation in the value of β. Specifically, this control law can be readily
obtained by expressing the Edelbaum analytical expression of β as a
function of i˚ and a.

β “ atan2

ˆ

´ sin
´π

2
i˚
¯

,
c

af
a

´ cos
´π

2
i˚
¯

˙

(74)

However, neglecting the effect of the J2 perturbation entails that
the expected terminal state will not be exactly achieved. This can be
solved by using the proportional control law during the last revolu-
tion of the transfer. Hence the name of corrected Edelbaum strategy.

3.2.4 Problem resolution

In general, the resolution of the problem at hand involves the propa-
gation of the dynamics differential equations [Eqs. (46),(47),(58), and (59)],
while fulfilling the optimal control law [Eqs. (62) and (63)]. More-
over, the accomplishment of the desired boundary conditions at tf
[Eq. (56)] requires the determination of specific initial values for the
costate variables. This can be difficult because such variables do not
possess a clear physical meaning. Nevertheless, in this particular case,
Eqs. (64) and (65) provide the values of such costates as a function of
β. Therefore, the boundary conditions at tf can be achieved by simply
selecting a suitable initial value of β, which has a bounded domain
as well as a straightforward meaning. Consequently, the whole reso-
lution process can be encapsulated in the following scalar univariate
shooting function:

ψ : βpt0q −Ñ aptfq ´ af (75)

Given an initial value of β, the shooting function propagates the dy-
namics equations until i˚ “ 0 and returns the defect of the resulting
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semimajor axis at that epoch, i.e., tf. Hence, a root of ψ generates an
optimal trajectory that complies with the boundary conditions. The
following two-stage approach has been devised to obtain the afore-
mentioned root:

1. The initial β angles corresponding to the proportional and cor-
rected Edelbaum heuristic control laws are used to initialize a
secant method. This method is executed until two values of ψ
with different signs are found or until the solution is obtained,
whichever happens first.

2. If the solution has not been obtained during the previous stage,
the β angles corresponding to the values of ψ with different
signs are used to execute Brent’s bracketing method [24]. In
this way, the convergence to an optimal solution is guaranteed
(assuming that ψ is continuous).

3.3 three-arc transfer

When dealing with transfers involving a significant ∆Ω, continuous-
thrust maneuvers may require an infeasible amount of ∆v. In those
cases, it is interesting to exploit the RAAN drift produced by the J2
perturbation. Specifically, the usual strategy is to introduce an inter-
mediate coasting arc in which the satellite will remain in a drifting
orbit with an advantageous nodal precession.

3.3.1 SES strategy

The previously mentioned SES strategy [32] comprises two propul-
sive arcs, modelled with the Edelbaum solution, split apart by a coast-
ing arc. In this way, the propulsive arcs simultaneously modify a and
i, while the whole ∆Ω is overcome exclusively by the J2 perturbation.
Therefore, defining ∆vEdpa0, i0,a1, i1q as the ∆v consumed during an
Edelbaum transfer from pa0, i0q to pa1, i1q, the ∆v spent during the
whole maneuver is:

∆v “ ∆vEdpa0, i0,a0 `∆a, i0 `∆iq `∆vEdpa0 `∆a, i0 `∆i,af, ifq

(76)

where ∆a and ∆i are the necessary parameter variations to reach the
drifting orbit. In turn, the ∆t spent during this maneuver is:

∆t “
∆v

f
` tdrift (77)

where tdrift is the drifting time, whose value is unambiguously deter-
mined by the fact that a RAAN difference of ∆Ω has to be crossed
over during the transfer. That is:
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tdrift “ ´
∆Ω`∆p∆Ω1q `∆p∆Ω2q

∆ 9Ωdrift
(78)

where ∆p∆Ω1q and ∆p∆Ω2q are the variations of ∆Ω due to the J2
perturbation during the first and second propulsive arcs, respectively,
and ∆ 9Ωdrift is the rate of change of ∆Ω during the coasting arc. Both
∆p∆Ω1q and ∆p∆Ω2q are computed through a numerical integration
of Eq. (48).

Eqs. (76) and (77) can be used to formulate a rather manageable
single-constraint NLP problem of two variables (i.e., ∆a and ∆i). Hence
the efficiency and reliability of this method.

3.3.2 Relative Inclination Change (RIC) strategy

The SES strategy proves especially ∆v-efficient when the available
time to perform a transfer is such that the whole ∆Ω can be traversed
with moderate variations of the RAAN drift. However, when con-
sidering short transfer times, it is notably advantageous to use the
thrust to also modify the RAAN [104]. The RIC strategy is proposed
to exploit this concept. Specifically, this strategy uses the same struc-
ture as the SES strategy, but substitutes the second Edelbaum propul-
sive arc with the relative inclination change maneuver described in
Section 3.2. Hence, this approach is expected to outperform the SES
strategy for tight transfer times. In turn, for longer transfer times
both approaches are nearly identical, the difference being that the
RIC strategy inevitably performs a small ∆Ω change. Therefore, this
approach is expected to be slightly worse than the SES strategy for
such transfer times.

Defining ∆vRICpa0, i0,a1, i1,∆Ω0q as the ∆v consumed during a
relative inclination change transfer from pa0, i0q to pa1, i1q with an
initial RAAN difference of ∆Ω0, the ∆v spent during the whole ma-
neuver is:

∆v “ ∆vEdpa0, i0,a0 `∆a, i0 `∆iq`

`∆vRICpa0 `∆a, i0 `∆i,af, if,∆Ω0 `∆p∆Ω1q `∆ 9Ωdrifttdriftq

(79)

where ∆Ω0 is the initial RAAN difference before the first propulsive
arc and ∆p∆Ω1q and ∆ 9Ωdrifttdrift are the variations of ∆Ω due to the
J2 perturbation during the first propulsive arc and the coasting arc,
respectively. Therefore, the term ∆Ω0 `∆p∆Ω1q `∆ 9Ωdrifttdrift repre-
sents the initial RAAN difference for the second propulsive arc. Then,
Eq. (49) is used to compute i˚ and the value of ∆vRIC can be obtained
as described in Section 3.2.
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The ∆t spent during this maneuver is also defined by Eq. (77). How-
ever, as the second propulsive arc is able to modify ∆Ω, tdrift is a vari-
able to be determined during the optimization. Thus, Eqs. (77) and (79)
result in a NLP problem of three variables (i.e., ∆a, ∆i, and tdrift).

3.4 results

Numerical experiments have been performed to provide a compari-
son between the RIC strategy and other relevant methodologies. In
decreasing order of complexity, the considered approaches can be
classified into optimal control problems (YSS [104], Cerf [32]), NLP
problems (RIC, SES [32]), and analytical approximations (Shen [94]).
It is well known that the solutions obtained by indirect optimization
methods, like the ones used in the Cerf and YSS aproaches, are usu-
ally very sentitive to small changes of the initial values of the costates.
Specifically, both approaches require guessing the initial values of five
variables, namely, three costates and the initial and final times of the
coasting arc. Therefore, their resolution is computationally intensive
and their convergence might be too unreliable for the formulation of
large-scale combinatorial problems. However, the strong optimality
conditions imposed by these methods result in high-quality and accu-
rate solutions, hence making them especially suitable for fine-tuning
specific solutions. On the other side of the spectrum, analytical ap-
proximations like the ones proposed by Shen can obtain solutions in
computational times several orders of magnitude faster than the rest
of the considered techniques, making then specially well-suited for
the formulation of large-scale combinatorial problems. Nevertheless,
they do not provide a feasible trajectory that complies with the dy-
namical model.

The RIC and SES strategies are used to numerically solve a set of
test cases, which involve the minimization of the ∆v spent during a
transfer while complying with a maximum transfer time. Such tests
cases are depicted in Table 9,

Table 9: Boundary conditions for the test cases

Case ∆tmax ∆Ω0 h0 hf i0 if

(days) (deg) (km) (km) (deg) (deg)

1 100 30 800 900 98 99

2 10 3 800 900 98 99

3 100 10 800 900 98 99

4 24.86 0.46 779.3 733.8 98.64 97.45

where h0 and hf are the initial and final orbital altitudes, respec-
tively, and ∆tmax is the maximum transfer time. Cases 1 and 2 have
been extracted from Ref. [104], while Cases 3 and 4 have been ob-
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tained from Ref. [94]. The values of the constants of the gravitational
model used during the resolution of the test cases are: J2 “ 1.082635854 ¨

10´3, µ “ 3.986004418 ¨ 105 km3
{s2, and R‘ “ 6378.137 km. In addi-

tion, the considered value of the thrust acceleration for the propulsive
arcs is f “ 3.5 ¨ 10´3 m{s2.

Tables 10 and 11 show the ∆v consumed by the RIC and SES strate-
gies for the aforementioned test cases, as well as the solutions achieved
by other methods provided in the literature.

Table 10: Method performance comparison (Test cases 1 and 2)

Case 1 Case 2

Method ∆v pm/sq ∆v pm/sq

YSS [104] 596.7 507.0

Cerf [32] 598.1 652.5

SES [32] 598.2 664.3

RIC 598.8 567.2

Table 11: Method performance comparison (Test cases 3 and 4)

Case 3 Case 4

Method ∆v pm/sq ∆v pm/sq

Shen (a,i) [94] 325.3 255.1

Shen (a,i,Ω) [94] 324.4 254.1

SES [32] 313.3 1187.6

RIC 313.5 245.0

The comparison of the RIC strategy with the other relevant meth-
ods can be summarized as follows:

1. SES: As anticipated in Section 3.3.2, the RIC strategy clearly
outperforms the SES strategy for tight transfer times (Cases 2

and 4), while being marginally worse for longer transfer times
(Cases 1 and 3). As both methods have a similar computational
complexity, it is reasonable to prefer the RIC strategy.

2. Cerf: The Cerf approach improves the ∆v achieved by the SES
strategy, at the cost of a greater computational complexity. How-
ever, when compared to the RIC strategy, it shows the same
disadvantages as the SES strategy on top of the increased com-
putational complexity.

3. YSS: The YSS method outperforms the RIC strategy. This is a
logical result because the YSS method is a strict generalization
of the RIC, SES and Cerf methods. However, due to the com-
putational complexity of its associated optimal control problem,
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the YSS method might not be suitable for the formulation of
large-scale combinatorial problems. Additionally, it has to be
noted that several instances of the SES strategy are solved to
obtain an initial guess of the costates of the YSS method. As the
RIC strategy provides a ∆v improvement over the SES strategy
for longer transfer times, it might provide a better costate guess
for those problem instances. Thus accelerating the resolution of
the YSS method.

4. Shen: The RIC strategy outperforms both Shen analytical ap-
proximations. Therefore, choosing which of these methods to
use in a large-scale combinatorial problem involves a trade-off
between solution quality and computational efficiency.

The main objective of the proposed methodology is achieving an
advantageous trade-off between computational efficiency and the op-
timality of the solution. Therefore, the next logical step is to figure
out if the RIC strategy can successfuly use the heuristic control laws
described in Section 3.2.3 to further accelerate the resolution of the
method, while maintaining an advantageous ∆v consumption. Ta-
bles 12, 13, 14, and 15 show the solutions of the four test cases, ob-
tained by the SES strategy and the different control laws proposed
for the RIC strategy. Specifically, the ∆v consumed by each of those
methods, as well as the ∆a and ∆i changes performed during the first
propulsive arc are specified. Moreover, the depicted CPU times have
been obtained with the SciPy Sequential Least Squares Programming
solver in a PC featuring an Intel Core i7-1165G7 processor and 16 GB
of RAM.

Table 12: Heuristic control laws performance comparison for Test case 1

Method ∆v pm/sq ∆a (km) ∆i (deg) CPU time (s)

RIC (Optimal) 598.84 -391.77 1.216 0.103

RIC (Corr. Edelbaum) 599.05 -391.77 1.217 0.0383

RIC (Proportional) 600.06 -375.60 1.294 0.0445

SES [32] 598.23 -388.71 1.239 0.0125

Table 13: Heuristic control laws performance comparison for Test case 2

Method ∆v pm/sq ∆a (km) ∆i (deg) CPU time (s)

RIC (Optimal) 567.23 -310.77 1.015 0.0464

RIC (Corr. Edelbaum) 567.25 -310.77 1.014 0.0185

RIC (Proportional) 567.78 -310.77 1.017 0.0297

SES [32] 664.28 -388.75 1.531 0.0148
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Table 14: Heuristic control laws performance comparison for Test case 3

Method ∆v pm/sq ∆a (km) ∆i (deg) CPU time (s)

RIC (Optimal) 313.46 -122.82 0.8957 0.0622

RIC (Corr. Edelbaum) 313.46 -122.82 0.8957 0.0410

RIC (Proportional) 313.46 -122.82 0.8957 0.0424

SES [32] 313.25 -121.20 0.9064 0.0183

Table 15: Heuristic control laws performance comparison for Test case 4

Method ∆v pm/sq ∆a (km) ∆i (deg) CPU time (s)

RIC (Optimal) 245.03 -10.00 -0.3482 0.281

RIC (Corr. Edelbaum) 245.03 -10.00 -0.3482 0.0856

RIC (Proportional) 245.04 -9.98 -0.3482 0.0857

SES [32] 1187.6 -37.77 2.3004 0.382

It can be seen that both heuristic control laws of the RIC strategy
achieve near-optimal solutions, with the corrected Edelbaum control
law being marginally better, while achieving up to a threefold de-
crease in the CPU time with respect to the optimal control law. In
turn, the SES approach is faster, except for the Test case 4. However,
as all the shown computational times are suitable for the formulation
of large-scale combinatorial problems and are roughly of the same or-
der of magnitude, the potential ∆v improvements of the RIC strategy
make it reasonable to prefer it over the SES strategy.

It has to be noted that the difference in computational time be-
tween the heuristic and optimal implementations of the RIC strategy
depends on the convergence trends of the algorithm described in Sec-
tion 3.2.4. Specifically, this algorithm is able to consistently achieve
the target semimajor axis (with an accuracy smaller than one meter)
with a number of iterations of the root-finding algorithm between
two and five. Moreover, three characteristic areas with diferent algo-
rithmic behaviors have been observed as a function of the RAAN
modified in the final propulsive arc.

First, when the RAAN variations are very small, the initial β angles
achieve the same sign of ψ. Hence, the secant method is used and it is
able to find the solution before a change in the sign of ψ is produced.
This behavior has been observed in the resolution of Case 4.

Second, for larger RAAN variations, the initial β angles achieve
different signs of ψ. Thus, Brent’s method is directly used to find the
solution. This behavior has been observed in the resolutions of Cases
1 to 3.

Third, for even larger RAAN variations, the initial β angles once
again achieve the same sign of ψ and, just like in the first case, the
secant method achieves the solution of the problem.
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Finally, there are small transition zones between the aforementioned
ones, in which the the initial β angles achieve the same sign of ψ but,
after one of the iterations of the secant method, the sign of ψ changes,
so the resolution is continued by Brent’s method.

3.5 conclusions

This manuscript proposes a novel J2-perturbed continuous-thrust trans-
fer between circular orbits. Specifically, this transfer considers tangen-
tial and out-of-plane thrust, with the thrust yaw angle being the sole
control variable. Moreover, the dynamics of the transfer is described
by two state variables, namely, the semimajor axis and the relative in-
clination with respect to the target orbit. The optimal solution of this
problem involves finding a root of a function of the thrust yaw angle.
Two heuristic control laws provide initial guesses for this root-finding
problem. The convergence of this solution can be guaranteed with the
use of bracketing root-finding methods, assuming that the function is
continuous.

Furthermore, a thrust-coast-thrust strategy has been formulated. Its
first propulsive arc corresponds to an Edelbaum transfer, while the
second one performs the aforementioned relative inclination change
transfer. This results in a three-variable NLP problem. The perfor-
mance of this strategy for time-constrainted ∆v-optimal transfers has
been compared with the solutions of other relevant methods available
in the literature. It has been shown that the proposed three-arc strat-
egy provides an advantageous trade-off between solution quality and
computational complexity, thus being suitable for the formulation of
large-scale combinatorial problems. Finally, it has been shown that
the use of the proposed heuristic control laws in the second propul-
sive arc results in near-optimal solutions, while further accelerating
the resolution process.

Future work will evaluate the possibility of improving the fidelity
of the proposed methodology by the consideration of effects such
as Earth-shadow eclipses. Moreover, an analysis of the mathematical
conditions, under which the direct modification of the RAAN is more
advantageous than increasing the nodal precession, will be carried
out.



Part III

P R E L I M I N A RY M I S S I O N A N A LY S I S

I thought of a labyrinth of labyrinths, of one sinuous
spreading labyrinth that would encompass the past and

the future and in some way involve the stars.

— Jorge Luis Borges, The Garden of Forking Paths, 1962





4
L A R G E - S C A L E O B J E C T S E L E C T I O N F O R D E B R I S
R E M O VA L

4.1 introduction

Most objects in low Earth orbit are concentrated in certain privileged
orbital regions. A high density of objects in these regions can result in
collisions that generate new objects, thus increasing the possibility of
subsequent collisions, and potentially leading to a cascade effect that
can severely impact future space operations [65]. Further research
has concluded that active removal of certain objects is necessary to
achieve the stabilisation of the number of resident space objects in
the most populated zones [71, 75].

Active removal missions will most likely not target a single object,
but instead multiple objects could be deorbited in a single mission.
This poses the question of which objects should be removed in a
particular mission, and in which order. Likewise, it is also possible
to study the joint optimisation of multiple deorbiting missions, each
performed by a different satellite targeting either an initially fixed
[31, 106] or undetermined [38] number of objects from a prescribed
pool of candidate objects, or to minimise the number of deorbiting
satellites required to remove all objects in the pool [99]. However, the
main literature on the topic is focused on the optimisation of a single
multi-objective mission, where the objects to be removed, the visiting
sequence and the required manoeuvres must be determined.

Metaheuristic and heuristic methods, as well as branch-and-bound-
based strategies have been proposed for the design of multi-objective
space debris removal missions. Current approaches in the literature
decide the objects to be removed prior to the sequence and manoeu-
vre optimisation [18, 77, 107, 108, 115], or consider a pool of candidate
objects from which either an initially fixed [6, 28, 30, 43, 44, 83, 85, 95]
or unknown [40, 58, 74, 76, 105] number of objects are selected. How-
ever, with only few exceptions [58, 74, 85], the size of the pool is
unrealistically small in most of the aforementioned references, due to
practical limitations of computational resources. Hence, the develop-
ment of methods capable of dealing with a pool of objects that is large
enough to be representative of the distribution of the most hazardous
objects in low-Earth orbit (LEO), would provide a more realistic view
of the actual deorbiting capabilities of multi-objective missions, and
offer a valuable tool for the design of future active debris removal
missions.

57
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As already mentioned, the computational burden is the main im-
pediment for increasing the size of the pool of candidate objects, as
not only the complexity of the optimisation problem increases with
the number of objects, but also reliably accounting for the non-linear
orbital dynamics results in a non-negligible computational load. Con-
sequently, orbital propagations predominantly rely upon analytical
methods, which may account for the J2 orbital perturbation [18, 28,
30, 40, 74, 85, 107], and only occasionally the atmospheric drag as well
[40]. The J2 perturbation is usually treated in averaged form, or lin-
earised around reference solutions [30]. Further to this, for practical
considerations, most bibliographical references construct the orbital
transfers based solely on impulsive manoeuvres and coasting arcs.
In an attempt to lower the computational cost, transfer options and
their associated ∆v are often pre-computed in a grid of prescribed
epochs [40, 58, 76, 77, 85, 105]. Only in few cases low-thrust transfer
trajectories have been considered, often in simplified form and with
a small sized pool of objects [40, 50, 83, 115] in order to compensate
for the additional computational burden; only recently Ref. [74] has
managed to approach the problem with low-thrust transfers and a
reasonably large pool of 597 objects.

In terms of the particular algorithms used to obtain the sequence
of removed objects, the prevailing class of methods within the litera-
ture are metaheuristic algorithms in their various flavours, including:
multi-objective particle swarm [38, 106, 107], metaheuristic inver-over
[58], metaheuristic Physaurum algorithm [40], ant colony optimisa-
tion [95, 99], simulated annealing [31, 43] or genetic algorithms [44, 76,
83], to cite a few. Less often, heuristic methods have also been used,
such as an heuristic series method [6], a greedy heuristic method [105]
or a heuristic beam search [74]. According to the works covered in our
literature review, only metaheuristic or heuristic strategies have been
applied to solve problems with large pools of candidate objects. How-
ever, these strategies do not explore the whole search space of object
combinations, whereas branch-and-bound techniques are able to ex-
plore or prune the whole search space to demonstrate the optimality
of the selected object combination.

This manuscript proposes an innovative framework based on well-
known Operational Research methodology that, given a large set of
candidate objects with an associated threat value, selects a subset of
these objects to be removed, and defines the trajectory that allows to
rendezvous with them in an optimal order, so that the threat value
of the removed objects is maximised, while a limit mission duration
and a ∆v budget are imposed as constraints. The proposed algorithm
comprises two different levels: the upper level selects the objects to
be removed so that their aggregated threat value (here characterised
by their criticality index [91]) is maximised, whereas the lower level
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checks the feasibility of time and ∆v constraints while determining
the mission sequence and trajectory.

On the one hand, the upper level is described by an Integer Pro-
gramming problem, which selects the most promising subset of can-
didate objects. A novel formulation that avoids the appearance of so-
lutions with subtours during the resolution of this problem has been
devised. On the other hand, the lower level is described by a Mixed In-
teger Non-Linear Programming problem, which is broken down in an
Integer Programming master problem and a Nonlinear Programming
subproblem using Benders decomposition [17]. The master problem
and the subproblem are iteratively solved to find tight upper and
lower bounds to the optimal solution.

The efficiency of this algorithm lies in the fact that the no-subtour
formulation allows the upper level to effectively select the most promis-
ing object subsets while the lower level can check their feasibility
without having to reach the convergence of the upper and lower
bounds of the Benders decomposition, which is the most challeng-
ing part of the problem because it encapsulates the nonlinearities of
the orbital dynamics. As a result, we have obtained an efficient and
scalable algorithm capable of dealing with a large-sized pool of up to
several hundreds of candidate objects within an affordable computa-
tional time for the resolution of such large-scale problems, while per-
forming exhaustive explorations of the search space of object combi-
nations to demonstrate the optimality of the provided solution. More-
over, the modular structure of the proposed framework makes it pos-
sible to easily introduce additional features and improvements to the
current process.

The remainder of this manuscript is organised as follows. Section 2

presents the detailed problem description and relevant concepts. Sec-
tion 3 walks through the mathematical model, which is divided in the
object selection model (Sec. 3.1) and the feasibility model (Sec. 3.2),
and introduces the mathematical formulation and notation. In Sec-
tion 4 the solution approach is presented, with separate subsections
for the object selection (Sec. 4.1) and feasibility (Sec. 4.2) problems.
Section 5 gathers the computational experiments and results, and
Sec. 6 summarises the main conclusions of this work.

4.2 problem description

Let us consider a pool of candidate spaceborne objects to be poten-
tially removed from orbit. In brief, the problem consists on finding a
subset of target objects within the pool, and the sequence in which
these should be visited, as depicted in Figure 7, where each spot rep-
resents a candidate object and the arrows define the removal sequence
of the selected objects. The solution of this problem seeks to maximise
a given cost function while fulfilling certain constraints.
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Figure 7: Multi-target debris removal problem.

Each object in the pool poses a different degree of threat and con-
tributes differently to the risk of operations and sustainability of low-
Earth orbit. This level of threat has to be quantified, so that a numer-
ical criterion can be employed to decide the removal of which object
offers a bigger reward in terms of an effective decrease of the threat
level. Thus, each object is assigned a value, equivalent to a critical-
ity index, which accounts for several factors such as their size, mass,
lifetime, or how crowded the orbits where they are placed are. In
Figure 7 the objects with a higher criticality index are depicted with
thicker spots. The aggregated value of the criticality index of all re-
moved objects provides the cost function to be maximised. Indeed,
the removed debris has to be as threatening as possible so that the
mission has an effective impact in the future evolution of the space
environment [71, 75]. In the current work, the numerical value of such
criticality index, or the criteria for their assignment, are not discussed
and are assumed to be known.

The optimisation problem must be carried out making sure that cer-
tain constraints are satisfied. The most significant constraint is given
by an upper bound of the total fuel required to accomplish the mis-
sion (i.e. to visit all the targeted objects), or equivalently, the total ∆v.
Additionally, the mission time also needs to be bound to decrease op-
eration and design costs; also, the shorter the mission duration, the
sooner that threatening objects will be removed, hence reducing the
risk of collisions potentially taking place.
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Regarding the removal strategy of the selected objects, this study
considers that the satellite attaches a de-orbit kit to each of them.
This condition is modelled by imposing that the satellite has to co-
orbit each of the objects for at least a predefined amount of time,
∆t, which stands for the time necessary to perform the installation
of the de-orbit kit. Furthermore, it has to be noted that a strategy
where the satellite itself transports or shepherds each of the objects
to an orbit with a lower orbital lifetime, or to a graveyard orbit, can
be implemented by means of simple modifications of the optimisa-
tion models. As a result, the framework presented in the following
sections can also be used when considering such removal strategies.

As a consequence of the chosen removal strategy, the mission pro-
file comprises two kinds of stages or trajectory arcs, namely co-orbiting
arcs and transfer arcs. On the one hand, during a co-orbiting stage,
the satellite intercepts a particular object to be removed, installs a
de-orbit kit on it, and remains in the same orbit, co-orbiting with the
target object (thus following a coasting trajectory arc), until a good op-
portunity is presented to initiate a transfer (i.e. transfer stage) to ren-
dezvous with the next target object and thus engage a new co-orbiting
stage. On the other hand, a transfer stage describes the transition be-
tween two co-orbiting stages; specifically, two-impulse transfers have
been considered to travel between each pair of adjacent co-orbiting
arcs. Thus, co-orbiting and transfer arcs are alternated to obtain the
solution trajectory.

In this study, a large number of candidate objects is considered
within the pool of objects to be removed (on the order of 1000), so that
the problem is meaningful in terms of representing a realistic multi-
target mission scenario, where the pool of relevant candidates may
easily contain several hundreds or a few thousands of satellites and
upper stages. The large number of objects under consideration has
strong implications in the combinatorial complexity of the problem.

The other source of complexity lies in the non-linearity of the or-
bital dynamics. In this regard, it has to be noted that the relevance
or criticality of the target objects is not dependent on dynamical as-
pects, whereas the aforementioned optimisation constraints (fuel and
mission duration) clearly depend on orbital dynamics considerations.
This realisation provides a good opportunity to formulate a problem
with an easily exploitable structure in order to solve it efficiently. That
is, the problem can be divided in two parts, namely one that manages
the combinatorics of the problem, and another that deals with the or-
bital dynamics.

As a consequence of that, the proposed problem maximises the
reward obtained when removing the selected objects, which is a mea-
surement of the threat that those objects pose to the space environ-
ment, while complying with a predefined ∆v budget and a maxi-
mum mission duration. Then, this problem is divided in two parts,
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Figure 8: Problem structure.

as shown in Figure 8: 1) an object selection problem, which optimises
the reward of the sequence of objects to be removed; and 2) a feasibil-
ity problem, which makes use of orbital mechanics to ensure that a
mission profile, which complies with prescribed ∆v budget and a mis-
sion duration constraints, can be generated with the selected objects
to be removed. This way, the object selection problem passes promis-
ing sets of objects through to the feasibility problem, which accepts
or rejects them, until the optimal sequence is found.

4.3 mathematical model

This section defines the mathematical formulation for the object selec-
tion model and the feasibility model, which correspond to the problems
described above.

4.3.1 Object Selection Model

The aim of the object selection model is to select the optimal set of
objects to remove, together with a potential removal sequence. The
notation in the object selection model is defined as follows.

Sets

• D is the set of candidate objects to be visited indexed by i or j.

Parameters

• ri is the reward obtained when removing object i P D.
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• ∆vij is an estimation of the cost (i.e., ∆v) of performing a trans-
fer from object i P D to object j P D.

• ∆vT is the ∆v budget (i.e., the available amount) for the whole
mission.

Variables

• yi P t0, 1u is 1 if object i P D is removed; 0, otherwise.

• xij P t0, 1u is 1 if a transfer between objects i P D and j P D is
performed; 0, otherwise.

The aim of the model is to maximise the total reward corresponding
to the visited objects in the mission, i.e, the sum of the individual
rewards of each of the objects. Hence, the objective function is as
shown in (80).

max

#

ÿ

iPD

ri yi

+

(80)

Constraints (81) ensure that the estimated spent total ∆v during the
mission does not exceed the available budget, ∆vT .

ÿ

iPD

ÿ

jPD
i‰j

∆vij xij ď ∆vT (81)

Constraints (82) state that a transfer between two objects cannot be
performed in both directions in the same mission.

xij ` xji ď 1 @i P D, @j P D : pi ‰ jq (82)

Constraints (83) ensure that a transfer has to connect two different
objects, i.e., it cannot connect an object with itself.

xii “ 0 @i P D (83)

Constraints (84) say that if an object is visited, it must be visited
with a transfer from another object. Note that, to initialise the mis-
sion, a dummy object (i “ 1) is employed; it is located in the parking
orbit of the satellite and set to be the first one in the sequence (i.e.,
y1 “ 1,

ř

jPD:ją1 x1j “ 1 and xi1 “ 0 @i P D); it is removed with-
out spending any ∆v and without providing any reward. Similarly,
Constraints (85) state that every visited object must be followed by
another object unless it is the last one in the mission (i.e., there is no
outgoing transfer for the last object in the sequence).

ÿ

jPD
i‰j

xji “ yi @i P D : pi ą 1q (84)
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ÿ

jPD
i‰j

xij ď yi @i P D : pi ą 1q (85)

As a final remark, it has to be noted that this mathematical model
can be easily extended to include additional features. For instance,
compliance of the servicing satellite with end-of-life guidelines can
be enforced; this can be done by the simple expedient of imposing the
removal of a final virtual object a (i.e., ya “ 1) for which there is no
outgoing transfer (i.e., xai “ 0, @i P N), and such that it represents
the desired final orbit.

Another plausible addition is the consideration of a fixed ∆v cost
associated to proximity operations; this can be easily implemented
by replacing Constraint (81) with the more general Constraint (86),
which includes, for every removed object, a penalty ∆vpoj to account
for the extra propellant consumed during co-orbiting, i.e.

ÿ

iPD

ÿ

jPD
i‰j

p∆vij `∆v
po
j q xij ď ∆vT (86)

4.3.2 Feasibility model

The aim of the feasibility model is to check the attainability of the se-
lected set of objects with the potential removal sequence or any vari-
ation of it.

As mentioned before, the mission profile comprises two kinds of
stages for each object to be removed, namely, co-orbiting arcs and
transfer arcs. The co-orbiting arc describes the satellite’s trajectory
while co-orbiting the object to be removed. The transfer arc describes
the outgoing trajectory, which begins when the satellite leaves the
orbit of the removed object and ends when the next object’s orbit is
intercepted. Impulsive manoeuvres are performed in the intersection
point of each pair of arcs. Note that the last object to be removed does
not have a transfer arc. This conceptual mission profile is depicted in
Figure 9.

The notation in the feasibility model is defined as follows.

Sets

• D 1 Ă D is a set composed of the objects to be removed, which
are provided by the object selection problem. It is indexed by d.

• L is a set such that |L| “ |D 1|. It is employed to store the order in
which the objects in D 1 will be removed. Note that the potential
removal sequence provided by the object selection model is not
necessarily maintained, i.e., it might be updated in the feasibility
model. It is indexed by ℓ.
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o=o1

c=c1

o=o2

c=c1

o=o1

c=c2

o=o1

c=c1

o=o2

c=c2

o=o1

c=c2

Transfer

Arc

Co-orbit

Arcs

Figure 9: Mission profile nomenclature.

• O “ to1,o2u is the set of arc types. The first element in the set
stands for co-orbit arcs and the second one for transfer arcs. It
is indexed by o.

• C “ tc1, c2u is the set that identifies the intersection or cross-
ing points between arcs, that is, the points where impulsive ma-
noeuvres are performed. The first element in the set stands for
the initial point of the arc, and the second one for its final point.
It is indexed by c.

Parameters

• µ is the gravitational constant of the Earth.

• RC is the equatorial radius of the Earth.

• J2 is the spherical harmonic of degree 2 and order 0 of the
Earth’s gravity field.

• ∆t is the minimum co-orbiting time, i.e. the minimum time
lapse during which the satellite has to remain in close opera-
tions with an object to successfully eliminate it.

• tmax is the maximum mission duration.

• t0d is the reference time in which the orbital parameters of the
object d P D1 are known.
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• a0d, e0d, i0d, Ω0
d, ω0

d and M0
d are the classical orbital elements

of the object d P D1 at time t0d, where M0
d stands for the mean

anomaly and the other elements have their usual meaning (i.e.,
semi-major axis, eccentricity, inclination, right ascension of as-
cending node and argument of perigee, respectively).

Variables

• sdℓ P t0, 1u is 1 if the object d P D 1 is visited in position ℓ P L of
the sequence; 0, otherwise.

• aℓo, eℓo, iℓo, nℓo and pℓo are, respectively, the semi-major axis,
eccentricity, inclination, mean motion and semilatus rectum of
the orbit o P O associated to the object visited in position ℓ P L.

• Ωℓoc,ωℓoc andMℓoc are, respectively the right ascension of the
ascending node, argument of perigee and mean anomaly of the
point c P C in the orbit o P O associated to the object visited in
position ℓ P L.

• trefℓ is the reference time in which the osculating orbital ele-
ments of the object visited in position ℓ P L are known.

• tℓoc is the time in which the satellite is at the point c P C in the
orbit o P O associated to the object visited in position ℓ P L.

• r⃗ℓoc is the position vector of the point c P C in the orbit o P O

associated to the object visited in position ℓ P L.

• v⃗ℓoc is the velocity vector of the satellite when it is at the point
c P C in the orbit o P O associated to the object visited in posi-
tion ℓ P L.

• ∆vtranℓ is the magnitude of the ∆v⃗ vector of the manoeuvre
performed to depart from the orbit where the satellite is co-
orbiting the object visited in position ℓ P L.

• ∆vrenℓ is the magnitude of the ∆v⃗ vector of the manoeuvre per-
formed when intercepting the object visited in position pℓ` 1q P

L in order to start co-orbiting it.

• z is the optimal value of the objective function of the feasibility
problem.

The feasibility model minimises the total ∆v consumed throughout
the mission as shown in objective function (87).

min z “
ÿ

ℓPL
ℓă|L|

∆vrenℓ `
ÿ

ℓPL
ℓă|L|

∆vtranℓ (87)

Constraints (88) establish that for each position in the sequence there
must be an object to be removed. Therefore, each object within D 1
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matches exactly one object within L. The orbit the satellite initially
describes is modelled as a dummy object d “ 1, which is automati-
cally removed at the initial time. As a result, s11 is fixed to 1. Similarly,
orbital time is fixed for the dummy object as follows: t1o1c1

“ tref1

and t1o1c1
ď t1o1c2

.
ÿ

dPD1

sdℓ “ 1 @ℓ P L : ℓ ą 1 (88)

Variables aℓo, eℓo, and iℓo remain constant during each of the orbital
arcs; these variables for the co-orbiting arcs, as well as the reference
time trefℓ necessary to propagate the rest of orbital parameters, are
calculated in Equations (89).

»

—

—

—

—

–

aℓo1

eℓo1

iℓo1

trefℓ

fi

ffi

ffi

ffi

ffi

fl

“
ÿ

dPD1

sdℓ

»

—

—

—

—

–

a0d

e0d

i0d

t0d

fi

ffi

ffi

ffi

ffi

fl

@ℓ P L (89)

Equations (90) und (91) compute the mean motion and the semila-
tus rectum for each object visited in position ℓ and orbit, respectively.

nℓo “

c

µ

a3ℓo
@ℓ P L, @o P O : ppℓ ă |L|q _ po ă |O|qq (90)

pℓo “ aℓo
`

1´ e2ℓo
˘

@ℓ P L, @o P O : ppℓ ă |L|q _ po ă |O|qq (91)

Equations (92) calculate, for the co-orbiting arcs and for each object
visited in position ℓ and intersection point, Ωℓo1c, ωℓo1c and Mℓo1c

for any time tℓo1c. That is, they perform a propagation of the state at
reference time trefℓ , determined by sdℓ variables, to the state at tℓo1c.

»

—

—

–

Ωℓo1c

ωℓo1c

Mℓo1c

fi

ffi

ffi

fl

“
ÿ

dPD1

sdℓ

»

—

—

–

Ω0
d

ω0
d

M0
d

fi

ffi

ffi

fl

`

»

—

—

–

0

0

nℓo1

`

tℓo1c ´ trefℓ

˘

fi

ffi

ffi

fl

`

`
3nℓo1

R2CJ2

4p2ℓo1

`

tℓo1c ´ trefℓ

˘

»

—

—

–

´2 cos piℓo1
q

4´ 5 sin2 piℓo1
q

b

1´ e2ℓo1

`

3 sin2 piℓo1
q ´ 2

˘

fi

ffi

ffi

fl

@ℓ P L, @c P C

(92)

Constraints (93) und (94) impose that position must be conserved
before and after each manoeuvre, i.e., in the intersection points of the
different trajectory arcs. Similarly to the position conservation, time
between consecutive co-orbit and transfer arcs must be conserved, as
stated in Constraints (95) und (96), respectively.

r⃗ℓo1c2
“ r⃗ℓo2c1

@ℓ P L : pℓ ă |L|q (93)

r⃗ℓo2c2
“ r⃗pℓ`1qo1c1

@ℓ P L : pℓ ă |L|q (94)

tℓo1c2
“ tℓo2c1

@ℓ P L : pℓ ă |L|q (95)

tℓo2c2
“ tpℓ`1qo1c1

@ℓ P L : pℓ ă |L|q (96)
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In order to impose the feasibility for transfer arcs between co-orbit
arcs, Equations (97) establish mathematical conditions, by means of
function F⃗, between Keplerian orbital elements and Cartesian posi-
tion and velocity vectors at each orbit and intersection point for each
object visited in position ℓ. Specifically, the function F⃗ is the compo-
sition of three operations, namely: 1) solving Kepler’s equation to
relate mean and eccentric anomalies [14, sec 4.3]; 2) projecting the
Cartesian position into perifocal frame coordinates [14, sec 4.3]; and
3) transforming from perifocal to (equatorial) inertial frame coordi-
nates [14, sec 2.1].

«

r⃗ℓoc

v⃗ℓoc

ff

“ F⃗ paℓo, eℓo,Ωℓoc,ωℓoc,Mℓocq

@ℓ P L, @o P O, @c P C : ppℓ ă |L|q _ po ă |O|qq

(97)

Then, Equations (98) define the analytical propagation of Keplerian
orbital elements for transfer arcs.

»

—

—

–

Ωℓo2c2

ωℓo2c2

Mℓo2c2

fi

ffi

ffi

fl

“

»

—

—

–

Ωℓo2c1

ωℓo2c1

Mℓo2c1

fi

ffi

ffi

fl

`

»

—

—

–

0

0

nℓo2
ptℓo2c2

´ tℓo2c1
q

fi

ffi

ffi

fl

`

`
3nℓo2

R2CJ2

4p2ℓo2

ptℓo2c2
´ tℓo2c1

q

»

—

—

–

´2 cos piℓo2
q

4´ 5 sin2 piℓo2
q

b

1´ e2ℓo2

`

3 sin2 piℓo2
q ´ 2

˘

fi

ffi

ffi

fl

@ℓ P L : pℓ ă |L|q

(98)

The individual ∆v spent in each of the manoeuvres is computed with
Equations (99) und (100).

∆vrenℓ “
ˇ

ˇv⃗pℓ`1qo1c1
´ v⃗ℓo2c2

ˇ

ˇ @ℓ P L : pℓ ă |L|q (99)

∆vtranℓ “ |⃗vℓo2c1
´ v⃗ℓo1c2

| @ℓ P L : pℓ ă |L|q (100)

Note that the satellite must co-orbit each object in close operation
for a minimum amount of time, ∆t, in order to be able to deorbit
it. Constraints (101) ensure this requirement is fulfilled. And Con-
straints (102) ensure that the transfer arc finishes after it has started.

tℓo1c1
`∆t ď tℓo1c2

@ℓ P L (101)

tℓo2c1
ď tℓo2c2

@ℓ P L : pℓ ă |L|q (102)

Finally, the ending time of the mission must be lower than the max-
imum allowable mission duration, as stated in Constraint (103).

t|L|o1c2
ď tmax (103)
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4.4 solution approach

Once the mathematical formulation of the problem has been described,
in this section we proceed to present the solution approach, i.e. the
techniques necessary to overcome the difficulties that appear in the
implementation and efficient resolution of the mathematical models
presented in the preceding section.

On the one hand, the linear formulation proposed for the object
selection problem is prone to the appearance of subtours, which is a
very serious difficulty for the resolution of this model. The usual tech-
nique to deal with subtours is first presented in Sec. 4.1.1; right after,
a new linear formulation that avoids them is presented in Sec. 4.1.2.

On the other hand, the feasibility problem is a Mixed Integer Non-
linear Programming problem, which is difficult to solve. The bene-
fits of using Benders decomposition to manage this problem are dis-
cussed in Sec. 4.2.

4.4.1 Object selection: Subtour management

Constraints (84) und (85) of the object selection problem impose that,
if an object is removed, it has at most one incoming and one outgo-
ing transfer arc. However, this is not enough to correctly model the
proposed mission because closed loops disjoint from the main recti-
linear path of transfers would also fulfil that condition. Such disjoint
loops are usually referred as subtours and constitute a very serious
difficulty for the problem at hand. Figure 10 illustrates this concept.
Representing the ∆vij parameter as the distance between spots, the
black arrows and dashed lines form a feasible rectilinear path of trans-
fers. However, the grey arrows are shorter (require less ∆vij) than the
dashed lines, and as a result this solution with subtours would always
be preferred over the presented rectilinear path.

The reason why the appearance of subtours is so negative is that
plane changes are the most ∆v intensive manoeuvres and it is ex-
pected that objects that provide important rewards ri are spread across
different orbital planes. As a result, the best solutions of this model
are potentially the ones that form subtours involving objects within
similar orbital planes; indeed, solutions tend to favour such configura-
tions as expensive change-of-plane manoeuvres are thus avoided and
replaced by cheaper manoeuvres across nearly coplanar planes. This
phenomenon produces a great number of invalid solutions that have
to be pruned out before achieving the best solution without subtours,
which requires a great computational effort.

Two alternatives are proposed to manage this problem. On the one
hand, the usual method to deal with subtours is considered in the up-
coming subsection. On the other hand, a new linear formulation for
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Figure 10: Diagram illustrating the appearance of subtours.

the object selection problem is presented in Sec. 4.1.2, which avoids
the appearance of subtours.

4.4.1.1 Classical subtour elimination

Current Mixed Integer Linear Programming (MILP) formulations of
this kind of models cannot prevent the natural appearance of sub-
tours. The usual approach to deal with them is that, once a feasible
solution is found, it gets checked whether it includes any subtours. If
it does not, the solution is accepted; if subtours are found, the solu-
tion is rejected and a new constraint (104) is added to the problem for
each of the subtours found.

ÿ

iPR

ÿ

jPR

xij ď |R| ´ 1 (104)

Where R is the set of objects that form the subtour. In a subtour, the
number of transfers is equal to the number of objects in R. This con-
straint imposes that the number of transfers among objects in R be,
at most, equal to the number of objects minus one. That way, it is not
possible that this subtour appears again during the resolution of the
problem. Algorithm 1 summarises this subtour elimination strategy.

4.4.1.2 No-subtour formulation

The use of no-subtour Mixed Integer Linear Programming formula-
tions has proven useful in Travelling Salesman Problems [80] as well
as Time-Dependent Travelling Salesman Problems [48]. As a result,
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Algorithm 1 Classical subtour elimination algorithm

1: while solving Object selection problem do
2: if feasible solution is found then
3: Check subtours
4: if Subtours are found then
5: Reject solution
6: Add subtour elimination constraints
7: else
8: Accept solution
9: end if

10: end if
11: end while

a new formulation has been devised that avoids the natural appear-
ance of subtours for problems that only require visiting a subset of
the candidate objects (unlike in Travelling Salesman Problems, where
all candidate objects must be visited). It makes use of a new set k P K

that orders the transfers from ’1’ to a maximum number of transfers
to be made, |K|. Then, the discrete variables that represent each of the
transfers xij are changed by new discrete variables xijk that are ’1’
when a transfer is made from object i P D to j P D in ordinal position
k P K, or ’0’ otherwise. It has to be noted that

ř

kPK xijk is equivalent
to previous variables xij. This change is introduced in Constraints (81)
bis (85).

In addition, it needs to be imposed that for each position k P K

there is at most one transfer, as shown in Constraints (105).
ÿ

iPD

ÿ

jPD
i‰j

xijk ď 1 @k P K (105)

The appearance of subtours is prevented by means of adding Con-
straints (106). They impose that, if there is a transfer in position
pk` 1q P K, its initial object is the last of the transfers in position
k P K. In turn, if there is not a transfer in position k P K, then there is
no transfer in pk` 1q P K either.
ÿ

iPD
i‰j

xijk ě
ÿ

iPD
i‰j

xjipk`1q @j P D : pj ą 1q , @k P K : pk ă |K|q (106)

4.4.2 Feasibility problem: Benders decomposition

The feasibility problem is a Mixed Integer Nonlinear Programming
problem (MINLP), i.e., it is formulated with nonlinear objective func-
tion and constraints while including continuous and discrete vari-
ables. Currently, this kind of problems is intrinsically difficult to solve.
We propose a Benders decomposition based approach to overcome
the difficulty.
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Benders decomposition [17, 52] is a technique in mathematical pro-
gramming that allows the solution of large and difficult problems
that have a special block structure. It decomposes the problem in two
different subproblems that are easier to solve. This method solves it-
eratively these two problems in order to achieve the optimal solution
of the original problem.

Specifically, this technique decomposes the original problem into
a master problem, which provides a lower bound to the optimal solu-
tion of the original problem (if it is a minimizing problem), and a
subproblem, which provides an upper bound to the optimal solution
(again, if it is a minimizing problem). The solutions of each of these
problems provide information to one another, such that the alternat-
ing resolutions of each of them provides tighter and tighter bounds
to the optimal solution, until their distance is less than a predefined
tolerance.

Applying Benders decomposition to the feasibility problem results
in a MILP master problem and a Nonlinear Programming (NLP) sub-
problem, which are more tractable than the original MINLP problem.

Moreover, it has to be noted that the purpose of the feasibility prob-
lem is not to achieve an optimal solution, but rather to check whether
it is possible to configure a mission with the selected object subset,
such that it complies with prescribed tmax and ∆vT constraints. To
take advantage of that, the stopping criterion of the proposed ap-
proach is that, regardless of the distance between the upper and
lower bounds provided by the algorithm, if the ∆v achieved by the
master problem is greater than ∆vT , then the object combination is
infeasible; conversely, if the ∆v achieved by the subproblem is less
than ∆vT , then the object combination is feasible. This stopping crite-
rion requires fewer iterations than the conventional one, thus notably
reducing computational times. This process is summarised in Algo-
rithm 2, where the set B, indexed by b, keeps track of the iterations
of Benders decomposition algorithm and LBb, UBb are, respectively,
the lower and upper bounds of the optimal solution of the feasibil-
ity problem for iteration b P B. The following sections describe the
subproblem and master problem obtained when applying Benders
decomposition to the feasibility problem.

4.4.2.1 Subproblem

The subproblem is composed of the objective function in (87) and
Constraints (88) to (103). Note that, binary variables sdℓ, which are
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allocated to the master problem, are substituted by continuous vari-
ables srel

dℓ, as shown in Equations (107) und (108).
»
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—

—
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Moreover, Constraints (109) are introduced in the subproblem. Their
purpose is to fix the value of the srel

dℓ variables with the values ob-
tained in the master problem, namely psdℓ. The variables λdℓ, depicted
in parenthesis next to constraints (109), are the dual variables of such
constraints (i.e., its Lagrange multipliers). Their value is obtained
when the subproblem is solved and their purpose is to provide infor-
mation about the variation of the value of the objective function (87)
for different object sequences. This information is employed to define
the Benders optimality cuts in the master problem.

srel
dℓ “ psdℓ pλdℓq @d P D1, @ℓ P L (109)

Note that the subproblem cannot be infeasible because there are
not limitations on the ∆v to be used. This limitation is only imposed
in the object selection model and checked in the feasibility problem
once the solution is known or using the information provided by the
lower and upper bounds of the algorithm as shown in Algorithm 2.

4.4.2.2 Master problem

The master problem is composed of objective function (110), con-
straints (88) and Benders optimality cuts (111), where zMM repre-
sents its optimal value.

min zMM “ θ (110)

The objective function (110) only comprises a dummy variable θ,
whose value is driven by Benders optimality cuts (111), which in fact
are an approximation of the subproblem. Note that these cuts are dy-
namically generated making use of the information provided by the
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subproblem, by means of the λdℓ variables, in order to choose the next
object sequence to be evaluated. The following additional notation is
necessary to define these cuts:

• psbdℓ: optimal value of sdℓ variables obtained in the master prob-
lem at iteration b P B.

• pzb: value of the subproblem objective function z at iteration b P

B.

• pλbdℓ: optimal value of dual variables λdℓ in the subproblem at
iteration b P B.

θ ě pzb `
ÿ

dPD1

ÿ

ℓPL

`

sdℓ ´ psbdℓ
˘

pλbdℓ @b P B (111)

4.4.2.3 Feasibility algorithm

Algorithm 2 shows the proposed iterative approach for solving the
feasibility problem. For a given set of objects to be deorbited, it it-
eratively solves the master problem and the subproblem until the
proposed set of objects is either rejected because it is infeasible due
to dynamics or accepted. It has to be noted that the number of iter-
ations b cannot be greater than |B|, this being a conservative upper
bound. This is a programming convention that prevents the possible
appearance of infinite loops and facilitates the detection of implemen-
tation errors; nonetheless, for a correct implementation the algorithm
should typically finish long before |B| iterations are reached.

4.4.3 Complete algorithms

To sum up, this section presents the algorithms that consolidate the
whole framework. Algorithm 3 integrates the resolution of the Feasi-
bility Problem, shown in Algorithm 2, with the subtour elimination
strategy displayed in Algorithm 1. In turn, Algorithm 4 represents the
whole resolution process when the no-subtour formulation is used.

4.5 computational experiments and results

This section intends to demonstrate the performance of the method-
ology developed in the preceding sections. First, the set-up of the
proposed numerical tests is presented and described; this includes a
test case with a pool of 1000 candidates objects (Test Case 1) aimed
at demonstrating the capability of solving problems with large pool
sizes, and another scenario (Test Case 2) intended to provide a more
realistic problem set-up based on the actual low-Earth orbit envi-
ronment; additionally, the estimation of ∆vij is addressed in nec-
essary detail. Second, the performance of the developed algorithm
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Algorithm 2 Feasibility problem algorithm

1: LB0 “ ´8

2: UB0 “ 8

3: for b “ 1 to |B|, b` do
4: Solve Master Problem Obtaining sdℓ, zMM

5: psdℓ “ sdℓ
6: LBb “ max

␣

LBb´1, zMM

(

7: if LBb ě ∆vT then
8: Reject solution
9: Stop

10: end if
11: Solve Subproblem Obtaining z
12: UBb “ min

␣

UBb´1, z
(

13: if UBb ď ∆vT then
14: Accept solution
15: Stop
16: end if
17: psbdℓ “ sdℓ
18: pλbdℓ “ λdℓ
19: pzb “ z

20: Generate Benders cut
21: end for

Algorithm 3 Complete algorithm for subtour elimination strategy

1: while solving Object selection problem do
2: if feasible solution is found then
3: Check subtours
4: if Subtours are found then
5: Reject solution
6: Add subtour elimination constraints
7: else
8: Solve Feasibility Problem
9: end if

10: end if
11: end while

Algorithm 4 Complete algorithm for no-subtour formulation

1: while solving Object selection problem do
2: if feasible solution is found then
3: Solve Feasibility Problem
4: end if
5: end while
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is assessed, first by analysing its behaviour for the Object Selection
Problem alone (i.e. excluding the Feasibility Problem, so that the no-
subtour and subtour elimination formulations can be compared), and
later by employing the full algorithm, applied to the two aforemen-
tioned test cases; these tests allow to draw relevant conclusions on the
performance and suitability of the algorithm for the intended tasks.
The algorithm has been implemented in GAMS 25.1.1 and solved
with CONOPT 4.05 and CPLEX 12.8.0 in a PC featuring an Intel Core
i5-7500 and 8GB of RAM. Computations have been performed using
a single thread with a maximum CPU frequency of 3.4 GHz.

4.5.1 Set-up of Numerical Tests

4.5.1.1 Test Case 1: Performance Assessment

The aim of this test case is to demonstrate the capability of our al-
gorithm for solving problems with large object pool sizes. For this
purpose, this test case considers 1000 candidate objects and a maxi-
mum number of 10 objects to be removed. The reason for this limita-
tion is to give preference to removing the 10 most impactful objects
that available resources allow, over removing a greater number of less
impactful objects with alike orbital characteristics; indeed, the latter
could result in a diminishing returns phenomenon, where eliminat-
ing a larger number of objects would not be as effective, in terms of
the aggregated removed threat based on the summed criticality of the
removed objects.

In brief, this mission scenario is defined by the following parame-
ters:

|D| “ 1000, |K| “ 10, tmax “ 1 year, ∆t “ 1 hour

The reference orbital parameters associated to each of the 1000 candi-
date objects correspond to circular orbits in LEO. Their orbital param-
eters, as well as the rewards obtained when removing these objects,
are randomly generated following a uniform distribution with the
following parameters1:

• ri “ U p0, 100q.

• t0d “ 0 s.

• a0d “ U p6578, 8378q km.

• e0d “ 0.

• i0d “ U p0,πq.

• Ω0
d “ U p0, 2πq.

• ω0
d “ 0.

• M0
d “ U p0, 2πq.

Purely Keplerian dynamics is used for this test case. In terms of
computational cost, the qualitative effect of considering a J2-perturbed

1 For the sake of reproducibility, this dataset is made available online along with this
article.
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dynamics versus a purely Keplerian motion is twofold: On the one
hand, nodal precession makes it possible to achieve object combina-
tions that would be infeasible in the purely Keplerian case, thus accel-
erating the pruning of the search space. On the other hand, the ∆vij
estimation for a J2-perturbed problem would be less accurate, thus
passing more infeasible object combinations through to the feasibility
problem. However, in practice none of these effects has any meaning-
ful nor detrimental influence in terms of the qualitative performance
of the algorithm, since the combinatorial complexity of the problem
remains the same both for the Keplerian and J2-perturbed cases.

As a consequence, the J2-perturbed and Keplerian problems pro-
vide a similar insight on the algorithm performance. However, the
feasibility problem is very nonlinear and nonconvex, thus making it
highly dependent on a good initial guess. Since good initial guesses
for Keplerian dynamics are easier to obtain, the use of Keplerian dy-
namics helps to uncouple the selection of ∆vij estimations and initial
guesses from the assessment of the performance of the proposed algo-
rithm. Essentially, this results in a more reliable measurement of the
performance of the framework when dealing with a very large combi-
natorial complexity, and thus justifies the decision of using Keplerian
motion for the scope of these numerical tests.

4.5.1.2 Test Case 2: Realistic Mission Application

This test case is intended to assess the performance of the proposed
methodology in a scenario with a more realistic distribution of objects.
This case also considers Keplerian dynamics and a maximum of 10

objects to be removed; however, the pool is built by filtering objects
from the SATCAT database according to the following criteria:

• Earth orbiting objects.

• Operational status “-" (nonoperational) or “ " (unknown).

• Apogee altitude less than 2000 km.

• Perigee altitude greater than 200 km.

• Radar Cross Section (RCS) greater than 1 m2.

This results in a pool of 1571 objects. The reward ri associated to
each of them is computed following the Criticality of Spacecraft In-
dex described in [91]. In order to compute this index, it is necessary to
know the altitude, inclination and mass of each object; however, the
SATCAT database does not provide mass information, so the SAT-
CAT RCS data has been used as a proxy for the object mass. After
computing the criticality index for the previous set of objects, only
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those with a criticality index greater than 0.1 were selected to config-
ure the application case, resulting in a reduced dataset of 420 objects2.
Orbital parameters of those objects are obtained from Two Line Ele-
ments (TLEs).

4.5.1.3 Estimation of ∆vij

The object selection problem requires an estimation of the ∆vij con-
sumed in each transfer. Since the feasibility problem considers two-
impulse transfers and the proposed data sets comprise circular or
nearly circular orbits, these estimations have been made assuming
Hohmann transfers with optimal split plane changes. This concept is
a generalisation of Hohmann transfers in which the initial and final
orbits are not coplanar. The velocities of the initial and final orbits,
namely:

vi “

c

µ

Ri
, vj “

c

µ

Rj
(112)

and the velocities at apogee and perigee of the transfer orbit, i.e.:

v1
i “

d

2µ

Ri

Rj

Ri ` Rj
, v1

j “

d

2µ

Rj

Ri
Ri ` Rj

(113)

are the same as in the usual Hohmann transfers. However, the plane
change required by the transfer is split between the two impulses,
resulting in the following ∆vij estimate

∆vij “

b

v2i ` v12
i ´ 2viv

1
i cos pϕq `

b

v2j ` v12
j ´ 2vjv

1
j cos pθp ´ϕq

(114)

where θp is the angle between the initial and final orbital planes, and
ϕ is the change of plane performed during the first impulsive ma-
noeuvre. The optimal value for ϕ lies at a stationary point, d

`

∆vij
˘

{dϕ “

0, which results in the following equation, that typically needs to be
solved numerically:

viv
1
i sin pϕq

b

v2i ` v12
i ´ 2viv

1
i cos pϕq

´
vjv

1
j sin pθp ´ϕq

b

v2j ` v12
j ´ 2vjv

1
j cos pθp ´ϕq

“ 0 (115)

It can be observed that, if ϕ “ 0, the first term of left hand side of
Eq. (115) vanishes and the value of the second term becomes nega-
tive. In turn, if ϕ “ θp, the second term vanishes and the first term
becomes positive. This condition has two implications. On the one
hand, it makes it possible to use bracketing root-finding algorithms
with ϕ “ r0, θps as initial condition. Brent’s method [24] has been

2 For the sake of reproducibility, this dataset is made available online along with this
article.
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used to solve this equation because it is considered a fast and robust
algorithm that guarantees the convergence of the solution. On the
other hand, for this initial condition, the negative value of the func-
tion is associated to the lower bound of the bracket, and the positive
one to the upper bound, so the resulting root represents a station-
ary point that turns a negative slope into a positive one. That is, this
initial condition guarantees the convergence to a minimum.

4.5.2 Numerical Results and Performance Analysis

4.5.2.1 Object Selection Problem

The first step to demonstrate the performance of the proposed frame-
work is to develop a unit test of only the object selection problem, that
is, without taking into account the feasibility problem. The purpose
of this test is to compare the performance of the new, no-subtour for-
mulation versus the classical subtour elimination strategy. The object
selection problem deals with the combinatorial complexity resulting
from the number of objects in the candidate pool. As a result, this
problem has to be solved in an efficient computational time and with
a good scalability with the pool size, so that the complete algorithm
can be solved within an reasonable computational time.
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Figure 11: Comparison of the ‘subtour elimination’ and ‘no-subtour’ formu-
lations of the object selection problem.

If a ∆v budget of 6 km/s is set for this test, Figure 11 shows the
computational time spent in solving the object selection problem for
a growing pool of candidate objects extracted from the Test Case 1

dataset. The new, no-subtour formulation clearly outperforms the
classical subtour elimination strategy and presents a very good scala-
bility with an increasing number of candidate objects in the pool.

The disadvantage of the no-subtour formulation is that it requires
a substantially larger number of variables compared to the classical
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subtour elimination strategy as illustrated in Table 16. As a conse-
quence, it exhibits more demanding memory requirements, although
in practice the memory usage of the no-subtour formulation is afford-
able for average modern computers. This is illustrated in Table 17,
which summarises the relevant metrics related to the computational
cost for the scenario described in Test Case 1. At the light of this re-
sult, the no-subtour formulation is chosen for the resolution of the
object selection problem in all subsequent tests.

Table 16: Comparison of object selection models: Summary of required com-
putational resources

Subtour elimination No-subtour formulation

Constraints |D|2 ` 3|D| ` 1 |D|2 ` p4|K| ´ 1q|D| ´ 2|K| ` 4

Variables |D|2 ` |D| |K||D|2 ` |D|

Subtour elimination
2|D| ´

|D|2

2
´

|D|

2
´ 2 0

constraints

Table 17: Comparison of object selection models: Test Case 1

Subtour elimination No-subtour formulation

Constraints 1,003,001 1,038,984

Variables 1,001,000 10,001,000

Subtour elimination constraints „ 10301 0

Memory usage (MB) 628 4,960

Another interesting aspect is the quantification of the actual compu-
tational cost, which is directly related to the ∆v budget. In this regard,
Figure 12 displays the computational time spent for the resolution of
the object selection problem with the complete pool of 1000 objects
in Test Case 1, and an increasing ∆v budget. It can be seen that the
computational time increases with the available ∆v budget, since the
number of possible object combinations and sequences that need to
be evaluated grows accordingly.

4.5.2.2 Performance Assessment of the Complete Algorithm

Once the no-subtour formulation has been determined to be a prefer-
able option for the object selection problem (due to its superior scal-
ability with the object pool size), the performance of the complete
algorithm can now be assessed. Figure 13 shows the computational
time spent in the resolution of the complete algorithm for the sce-
nario defined in Test Case 1 for a growing ∆v budget, which comple-
ments Figure 12 by displaying the total computational time, besides
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Figure 12: Computational cost of the object selection problem as a function
of the ∆v budget.

the time spent strictly in the object selection problem. All cases have
been solved in under 10 hours, which is a satisfactory result given the
complexity of the problem. However, it is worth noting that the com-
putational time of the complete algorithm does not behave monotoni-
cally with the ∆v, as opposed to the computational time for the object
selection problem alone. The reason for this is that the computational
time necessary to solve the complete algorithm is heavily dependent
on the data and the search strategy. That is, the faster that high qual-
ity solutions are found, the faster the search space is pruned out;
however, if numerous mediocre solutions are found, then the search
space is pruned out slowly and a large number of feasible solutions
have to be explored. This phenomenon is common for all branch-and-
bound-based methods, including the object selection tests. However,
because of the fact that at every time a new feasible solution is found
the feasibility problem has to be solved, this effect becomes particu-
larly meaningful.
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Figure 13: Computational cost for the complete algorithm and the object
selection algorithm for Test Case 1.
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Also, special attention has to be paid to cases with similar compu-
tational times for both tests, i.e. cases with a ∆v budget of 1, 2 and
6.5 km s´1 respectively. In order to understand this phenomenon, Ta-
ble 18 shows the obtained reward for each test. It can be seen that the
optimal solutions obtained in both tests for the three considered cases
are the same. As a result, they represent limit cases of the influence
of data and search strategies in the computational time necessary to
solve this problem. That is, the optimal solution is easily found and
the remaining solutions are efficiently pruned. In fact, their solution
could be obtained simply by solving the object selection problem and
running the feasibility problem for its optimal solution.

Table 18: Reward comparison

∆v budget ∆vT (km s´1) 1 2 3 4 5 6 6.5

Object selection reward 99 241 414 749 870 915 925

Complete algorithm reward 99 241 382 721 866 909 925

4.5.2.3 Performance Assessment for a Realistic Mission Scenario

In this section, an analogous analysis to the one performed in the pre-
ceding section is carried out using the Test Case 2 dataset. It has to be
noted that the injection of the satellite in the orbit of the first object to
be removed is dependent on the launcher specifications and whether
it is a dedicated launch, among other factors; hence, for the resolution
of this case, it is considered that the ∆v consumption and mission du-
ration start counting when the satellite is in close operations with the
first object to be removed. Table 19 depicts the results achieved by
both, the object selection problem and the complete algorithm, for
different ∆v budgets.

Table 19: Summary of results for Test Case 2.

Object selection problem Complete algorithm

∆v budget Total Selected CPU time Total Selected CPU time

(km s´1) criticality objects (s) criticality objects (s)

1 9.80 2 43 9.80 2 43

2 27.46 6 42 27.46 6 200

3 44.88 9 51 44.63 8 1344

4 55.97 10 46 52.29 10 3523

5 56.98 10 69 56.98 10 4715

6 60.31 10 729 59.15 10 19504

6.5 64.08 10 125 63.13 10 11887
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The object selection problem shows the total criticality that would
be removed if there existed opportunities to perform perfect Hohmann
transfers with optimal split plane changes between each pair of ob-
jects. However, in general it is not possible to have such transfer op-
portunities available within the imposed mission timeframe. As a re-
sult, the performed manoeuvres are less ∆v-efficient, and thus the
removed criticality obtained when solving the complete algorithm is
equal to or less than the one achieved by object selection problem.

Table 20: Removal sequence for ∆v budget of 3 km s´1

NORAD ID Criticality Index ∆v estimation Spent ∆v

(m s´1) (m s´1)

6125 5.54 - -

15006 4.32 419.22 422.09

6993 5.48 87.34 104.52

12644 4.55 1141.48 1142.43

17536 5.89 700.33 720.95

6853 4.72 61.62 78.91

17535 13.34 282.72 283.10

6319 0.78 227.41 230.46

TOTAL 44.63 2920.11 2982.45

Table 21: Removal sequence for ∆v budget of 4 km s´1

NORAD ID Criticality Index ∆v estimation Spent ∆v

(m s´1) (m s´1)

21108 2.68 - -

20721 4.98 339.85 345.40

6125 5.54 325.70 333.45

15006 4.32 419.22 422.83

6993 5.48 87.34 117.98

12644 4.55 1141.48 1143.80

6853 4.72 726.51 747.83

17536 5.89 61.62 94.14

6319 0.78 126.01 198.83

17535 13.34 227.41 257.14

TOTAL 52.29 3455.13 3661.40

Tables 20 and 21 depict the removal sequences selected for the in-
stances with a ∆v budget of 3 and 4 km s´1, respectively. They show
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the ∆v consumption estimated via Hohmann transfers with optimal
split plane changes (assumed by default in the object selection prob-
lem), and the actual ∆v expenditure as computed by the feasibility
problem. It can be seen that the 4 km s´1 case (Table 21) allows to re-
move two additional objects compared to the 3 km s´1 case (Table 20),
but also provides a different removal sequence. For the sake of com-
pleteness, Table 22 collects the most relevant properties for the objects
of the optimal removal sequence considered in Table 21; orbital prop-
erties are extracted from the SATCAT database, whereas satellite and
rocket body masses are obtained from the NSSDCA database and
Ref. [86], respectively. In this case, the proposed algorithm has been
able to identify a promising cluster of high criticality objects within
similar inclinations (around 74 deg) and altitudes of around 1500 km,
that can be removed with the prescribed ∆v budget. However, it has
to be noted that the purpose of this test is not to claim that these
removal sequences are the most impactful, which would be a bold
statement given the assumptions made for the computation of their
criticality indices and the simplified dynamics, but rather to show
that the proposed methodology achieves consistent results when solv-
ing problems with a pool of realistic and heterogeneous candidate
objects.

Table 22: Selected object properties

NORAD ID Name Perigee altitude e i RCS Mass

(km) (deg) (m2) (kg)

21108 SL-8 R/B 1459 0.0176 74.05 5.33 1435

20721 SL-14 R/B 1483 0.0025 73.60 4.79 1407

6125 SL-8 R/B 1490 0.0070 74.01 5.98 1435

15006 SL-8 R/B 1471 0.0133 74.01 5.92 1435

6993 SL-8 R/B 1475 0.0093 74.03 6.00 1435

12644 SL-8 R/B 1463 0.0130 74.03 5.66 1435

6853 SL-8 R/B 1485 0.0087 74.00 5.34 1435

17536 SL-14 R/B 1478 0.0027 73.61 5.69 1407

6319 COSMOS 539 1342 0.0023 74.01 2.29 600

17535 COSMOS 1823 1478 0.0029 73.60 12.82 700

4.6 conclusions

This work presents a novel branch-and-bound-based algorithm that,
given a large set of candidate spaceborne objects with an associated
threat value, selects a subset of these objects to be removed, and de-
fines the trajectory that allows to rendezvous with them in an opti-
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mal order, so that the aggregated threat value of the removed objects
is maximised, while a limit mission duration and a ∆v budget are
imposed as constraints.

This algorithm comprises two different problems, namely: 1) an ob-
ject selection problem, described by an MILP problem, that selects
the most promising subset of objects so that the aggregated threat
value of the removed objects is maximised; and 2) a feasibility prob-
lem, described by a MINLP problem, that checks the feasibility of the
time and ∆v constraints while determining the mission sequence and
trajectory.

The natural appearance of subtours in the solutions is a serious
difficulty for the object selection problem. A new, no-subtour MILP
formulation has been devised, which prevents the appearance of sub-
tours. This novel formulation exhibits a good scalability to handle a
large number of candidate objects.

MINLP problems are hard to be treated. That is the reason why
the feasibility problem has been broken down into a MILP master
problem that determines the removal sequence, and a NLP subprob-
lem that optimises the mission manoeuvres, by using a Benders de-
composition. The master problem and the subproblem are iteratively
solved until the solution is demonstrated to be either feasible or infea-
sible, thus not requiring to reach convergence of the upper and lower
bounds of the problem.

This methodology has been tested using two test cases. Test Case 1

assesses the performance of the method with a 1000 object candidate
pool, while Test Case 2 evaluates the behaviour of the method with a
more realistic object distribution. The problem has been solved in sat-
isfactory computational times and a heavy dependence on the search
strategy has been observed. This arises the opportunity to further ac-
celerate the problem resolution with a careful selection of the search
strategy.
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I N T E G R AT E D M O D E L F O R A C T I V E D E B R I S
R E M O VA L M I S S I O N S

5.1 introduction

The preliminary design of multi-target active debris removal missions
involves the consideration of concepts of diverse nature. On the one
hand, the objects to be removed have to be determined so that the mis-
sion has as much impact as possible in the space environment. This,
along with the order in which those objects are removed, constitute
decisions of combinatorial nature. On the other hand, the maneuvers
to perform the removal operations have to be designed so as to make
the most out of the limited resources available for the development
of the mission. Both the combinatorial and the dynamics-related con-
cepts are heavily intertwined, resulting in a problem of a considerable
complexity.

Focusing on the exact optimization methods to solve this kind of
problems, i.e., methods that intend to mathematically demonstrate
the optimality of the obtained solutions, two different kinds of ap-
proaches can be seen in the literature. Namely, a two phase approach
[5, 8, 18, 30] and a sampling of the dynamics [45, 77, 85]. The two
phase approach separates the dymamics from the combinatorial deci-
sions, generating two subproblems. This way, both subproblems share
information during the resolution process until the optimal solution
is achieved. In turn, the other approach samples the dynamics to gen-
erate a grid of points, thus integrating the whole problem into a single
combinatorial problem.

Both approaches have advantages and disadvantages, e.g., the grid
approach tends to be faster and has a more global point of view of
the dynamics during the resolution process, while the two phase ap-
proach considers a more accurate dynamics, tends to be much more
memory-efficient and is able to exploit local properties of the function
during the resolution process.

This work intends to exploit properties of both methods by means
of using well known Operations Research techniques. Specifically, the
∆v spent during the transfers between the objects to be removed
is a function of the initial transfer time and the transfer duration.
That function is discretized and approximated by a bidimensional
piecewise-linear function modelled with Special Ordered Sets [82].
This results is a single MILP model that is able to obtain the global
solution of the problem, according to the precission of the piecewise-
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linear approximation [16], and is able to exploit the order relations
between the different grid points during the branching process.

The remainder of this manuscript is organized as follows. Section 2

describes the problem at hand and presents the MILP formulation
used to model it. Section 3 specifies the numerical experiments used
to test the performance of the proposed methodology. Section 4 shows
the results obtained after solving the aforementioned numerical ex-
periments. Finally, Section 5 summarizes the main conclusions of this
work.

5.2 problem formulation

The problem at hand involves the selection of a subset of objects,
from a candidate object pool, and the sequence in which they will be
visited by a servicing satellite. This way, the servicing satellite will
install a deorbiting kit to each of them, which, in turn, will carry out
the disposal of the selected objects. Moreover, the objects have to be
selected such that the aggregated criticality value assigned to each of
them is maximized. In addition, the servicing satellite has to be able
to visit all the selected objects within a maximum mission time and
with a limited ∆v budget. Hence, the problem comprises two distinct
parts. Namely, the combinatorial decisions and the orbital mechanics.
Both parts have been integrated into a single MILP model so that the
global optimum of the problem can be obtained.

5.2.1 Object and sequence selection

It is clear that the object removal sequence has to form a continu-
ous path of maneuvers that crosses all the selected objects. However,
classic MILP formulations of this kind of problems cannot avoid the
appearance of disjoint loops called subtours. The conventional way to
address this problem is to dynamically generate subtour elimination
constraints each time a new subtour appears [39]. In general, this is a
very efficient technique, as the number of relevant subtours tends not
to be very large. Nevertheless, this is not true for problems compris-
ing numerous objects distributed among diverse orbital planes. This
happens because the appearance of subtours allows to artificially sub-
stitute expensive change of plane maneuvers with cheaper ones. Thus
generating a great amount of invalid solutions. In order to avoid this
phenomenon, the formulation in Ref. [8] prevents the appearance of
subtours. The objective function of the problem and the constraints
that guarantee the formation of a continuous path are subsequently
introduced.
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The objective function maximizes the aggregated criticality value
of the removed objects:

max

#

ÿ

iPD

Ri Yi

+

(116)

where the set D (indexed by i and j) represents the candidate object
pool, the binary variable Yi is 1 if the object i is selected and is 0

otherwise and the parameter Ri is the criticality index of object i.
The servicing satellite cannot perform a round trip journey between

two objects:

ÿ

kPK

Xijk `
ÿ

kPK

Xjik ď 1 @i P D, @j P D : pi ‰ jq (117)

where the set K (indexed by k) represents the maneuver sequence and
the binary variable Xijk is 1 if the kth transfer happens from object i
to object j and is 0 otherwise.

It is not possible to perform a transfer between an object and itself:

Xiik “ 0 @i P D, @k P K (118)

Each object is associated to, at most, one incoming and one outgo-
ing transfer:

ÿ

jPD
i‰j

ÿ

kPK

Xijk `
ÿ

jPD
i‰j

ÿ

kPK

Xjik ě Yi @i P D (119)

ÿ

jPD
i‰j

ÿ

kPK

Xijk `
ÿ

jPD
i‰j

ÿ

kPK

Xjik ď 2Yi @i P D (120)

The number of removed objects is the number of performed trans-
fers plus 1:

ÿ

iPD

ÿ

jPD
i‰j

ÿ

kPK

Xijk “
ÿ

iPD

Yi ´ 1 (121)

Each position has associated, at most, one transfer:

ÿ

iPD

ÿ

jPD
i‰j

Xijk ď 1 @k P K (122)

The final object of a transfer has to be the first of the subsequent
one:

ÿ

iPD
i‰j

Xijk ě
ÿ

iPD
i‰j

Xjipk`1q @j P D, @k P K : pk ă |K|q (123)
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5.2.2 Piecewise-linear dynamics

The ∆v consumed during a transfer is a function of its starting time
as well as its duration. In general, this function is nonlinear and non-
convex, which integrated with the combinatorial model would result
in a Mixed Integer Nonlinear Programming problem. Such problems
are difficult to solve, especially when trying to compute the global
optimum. However, if a piecewise-linear approximation of the ∆v is
used instead, the resulting model will constitute a MILP problem. A
classic technique to develop these approximations relies on the con-
cept of Special Ordered Sets (SOS) [16]. As its name implies, a Special
Ordered Set is an ordered set of variables whose order properties can
be exploited with specific branching techniques. There are two kinds
of SOS, namely, SOS1 and SOS2. They differ in the fact that at most
one variable pertaining to a SOS1 set can have a nonzero value, while
SOS2 sets accept up to two nonzero variables as long as they are con-
secutive.

The methodology presented in [82] makes use of both kinds of
SOS to develop a bidimensional piecewise-linear approximation. Its
has been applied to the problem at hand as follows:

• The function domain is discretized into a grid of nodes. In this
particular case, the nodes b P B represent the transfer starting
times, while c P C stand for values of the transfer duration.

• Two sets of SOS1 variables (λb, µc) are used to define the sides
of rectangular boxes formed by adjacent nodes.

• A set of SOS2 variables (ηs) is used to divide each rectangle into
two triangles, where s P S is the set of parallel diagonals of the
whole domain.

• Weight variables (wbc) are computed according to the values of
the SOS variables. The product of those weights and the ∆v val-
ues on the grid points provides the desired ∆v approximation.

The computation of the weight variables can be modelled with a
set of constraints. The following constraints impose that, for a rect-
angular box defined by the values of λb and µc, only the weights
corresponding to the vertices of that box can be nonzero.

ÿ

cPC

w1c ď λ2 (124)

ÿ

cPC

wbc ď λb ` λpb`1q @b P r2, |B| ´ 1s (125)
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ÿ

cPC

w|B|c ď λij|B| (126)

ÿ

bPB

wb1 ď µ2 (127)

ÿ

bPB

wbc ď µc ` µpc`1q @c P r2, |C| ´ 1s (128)

ÿ

bPB

wb|C| ď µ|C| (129)

Furthermore, only the weights belonging to two consecutive diago-
nals can be nonzero:

ηs “
ÿ

bPB 1psq

wbpb´|B|`sq @s P S (130)

where the set B 1psq is defined as:

B 1psq “ b P B : maxp1, |B| ` 1´ sq ď b ď minp|B| ` |C| ´ s, |B|q (131)

This way, Eqs. (124-130) ensure that only the weights corresponding
to the triangle selected by the SOS sets can be nonzero. Finally, if the
sum of each of the SOS sets is 1, so is the sum of the weight variables:

ÿ

bPB
bą1

λb “ 1 (132)

ÿ

cPC
cą1

µc “ 1 (133)

ÿ

sPS

ηs “ 1 (134)

5.2.3 Integrated formulation

The integration of the piecewise-linear dynamics with the object and
sequence selection requires additional considerations. Specifically, Eqs. (116-
123) can be readily introduced in the integrated model. However, the
piecewise-linear dynamics model has to be applied for each ij object
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combination. This implies that the variables λb,µc,ηs and wbc have
to be substituted with their generalized counterparts, i.e., λijb,µijc,ηijs
and wijbc, in Eqs. (124-130). Moreover, it is necessary to compute the
total ∆v spent during the mission, as well as the starting time and
duration of each of the transfers as a function of the wijbc weights.
Those quantities can be readily determined by the following equa-
tions:

ÿ

iPD

ÿ

jPD
i‰j

ÿ

bPB

ÿ

cPC

∆vfun
ijbcwijbc ď ∆vtot (135)

ÿ

kPK

tijk “
ÿ

bPB

ÿ

cPC

tfun
ijbwijbc @i P D, @j P D : pi ‰ jq (136)

ÿ

kPK

∆tijk “
ÿ

bPB

ÿ

cPC

∆tfun
ijcwijbc @i P D, @j P D : pi ‰ jq (137)

where ∆vtot is the ∆v budget and the parameter ∆vfun
ijbc represents

the ∆v values in each of the grid nodes associated to each of the pos-
sible transfers. Likewise, tfun

ijb and ∆tfun
ijc are homologous parameters

representing the starting times of the transfers and their durations,
respectively.

Unfortunately, the simple introduction of Eqs. (135-137) does not
ensure the correct computation of the aforementioned quantities. This
is due to the fact that even when a transfer between i and j is not
performed in the selected sequence, nonzero weights can be assigned
to it. Hence generating spurious contributions in the summations of
Eqs. (135-137). Nevertheless, this problem can be solved by means of
substituting Eqs. (132-134) with the following ones:

ÿ

bPB
bą1

λijb “
ÿ

kPK

Xijk @i P D, @j P D : pi ‰ jq (138)

ÿ

cPC
cą1

µijc “
ÿ

kPK

Xijk @i P D, @j P D : pi ‰ jq (139)

ÿ

sPS

ηijs “
ÿ

kPK

Xijk @i P D, @j P D : pi ‰ jq (140)

This way, the SOS variables vanish for the transfers not included
in the selected sequence and Eqs. (124-130) force their associated
weights to be null. However, it has to be noted that Eqs. (136,137)
deal with

ř

kPK tijk and
ř

kPK∆tijk instead of the straightforward
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variables. Therefore, those equations are not able to unambiguously
determinate tijk and ∆tijk, as they do not discriminate between the
different values of k. The following equations make use of the infor-
mation contained in Xijk to eliminate this ambiguity.

tijk ě tfun
ij1Xijk @i P D, @j P D : pi ‰ jq , @k P K (141)

tijk ď tfun
ij|B|Xijk @i P D, @j P D : pi ‰ jq , @k P K (142)

∆tijk ě ∆tfun
ij1Xijk @i P D, @j P D : pi ‰ jq , @k P K (143)

∆tijk ď ∆tfun
ij|C|Xijk @i P D, @j P D : pi ‰ jq , @k P K (144)

Therefore, it is guaranteed that, if the kth transfer of the sequence
happens between the objects i and j, the variables tijk and ∆tijk rep-
resent the starting time and duration or that transfer, respectively, and
otherwise both variables vanish.

Furthermore, the close operations to eliminate all the selected ob-
jects have to be completed within the maximum mission time:

ÿ

iPD

ÿ

jPD
i‰j

`

tijk `∆tijk `∆trenXijk

˘

ď tmax @k P K (145)

where ∆tren is the time to complete the close operations and tmax is
the maximum mission time.

Finally, the starting times of each of the maneuvers have to follow
a logical sequence, i.e., a transfer that happens right after another has
to start at time greater than the time in which the close operations
with the previous object have finished:

ÿ

iPD

ÿ

jPD
i‰j

tijpk`1q ě
ÿ

iPD

ÿ

jPD
i‰j

`

tijk `∆tijk `∆trenXijk

˘

´ tmax

¨

˚

˚

˝

1´
ÿ

iPD

ÿ

jPD
i‰j

Xijpk`1q

˛

‹

‹

‚

@k P K : pk ă |K|q

(146)

where the last term of the right hand side makes sure that this con-
straint remains feasible when no objects are eliminated in the k` 1

position.
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5.3 numerical experiments definition

Meaningful and realistic numerical experiments have been config-
ured so as to test the performance of the proposed methodology. First,
the considered values of the operational constraints are the following:

• ∆v budget (∆vtot): 2000 ms´1.

• Maximum mission time (tmax): 1 year.

• Time to complete the close operations (tren): 1 day.

The candidate object pool has to comprise a significant number
of high-priority pieces of debris. A ranking of the 70 most relevant
pieces of debris in LEO, according to a particular criticality index,
can be found in [23]. Two prominent object clusters can be easily
identified. Specifically, a group of 30 objects with inclinations close
to 98 degrees and other of 36 objects with inclinations close to 71

degrees. A test case has been configured for each of those clusters.
Moreover, the size of the candidate object pool (|I|) has a great im-

pact in the model size and, consequently, it is expected to have a great
influence on the computational time necessary to solve the problem.
Hence, it is interesting to test the influence of the least important ob-
jects of each of the pools both on the computational time and the
quality of the solution. To that end, such clusters can be further par-
titioned according to the object criticality. This way, a subset of 15

objects from the 98-degrees-of-inclination cluster with criticality in-
dex greater than 10, as well as two subsets of sizes 16 and 26, and
criticality indices greater than 40 and 10, respectively, from the 71-
degrees-of-inclination cluster are also evaluated. On a similar note,
the maximum number of transfers that can be performed (|K|) also
has a remarkable impact in the model size. Therefore, different val-
ues of this parameter are tested for each problem instance.

Finally, the ∆v consumption as a function of the starting time and
transfer duration has to be defined. Regarding the orbits of the objects
as circular, Ref. [94] provides an analytical approximation for the ∆v
consumed during a low-thrust transfer under J2-perturbed dynamics.
As it is expected that the objects within one of the aforementioned
clusters will have similar nodal precessions, the ∆v consumption will
be less sensitive to the starting time than the transfer duration. Thus,
only 2 starting time nodes (|B|) will be considered, along with 9 trans-
fer duration nodes (|C|).

5.4 results

The proposed formulation has been implemented in GAMS 25.1.1
and the aforementioned test cases have been solved with CPLEX
12.8.0 in a PC featuring an Intel Core i7-1165G7 and 16 GB of RAM.
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5.4.1 Test case 1 (98-degrees-of-inclination cluster)

Table 23 shows the criticality and computational times obtained when
solving Test Case 1 for different values of |I| and |K|. It can be seen
that those two values have a remarkable impact in the computational
time. Interestingly, using the previously mentioned subsets of the ob-
ject pool results in the solutions obtained with the complete object
pool, but with significantly smaller computational times. In turn, the
increment of |K| results in a greater computational time and a bet-
ter solution quality up to a point in which the ∆v and mission time
constraints make it impossible to remove additional objects. This way,
the case with |K| “ 8 and |I| “ 15 provides the same solution as the
one with |K| “ 7 and |I| “ 15, but at a greater computational cost.

Table 24 shows the best removal sequence for this test case. It re-
moves eight objects, including rocket bodies as well as payloads, with
the Envisat being the most notable of them.

Table 23: Summary of results for Test Case 1.

|I| |K| Objects removed Criticality CPU time (s)

15 5 6 163.91 26

15 6 7 174.54 291

15 7 8 186.63 347

15 8 8 186.63 2791

30 5 6 163.91 326

30 6 7 174.54 1073

30 7 8 186.63 10871

Table 24: Test Case 1 optimal removal sequence.

NORAD ID Name Semimajor axis (km) Inclination (deg) Criticality

25400 SL-16 R/B 7185 98.64 41.38

37932 CZ-2D R/B 7196 98.69 13.77

27597 ADEOS 2 7178 98.57 12.14

33272 COSMOS 2441 7098 98.11 23.94

27386 ENVISAT 7143 98.16 50.43

28480 CZ-2C R/B 7184 98.05 12.69

44548 CZ-2D R/B 7139 98.14 15.28

41858 CZ-2D R/B 7150 98.51 17.00
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5.4.2 Test Case 2 (71-degrees-of-inclination cluster)

Table 25 shows the results obtained for Test Case 2. They show a
behavior similar to the one observed for Test Case 1. It leads to think
that it is reasonable to exclude from the candidate pool objects with
modest criticality indices. Special attention has to be paid to the case
with |K| “ 7 and |I| “ 16. After 4 hours of computational time, no
solutions better than the one obtained for the case with with |K| “ 6

and |I| “ 16 where found, but the optimality of this solution was
not demonstrated, just that the criticality of the optimal solution has
to be contained within the interval r313.98, 342.57s. However, there is
an alternative approach to obtain this solution. Specifically, instead
of looking for the optimal solution that removes up to 8 objects, one
can try to demonstrate the feasibility of removing 8 objects. As the
worst aggregated criticality value that can be achieved by an 8-object
sequence is 335.24, this alternative approach simply requires pruning
any branch of the search tree with a potential criticality value lower
than that. This way, it takes less than 3 minutes to demonstrate the
infeasibility of performing an 8-object sequence for this test case.

Table 26 shows the best removal sequence for Test Case 2. It re-
moves seven objects, as opposed to the eight removed in Test Case
1. However, all of the objects removed in this case show a remark-
ably large criticality. Thus resulting in an aggregated criticality value
much larger than the one obtained in Test Case 1. It has to be noted
that all of the objects removed in Test Case 2 are rocket bodies.

Table 25: Summary of results for Test Case 2.

|I| |K| Objects removed Criticality CPU time (s)

16 5 6 273.23 205

16 6 7 313.98 347

16 7 7 [313.98,342.57] 14400

16 7 8 Infeasible 164

26 5 6 273.23 396

26 6 7 313.98 1159

36 5 6 273.23 542

36 6 7 313.98 1954

5.5 conclusions

This manuscript proposes a novel MILP-based approach for the global
optimization of multi-target active debris removal missions. Specifi-
cally, the proposed formulation involves combinatorial decisions (tar-
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Table 26: Test Case 2 optimal removal sequence.

NORAD ID Name Semimajor axis (km) Inclination (deg) Criticality

25407 SL-16 R/B 7218 71.01 42.07

23705 SL-16 R/B 7220 71.03 42.51

31793 SL-16 R/B 7222 70.98 51.69

19650 SL-16 R/B 7218 71.00 42.07

16182 SL-16 R/B 7216 71.00 41.97

26070 SL-16 R/B 7219 71.00 49.40

23088 SL-16 R/B 7221 71.00 44.27

get and sequence selection) as well as dynamics-related variables (the
∆v spent during each of the transfers as a function of their starting
time and duration). The complexity of the combinatorial decisions
has been addresed by means of the use of a no-subtour MILP for-
mulation. In turn, the nonlinearity, nonconvexity and nonstationar-
ity of the orbital mechanics has been tackled with a piecewise-linear
approximation modelled with Special Ordered Sets. Both techniques
have been integrated into a single MILP model whose resolution pro-
vides a global optimum of arbitrary precision, i.e., according to the
number and position of the nodes used to constitute the piecewise-
linear approximation.

The performance of the methodology has been assessed using two
candidate object pools. In particular, two clusters of high priority tar-
gets in LEO with inclinations around 71 and 98 degrees, respectively.
Optimal removal sequences involving up to seven objects for the 71

degrees of inclination case and up to eight objects for the 98 degrees
case have been obtained in very affordable computational times.
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6.1 introduction

It is expected that active space debris removal missions will remove
several objects with each of the employed servicing satellites. More-
over, the larger the mass of a servicing satellite, the larger the fuel
consumed during a maneuver with a given ∆v. This way, the removal
of a considerable number of objects with a single satellite can result in
an inefficient use of resources. A mission architecture that can poten-
tially ameliorate this effect involves the use of a fuel station that the
servicing satellite can visit to refuel itself. Hence, making it possible
to perform the required maneuvers with a lighter servicing satellite.

This concept has been thoroughly explored for satellite refuelling
missions in geosynchronous orbit. Zhou et al.[112] propose a method-
ology to solve refuelling missions that consider one servicing satellite
and a single fuel station with a predefined initial position. In a sub-
sequent contribution, Zhou et al.[113] extend the scope of the prob-
lem by means of using multiple servicing satellites and fuel stations.
Zhang et al.[110] consider multiple servicing satellites and a set of
potential locations in which fuel stations can be allocated, thus intro-
ducing an additional decision variable to the problem. Zhu et al.[114]
use clustering techniques to determine the location of the fuel stations
as a function of the positions of the targets.

Furthermore, in the scope of active debris removal missions, this
concept has been proposed as a possible architecture for the removal
of failed satellites of large constellations in Low Earth Orbit (LEO).
Colombo et al.[35] propose a mission comprising a servicing satellite
and a fuel station. In particular, the servicing satellite transports the
defunct satellites to disposal orbits compliant with debris mitigation
guidelines and visits the fuel station to refuel itself after the removal
of each object.

The mission considered in this work involves the selection of a
set of pieces of debris in LEO to be removed. This way, the selected
targets will be visited by a servicing satellite, which will attach deor-
biting kits to each of them. Moreover, the servicing satellite can visit
a fuel station to refuel itself as well as to load the deorbiting kits to be
attached to the subsequent batch of targets. Hence, the initial position
of the station has to be selected so as to obtain the most advantageous
mission.

99
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This work proposes a two-stage framework to solve the aforemen-
tioned problem. Specifically, the upper stage determines the location
of the fuel station, while the lower stage selects the objects to be re-
moved and optimises the manoeuvres the servicing satellite has to
perform. This way, both stages are iteratively solved until the de-
sired solution is found. Moreover, a heuristic strategy to obtain an
high-quality initial guess of the location of the fuel station has been
devised, hence potentially accelerating the resolution of the problem.

6.2 problem description

Given a pool of candidate objects to be removed, the problem at hand
entails the selection of a subset of those objects such that the aggre-
gated criticality value assigned to them is maximized, while comply-
ing with a maximum mission time and ∆v budget constraints.

The removal is performed by a servicing satellite, which will ren-
dezvous with each of the selected objects so as to attach deorbiting
kits to them. It is considered that this spacecraft is equipped with
a low-thrust propulsion system that is able to generate a certain ag-
gregated ∆v value. Moreover, the servicing satellite can rendezvous
with a fuel station to reset its available ∆v, as well as to reload the
necessary deorbiting kits. In particular, the servicing satellite starts at
a predefined initial position, will perform a fixed number of visits to
the fuel station and will deorbit itself along with the final target. In
turn, the fuel station is not able to perform any kind of propulsive
maneuvers. As a result, the removal sequence of the selected objects,
the maneuvers performed by the servicing satellite and the initial lo-
cation of the fuel station are also variables of the problem.

Finally, it has to be noted that the considered dynamics assumes
that the orbits of all the involved objects and spacecraft are circular
and are subjected to the averaged effect of the J2 perturbation in the
Right Ascension of the Ascending Node (RAAN) as follows:

9Ω “ ´
3

2
R2‘J2

c

µ

a7
cos i (147)

where 9Ω is the rate of change of the RAAN, R‘ is the equatorial
radius of the Earth, J2 is the coefficient of the spherical harmonic of
degree 2 and order 0 of the Earth’s gravity field, µ is the gravitational
parameter of the Earth and a and i are the semimajor axis and the
inclination of the involved object, respectively.

6.3 methodology

The described problem involves a nonlinear dynamics and requires
the determination of continuous as well as discrete variables. Hence,



6.3 methodology 101

 STATION LOCATION
INITIAL GUESS

FUEL STATION
LOCATION
SELECTION

OBJECT SELECTION
AND MANOEUVRE

OPTIMISATION

Figure 14: Problem resolution process

it can be modelled as a Mixed Integer Nonlinear Programming prob-
lem. As this kind of problem structure is generally difficult to solve,
the proposed methodology divides it into two different stages involv-
ing simpler subproblems, as depicted in Figure 14.

On the one hand, the upper stage explores promising values of
the station location and sends them to the lower stage. On the other
hand, the lower stage determines the objects to be removed, the re-
moval sequence and the maneuvers of the servicing satellite so that
the aggregated criticality of the selected objects is maximized. In ad-
dition, a preliminary process to determine a high-quality location of
the fuel station has been devised. In particular, this preliminary pro-
cess intends to reduce the number of fuel station locations evaluated
by the upper stage and, in some cases, it is able to readily determine
a station location that results in the global optimal value of the aggre-
gated criticality removed by the servicing satellite.

6.3.1 Lower stage

Given an initial position for the fuel station, the lower stage selects
the targets to be removed, their associated removal order and the
trajectory that the servicing satellite has to describe to successfully
maximize the aggregated criticality of the selected objets. This is still
a Mixed Integer Nonlinear Programming problem. Nevertheless, Spe-
cial Ordered Sets can be used to approximate the nonlinearities as
piecewise linear functions, thus resulting in a Mixed Integer Lin-
ear Programming (MILP) problem[82]. This way, Branch-and-Bound
methods are able to obtain the global optimum of this problem, sub-
ject to the precision of the approximation of the nonlinear functions[16].
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FS

Figure 15: Removal sequence scheme

Specifically, the trajectory described by the servicing satellite fol-
lows the structure depicted in Figure 15, where the black dots rep-
resent candidate objects to be removed, the blue dot is a dummy
object that represents both the initial position and disposal orbit of
the servicing satellite and the yellow square stands for the fuel sta-
tion. This way, such trajectory can be modelled with two rectilinear
graphs between the fuel station and the dummy object, split apart by
a number of cycles that contain the fuel station. Each of those graphs
can be efficiently defined with a MILP formulation specifically tay-
lored for multi-target active debris removal missions[8]. Furthermore,
the MILP model of the problem at hand can be completed with a
piecewise-linear approximation of the dynamics compatible with the
structure of the problem [9]. This approximation of the dynamics is
used to impose that each of the aforementioned graphs has to fulfil a
∆v budget constraint and that the whole mission has to be completed
within a maximum mission time.

6.3.2 Upper stage

The purpose of the upper stage is to sample the configuration space of
initial locations of the fuel station. This way, the sampled positions are
subsequently sent to the lower stage, thus obtaining an assessment of
their quality. Then, such information is used to sample additional
points until a satisfactory solution is found.

In particular, this stage can be modelled as the unconstrained opti-
mization of a black-box function (i.e., the lower stage). As the lower
stage represents a discontinuous non-smooth function, derivative-free
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methods have to be used to explore the search space. Usual meta-
heuristic methods can readily provide an effective sampling of the
search space and, consequently, a good-quality solution. However, the
resolution of the lower stage can be computationally expensive, there-
fore, a local search method with a high-quality initial guess is pro-
posed instead, specifically, Generalized Pattern Search[72] has been
considered.

6.3.3 Heuristic initial guess

The determination of an initial guess for the position of the station
is of great importance for the proposed methodology. In particular
because a bad selection of such guess, not only might require a large
number of evaluations of the lower stage until a local optimum is
obtained, but also because the obtained solution might provide a dis-
advantageous value of aggregated criticality.

A strategy to develop such heuristic guesses is to make assump-
tions about properties of the optimal or near-optimal solutions, such
that the fulfilment of such properties significantly simplifies the prob-
lem. In this case, the assumption is that the ∆v constraint imposed to
each of the graphs results in an inefficient ∆v allocation, hence result-
ing in unspent ∆v. Then, it is also assumed that such ∆v surplus is
enough to compensate the additional ∆v consumption produced by
the transfers to the station.

Therefore, if this assumption is correct, the solution obtained when
solving the lower stage with a null ∆v consumption in the incoming
transfer to the station and a ∆v consumption in the outgoing trans-
fer equal to the one necessary to directly transfer between the two
objects adjacent to the station would be the global optimum of the
problem. In turn, if the assumption is not correct, such solution is an
optimistic bound of the global optimum. Thus, the proposed initial
guess process mirrors the structure of the aforementioned two-stage
process in an attempt to determine the global optimal or near opti-
mal solutions, but takes advantage of the heuristic assumptions to
simplify the resolution of both stages. Specifically, the two iterative
stages of the heuristic methodology involve the determination of the
initial guess of the station location and the resolution of a modified
lower stage, respectively.

Regarding the initial guess of the station location, it involves the
determination of its semimajor axis, inclination and initial RAAN.
First, the RAAN and RAAN drift of the fuel station that minimize the
square RAAN difference with its preceding objects are determined.
This can be modelled with the following objective function:

J “ min
ÿ

ℓPL

´

Ωℓ ´Ωs ´ tℓ 9Ωs

¯2
(148)
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where J is the value of the objective function, the set L (indexed by
ℓ) represents the different refills, tℓ is the starting time of the ℓ-th
transfer to the fuel station,Ωℓ is the RAAN of the object visited before
the ℓ-th refill at tℓ, Ωs is the initial RAAN of the station and 9Ωs is the
nodal drift of the station.

The optimality conditions of the problem can be obtained by nulli-
fying the gradient of the objective function:

BJ

BΩs
“ ´2

ÿ

ℓPL

´

Ωℓ ´Ωs ´ tℓ 9Ωs

¯

“ 0 (149)

BJ

B 9Ωs

“ ´2
ÿ

ℓPL

´

tℓΩℓ ´ tℓΩs ´ t2ℓ
9Ωs

¯

“ 0 (150)

Thus, the optimal solution can be analitically obtained by isolating
Ωs and 9Ωs from Eqs. (149) and (150). However, the cases with one
and two refills show interesting properties.

Regarding the case with just one refill, it can be seen that Eqs. (149) and (150)
are proportional. Hence, the system of equations is indeterminate and
has an infinite number of solutions. A notable solution requires that
the station and the object visited before the refill have the same po-
sition throughout the whole mission (i.e., Ωs “ Ωℓ1 and 9Ωs “ 9Ωℓ).
Therefore, the transfer to the station is free and that solution consti-
tutes the global optimum of the problem.

Regarding the case with two refills, the optimal solution is able to
nullify the objective function in every case and is defined as follows:

Ωs “ Ωℓ1 ´
Ωℓ2 ´Ωℓ1

tℓ2 ´ tℓ1
tℓ1 (151)

9Ωs “
Ωℓ2 ´Ωℓ1

tℓ2 ´ tℓ1
(152)

In turn, the optimal solution for an arbitrary number of refills is
the following one:

Ωs “

ř

ℓPLΩℓ

ř

ℓPL t
2
ℓ ´

ř

ℓPLpΩℓtℓq
ř

ℓPL tℓ

|L|
ř

ℓPL t
2
ℓ ´ p

ř

ℓPL tℓq
2

(153)

9Ωs “
|L|

ř

ℓPLpΩℓtℓq ´
ř

ℓPLΩℓ

ř

ℓPL tℓ

|L|
ř

ℓPL t
2
ℓ ´ p

ř

ℓPL tℓq
2

(154)

Then, the nodal drift of the station has to be translated into a semi-
major axis and an inclination. The values of those variables are se-
lected so that they minimize the aggregated ∆v consumption to trans-
fer between the preceding objects and the station:
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min
ÿ

ℓPL

∆vℓ “
ÿ

ℓPL

˜

d

µ

aℓ
`
µ

as
´ 2

c

µ

aℓ

c

µ

as
cos

´π

2
pis ´ iℓq

¯

¸

(155)

where the ∆vℓ consumption has been modelled with the Edelbaum
analytical solution[41], aℓ and iℓ are the semimajor axes and incli-
nations of the preceding objects, respectively, and as and is are the
semimajor axis and inclination of the station, respectively.

In addition, the previously computed nodal drift of the station has
to comply with the averaged effect of the J2 perturbation:

9Ωs “ ´
3

2
R2‘J2

c

µ

a7s
cos is (156)

The solution of this problem can be readily obtained by means of
isolating as in Eq. (156), substituting it into Eq. (155) and nullifying
the derivative of Eq. (155) with respect to is, thus involving the reso-
lution of just a univariate equation.

Regarding the resolution of a modified lower stage, it simply in-
volves solving such problem disregarding the existence of the fuel
station and imposing minimum values of duration and ∆v for the
transfers between the objects that would be adjacent to the station.
Those values have been computed in a previous iteration of the initial
guess obtention and stand for the sum of the duration and ∆v spent
during the corresponding incoming and outgoing transfers between
the involved objects and the station.

This way, the algorithm of the initial guess obtention operates as
follows:

1. Solve the modified lower stage for null minimum time and ∆v.

2. Store the optimistic bound of the problem.

3. Compute the station location associated to that solution.

4. Compute the transfer duration and ∆v associated to that station
location.

5. Solve the modified lower stage with minimum values equal to
the transfer duration and ∆v and compute the optimality gap.

6. If the aggregated criticality value is equal to the one of the pre-
vious modified lower stage, exit.

7. Else, repeat Steps 3 to 7 until the optimality gap is greater than
a threshold.

The aforementioned optimality gap quantifies the relative differ-
ence of the obtained criticality value with respect to the optimistic
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bound. Therefore, if the optimality gap is less than the predefined
threshold, it is considered that the quality of the solution is acceptable
and it is not necessary to execute the loop corresponding to the orig-
inal two-stage process. Otherwise, such loop will be executed with
the most recent value of the station location as the initial guess.

6.4 results

Two practical cases involving debris clusters of high-impact LEO ob-
jects with inclinations around 71 and 98 degrees, respectively, are sub-
sequently analyzed. In particular, criticality values previously com-
puted in the literature [23] have been assigned to the concerning ob-
jects.

For each of those cases, instances with one and two refills have been
solved for a servicing satellite with 1 km/s of ∆v capacity, as well as
two additional instances without refills, but with a ∆v capacity of 2

and 3 km/s, respectively.
A maximum mission time of one year has been imposed for all the

cases and low thrust maneuvers have been considered, Specifically,
the maneuvers are modelled with the Split Edelbaum Strategy[32] or
the Relative Inclination Change strategy [12], whichever achieves a
lower ∆v for each transfer duration and starting time.

6.4.1 Test Case 1 (71 degrees of inclination)

The Test Case 1 involves 36 objects with an inclination around 71 de-
grees. Table 27 summarizes the results of the four instances solved for
this test case. Regarding the instances with refills, the heuristic initial
guess process has been able to determine the global optimality of
both instances. Regarding the instances without refills, it can be seen
that the instance with a capacity of 2km/s achieves the same result
as the instance with one refill. In turn the instance with a capacity of
3km/s is able to remove nine objects, as opposed to the eight that the
instance with two refills is able to solve. This possibly indicates a case
of diminishing returns when increasing the number of refills, that is,
the greater the number of refills, the less ∆v-efficient the solution is.

Table 27: Results comparison for Test case 1

Refills Vehicle capacity Iterations Removed Criticality Optimality gap
(m/s) Objects (%)

2 1000 1 7 313.98 0

3 1000 2 8 357.27 0

0 2000 1 7 313.98 0

0 3000 1 9 396.83 0
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Tables 28, 29 and 30 show the removal sequences of the four in-
stances. It can be seen that the selected objects are practically the
same, albeit with slightly different removal sequences. In particular,
the objects, with Norad IDs 25407,23705, 31793, 19650, 16182, 26070

and 23088 are common to the four instances.

Table 28: Removal sequence for Test Case 1 with one refill

NORAD ID Name Semimajor axis (km) Inclination (deg) Criticality
25407 SL-16 R/B 7218 71.01 42.07

23705 SL-16 R/B 7220 71.03 42.51

31793 SL-16 R/B 7222 70.98 51.69

19650 SL-16 R/B 7218 71.00 42.07

16182 SL-16 R/B 7216 71.00 41.97

26070 SL-16 R/B 7219 71.00 49.40

23088 SL-16 R/B 7221 71.00 44.27

Table 29: Removal sequence for Test Case 1 with two refills

NORAD ID Name Semimajor axis (km) Inclination (deg) Criticality
25407 SL-16 R/B 7218 71.01 42.07

23705 SL-16 R/B 7220 71.03 42.51

31793 SL-16 R/B 7222 70.98 51.69

19650 SL-16 R/B 7218 71.00 42.07

16182 SL-16 R/B 7216 71.00 41.97

26070 SL-16 R/B 7219 71.00 49.4
23088 SL-16 R/B 7221 71.00 44.27

22803 SL-16 R/B 7214 70.99 43.29

Table 30: Removal sequence for Test case 1 for a ∆v budget of 3 km/s

NORAD ID Name Semimajor axis (km) Inclination (deg) Criticality
17974 SL-16 R/B 7213 71.01 41.74

23088 SL-16 R/B 7221 71.00 44.27

19120 SL-16 R/B 7206 71.01 41.11

26070 SL-16 R/B 7219 71.00 49.40

16182 SL-16 R/B 7216 71.00 41.97

19650 SL-16 R/B 7218 71.00 42.07

31793 SL-16 R/B 7222 70.98 51.69

23705 SL-16 R/B 7220 71.03 42.51

25407 SL-16 R/B 7218 71.01 42.07

6.4.2 Test Case 2 (98 degrees of inclination)

The Test Case 2 involves 30 objects with an inclination around 98

degrees. Table 31 summarizes the results of the four instances solved
for this test case. Regarding the instances with refills, the heuristic



108 analysis of a fuel station strategy for debris removal

initial guess process has been able to determine the global optimality
of the instance with one refill and that the obtained criticality of the
instance with two refills differs from the global optimum, at most,
0.94%. Regarding the instances without refills, it can be seen that the
instance with a capacity of 2km/s is able to remove the same number
of objects as both instances with refills. In turn the instance with a
capacity of 3km/s is able to remove an additional object. As a result,
the instance with two refills shows an even worse case of diminishing
returns than the one observed in Test Case 1.

Table 31: Results comparison for Test case 2

Refills Vehicle capacity Iterations Removed Criticality Optimality gap
(m/s) Objects (%)

2 1000 1 8 184.32 0

3 1000 3 8 188.6 0.94

0 2000 1 8 186.63 0

0 3000 1 9 201.29 0

Tables 32, 33, 34 and 35 show the removal sequences of the four
instances. Just like in Test Case 1, it can be seen that the four instances
share the majority of the objects. Specifically, the objects, with Norad
IDs 37932, 25400, 33272, 27386 (ENVISAT), 41858 and 44548.

Table 32: Removal sequence for Test Case 2 with one refill

NORAD ID Name Semimajor axis (km) Inclination (deg) Criticality
37932 CZ-2D R/B 7196 98.69 13.77

25400 SL-16 R/B 7185 98.64 41.38

27597 ADEOS 2 7178 98.57 12.14

33272 COSMOS 2441 7098 98.11 23.94

45722 CZ-2C R/B 7116 98.60 10.38

27386 ENVISAT 7143 98.16 50.43

41858 CZ-2D R/B 7150 98.51 17.00

44548 CZ-2D R/B 7139 98.14 15.28

Table 33: Removal sequence for Test Case 2 with two refills

NORAD ID Name Semimajor axis (km) Inclination (deg) Criticality
25861 SL-16 R/B 7012 98.20 10.92

27601 H-2A R/B 7163 98.19 15.88

44548 CZ-2D R/B 7139 98.14 15.28

41858 CZ-2D R/B 7150 98.51 17.00

27386 ENVISAT 7143 98.16 50.43

33272 COSMOS 2441 7098 98.11 23.94

25400 SL-16 R/B 7185 98.64 41.38

37932 CZ-2D R/B 7196 98.69 13.77
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Table 34: Removal sequence for Test case 2 for a ∆v budget of 2 km/s

NORAD ID Name Semimajor axis (km) Inclination (deg) Criticality
25400 SL-16 R/B 7185 98.64 41.38

37932 CZ-2D R/B 7196 98.69 13.77

27597 ADEOS 2 7178 98.57 12.14

33272 COSMOS 2441 7098 98.11 23.94

27386 ENVISAT 7143 98.16 50.43

28480 CZ-2C R/B 7184 98.05 12.69

44548 CZ-2D R/B 7139 98.14 15.28

41858 CZ-2D R/B 7150 98.51 17.00

Table 35: Removal sequence for Test case 2 for a ∆v budget of 3 km/s

NORAD ID Name Semimajor axis (km) Inclination (deg) Criticality
25861 SL-16 R/B 7012 98.20 10.92

27601 H-2A R/B 7163 98.19 15.88

28480 CZ-2C R/B 7184 98.05 12.69

44548 CZ-2D R/B 7139 98.14 15.28

27386 ENVISAT 7143 98.16 50.43

41858 CZ-2D R/B 7150 98.51 17.00

33272 COSMOS 2441 7098 98.11 23.94

37932 CZ-2D R/B 7196 98.69 13.77

25400 SL-16 R/B 7185 98.64 41.38

6.5 conclusions

This manuscript analyzes a mission architecture for active debris re-
moval missions comprising a servicing satellite and a fuel station. A
two-stage framework has been proposed to solve this problem.

On the one hand, the upper stage explores promising values of
the station location and sends them to the lower stage. On the other
hand, the lower stage determines the objects to be removed, the re-
moval sequence and the maneuvers of the servicing satellite so that
the aggregated criticality of the selected objects is maximized. This
is modelled as a Mixed Integer Linear Programming problem and
solved using a branch-and-bound method.

In addition to that, a heuristic initial guess process has been de-
vised. This process not only is able to provide an initial guess for the
position of the station, but also can potentially determine the global
optimal or near-optimal solutions of the problem.

Two practical cases involving debris clusters with inclinations around
71 and 98 degrees, respectively have been analyzed with the proposed
framework.





7
C O N S T R A I N T P R O G R A M M I N G F O R
C O N S T E L L AT I O N S E RV I C I N G

7.1 introduction

The formation of high-density clusters of man-made spaceborne ob-
jects poses a significant risk for the sustainability of future space
operations. Specifically, it facilitates the occurrence of a collisional
cascading effect that would result in an uncontrollable generation of
space debris fragments [65]. This is particularly critical for regions of
special operational interest, such as Low Earth Orbit (LEO) or Geo-
stationary Orbit, because it could render them unusable for their fu-
ture exploitation. Furthermore, even if the space environment does
not reach such critical state, a higher object density entails a poten-
tial increase in mission cost and disruptions due to a more frequent
necessity of collision avoidance activities [53]. So as to stabilise the
population of spaceborne objects, it is necessary to actively remove
several high-impact pieces of debris per year [71, 75]. Hence, active
debris removal missions must rigorously select the objects to be re-
moved so that their impact in the space environment is maximised
[8]. However, these missions not only face technical issues, but also
challenges of legal and political nature [103]. Thus complicating their
practical implementation.

Currently, several initiatives to deploy large constellations in the
LEO region are being carried out, such as Starlink [98], OneWeb [84]
and Kuiper [68]. It is expected that the operation of such constella-
tions will include the end-of-life deorbiting of its defunct satellites.
For instance, the Inter-Agency Space Debris Coordination Committee
recommends that the objects that terminate their operational phase
within the LEO region should be deorbited or transferred to an orbit
with an expected residual orbital lifetime of 25 years or shorter [37].
More recently, the Federal Communications Commission has consid-
ered that such timespan should shortened to, at most, an expected
lifetime of five years [36]. Nevertheless, the failure of said disposal
processes (either because of a premature failure of a satellite or due
to unsuccessful deorbiting manoeuvres) poses a threat, not only for
the space environment, but also for the constellation performance.
This, along with the absence of the legal issues that the general active
debris removal missions face, has motivated the assessment of the
feasibility of constellation-servicing debris removal missions [25, 47,
70]. In particular, the Sunrise project, funded by the European Space
Agency (ESA), intends to identify affordable active debris removal

111



112 constraint programming for constellation servicing

strategies for large constellations in LEO. Moreover, this project plans
to develop the necessary technologies to perform these missions so
as to, eventually, provide a competitive service in the international
market. As part of Sunrise, ESA commissioned Phase A studies to
different consortia, including one comprising D-Orbit SpA and Po-
litecnico di Milano [22, 35, 57]. After the completion of the Phase A
studies, the consortium led by Astroscale was chosen to proceed with
the next phase of the project [3].

As the objects to be removed in constellation-servicing debris re-
moval missions are not known beforehand, the preliminary design
of such missions requires an exhaustive analysis of complex mission
configurations, especially when dealing with the coordination of sev-
eral servicing satellites. Constraint programming [2] is a classical ar-
tificial intelligence paradigm, characterised by its flexibility for the
modelling of complex problems [89]. Since its inception, it has proven
successful for diverse applications [101] such as vehicle routing [93],
scheduling [90] and resource allocation [55]. In the field of space
operations, constraint-based techniques have been extensively used
for mission planning and scheduling [33, 87], involving applications
such as Earth observation [49, 88] and deep space exploration mis-
sions [59]. More specific applications of constraint-based techniques
include NASA’s EUROPA planning tool [13], the scientific experiment
scheduling of the Rossetta/Philae mission [97] and the mission plan-
ning of Orbital Express [67].

This work leverages the strengths of Constraint Programming for
the preliminary analysis of space missions. Specifically, the require-
ments imposed to space missions tend to configure complex search
spaces. Consequently, the proposed framework exploits constraint
propagation and search techniques to thoroughly explore such spaces
in an efficient manner. This way, given a set of predefined mission
choices (obtained during a previous mission analysis), the proposed
methodology is able to readily quantify their performance with re-
spect to the mission requirements. Then, if a poor performance is
shown (or if a previous mission analysis does not exist), the method-
ology will generate appropriate mission choices so that the desired
performance is optimised.

First, Constraint Programming techniques are used to configure
a general framework for preliminary mission analysis. Then, that
methodology is particularised for the constellation-servicing debris
removal mission considered in a Phase A study, developed by the D-
Orbit SpA and Politecnico di Milano consortium under ESA’s Sunrise
project [57]. In particular, two application cases have been evaluated.
Both cases consider a constellation comprising a set of orbital planes
with identical inclination, but shifted in Right Ascension of Ascend-
ing Node (RAAN). In turn, each of those planes contains a set of
satellites that describe an identical circular orbit, but are shifted in
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angular position within that orbit. Nevertheless, each of the cases
uses a different strategy to remove a set of defunct satellites located
within the constellation. On the one hand, the chaser case involves a
servicing satellite that rendezvouses with the failed satellites of the
constellation and directly transports them to a disposal orbit. On the
other hand, the mothership case comprises a servicing satellite that
installs deorbiting kits on each of the failed satellites, except for the
one removed in the last place which is deorbited by the servicing
satellite itself. This way, the servicing satellite will only transport this
object, while the deorbiting kits will carry out the disposal of the rest
of them.

The remainder of this manuscript is organized as follows. Section 7.2
provides a general description of the proposed Constraint Program-
ming framework. Section 7.3 particularises the proposed methodol-
ogy for the chaser application case. Section 7.4 does the same for
the mothership case. Section 7.5 shows the results that the proposed
framework obtains for both application cases. Finally, Section 7.6 sum-
marises the main conclusions of this work.

7.2 methodology

Given a collection of predefined mission analysis choices, the pro-
posed methodology is able to evaluate the performance of such choices
with respect to a series of requirements. That is, the feasibility of
achieving different mission outcomes is analysed and the possibil-
ity of improving the given mission analysis choices is explored. The
aforementioned feasibility depends on controlled as well as uncon-
trolled variables, with the values of the latter being indeterminate
during this mission design phase. Hence, the problem at hand is to
obtain the whole set of feasible values of the controlled and uncon-
trolled variables for each of the mission outcomes. This constitutes
a constraint satisfaction problem. A general computational paradigm
to deal with this kind of problems is Constraint Programming.

7.2.1 Constraint Programming resolution process

Constraint satisfaction problems comprise a set of variables, each of
them with an associated domain of values, and a set of constraints
that relates such values. In turn, a feasible solution of such problems
entails a value assignment to every variable, from within their associ-
ated domains, such that the whole set of constraints is fulfilled. The
main advantage of using Constraint Programming to solve this kind
of problems is that it regards constraints as general relations between
the domains of the variables, as opposed to other methodologies that
consider constraints as analytical mathematical functions. Hence, it
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provides a great flexibility to develop detailed models of complex
problems.

The resolution of a Constraint Programming problem involves the
interaction of two different processes, namely constraint propagation
and search. The purpose of the constraint propagation process is
twofold. On the one hand, it checks the feasibility of a given con-
straint for the considered variable domains (i.e. if there is at least
one possible value assignment, from the domains of the considered
variables, that fulfills such constraint). On the other hand, it prunes
values from the variable domains that cannot appear in a feasible
solution.

In general, the use of constraint propagation alone does not guar-
antee the determination of a feasible solution (or infeasibility) of the
problem. However, this can be achieved with the inclusion of an ad-
ditional search process. This process follows a divide-and-conquer
approach to split the variable domains of the original problem, thus
partitioning it into several subproblems. The purpose of this tech-
nique is to obtain subproblems simple enough so that the constraint
propagation process is able to determine their feasibility.

Consequently, the usual workflow of Constraint Programming al-
ternates the constraint propagation and search processes until a feasi-
ble solution of one of the subproblems is found or the infeasibility of
all the subproblems is demonstrated. However, in the particular case
addressed in this work, the whole set of feasible solutions of the prob-
lem has to be determined. Therefore, every one of the subproblems
has to be demonstrated to be feasible or infeasible.

7.2.2 Constraint Programming for mission analysis

The general resolution process of Constraint Programming problems
has to be tailored to solve the mission analysis problem at hand. As
previously stated, this methodology evaluates the feasibility of a set
of mission outcomes, henceforth referred as problem instances. Such
problem instances can be partitioned into specific intervals of the un-
controlled variables. Thus, the decision variables and their associated
domains are characterised by the set of problem instances. In turn,
the search process selects the order of evaluation of the problem in-
stances and splits them into simpler ones when required.

The kind of constraints considered for this application impose a
maximum value to a particular performance cost. Hence, the feasibil-
ity of a constraint can be evaluated by means of obtaining upper and
lower bounds of such performance cost. This way, if the lower bound
is greater than the required cost, the constraint is infeasible for the
whole variable domain of the evaluated problem instance. This in-
stance is regarded as rejected. Likewise, if the upper bound is less
that the required cost, the constraint is feasible for the whole domain
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of the instance. This problem instance is regarded as accepted. How-
ever, if the required cost is contained within the bounds, the problem
instance is feasible only for some values of the domain. Thus, this in-
stance is considered inconclusive and has to be split into smaller ones
to accurately determine its feasibility.

Each of the desired bounds can be obtained solving an optimisa-
tion problem, dependent on the controlled and uncontrolled vari-
ables. This way, the lower bound can be determined by simply finding
the values of the controlled and uncontrolled variables that minimise
the performance cost. Likewise, selecting the values of the controlled
and uncontrolled variables that maximise the performance cost re-
sults in an upper bound. However, albeit simple to obtain, this is not
the tightest bound, nor the most logical, because a sound mission
analysis is supposed to select the most advantageous values of the
controlled variables. Therefore, a tighter upper bound is computed
when simultaneously using the uncontrolled variables to maximise
the cost and the controlled variables to minimise it. Specifically, the
former upper bound represents the worst feasible solution, while the
latter stands for the worst optimal solution. Thus they are referred as
feasibility and optimality upper bounds, respectively.

Finally, the domain pruning process exploits the hierarchical rela-
tions between the problem instances. That is, if a problem instance
is accepted, all the less restrictive instances can be accepted without
assessing their feasibility. Similarly, if a problem instance is rejected
all the more restrictive instances are rejected.

The resolution process that collects the previous concepts is de-
picted in Figure 16. A problem instance is selected and its feasibility
is sequentially evaluated for each of the constraints. If the instance is
rejected by one of the constraints, it is not necessary to evaluate its
feasibility for the remaining ones and all the more restrictive problem
instances are rejected. In turn, if the instance is deemed inconclusive
by one of the constraints, it cannot be accepted by the subsequent
constraints (i.e., it will remain inconclusive unless a subsequent con-
straint rejects it). However, if the instance is still considered incon-
clusive after the last constraint has been evaluated, it is split into
simpler instances. Consequently, those new instances are added to
the problem instances set. Finally, if the instance is accepted by every
constraint, all the less restrictive problem instances are accepted. This
process continues until the whole set of problem instances has been
evaluated.

7.3 active debris removal mission : chaser case

The chaser case involves the use of a set of servicing satellites, i.e.
chasers, to remove defunct satellites within a constellation. In partic-
ular, the defunct satellites are directly transported to a disposal orbit
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Figure 16: Problem resolution process

by a chaser. This way, each chaser is assigned a set of orbital planes of
the constellation and will perform round trips between those planes
and their corresponding disposal orbits until the totality of the de-
funct objects located within those planes is removed. Specifically, each
chaser carries out the following sequence of actions:

1. Remaining in the injection orbit until the RAAN of the first con-
stellation plane is achieved. This RAAN variation is exclusively
produced by the nodal drift resulting from the J2 perturbation.

2. Transferring to the first constellation plane and rendezvousing
with the first target.

3. Transferring the first target to its corresponding disposal orbit.

4. Repeating Steps 2 and 3 until the first constellation plane is
cleared.

5. Transferring to a drifting orbit and remaining there until the
RAAN of the subsequent constellation plane is achieved. Just
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like in Step 1, this RAAN variation is exclusively produced by
the J2 perturbation.

6. Repeating Steps 2 to 5 until all the constellation planes assigned
to the concerning chaser are cleared.

7. The chaser will deorbit together with the last target.

7.3.1 Predefined mission choices

The proposed methodology will be used to assess the performance
of the choices made in previous mission analyses [35, 57]. In partic-
ular, such predefined parameters can be classified into the following
categories:

Chaser parameters:

• Maximum wet and dry mass of each chaser.

• Semimajor axis, inclination and eccentricity of the initial injec-
tion orbit.

• Semimajor axis, inclination and eccentricity of the drifting orbit
used to transfer between two different constellation planes.

• Semimajor axis, inclination and eccentricity of the disposal orbit
associated to each chaser.

Constellation parameters:

• Defunct satellite mass.

• Semimajor axis, inclination and eccentricity of each constella-
tion plane.

• RAAN difference between two adjacent constellation planes.

• Semimajor axis, inclination and eccentricity of the disposal orbit
associated to each defunct satellite.

Thus, regarding the constellation, the uncontrolled variables of the
problem at hand are the number of objects to be removed and their
position and distribution within the different constellation planes. In
turn, the uncontrolled variables related to a chaser are its initial posi-
tion within the injection orbit as well as its initial relative RAAN with
respect to the constellation planes. In addition, the object removal
sequence is the only controlled variable. It has to be noted that the
predefined mission analysis choices can be readily disregarded and
considered as controlled variables so as to achieve potential perfor-
mance improvements.

Consequently, the initial problem instances can be designated by a
tuple pN,Pq, where N is the number of objects to be removed and P is
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the number of planes in which these objects are distributed. Those in-
stances can be further partitioned when considering particular object
distributions, initial positions of the chaser and RAAN differences be-
tween the concerning orbital planes. Moreover, such definition of the
initial problem instances shows a clear hierarchical relation between
the different instances and, therefore, allows to perform a straightfor-
ward domain pruning strategy. Specifically, if an instance pN0,P0q is
accepted, every instance such that N ď N0 and P ď P0 is instanta-
neously accepted. In turn, if pN0,P0q is rejected, every instance such
that N ě N0 and P ě P0 is rejected.

7.3.2 Feasibility bounds

The requirements imposed by the previous mission analysis involve
limitations in the maximum mission time and the available fuel mass.
Thus, the values of the aforementioned problem variables have to be
optimized so that the most and least advantageous mission time and
fuel consumption are obtained. Opportunely, a careful analysis of the
problem at hand allows to readily characterise the desired variable
values.

The most expensive manoeuvres are the inclination changes per-
formed to drift between the different orbital panes of the constellation.
Furthermore, the heavier the chaser, the more fuel-expensive is a ma-
noeuvre. Hence, the sooner such inclination changes are performed,
the worse the total fuel consumption will be. Consequently, the ob-
ject distribution that achieves the feasibility upper bound comprises
N´P` 1 objects in the first constellation orbital plane and one object
in the subsequent planes. Conversely, the feasibility upper bound is
achieved when there are N´ P ` 1 objects in the last plane and one
object in the preceding ones.

The feasibility bounds are directly related with the total RAAN dif-
ference traversed by the chaser. Thus, the upper bound is obtained
when the last constellation plane to be visited has an initial RAAN
very similar to the one of the injection orbit. This way, the chaser has
to perform a virtually whole RAAN revolution. In turn, the lower
bound is obtained when the RAAN of the injection orbit is identical
to the one of the first constellation plane to be visited and the subse-
quent constellation planes are adjacent to it.

Finally, the removal sequence and initial situation of the chaser and
the objects within their respective orbits are chosen so as to minimise,
or maximise, the phasing time necessary to rendezvous with an object
when completing a transfer between the injection or disposal orbit
and a constellation plane.
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7.3.2.1 Fuel consumption constraint

The fuel consumed during the whole mission can be obtained by iter-
ating in a reverse chronological order (i.e., starting with a chaser with
no fuel and adding the fuel consumed during each manoeuvre until
the initial mass is retrieved) the following equation:

mi “
`

mi`1 `αimobj
˘

exp
ˆ

∆Vi

g0ISP

˙

´αimobj (157)

where i indexes the set of performed manoeuvres (in chronological or-
der), mi is the mass of the chaser after manoeuvre i, mobj is the mass
of a defunct satellite, αi is 1 if the chaser is transporting a defunct
satellite during manoeuvre i (is 0 otherwise), ∆Vi is the ∆V spent
during manoeuvre i, g0 is the gravity acceleration at the Earth’s sur-
face and ISP is the specific impulse of the chaser’s thruster. This way,
given the whole set of ∆Vi values and starting with a mi`1 equal
to the dry mass of the chaser, Eq. (157) can be iterated to obtain the
initial wet mass of the chaser.

Moreover, the manoeuvres are modelled as combined impulses,
whose associated ∆V consumption can be computed as:

∆V “

b

V2
1 ` V2

2 ´ 2V1V2 cos p∆iq (158)

where V1 and V2 are the orbital velocities before and after the im-
pulse, respectively, and ∆i is the inclination change performed during
the manoeuvre.

Finally, it has to be noted that the ∆V consumption does not de-
pend on the initial position or distribution of the objects within the
constellation planes. Hence, for a given pN,Pq combination, the feasi-
bility bounds for the fuel consumption are obtained when evaluating
the aforementioned best and worst object distributions.

7.3.2.2 Mission time constraint

The mission time can be readily computed by the following expres-
sion:

∆t “ ∆tTdf ` pN´ P` 1q∆tDC ` pP´ 1q∆tDN`

`∆tRI ` pN´ Pq∆tRC ` pP´ 1q∆tRN
(159)

where ∆tTdf is the aggregated time spent while coasting in the dif-
ferent drifting orbits, ∆tRI is the time elapsed between the departure
from the initial injection orbit and the rendezvous with the first ob-
ject, and ∆tDC and ∆tRC are, respectively, the time spent to transport
an object to its corresponding disposal orbit and the time elapsed
between departing such disposal orbit and the rendezvous with the
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subsequent object; both terms consider that such object is situated in
the same constellation plane as the previously removed one. In turn,
∆tDN and ∆tRN are analogous to the previous terms, but for the case
in which the subsequent object is noncoplanar with the formerly re-
moved one.

The time spent while coasting in a drifting orbit is the necessary
to nullify the RAAN difference between the target and the drifting
orbits, as expressed by the following equation:

∆tdf “
∆Ω` 2πC

9Ω2 ´ 9Ωdf
(160)

where ∆tdf is the drifting time, ∆Ω is the initial RAAN difference
between the target and the drifting orbits, C P t´1, 0, 1u is a constant
chosen so as to obtain the smallest positive ∆tdf, and 9Ω2 and 9Ωdf

are the nodal precessions of the target and drifting orbit, respectively.
Only the averaged effect of the J2 perturbation has been considered
in the computation of such nodal precessions. Hence, they are repre-
sented by the following expression:

9Ω “ ´
3nR2CJ2

2p2
cospiq (161)

where RC is the equatorial radius of the Earth, J2 is the coefficient of
the spherical harmonic of degree 2 and order 0 of the Earth’s gravity
field, n is the mean motion of the considered orbit, p is its semilatus
rectum and i is its inclination.

Aside from the coasting intervals, the rest of the manoeuvres can be
generalised with a two-stage strategy involving a phasing stage and
a Hohmann-like transfer with inclination change (although it is not
necessary for all of them to comprise a phasing stage or an inclination
change). Thus, the remaining terms of Eq. (159) can be modelled as:

∆t̂ “ KTpha `
1

2
Ttra (162)

where ∆t̂ represents a term of Eq. (159) (excluding ∆tTdf), K is the
number of revolutions performed by the chaser during the phasing
stage and Tpha and Ttra are the orbital periods of the phasing and
transfer orbits, respectively. Moreover, K and Tpha have to be chosen
so that the mean motion difference between the target and phasing
orbits produces a desired difference in true anomaly in an integer
number of revolutions:

∆θ` 2πC` pn2 ´nphaqKTpha “ 0 (163)
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where ∆θ is the difference in true anomaly to be compensated, C is an
integer number, and n2 and npha are the mean motions of the target
and phasing orbits, respectively.

Reformulating Eq.(163) in terms of the orbital periods and isolating
K gives:

K “
∆θ` 2πC

2π
´

1´
Tpha
T2

¯ (164)

Three unknown variables of Eq.(164), namely, K, C and Tpha, have
to be determined. An initial step to configure an efficient algorithm
to solve this equation is to analyse the domain of the concerned vari-
ables.

Regarding Tpha, in Section 7.3.2.1, it was stated that the positions of
the objects within their constellation plane do not affect the ∆V con-
sumption. It is due to the fact that the phasing stage does not produce
a net ∆V consumption, i.e., the ∆V spent to reach the phasing orbit
and, subsequently, the transfer orbit is identical to the ∆V that would
be spent to directly reach the latter. This entails that the semimajor
axis of the phasing orbit must have a value located between the ones
corresponding to the semimajor axes of the initial orbit of the cur-
rent manoeuvre and the transfer orbit. In terms of orbital periods, it
means that Tpha P rminpT1, Ttraq, maxpT1, Ttraqs, where T1 is the period
of the initial orbit of the current manoeuvre.

Regarding K and C, in order to minimise KTpha, K has to be the
smallest natural number possible. In addition, for K to be positive, C
must have the same sign as p1´ Tpha{T2q and its absolute value has
to be as small as possible to minimise K. Thus, a lower bound of |C|

can be obtained when substituting K “ 1 as well as the minimum and
maximum values of Tpha in Eq.(164) and selecting the minimum |C|

from the two values obtained. Then, as C must be an integer, if C has
to be positive, it is rounded up, otherwise, it is rounded down.

Hence, the aforementioned concepts can be used to configure the
following algorithm:

1. The lower bound of C is substituted in Eq. (164).

2. The minimum and maximum values of Tpha are introduced in
that equation, resulting in the extremes of an interval of possible
values of K.

3. If there are natural numbers within such interval, K is the small-
est of them.

4. Otherwise, increase |C| in 1 and repeat the previous two steps
until K is determined.

5. Once C and K are known, they are substituted in Eq.(164) to
obtain Tpha.
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7.3.3 Optimality upper bounds

The feasibility upper bounds are obtained when both the controlled
and uncontrolled variables are selected to produce the least advanta-
geous value of a particular constraint. However, in practice, the con-
trolled variables will be carefully selected so as to produce the most
advantageous results for the mission. The optimality upper bounds
take into account this concept by means of the interaction of two an-
tagonistic optimisation processes. Specifically, the uncontrolled vari-
ables are chosen to worsen the mission performance, while the con-
trolled ones are selected to improve the constraint value. As a result,
the optimality bounds represent the tightest bounds that can be ob-
tained for a particular constraint value, but at a greater computational
complexity.

In this particular case, the only controlled variable to be optimised
is the removal sequence. As the fuel consumption constraint does
not depend on it, its corresponding feasibility and optimality upper
bounds are identical. In turn, the mission time constraint depends on
the removal sequence so the optimality bounds have to be computed.

In addition, the uncontrolled variables to be considered during this
computation are the initial positions of the objects and the chaser as
well as the aggregated RAAN traversed by the chaser while drifting.
It has to be noted that the time elapsed between the removal of two
consecutive objects does not depend on their absolute initial positions,
but on their relative geometry (i.e., the elapsed time would be the
same if a constant is added to the initial position of the two objects).
It entails that this problem can be decomposed into smaller ones that
account for the initial position of the chaser and the objects in a single
constellation plane. Then, such individual solutions can be connected
by adding a constant quantity to the whole set of positions of each
of them, so that the final position of one solution corresponds to the
initial of the subsequent one.

Strictly speaking, the quantity added to the initial position of the
chaser to connect the different solutions is not identical to the con-
stant added to the position of the objects. Instead, such constant has
to be added to the position that the chaser would achieve within
the constellation plane after the drifting and the necessary transfers,
but without performing any phasing manoeuvres. Then, the transfers
and drift would have to be propagated backwards to achieve the ini-
tial position of the chaser. However, this process can be circumvented
by directly considering such chaser position within the constellation
plane during the problem resolution. As a consequence, the aggre-
gated RAAN traversed by the chaser while drifting can be unclou-
pled from this problem. Thus obtaining the optimality upper bound
by simply considering the largest possible traversed RAAN.
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Figure 17: Optimality upper bound process

All in all, each of those subproblems involve an unconstrained
Bilevel Mixed Integer Nonlinear Programming problem, represented
by the following objective function:

max
u

tmin
X

t∆tpu, Xquu (165)

where X is a matrix of binary variables that represents the removal
sequence and u is the vector of initial arguments of latitude of the
chaser and the objects, which represents their respective initial posi-
tions within their orbits.

The resolution process of this problem follows the structure shown
in Figure 17. The upper lever, hereinafter referred to as parameter
search, explores u and sends promising values to the lower lever. In
turn, the lower level obtains the optimal removal sequence for the
received u and provides the resulting ∆t to the upper level. This way,
the upper level can use the ∆t information to select a subsequent u
that can potentially produce a worse ∆t.

7.3.3.1 Parameter search

Assuming that u1 represents the position of the chaser, it can be seen
that every permutation of the elements of u (aside from u1) repre-
sents the same problem. Hence, eliminating that permutation sym-
metry results in a reduction of the search space size by a factor of N!.
It can be readily achieved by ordering the arguments of latitude in a
monotonic way, as imposed by the following constraint:

ui ď ui`1 @i : 2 ď i ď N (166)

where i indexes the components of u.
Therefore, considering the sequence optimisation problem as a black-

box function, the parameter search problem involves the maximisa-
tion of the objective function defined by Eq. (165), subject to Eq. (166).
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As Eq. (165) is non-smooth and discontinuous, derivative-free method-
ologies are proposed to solve this problem. In addition, said function
is computationally expensive to evaluate because it requires the res-
olution of an Integer Programming problem. This arises a dilemma
about the trade-off between objective function evaluations and solu-
tion quality. As a result, two different methodologies are proposed to
solve the parameter search problem.

On the one hand, Generalised Pattern Search [72] constitutes a
derivative-free direct search methodology that follows a similar strat-
egy to steepest descent approaches. This way, a single solution is it-
eratively improved by means of sampling its neighbouring points.
Thus being prone to the obtention of disadvantageous local optimal
solutions and, consequently, being sensitive to the initial guess used
to initialise the search. On the other hand, Evolutionary Algorithms
provide a better search space exploration by means of maintaining
a population of possible solutions, but at the cost of a considerably
larger number of objective function evaluations.

The selection of a good-quality initial guess not only is of capi-
tal importance for the performance of the Generalised Pattern Search
method, but also can have a favourable effect when including it within
the initial population of an Evolutionary Algorithm. This phenomenon
is going to be quantified by means of the use of two possible initial
guesses.

The most straightforward of them is the one that results in the fea-
sibility upper bound. This solution provides an artificial selection of
the removal sequence to maximise the mission time. This implies that
a simple modification of the sequence can result in notable improve-
ments of such time. Hence, the u provided by this solution is very
unlikely to be the global optimum.

The other considered initial guess involves all the objects with an
identical orbital position, such that, the combination of this position
and the one selected for the chaser maximise ∆tRI. This kind of solu-
tion makes it impossible to improve the mission time by modifying
the removal sequence and, despite being an unrealistic and degener-
ate case, is very likely to be near-optimal, or even the global optimum,
if the ratio ∆tRCp∆u “ 0q{ maxp∆tRCq is close to 1.

7.3.3.2 Sequence optimisation

The sequence optimisation problem involves the determination of
the removal sequence, as well as the selection of the objects to be
removed in case it is not required to remove all of them. As the ini-
tial arguments of latitude of the different objects are obtained by the
parameter search problem, the ∆t spent during each of the possible
transfers can be unambiguously computed and the sequence optimi-
sation problem can be formulated as an Integer Linear Programming
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problem. In particular, this problem intends to minimise the total ∆t
spent during the mission:

min
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where D is the set of possible objects to be removed (indexed by i
and j), Xij is a binary variable that is 1 if and only if a transfer from
object i to j is performed and ∆tij is the time elapsed during each of
those transfers.

Considering a directed graph formed by D and the different trans-
fers between those objects, the removal sequence can be modelled
as a directed cycle comprising the selected objects and an additional
dummy object (labeled as object 1). That object represents both the
chaser initial and final state, i.e., its outgoing edge represents the
transfer between the injection orbit and the first object, while its in-
coming edge represents the final transfer of the chaser to its corre-
sponding disposal orbit. Hence, a set of linear constraints that guar-
antees the formation of such cycle is subsequently defined.

First, a transfer between an object and itself cannot be performed:

Xii “ 0 @i P D (168)

Moreover, if an object is removed, it has exactly one outgoing trans-
fer. Otherwise, it cannot have such transfers:

ÿ

jPD
i‰j

Xij “ Yi @i P D (169)

where Yi is a binary variable that is 1 if and only if the object i is
removed.

Likewise, each removed object has exactly one incoming transfer:

ÿ

jPD
i‰j

Xji “ Yi @i P D (170)

Furthermore, the number of selected objects is equal to the number
of objects required to be removed (N) plus the dummy object:

ÿ

iPD

Yi “ N` 1 @i P D (171)

Note that if the whole set of objects has to be removed, case known
as Travelling Salesman Problem (TSP) [39], this latter constraint is
equivalent to imposing that Yi “ 1 @i P D.
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The aforementioned set of constraints does not prevent the appear-
ance of disjoint cycles, also known as subtours. The reason for their
appearance is that they allow to substitute expensive transfers of the
main cycle for cheaper ones that form subtours. This phenomenon is
specially impactful for problems with lots of potential advantageous
subtours, such as problems that involve a large candidate object pool
or objects distributed in several orbital planes. Thus, it is important
to select the most adequate methodology to deal with this problem.

A common strategy to eliminate potential subtours entails the con-
sideration of additional ad-hoc constraints of the following form [39]:

ÿ

iPR

ÿ

jPR
i‰j

Xij ď |R| ´ 1 (172)

where R is the set of objects that form a subtour. The number of
possible subtours of length |R| corresponds to the number of possible
|R|-combinations of objects divided by |R|, i.e., |D|!{p|R|p|D| ´ |R|q!q.
Hence, the straightforward use of this strategy would result in an
impractical number of constraints, even for problems of moderate
size. Consequently, two different approaches can be considered as a
function of the problem size.

On the one hand, for problems involving five or less objects, the ad-
dition of Constraints (172) particularised for two-object subtours (i.e.
round trips between two objects) is enough to prevent the appearance
of subtours. Such constraints can be defined as follows:

Xij `Xji ď 1 @i P D @j P D : pi ă jq (173)

On the other hand, for larger problems, Constraints (172) can be dy-
namically generated during the resolution of the problem. This way,
if a solution with subtours is found, the solution will be rejected and
the corresponding subtour elimination constraints will be added to
the model. This strategy is usually very efficient, but its performance
significantly degrades for problems with a large number of relevant
subtours, specially for instances involving objects distributed within
different orbital planes.

It has to be noted that the considered variables do not store infor-
mation about the removal sequence (i.e. the order in which each of
the transfers is performed). However, the appearance of subtours can
be prevented by means of unambiguously defining such removal se-
quence. Hence, no-subtour formulations can be configured by means
of the inclusion of additional variables.

Such formulations have been thoroughly explored for the Travel-
ling Salesman Problem [69]. The most notable of them [81] involves
the introduction of additional variables zi that directly determine the
order in which each node is visited. Assuming that z1 “ 0, i.e., the
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chaser starts at the node 1, the domain of the rest of those variables is
zi P r1, |D| ´ 1s and their corresponding order can be obtained with
the following set of constraints:

zi ´zj ` |D|Xij ď |D| ´1 @i P D : pi ą 1q , @j P D : ppj ą 1q ^ pi ‰ jqq

(174)

The TSP no-subtour formulations achieve a weaker linear relax-
ation than the one that would be obtained with the use of Constraints (172)
or require a large number of constraints [69]. Thus, the dynamic elim-
ination is often preferred. However, they can be useful when there is
a large number of relevant subtours.

A more general no-subtour formulation, suitable for problems in
which it is not necessary to remove all the candidate objects, was
proposed in [8]. It includes the sequence information within the Xij

variables, transforming them into the new Xijk variables and substi-
tuting each Xij instance for the expression

ř

kPK Xijk. This way, Xijk

is 1 if and only if the k-th transfer is performed between objects i and
j. Moreover, one transfer corresponds to each position k:

ÿ

iPD

ÿ

jPD
i‰j

Xijk “ 1 @k P r1,N` 1s (175)

Furthermore, the first and last transfers correspond to the depar-
ture from the injection orbit and the disposal of the chaser, respec-
tively:

ÿ

jPD

X1j1 “ 1;
ÿ

jPD

Xj1pN`1q “ 1 (176)

Finally, the subtour appearance can be readily prevented by impos-
ing that the final object of a transfer is the first of the subsequent
one:

ÿ

iPD
i‰j

Xijk “
ÿ

iPD
i‰j

Xjipk`1q @j P D, @k P r1,Ns (177)

This formulation is especially tailored for instances in which the
candidate object pool is large, but only a small subset of those ob-
jects must be removed. Hence outperforming the dynamic elimina-
tion strategy in those instances. However, its performance deterio-
rates when increasing the number of objects to be removed.

Table 36 summarises the recommended formulation selection for
different kinds of problem instances. Note that it is not clear which
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formulation to use for cases that involve a large set of candidate ob-
jects, distributed among different orbital planes, such that a large sub-
set of those objects is required to be removed. The reason for that is
the degradation of the performance of both the dynamic elimination
strategy and the general no-subtour formulation for such kind of in-
stances.

Table 36: MIP formulation selection criteria

|D| Object distribution N Formulation

ď 5 Any r1, |D|s Two-object constraints [39]

Small Any r1, |D|s Dynamic elimination [39]

Large Coplanar |D| Dynamic elimination [39]

Large Noncoplanar |D| TSP No-subtour [69, 81]

Large Any ! |D| General No-subtour [8]

Large Noncoplanar « |D| Undetermined

7.4 active debris removal mission : mothership case

The mothership case, just like the chaser case, involves the use of a
set of servicing satellites, i.e. motherships, to remove defunct satellites
within a constellation. However, in this case, the defunct satellites are
transported to their corresponding disposal orbits by deorbiting kits,
which have been previously attached to them by a mothership. This
way, each mothership rendezvous with each of its assigned objects to
deploy the deorbiting kits and will only transfer to a disposal orbit
when performing the removal of its last associated object. During that
manoeuvre, the mothership will transport such object to the disposal
orbit so that both can simultaneously reenter the atmosphere. Hence,
the sequence of actions carried out by each mothership is analogous
to the one explained in Section 7.3, save for the intermediate transfers
to the disposal orbit.

7.4.1 Predefined mission choices

Analogously to the chaser case, the following parameters are extracted
from a previous mission analysis.

Mothership parameters:

• Maximum wet and dry mass of each mothership.

• Mass of the deorbiting kits.

• Semimajor axis, inclination and eccentricity of the initial injec-
tion orbit.
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• RAAN difference between the initial injection orbit and the tar-
get constellation plane.

• Semimajor axis, inclination and eccentricity of the drifting orbit
used to transfer between two different constellation planes.

• Semimajor axis, inclination and eccentricity of the phasing orbit
used to transfer between two objects within the same constel-
lation plane. Note that such phasing orbit should keep a mini-
mum safety distance from the concerned constellation orbit, so
as not to generate a risk of potential collisions of the mothership
with active satellites located in that constellation plane.

• Semimajor axis, inclination and eccentricity of the disposal orbit
associated to each mothership.

Constellation parameters:

• Defunct satellite mass.

• Semimajor axis, inclination and eccentricity of each constella-
tion plane.

• RAAN difference between two adjacent constellation planes.

The uncontrolled variables, save for the RAAN difference between
the different orbital planes, are analogous to the ones of the chaser
case. The same is true for the problem instances and domain pruning
strategy. However, in this case, it is logical to remove the defunct ob-
jects in order of monotonically increasing (or decreasing) arguments
of latitude. Therefore, there would be no controlled variables and the
feasibility and optimality bounds would be identical. This provides a
good opportunity to disregard some of the predefined choices, thus
potentially improving the performance of the mission. Specifically,
the semimajor axes of the phasing orbits used to transfer between
two objects within the same constellation plane as well as the inclina-
tions of the initial injection orbit and the drifting orbits are considered
as the controlled variables of the problem at hand.

7.4.2 Feasibility bounds

The requirements imposed by the previous mission analysis involve
limitations in the maximum mission time and the ∆V consumed dur-
ing the mission. Therefore, the most and least advantageous values
of the object distribution within the different constellation planes and
the initial positions of the different objects have to be determined.

The feasibility lower bound is obtained when the initial positions of
every object are such that the phasing is achieved when transferring
to the predefined phasing orbit (recall that the phasing orbit does
not intersect the orbit of the constellation plane) and, upon arrival,
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instantaneously transferring back to the constellation orbit, i.e., the
phasing is directly achieved by the transfer orbit.

In turn, the upper bound also depends on the object distribution.
Specifically, the objects have to be allocated within the constellation
planes such that the aggregated argument of latitude compensated by
the whole set of phasing manoeuvres is maximised. A naive approach
would be to consider that a complete revolution in argument of lat-
itude is compensated for each orbital plane. However, a tighter fea-
sibility bound can be achieved without a meaningful computational
effort.

First, it is assumed that the objects are equally spaced within its
plane. Otherwise, the first object to be removed could be regarded as
a controlled variable and one of the objects adjacent to the largest gap
in argument of latitude would be assigned to it. This would result in
a better solution, but not necessarily an upper bound of the feasible
solution set.

Second, it is postulated that, due to the accumulation of uncertain-
ties during the clearance of former planes, the mothership arrives
the second and subsequent constellation planes with a phasing error.
This way, the arrival is produced at an argument of latitude equidis-
tant from two objects and an additional phasing manoeuvre has to be
performed to correct it.

Taking into account both assumptions, the object distribution can
be obtained by minimising the argument of latitude not compensated
by the phasing for each constellation plane:

min
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where N 1
p is the number of objects allocated to the plane p P P. Evi-

dently, the total number of allocated objects has to be the number of
objects to be removed:

ÿ

pPP

N 1
p “ N (179)

Moreover, N 1
p must be natural numbers. However, when relaxing

such integrality condition, the problem defined by Eqs. (178,179) has
the following analytical solution:

N 1
1 “

N
?
2

P´ 1`
?
2

; N 1
p “

N

P´ 1`
?
2

@p P P : p ą 1 (180)

Then, two possible integer solutions can be obtained, resulting from
rounding up or down the value of N 1

1. The rest of variables can be
rounded so that Eq. (179) is fulfilled and both solutions are computed
to select the one that minimises Eq. (178).
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7.4.2.1 ∆V constraint

The ∆V spent during the mission can be readily obtained from the
following expression:

∆V “ ∆VRI ` pN´ Pq∆VRC ` pP´ 1q∆VRN `∆VD (181)

where the subindices RI, RC and RN represent the ∆V spent to ren-
dezvous with the next object to be removed if it is the first object in
the sequence, coplanar with the previously removed object or non-
coplanar with it, respectively. Moreover, ∆VD represents the ∆V used
to transfer the mothership, along with the last object of the sequence,
to its corresponding disposal orbit.

Each of the terms of the right hand side of Eq. (181) comprises
several impulses (modelled using Eq. (158)) arranged to configure
Hohmann-like transfers with inclination changes as well as interme-
diate phasing and drifting orbits. The semimajor axis and inclination
changes performed during each of those impulses are optimised so
that their corresponding term is minimised, while complying with
the predefined mission choices.

It has to be noted that the predefined mission choices, along with
the optimised terms of the right hand side of Eq. (181), unambigu-
ously define the spent ∆V for each pN,Pq tuple. Hence, both feasi-
bility bounds associated to the ∆V constraint collapse into a single
quantity regardless of the values of the uncontrolled variables.

7.4.2.2 Mission time constraint

The total mission time can be computed with the following equation:

∆t “ ∆tTdf `∆tRI ` pN´ Pq∆tRC ` pP´ 1q∆tRN (182)

where ∆tTdf is the aggregated time spent while coasting in the differ-
ent drifting orbits and the subindices RI, RC and RN are analogous to
the ones found in Eq. (181), but applied to the transfer time. Each of
the individual drifting times included in ∆tTdf can be obtained using
Eq. (160). In turn, the rest of the ∆t components of Eq. (182) can be
obtained by means of the resolution of Eq. (162).

Unlike the ∆V constraint, the mission time depends on the object
distribution as well as the initial positions of the mothership and the
objects to be removed. Hence, the feasibility bounds are achieved
when considering the most and least advantageous values of those
uncontrolled variables.
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7.4.3 Optimality bounds

As the removal sequence is predefined, this problem does not have
controlled variables and the optimality bounds correspond to the
feasibility bounds. However, so as to potentially improve the perfor-
mance of the mission, the semimajor axes of the phasing orbits as
well as the inclinations of the initial injection orbit and the drifting
orbits are considered as controlled variables of the problem. More-
over, the considered uncontrolled variables are the object distribution
within the different constellation planes and the initial positions of
the different objects.

Despite the similarities of the present problem with the chaser case,
its structure and the resolution methods applied to it are radically
different. Specifically, this problem is also a Mixed Integer Nonlinear
Programming problem because the semimajor axes have to be chosen
such that the phasing orbits perform an integer number of revolu-
tions. Nevertheless, its resolution can be decomposed into two se-
quential phases. The first phase allows the selection of phasing orbits
with fractional numbers of revolutions, thus constituting a Nonlinear
Programming problem. Then, the second phase corrects the solution
to achieve the revolution integrality, resulting in an Integer Linear
Programming problem.

7.4.3.1 Phasing and drifting orbit optimisation

The first phase for the obtention of the optimality bounds involves
the selection of the semimajor axes of the phasing orbits as well as the
inclinations of the initial injection orbit and the drifting orbits so that
the mission time is minimised, as shown in the following objective
function:

min

#

ÿ

kPK

∆tpha pakq `
ÿ

ℓPL

∆tdf piℓq

+

(183)

where K represents the set of phasing manoeuvres (indexed by k), L is
the set of drifting orbits (indexed by ℓ), ∆tpha is the time spent during
the phasing manoeuvres, ∆tdf is the time elapsed while drifting, ak
stands for the semimajor axis of the phasing orbit k and iℓ is the
inclination of the drifting orbit ℓ.

Specifically, this problem entails the redistribution of the ∆V avail-
able for phasing and drifting manoeuvres to achieve the desired solu-
tion. This is modelled by the following constraint:

ÿ

kPK

∆Vpha pakq `
ÿ

ℓPL

∆Vdf piℓq “ ∆V˚ (184)
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where ∆Vpha and ∆Vdf represent the ∆V spent to achieve the phasing
and drifting orbits, respectively, and ∆V˚ is the ∆V available for the
considered manoeuvres.

This problem can be readily solved with conventional Nonlinear
Programming techniques. However, the dual-based methodology pro-
posed in [10] provides an efficient way to obtain the global optimum
of the problem. For the sake of completeness, the application of such
methodology to the problem at hand is subsequently explained in a
concise manner.

The Lagrangian function of the problem at hand can be defined as:

L “
ÿ

kPK

∆tpha pakq `
ÿ

ℓPL

∆tdf piℓq ´λ

˜

ÿ

kPK

∆Vpha pakq `
ÿ

ℓPL

∆Vdf piℓq ´∆V˚

¸

(185)

where λ is the dual variable associated to Eq. (184).
The optimality conditions of this problem can be obtained by means

of nullifying the gradient of the Lagrangian function, yielding:

d∆tpha

dak
pakq ´ λ

d∆Vpha

dak
pakq “ 0 @k P K (186a)

d∆tdf

diℓ
piℓq ´ λ

d∆Vdf

diℓ
piℓq “ 0 @ℓ P L (186b)

The derivative chain rule can be used to isolate λ in Eqs. (186),
resulting in the following conservation law:

λ “
d∆tpha

d∆Vpha
pakq “

d∆tdf

d∆Vdf
piℓq @k P K, @ℓ P L (187)

Eqs. (187) can be inverted and substituted into Eq. (184) to config-
ure the following univariate function:

ϕ pλq “
ÿ

kPK

∆Vpha pakpλqq `
ÿ

ℓPL

∆Vdf piℓpλqq ´∆V˚ (188)

A root of Eq. (188) automatically fulfills the optimality conditions,
i.e., Eqs. (184,187). Hence, the solution of the problem simply involves
the determination of λ, regardless of the number of phasing and drift-
ing orbits. Then, the values of ak and iℓ can be retrieved with the
inverse of Eqs. (187).

7.4.3.2 Phasing orbit correction

The previous problem regards ak as a continuous variable. However,
only the values that result in an integer number of revolutions of the
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phasing orbits are feasible. A feasible solution can be obtained by
computing the number of revolutions associated to each ak, round-
ing up such number and computing the corrected values of each ak.
This gives a solution with a greater mission time, but a lower ∆V
consumption. Therefore, considering the solution with rounded up
revolutions as the reference, the problem at hand involves deciding
which revolutions to round up or down such that the ∆V surplus can
be optimally redistributed, hence improving the mission time. This
can be modelled with the following objective function:

min
ÿ

kPK

∆p∆tkqΨk (189)

where ∆p∆tkq is the ∆t difference between the rounded down and
the rounded up revolutions and Ψk is a binary variable that is 1 if the
revolutions associated to the k-th phasing orbit are rounded down.
The following constraint models the ∆V redistribution:

ÿ

kPK

∆p∆VkqΨk ď ∆V 1 (190)

where ∆p∆Vkq is the ∆V difference between the rounded down and
the rounded up revolutions and ∆V 1 is the ∆V surplus to redistribute.
Eqs. (189,190) define an Integer Linear Programming problem that
can be readily solved with branch-and-bound methods.

7.5 results

The mission analysis from Ref. [57] is subsequently compared with
the results obtained with the proposed methodology. Specifically, pre-
defined performance baselines are defined for both application cases
and the achieved level of fulfilment of such baselines is discussed.
Table 37 shows the predefined mission parameters shared by both
application cases.

7.5.1 Chaser case

Table 38 shows the requirements imposed for the chaser case. In ad-
dition, its associated performance baseline involves removing three
objects located in different orbital planes. Moreover, it is assumed
that the chaser will be deployed with a rideshare launch. Thus, the
initial RAAN associated to the injection orbit is considered as an un-
controlled variable. This implies the analysis of two possible mission
geometries. On the one hand, the case with Type 1 Positioning consid-
ers that such initial RAAN is not included within the interval defined
by the constellation planes to be cleared. On the other hand, the Type
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Table 37: Predefined parameters for both application cases

Parameter Value

Object mass (kg) 150

Constellation altitude (km) 1200

Constellation inclination (deg) 87.9

Constellation eccentricity 0

∆Ω between adjacent planes (deg) 15.2

Number of constellation planes 12

Injection orbit altitude (km) 500

Injection orbit inclination (deg) 86

Injection orbit eccentricity 0

2 Positioning involves an initial RAAN inside that interval, resulting
in a more disadvantageous case.

Table 38: Mission requirements for the chaser case

Parameter Value

Maximum mission time (years) 5

Dry mass of the chaser (kg) 245

Maximum wet mass of the chaser (kg) 520

Specific impulse of the chaser (s) 285

Tables 39 and 40 summarise the mission analysis carried out in
Ref. [57]. In particular, the inclination of the drifting orbits depend
on the initial positioning of the chaser. In turn, the disposal orbit as-
sociated to an object depends on the constellation plane in which the
next object to be removed is located, as well as the initial positioning
of the chaser.

Table 39: Drifting orbit parameters for the chaser case

Parameter Positioning 1 Positioning 2

Perigee altitude (km) 500 500

Apogee altitude (km) 1100 1100

Inclination (deg) 87.1082 86.5896

Consequently, according to [57], the aforementioned parameter se-
lection makes it possible for the chaser to remove three coplanar ob-
jects within the required mission time, regardless of the initial posi-
tioning of the chaser. However, in order to remove three noncoplanar
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Table 40: Disposal orbit parameters for the chaser case

Parameter Coplanar Noncoplanar Pos. 1 Noncoplanar Pos. 2

Perigee altitude (km) 351.422 351.4722 351.4959

Apogee altitude (km) 1100 1100 1100

Inclination (deg) 87.9 87.1082 86.5896

objects, it would be necessary to increase the wet mass of the chaser
by 5 and 35 kg for the initial positioning of Type 1 and 2, respectively.

Hence, the results of the proposed methodology are compared with
such conclusions. The first step in its application is the configuration
of the problem instances. Specifically, as the pN,Pq combinations are
going to be evaluated, an upper bound of the maximum N to be
evaluated has to be obtained. Such maximum number of objects can
be readily computed by iterating backwards Eq. (157), starting from
the dry mass of the chaser, until a mass of the chaser greater than the
maximum wet mass is achieved. This yields that, under the imposed
requirements, it is impossible to remove more than three objects with
a single mission.

Consequently, Figure 18 shows the results of computing the feasi-
bility bounds for the pN,Pq problem instances of up to three objects,
where the green instances are feasible in any case, the red ones are
always infeasible and the yellow ones are inconclusive. The evaluated
instances are highlighted with black squares, while the feasibility of
the rest was concluded with constraint propagation. So far, the feasi-
bility showed in Figure 18 is in line with the conclusions of [57]. That
is, for Type 2 positioning, it is only possible to remove three objects
if they are coplanar. In turn, for Type 1 positioning, there are cases
in which it is not feasible to remove three noncoplanar objects. How-
ever, the mission time upper feasibility bound of the p3, 3q instance,
for Type 1 positioning, violates the maximum mission time by just
2.8 hours. Moreover, further splitting such problem instance, it is de-
termined that it is feasible for any aggregated ∆Ω traversed by the
chaser with a value lower than 359.961 degrees. Thus, unlike [57] pro-
poses, it is not worth to modify the design of the chaser for such a
small and improbable violation of the maximum mission time.

The optimality bounds do not provide additional information about
the problem feasibility, as the p3, 3q instance has a predefined removal
sequence, i.e., clearing the planes in a monotonic RAAN order. How-
ever, such analysis can provide insightful information about the influ-
ence of sequence optimisation for problems with a similar structure,
as well as about the performance of the proposed techniques to solve
this kind of Bilevel Mixed Integer Nonlinear Programming problems.

As the considered sequence involves at most four objects (three ob-
jects to be removed plus the dummy object), the formulation with
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Figure 18: pN,Pq instances diagram for the chaser case

two-object constraints is used for the sequence optimisation level. Re-
garding the parameter search level, it is solved using the two method-
ologies mentioned in Section 7.3.3.1 (Generalised Pattern Search and
an Evolutionary Algorithm), as well as the two initial guesses dis-
cussed there (i.e., the object distribution that gives worst feasible ren-
dezvous time and all the objects with an identical position).

Regarding the Generalised Pattern Search algorithm, a 2N-direction
complete polling strategy has been considered to characterise the
neighbourhood of a point. That is, a positive and negative variation
of each of the variables is evaluated and the point that gives the most
advantageous value for the objective function is considered in the
subsequent iteration.

Regarding the Evolutionary Algorithm, a Genetic Algorithm has
been selected. Specifically, its initial population considers 49 random
points and one of the initial guesses, and the evaluation is halted
when the objective function has not achieved a significant improve-
ment for 50 generations.
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Table 41 shows the ∆t ratio between the worst aggregated value for
the optimal rendezvous time (corresponding to the optimality upper
bound) and the worst aggregated value for the feasible rendezvous
time (corresponding to the feasibility upper bound). It has to be noted
that the problem can be decomposed into each individual constella-
tion plane. Thus, the depicted solutions represent the removal of two
or three objects within a single plane, for the cases in which it is the
first plane cleared or one of the subsequent ones.

Table 41: Worst rendezvous time ratio for plane-decomposed cases

Number of Orbital Optimisation Initial Number of Function ∆tRC

objects plane technique guess iterations evaluations ratio

2 First P. Search Identical 26 147 0.9051

2 First P. Search Worst 60 270 0.9051

2 First Genetic Identical 51 2450 0.9051

2 First Genetic Worst 51 2450 0.9051

2 Rest P. Search Identical 24 129 0.9247

2 Rest P. Search Worst 52 178 0.8138

2 Rest Genetic Identical 51 2450 0.9247

2 Rest Genetic Worst 51 2450 0.9247

3 First P. Search Identical 32 301 0.8798

3 First P. Search Worst 50 242 0.7156

3 First Genetic Identical 51 2450 0.8798

3 First Genetic Worst 68 3249 0.7986

3 Rest P. Search Identical 28 250 0.8967

3 Rest P. Search Worst 40 214 0.3714

3 Rest Genetic Identical 51 2450 0.8967

3 Rest Genetic Worst 79 3766 0.8715

Evidently, the Genetic Algorithm requires a considerably larger
number of function evaluations, i.e., resolutions of the sequence se-
lection problem. However, when using the Identical initial guess, both
optimisation techniques converge to the same solution. The reason for
such coincidence is that both techniques have been unable to find a so-
lution with a greater rendezvous time than the one directly achieved
by such initial guess. In fact, ∆tRCp∆u “ 0q{ maxp∆tRCq “ 0.8361 for
the considered problem. Hence, it is reasonable to think that the ini-
tial guess with identical object positions is very likely to be the global
optimum. Consequently, it could be used to circumvent the resolution
of this rather complex Bilevel Mixed Integer Nonlinear Programming
problem in cases with ∆tRCp∆u “ 0q{ maxp∆tRCq close to 1.
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Table 42 shows the aggregated rendezvous time ratio for the multi-
plane problem instances, obtained by assembling the plane-decomposed
solutions. Obviously, when there is a single object per plane, the feasi-
bility and optimality upper bounds are identical and so are the worst
rendezvous times associated to each of those bounds. Moreover, the
larger the number of objects within a single plane, the smaller the
computed ratio and, thus, more important the influence of the se-
quence selection in the optimality bounds.

As previously stated, this upper bound improvement is not neces-
sary to accurately determine the feasibility of the considered prob-
lem instances, mainly because the majority of the mission time is
spent during the drifting phases. However, this could have a great
impact for practical cases in which a larger number of objects is re-
moved from a single constellation plane and the chaser is directly
injected into it. Furthermore, such larger number of objects entails a
more complex optimisation problem, therefore emphasising the im-
portance of a good initial guess like the one proposed in this work.

Table 42: Worst rendezvous time ratio for multi-plane cases

P/N 1 2 3

1 1 0.9051 0.8798

2 - 1 0.9435

3 - - 1

7.5.2 Mothership case

Table 43 shows the requirements imposed to the mothership case. Its
associated performance baseline involves two different scenarios. On
the one hand, Scenario 1 considers nine objects to remove within each
of the constellation planes. Each of those planes has associated its
own mothership, resulting in a mission involving twelve servicing
satellites. It is assumed that the whole mothership set is launched
into a single injection orbit with the RAAN of the first constellation
plane to be cleared. This way, the remaining motherships will coast
in the injection orbit until achieving the RAAN of their associated
orbit. Then, they will perform a transfer to rendezvous with one of
the objects and, after that, phasing manoeuvres will be carried out
to remove the remaining ones. Such phasing manoeuvres involve a
transfer to a circular orbit with an altitude of 1195 km, so as to keep a
safety distance of 5 km from potential active satellites while coasting
in the phasing orbit.

On the other hand, Scenario 2 also involves removing nine objects
with each mothership. However, in this case, those objects are dis-
tributed among two adjacent constellation planes. As a result, this
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scenario only requires six servicing satellites. After clearing its first
associated constellation plane, each mothership will use a drifting or-
bit to transfer to the subsequent one. In particular, the selected drift-
ing orbit is identical to the constellation orbit save for its inclination,
which will have a value of 87.67 deg.

Table 43: Mission requirements for the mothership case

Parameter Value

Maximum mission time (years) 2

∆V budget (km¨s´1) 1

The aforementioned mission analysis [57] states that, for Scenario 1,
every mothership is able to clear its assigned plane while fulfilling the
maximum mission time and ∆V constraints. However, for Scenario 2,
if the ∆V constraint is fulfilled, the upper bound for the mission time
ranges from 2.2 years (for the first mothership) to 3.4 years (for the
sixth mothership).

The results of the proposed methodology are compared with such
conclusions. Figure 19 shows the results of computing the feasibil-
ity bounds for the pN,Pq problem instances of up to nine objects. In
particular, this figure depicts the problem instance diagrams for the
motherships that serve the planes closer to and farther from the in-
jection orbit, respectively labeled as minimum and maximum drift
cases. It has to be noted that the feasibility of both mission time and
∆V requirements is considered in such diagrams, i.e., if one of those
constraints is infeasible for an instance, such instance is deemed infea-
sible. In turn, for an instance to be feasible, both requirements have to
be feasible for the whole variable domain. The feasibility showed in
Figure 19 is in line with the conclusions of [57]. However, it has been
observed that the infeasibility of removing objects dristributed into
two planes is due to violations of the maximum mission time con-
straint. In contrast, the predefined mission parameters result in an
unused ∆V of 214.9 m¨s´1. Hence, instead of exploring the particular
cases in which the removal of objects distributed into two planes is
feasible, it would be of great interest to use the techniques explained
in Section 7.4.3 to optimally redistribute such ∆V surplus, thus min-
imising the mission time.

Figure 20 depicts the inverse of the summands of Eq. (188), i.e., λ
as a function of ∆V for each of the problem variables. It has to be
noted that, for a particular constellation plane, the conditions of all
of the phasing maneuvers (save for the first one) are identical. Hence,
the ∆V assigned to the phasing of four of the five objects within the
first constellation plane is represented by the solid blue line. Like-
wise, the phasing of three of the four objects within the second plane
is characterised by the solid red line. Furthermore, the value of λ cor-
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Figure 19: pN,Pq instances diagram for the mothership case

responding to a root of Eq. (188) is also portrayed. Consequently, the
∆V assigned to each of the manoeuvres corresponds to the intersec-
tion of its corresponding function with the λ value. As the depicted
functions show a monotonically increasing behaviour, such intersec-
tion is unique and the obtained solution is a global optimum.

Table 44 provides a comparative between the initial inclinations of
the injection and drifting orbits, provided by [57], and the values re-
sulting from the computed λ. It also depicts the ∆V allocated to each
of those orbits. As the drifting phases have a much greater influence
in the mission time than the phasing manoeuvres, the bulk of the ∆V
surplus is allocated to increase the nodal drift of the injection and
drifting orbits.

Table 44: Optimised drifting orbit inclinations

Orbit i Ini. (deg) i Opt. (deg) ∆V (m¨s´1)

Injection 86 85.225 63.46

Drifting 87.67 87.174 125.53

Table 45 shows the semimajor axes associated to each of the phas-
ing orbits, obtained from the computation of λ, as well as their al-
located ∆V . Specifically, phasing orbits 1 to 4 are the ones used to
rendezvous with objects 2 to 5 within the first constellation plane.
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Figure 20: Mothership case parameter correction

Likewise, phasing orbits 5 to 8 are the ones used to rendezvous with
the four objects situated within the second plane. Furthermore, a Corr.
and ∆V Corr. stand for the corrections that have to be added to the
previous columns so that an integer number of revolutions during
the phasing manoeuvres is achieved. Those corrections happen to be
considerably small. In addition, ∆t Dif. represents the difference in
mission time produced by them. The aggregated value of such time
difference amounts to 3919 seconds, which is negligible with respect
to the maximum mission time. Therefore, the solution obtained in the
phasing and drifting orbit optimisation can be considered as a good
approximation of the mission time, regardless of the integrality of the
revolutions of the phasing orbits.

Finally, Figure 21 depicts a comparison between the initial bounds
of the mission time and the bounds resulting from the optimised
mission, for the problem instance involving nine objects distributed
within two constellation planes. The optimised mission shows a re-
markable improvement of the mission time, hence fulfilling the max-
imum mission time constraint with the six servicing satellites and
accomplishing the predefined performance baseline for Scenario 2.

7.6 conclusions

This manuscript proposes a Constraint Programming framework for
the preliminary analysis of space missions. Specifically, it is able to
quantify the performance of a set of predefined mission choices with
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Table 45: Optimised phasing orbits

Phasing a Opt. ∆V a Cor. ∆V Cor. ∆t Dif.

orbit (m) (m¨s´1) (m) (m¨s´1) (s)

1 7.562784 ¨ 106 3.096 ´3.036 ¨ 101 2.916 ¨ 10´2 ´2.952 ¨ 103

2 7.562784 ¨ 106 3.096 ´3.036 ¨ 101 2.916 ¨ 10´2 ´2.952 ¨ 103

3 7.562784 ¨ 106 3.096 3.678 ¨ 101 ´3.532 ¨ 10´2 3.604 ¨ 103

4 7.562784 ¨ 106 3.096 3.678 ¨ 101 ´3.532 ¨ 10´2 3.604 ¨ 103

5 7.564505 ¨ 106 1.445 2.550 ¨ 101 ´2.447 ¨ 10´2 2.492 ¨ 103

6 7.561815 ¨ 106 4.028 4.150 ¨ 10´1 ´3.987 ¨ 10´4 4.052 ¨ 101

7 7.561815 ¨ 106 4.028 4.150 ¨ 10´1 ´3.987 ¨ 10´4 4.052 ¨ 101

8 7.561815 ¨ 106 4.028 4.150 ¨ 10´1 ´3.987 ¨ 10´4 4.052 ¨ 101

respect to the mission requirements. Moreover, if a poor performance
is shown or if the mission choices have not been previously obtained,
appropriate mission choices will be generated so that the desired per-
formance is optimised.

This process involves the partitioning of the search space of the
concerning problems into problem instances. The feasibility of each
of those problem instances with respect to a series of constraints (i.e.,
the mission requirements) is evaluated. If the feasibility (or infeasibil-
ity) of a problem instance is unambiguously determined, a domain
pruning process will evaluate the implications of its feasibility for the
rest of the problem instances. In turn, if the feasibility of a problem
instance is inconclusive, it is partitioned into simpler instances, which
will be later evaluated in a similar fashion.

The feasibility of an instance depends on a set of controlled and
uncontrolled variables and it is determined by means of bounding
the range of constraint values that would be obtained for that set of
variables. It has to be noted that such bounds are not unique. Hence,
two different sets of bounds have been proposed. On the one hand,
the feasibility bounds are obtained when using both the controlled
and uncontrolled variables to minimise (or maximise) the constraint
value. On the other hand, the optimality upper bound is obtained
when using the controlled variables to minimise the constraint value,
while the uncontrolled variables try to maximise it. Consequently, the
optimality bounds provide a tighter interval of constraint values, but
at the cost of a greater computational complexity.

The proposed methodology has been particularised for two appli-
cation cases involving constellation-servicing active debris removal
missions, namely, a chaser case and a mothership case. The chaser
case involves constraints in the fuel consumption and the mission
time. Their corresponding feasibility bounds can be readily computed
by an algebraic expression. However, the obtention of the optimality
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Figure 21: Mothership case mission time comparison. The optimised cases
used the surplus ∆V budget to improve the mission time bounds.

upper bound requires the resolution of a Bilevel Mixed Integer Non-
linear Programming problem. In such problem, the initial positions of
the objects and the removal sequence are simultaneously chosen so as
to respectively maximise and minimise the mission time. The upper
level is solved using a derivative-free method. Specifically, a Genetic
Algorithm and Generalised Pattern Search have been used. Further-
more, an initial guess that provides, under particular circumstances,
a near optimal or even the global optimal solution has been figured
out. The lower level is modelled as an Integer Linear Programming
problem and solved using Branch-and-Bound techniques.

The mothership case involves constraints in the spent ∆V and the
mission time. Just like for the chaser case, their corresponding fea-
sibility bounds can be readily computed by an algebraic expression.
Nevertheless, the optimality upper bound requires the resolution of
a Mixed Integer Nonlinear Programming problem. This problem is
divided into two sequential phases. On the one hand, the integrality
of the revolutions of the phasing orbits is relaxed, obtaining a Non-
linear Programming problem. It is solved by a dual-based method.
Then, a correction phase is performed to retrieve the integrality of
the revolutions of the phasing orbits.

This methodology has been used to evaluate a preliminary mission
analysis of both application cases, developed under ESA’s Sunrise
project. Regarding the chaser case, it has been determined that its as-
sociated mission choices achieve a better performance than the one
computed in the preliminary analysis. That is, a more precise knowl-
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edge about the performance of the preliminary analysis has been
gained, which is an effect of the thorough exploration of the search
space performed by the proposed methodology. Regarding the moth-
ership case, it has been shown that the preliminary analysis provides
a poor performance. As a result, new values for the semimajor axes
of the phasing orbits and the inclinations of the injection and drifting
orbits have been computed. Thus obtaining significant performance
improvements.





Part IV

C O N C L U S I O N S

All such problems can be formulated as mathematical
programming problems. Naturally, we can propose many
sophisticated algorithms and a theory but the final test of

a theory is its capacity to solve the problems which
originated it.

— George Dantzig, Linear Programming
and Extensions, 1963





8
C O N C L U S I O N S A N D F U T U R E W O R K

8.1 overall conclusions

To sum up, this thesis focuses on the resolution of optimization prob-
lems involving the preliminary analysis of large-scale active debris
removal missions. Specifically, the techniques hereby devised to ef-
ficiently solve such problems have dealt with three particular chal-
lenges. Namely, the combinatorial complexity of the problems, the
computational load of the maneuver optimization and the interaction
between the combinatorial decisions and the orbital dynamics.

The combinatorial complexity of the problems has been mainly ad-
dressed with the MILP no-subtour formulation presented in Chap-
ter 4. This formulation has shown a remarkable performance when
dealing with for problem instances involving a large number of ob-
jects with diverse orbital configurations situated in the LEO region
and has been subsequently used in the application cases discussed in
Chapters 5 and 6. However, this formulation is not universally suit-
able for every application case. Specifically, Chapter 7 discusses the
use of different MILP formulations for object pools of different mag-
nitudes and object distributions.

Regarding the maneuver optimization, Chapter 4 presents the most
straightforward approach to deal with it, i.e., a general NLP model
that describes the required orbital propagations and transfers. In turn,
the Chapters contained in Part ii present more sophisticated tech-
niques to compute the required maneuvers. Chapter 2 takes advan-
tage of the properties of duality to efficiently solve specific instances
of multi-impulse maneuvers, while guaranteeing the convergence and
the global optimality of the solutions. Chapter 3 presents a method-
ology to compute J2-perturbed low-thrust transfers between circular
orbits that achieves an advantageous trade-off between the fidelity of
the orbital dynamics, the optimality of the transfers and the compu-
tational efficiency.

Regarding the the interaction between the combinatorial decisions
and the orbital dynamics, once again Chapter 4 presents the most
straightforward approach to deal with it, i.e., a two-stage framework.
Conversely, Chapter 5 takes advantage of the sequence information
introduced by the no-subtour formulation to configure an integrated
MILP model that seamlessly coordinates the maneuver optimization
and object selection. However, the flexibility of the two-stage approach
has proven very useful to configure the resolution of problems with
a complicated structure, as shown in Chapters 6 and 7.

149
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All in all, Chapter 4 is the cornestone of this thesis and constitutes
the basis that has made it possible for the techniques explained in the
rest of the chapters to flourish.

8.2 future work

Finally, the scope of the content presented in this thesis can be poten-
tially enhanced, hence giving rise to further research opportunities.

Regarding Chapter 2, the use of the dual-based methodology to
solve problems with a more general mathematical structure merits a
deeper investigation, as it could lead to richer application cases.

Regarding Chapter 3, the possibility of solving optimal control
problems by determining the initial values of physically meaningful
variables, instead of the values of the costates, is definitely of great
interest. Moreover, it is also worth to analyze the mathematical con-
ditions under which the direct modification of the RAAN is more
advantageous than increasing the nodal precession for J2-perturbed
transfers.

Regarding Chapter 4, the no-subtour formulation can potentially
be applied for the modelling of numerous application problems in
which the appearance of subtours is a concern or the problem con-
straints require sequence information to be formulated.

Regarding Chapter 5, it would be interesting to study the piecewise-
linear approximation of functions with a larger number of variables,
as well as its impact in the memory requirements of the resulting
mathematical models.

Regarding Chapter 6, the use of a fuel station deserves additional
exploration from a mission analysis perspective. A particularly com-
pelling approach would be the use of a more permanent station, such
that it could serve several debris removal missions within a large de-
bris cluster.

Regarding Chapter 7, the proposed Constraint Programming frame-
work can be generally applied to analyze other missions.
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