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Abstract

We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-
dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains
baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order con-
tributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable
structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison
with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally,
we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the
modulation instability (e.g. the generation of the so-called rogue waves).
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1. Introduction

During the last decade there has been an important theoreti-
cal and experimental progress in the generation as well as ma-
nipulation of extreme wave events which are governed by the
nonlinear Schrödinger equation (NLSE). For instance, Refs.
[1, 2, 3, 4] recently reported the experimental observation of
the Peregrine soliton in surface gravity wave, ultrashort light
pulse, and multicomponent plasma scenarios. This is the sim-
plest solution of the NLSE which is localized in both space and
time, and it is regarded as a prototype of the so-called rogue
waves [5, 6, 7]. Another genuinely nonlinear feature observed
in these experimental platforms was the Fermi-Pasta-Ulam-
Tsingou (FPUT) recurrence [8, 9], which corresponds to the
breaking of a continuous wave into a periodic train of spatially
localized wave packets [10]. Although there is no experimental
evidence yet (to the best of our knowledge), these ”freak” wave
phenomena has been theoretically predicted to occur in higher-
order extensions of the NLSE as well [11, 12, 13, 14, 15], such
as the Hirota equation [16]. The latter equation is indispens-
able for an accurate description of the nonlinear wave dynamics
when the third-order dispersion or delayed nonlinear response
are significant, for instance in the propagation of femtosecond
pulses in highly dispersive optical fibers [17, 18].

Today it is broadly accepted that the (coherent) modula-
tion instability (MI) is one of the principal physical mecha-
nisms explaining the rise of amplitude-growing periodic per-
turbations from unstable quasi-continuous pulses [19, 20, 21]
(see also [22]). For instance, the baseband-type MI has been
shown to be fundamental for the formation of rogue waves
in the NLSE [10, 19, 23, 24, 25, 26, 27], the Hirota equa-
tion [11, 28], and others higher-order generalized equations

[29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. In this line, in [39] the
authors have recently shown that the higher-order non-linear
effects substantially influence the formation of the so-called
Akhmediev breathers (AB), which may eventually lead to ex-
treme wave events [24].

Unfortunately, the MI mechanism is fragile to the unavoid-
able dissipation and noise (which commonly render stabiliz-
ing effects) present in most interesting situations, so a com-
plete understanding of the experimental observation of extreme
wave events driven by the MI starts by addressing the influ-
ence of realistic damping effects. In this line, it is only recently
that the (coherent) MI dynamics has been extensively analysed
for the case of the NLSE subjected to (linear) gain/loss effects
in drifted/dissipative surface gravity waves [8, 40, 41, 42, 43]
and ultrashort pulses propagating in amplified/attenuated opti-
cal fibers [17, 33, 44, 45]. Another leading-order effect com-
ing from experimental imperfections (e.g. incoherent spa-
tial/temporal light sources [46]) is the existence of phase corre-
lations due to partially incoherent pulses [20, 47]. This leads to
the so-called incoherent MI dynamics [48], and importantly, it
closely resemblances the well-known (energy-conserving) Lan-
dau damping from electron plasma waves [49, 50, 51, 52].
For instance, the incoherent effects are behind the formation
of incoherent solitons in nonlinear optics [47, 53]. Although
this damping mechanism has found to have an equivalent in-
terpretation to the famous Landau damping in the context of
surface gravity waves in deep waters [54, 55], this is not the
case in the more general scenario treated here, so it shall
be refereed to as Lorentzian spectrum damping to distinguish
from this. Interestingly, the Lorentzian spectrum damping
was originally found out via the application of the celebrated
Wigner-function framework in the MI analysis of the NLSE
[49, 50, 54, 56]. These works further motivated the use ofEmail address: a.valido@iff.csic.es (Antonio A. Valido) 
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the Wigner-function approach to address the MI in interact-
ing or higher-order nonlinear equations subjected to incoher-
ent sources [37, 38, 51, 52, 57], as well as the formation and
dynamics of incoherent wave solutions [20]. Nonetheless, the
Wigner function was previously used to study the instability of
the NLSE in presence of a random background [58] or four-
wave interactions in the realm of surface gravity waves [59],
and most recently, it has been employed as a route to apply the
Penrose instability analysis to the study of rogue waves [42, 55].
Despite the preceding efforts to understand the impact of these
damping effects, the competition between them and the higher-
order nonlinear features from the Hirota equation is still largely
unexplored.

In the present work we investigate the action of both the
Lorentzian spectrum damping and the linear gain/loss contribu-
tion upon the MI characteristic of the one-dimensional Hirota
equation (note the subscript t and x denote the partial deriva-
tives in the propagating and transverse variables, respectively)
[11, 13],

iψt + iα|ψ|2ψx + βψxx + iγψxxx + θ|ψ|2ψ = iη(t)ψ, (1)

where ψ stands for the usual wave function envelope (e.g. mod-
ulating either the electric field in an optical fiber [11] or the
surface elevation in deep water [13]), β is the group veloc-
ity dispersion (GVD), θ determines the Kerr nonlinearity or
self-phase modulation, and η(t) characterizes a time-dependent
amplification/attenuation process. Adopting the denomination
suggested in [18, 60], the terms γ and α shall be referred to
as the third-order dispersion (TOD) and self-steepening (SS),
respectively. By following the incoherent MI analysis in the
celebrated Wigner-function framework [42, 51, 54], we show
that the Kerr interaction is more resilient to the third-order-
dispersion stabilizing effects than the higher-order nonlinear in-
teraction. We also see the SS contribution in conjunction with
the Lorentzian spectrum damping may augment the unstable
spectrum in agreement with previous works dealing with gener-
alized NLSEs [37, 38]. Nonetheless any (first-order) instability
signature eventually disappears by the action of strong damp-
ing strengths. Overall, our investigation sheds new light about
the interplay between higher-order contributions to the nonlin-
ear dynamics and both damping mechanism for a broad set of
experimental parameters [56], and it suggests that the afore-
mentioned wave events in the context of the Hirota equation are
experimentally amenable with the current technology in either
optical fiber or water tank experiments under feasible damping
conditions. Let us emphasize that our work substantially differs
from the vast majority of previous treatments using the Wigner-
function framework because they restrict themselves to study
separately the formation of MI in the NLSE under the influence
of either the Lorentzian spectrum damping [6, 49, 56, 59] or dis-
sipative effects [37, 38, 42, 61]. In contrast, we provide a uni-
fied framework that ultimately returns known previous results
as particular instances (e.g., we recover the instability growth
rate from the NLSE [48]), as well as we deepen in the inter-
play between non-linearity effects and damping mechanisms.
Furthermore, our motivation is different from previous works,

this stems in the observation that higher-order non-linear effects
may be non-trivially perturbed by the damping processes.

The present paper is organized as follows. In Sec.2 we start
illustrating the standard procedure to analyze the modulation in-
stability of the Hirota equation in the framework of the Wigner
function in absence of amplification/attenuation processes (i.e.
η(t) = 0), as well as we introduce the definition of the (first-
order) modulation instability and the unstable spectrum. This
section also displays the generalized dispersion relation which
is the basis of the subsequent section. In Sec.2.1 we study the
well-known Benjamin-Feir instability, whereas both numerical
and analytical results from the incoherent MI analysis are pre-
sented for a broad class of problem parameters in Sec.2.2. For
the seek of clarity, the latter analysis is separately carrying out
for vanishing (γ = 0) and non-vanishing (γ , 0) TOD effects in
Secs. 2.2.1 and 2.2.2, respectively. Then, the impact of linear
loss/gain contributions (i.e. η(t) , 0) to the MI is fully ad-
dressed in Sec.3. In Sec.4 all these results are further discussed
in the context of two feasible experimental platforms: ultrashort
pulse in optical fibers and surface gravity waves in water tanks.
Finally, we summarize and draw the main conclusions in Sec.5.

2. Wigner instability analysis without gain/loss effects

Before presenting our findings in presence of gain/loss ef-
fects, for the seek of clarity it is convenient to briefly refresh
the MI analysis in the Wigner framework in the simpler case of
disregarding dissipative effects [17, 20, 49, 54, 56]. Let us thus
assume a vanishing gain/loss rate (i.e. η(t) = 0), which shall
be treated in full detail in Sec.3. Instead of carrying out our
treatment in terms of the wave function ψ, we switch to the so-
called Wigner function, denoted by W, via the Wigner-Moyal
transform [50, 52, 54], which is given by

W(x, k, t) =

∫
R

e−iky ψ
(
x +

y
2
, t
)
ψ∗

(
x −

y
2
, t
)
dy, (2)

where k ∈ R represents the usual wave number coordinate, and
ψ∗ denotes the complex conjugate. In the Wigner-Moyal de-
scription, the Hirota equation (1) governing the wave-function
dynamics reads
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(
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)
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γ
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×Wx(x, k − λ, t) dλ, (3)

where we have introduced the auxiliary function

Z(x, t) =
1

2π

∫
R

W(x, k, t) dk,

which represents the (longitudinal) density energy. The expres-
sion (3) may be readily obtained from Eq.(1) by applying the
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transformation (2) (see Appendix A for further details). Ac-
cordingly, the wave amplitude is given by [40]

E(t) =
1

2π

∫
R2

W(x, k, t) dkdx, (4)

which will be conserved for all parameter combinations in any
given solution of the ordinary Hirota equation in absence of
gain/loss mechanism [32]. The latter will produce an amplifi-
cation or attenuation of the wave amplitude that shall be fully
treated in Sec.3 (see the Eq.(19)).

Basically, the MI analysis of the wave spectra consists of in-
troducing a perturbation of small strength ε � 1 around a sta-
tionary distribution W0 [20, 50, 52, 54], i.e.

W(x, k, t) = W0(k) + ε FK,Ω(k) ei(Kx−Ωt), (5)

with K ∈ R and Ω ∈ C being the modulation wave number and
modulation frequency, respectively. The term FK,Ω(k) takes into
account the spatial profile of the perturbation [37]. This plays
no significant role in the MI analysis at leading order [37, 42,
54] (see the dispersion relation (7) below), and it is assumed to
be an integrable function for mathematical convenience. It is
widely known that the Benjamin-Feir instability corresponds to
the case in which W0(k) is the Wigner function of a plane wave
solution, i.e.

ψpw =
ψ0
√

2π
eiθ

ψ2
0

2π t. (6)

In this work we shall refer to incoherent MI when W0(k) is
the Wigner function of a plane wave with a complex ampli-
tude modeled by an stochastically varying phase term ϕ(x)
[37, 50, 57], i.e. ψ = ψpweiϕ(x). This essentially represents
an additional non-monochromatic contribution to the stationary
plane-wave solution that accounts for the spatial incoherence
of light pulses in optical fibers [48, 50]. In this sense, we could
understand the Benjamin-Feir instability as the ”coherent” side
of the MI. It is important to realize that, though ψ is not an
exact solution of the Hirota equation, it represents a stationary
solution at leading order of the perturbative analysis (5) in the
Wigner-function framework upon imposing appropriate condi-
tions (see the dispersion relation (7) below).

Clearly, if the imaginary part of Ω, denoted by ImΩ, takes
positive values, it immediately follows that the perturbative part
blows up at a finite time (such as exp(ImΩ t)), and thus, the MI
would dominate the long-time dynamics. This is commonly re-
ferred to as the MI growth rate or MI gain associated to the sta-
tionary solution [5, 11]. In this context, we define the unstable
spectrum as composed of all modes KI giving rise to a growing
wave amplitude for some t > 0, i.e. ImΩ > 0 [40, 59]. Im-
portantly, in the case that this spectrum contains the zero wave-
number K = 0 (or sufficiently low modulation wave number)
as a limiting case, this instability is referred to as MI baseband
[5, 31]. As stressed in the introduction, it is broadly accepted
that this type of instability is a prerequisite for the formation of
rogue waves in generalized forms of the NLSE [29, 30, 31] or
Hirota equation [11, 34, 62]. Based on this conjecture, in Sec.
4 we discuss the emergence of extreme wave events in feasible

experimental scenarios subjected to the linear and Lorentzian
spectrum damping effects.

In a first approach, the unstable spectrum is characterized
from the dispersion relation for the perturbative frequency ob-
tained from linearizing the equation (3) around the stationary
solution [49, 50, 54]. Concretely, after a linear perturbative
analysis of the Eq.(3) once substituted the ansatz (5) (further de-
tails can be found in the Appendix B), one arrives to the leading
expression providing the desired (nonlinear) dispersion relation
for a given stationary distribution,

1 +
1

4π

∫
R

{
Ω +

γ

4
K3 −

αψ2
0

2π
K +

(
− 2βk + 3γk2) K

}−1

×
{
(αk − θ)

(
W0(k + K/2) −W0(k − K/2)

)
+ α

K
2
(
W0(k + K/2) + W0(k − K/2)

)}
dk = 0, (7)

with
ψ2

0 =

∫
R

W0(k) dk.

which reduces to the well-known result for the NSLE in the
limit α = γ = 0 and β = 1 [50, 54]. Now upon replacing a sta-
tionary distribution, we shall obtain the MI gain by computing
the above integral by means of the standard contour integra-
tion techniques (the interested reader can find further details in
Appendix B). Here we would like to notice that an identical
linearization procedure in the case of a non-vanishing attenua-
tion/amplification coefficient (i.e. η(t) , 0) can be followed in-
dependently of the choice of the stationary distribution W0(k).
This is due to the fact that the gain/loss Hirota equation (1) can
be cast in the form of a time-dependent Hirota equation (17)
(without linear gain/loss term) as explained in further detail in
Sec.3: the latter equation admits a stationary plane-wave-like
solution (18) that returns the ordinary plane wave (6) for a van-
ishing gain/loss coefficient η(t) = 0.

Compared to the NLSE case, the dispersion relation (7) has
an additional pole which exhibits an intricate relation with Ω
when γ , 0 (see the discussion around the Eqs. from (B.1) to
(B.3) in the Appendix B). This makes difficult to analytically
elucidate the MI gain and the associated unstable spectrum for
the broad set of parameter values, so we shall perform both
analytical as well as numerical analysis for distinct values of
the TOD strength. Without loss of generality, we shall assume
that β, α and γ are positive [5]. Additionally, we shall take
θ > 0, since the MI appears for the self-focusing case as it is
well-known from previous studies in the Hirota equation [11].
Here it is important to realize that the meaning of both modula-
tion parameters Ω and K depends on the analyzed experimental
platform [60]: while for surface gravity wavesΩ and K play the
role of the frequency and wave number of the unstable mode
[35, 36], their roles are interchanged when studying ultrashort
pulses [11].

2.1. Benjamin-Feir instability

Before addressing the incoherent modulation instability, we
briefly study the standard case of W0 representing a plane wave
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in order to show that our treatment reproduce previous well-
known results from the Hirota equation. According to the
standard Benjamin-Feir instability analysis [21], we must take
the Wigner transform associated to the plane wave solution
[11, 32],

W0(k) = ψ2
0δ(k), (8)

which inserted in (7) returns the following dispersion relation
after some straightforward manipulation (see Appendix B1),

Ω =
αψ2

0

2π
K − γK3 ± iβK2

√
θψ2

0

2πβK2 − 1. (9)

This result is in complete agreement with previous works based
on the wave function approach [11, 26, 27, 32]. From here, it is
immediate to obtain the largest MI gain,

ImΩmax =
θψ2

0

4π
,

which occurs at Kmax =

√
θψ2

0/4πβ. Additionally, from (9) we
compute the unstable spectrum of the wave number which may
eventually give rise to MI, i.e.

KI ∈

[
−

√
θψ2

0

2πβ
,

√
θψ2

0

2πβ

]
, (10)

which manifests that the MI for the Hirota equation is baseband
type for any θ > 0 [5]. Interestingly, the Benjamin-Feir insta-
bility analysis indicates that the MI is solely produced by the
Kerr nonlinearity. Contrary to what one could expect, the SS
interaction plays no role in the emergence of instability, nei-
ther the TOD, in agreement with the discussion in [11, 63]. In
other words, the Benjamin-Feir instability is insensitive to the
higher-order nonlinear effects, and as a result, it could ignore
the emergence of extreme waves situations in which the nonlin-
ear stage is dominated by these instead of the Kerr interaction.

2.2. Incoherent modulation instability

Let us turn the attention to the study of the MI in presence
of Lorentzian spectrum damping effects. As stated in the Intro-
duction, this is accomplished by following the incoherent mod-
ulation instability analysis [20, 27, 64, 65]: now we address the
modulation instability due to the stationary distribution W0(k)
retrieved by ψ = ψpweiϕ(x), with ϕ(x) being a randomly varying
phase. This implies that, once replaced ψ in the definition of
the Wigner function (2), we must perform the ensemble aver-
age of the phase before carrying out the integral in the variable y
[50] (this average shall be indicated by 〈· · · 〉). Since ϕ(x) arises
from an environmental noise destroying the coherence length of
the propagating pulse in the vast majority of practical situations
[37, 38, 57, 48], we may consider this to yield an exponentially
decaying amplitude effect, i.e.

〈ψ(x + y/2, t)ψ∗(x − y/2, t)〉 = ψ0
2e−p0 |y|, (11)

where p0 > 0 can be thought of as a spatial coherence length
[48] or frequency bandwidth [47] depending on the experimen-
tal platform of interest. Notice that this choice satisfies the ex-
pected condition of translational invariance of the leading-order
solution (5). Indeed the choice (11) characterizes the common
situation in the context of ultrashort pulses propagating in opti-
cal fibers [37, 38, 50, 51, 52, 57, 48] as well as surface gravity
waves [54, 66]. As stated in the introduction, we shall follow
the convention of previous treatments [20, 37, 50] and reefer
to this as the Lorentzian spectrum damping: p0 represents the
strength of the effective Lorentzian spectrum damping for elec-
tromagnetic waves propagating in nonlinear media [49, 56].
The corresponding Wigner transform takes a Lorentzian shape
[50, 57, 48], i.e.

W0(k) =
ψ2

0

π

p0

k2 + p2
0

, (12)

which boils down into the previous plane-wave solution (8) in
the strict limit p0 → 0, retrieving the standard Benjamin-Feir
analysis [11, 26, 48, 54]. Let us notice that the stationary distri-
bution obtained from the so-called JONSWAP spectrum, which
describes the spectrum of the free surface elevation of ocean
waves in several meteorological conditions, is well approxi-
mated by the Lorentzian shape (12) in the limit of a narrow
bandwidth [54]. Interestingly, this limit has been experimen-
tally explored in order to observe the formation of rogue waves
in partially coherent waves in the context of the NLSE [67].

Going back to the dispersion relation (7), one may see that
the aforementioned additional pole simplifies by taking a van-
ishing TOD γ = 0 (see the Eqs. (B.2) and (B.3) in Appendix B),
which substantially facilitates the MI analysis. For the clarity of
exposition, we first focus on the situation where the TOD effect
is sufficiently small compared to other nonlinearity interactions,
and it can be negligible. In an optical scenario, this could be re-
garded as the case in which the pulse wavelength lies outside
the dispersion regime of the fiber [19, 68].

2.2.1. Incoherent modulation instability for vanishing TOD ef-
fects

By following a similar procedure as to obtain the Eq.(9),
we compute the dispersion relation (see the details in Ap-
pendix B2)

Ω =
αψ2

0

2π
K + 2ip0βK ± iβK2

√
ψ2

0

2πβK2 (θ − ip0α) − 1,(13)

which returns the well-known result of the NLSE when the self-
steppening effects are negligible (i.e. α = 0) [50, 54]. At first
sight, we may appreciate that the instability growth rate signif-
icantly differs from the result (9) obtained via the Benjamin-
Feir analysis. As similarly noted in the context of four-state
atomic systems [37, 38], the Eq. (13) unveils an intricate inter-
play between the higher-nonlinear corrections and a frequency
bandwidth: the contribution from the SS interaction to the in-
stability growth rate exclusively couples to the Lorentzian spec-
trum damping. In other words, though large values of p0 may
completely suppress the (first-order) MI, a moderate Lorentzian
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Figure 1: (color online). (Left) Density plot of the MI gain as a function of the modulation wave number and TOD strength for fixed values of p0 = 0.15, θ = 4
and α = 2. (Central) Contour plot of the instability region as a function of the Kerr θ and the SS α terms for two values of the TOD strength: the lightgray solid
and black dashed lines correspond to γ = 0, and γ = 1, respectively. Similarly, the lightgray and darkgray shadowed areas indicate the unstable regions obtained
for the corresponding values of γ (notice they overlap beyond the black-dashed line). The wave number was taken close to the machine numerical zero K = −10−8.
(Right) The minimum values αmin and θmin as functions of TOD contribution. In all the figures the problem parameters are rephrased to the dimension scales in
which β = 1, p0 = 0.15 and ψ0 = 1.

spectrum damping assists the instability effects owing to the
higher-order nonlinear interaction (recall that this is absent in
the Benjamin-Feir instability growth rate). This directly sug-
gests that the Lorentzian spectrum damping may prove benefi-
cial for the rising of higher-order nonlinearities.

After some readily algebra in Eq.(13) (see the Appendix B3
for a detail derivation), one also finds the unstable spectrum

KI ∈

[
−

√
ψ2

0θ

2πβ
+

(ψ2
0α

8πβ

)2
− 4p2

0,

√
ψ2

0θ

2πβ
+

(ψ2
0α

8πβ

)2
− 4p2

0

]
.

(14)

From the interval (14) it is clear that there exists a competition
between the Lorentzian spectrum damping and the nonlinear
interactions [48, 49, 54, 64]. Furthermore, the interval (14) re-
veals that the MI is of baseband type as well, for any value of
the Lorentzian spectrum damping below the modulational in-
stability threshold

4p0 <
ψ2

0θ

2πβ
+

(ψ2
0α

8πβ

)2
. (15)

Otherwise the Lorentzian spectrum damping completely sup-
presses the (first-order) instability. Unfortunately, we are still
lacking of a full physical picture of the mechanism behind
the Lorentzian spectrum damping in either a nonlinear optical
medium [49, 50] or surface gravity waves [54] partially because
there is no rigorous equivalence between the Landau damping
from plasma physics and the one studied here [56].

2.2.2. Incoherent modulation instability for non-vanishing
TOD effects

Now we discuss the action of the TOD effects upon the MI.
From the Eq.(9) it follows that the growth rate characteristic
of the Benjamin-Feir instability is insensitive to this. However,
this situation drastically changes in presence of the Lorentzian
spectrum damping [52], and it is less clear how the TOD influ-
ences the instability structure owing to higher-nonlinear inter-
actions [37, 38]. We illustrate in the Figure 1 the results ob-
tained from the numerical computation of the (maximum) MI

gain (i.e. ImΩmax) with γ , 0. The left panel depicts the MI
gain as a function of the modulation wave number and TOD
strength. A quick glance reveals that the MI is a baseband type
as well for any given γ, as the MI gain softly decreases as |K|
gradually goes to zero [5]. For a fixed value of the later, we
may also appreciate that the MI decays for higher γ, which is
in accordance with the intuition that the TOD is detrimental for
the emergence of instability structure, it plays the role of a sta-
bilizing agent.

The central panel of Figure 1 represents the unstable region
(see the lightgray and darkgray shadowed areas) associated to
the modulation wave numbers close to zero (|K| ∼ 10−8), as a
function of the Kerr and the SS terms. Accordingly, the gray
solid line, which is obtained for γ = 0, is determined from
the inequality (15). Observe that the unstable region shrinks as
the TOD strength increases (the darkgray shadowed area corre-
sponds to a non-vanishing γ) in complete agreement with the
above discussion. Interestingly, this plot also manifests that the
TOD substantially suppresses the MI effects owing to the SS
nonlinearity. That is, for θ = 0 we may observe that the min-
imum value of the SS strength giving rise to MI, denoted by
αmin, is demanded to grow with γ. Conversely, the minimum
value due to the Kerr nonlinearity, i.e. θmin ≈ 0.3, is barely
affected by the stabilizing effect due to the TOD.

This feature is better illustrated in the right panel of Figure
1, which depicts the behavior of θmin and αmin in terms of γ.
While θmin seems to remain almost constant, the αmin substan-
tially grows by an algebraic increment of, at least, two orders
of magnitude in comparison with θmin. This directly shows that
the instability structure characteristic of the Kerr nonlinearity is
significantly robust to the TOD. On the other side, though it is
not shown here, we find out that the Lorentzian spectrum damp-
ing may eventually cancel the MI gain, and thus, suppress the
emergence of instability due to the Kerr as well as higher-order
nonlinearities, as expected from the subsidiary condition (15).
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Experimental platform |β| |θ| |α| |γ| p0 |KI |

Ultrashort pulses in optical fibers 0.005-88 0.01-10 6 − 7 × 10−3 0.01-0.04 0.089-0.139 . 0.61
(Refs. [3, 9, 33, 44, 67, 69, 70, 71]) (ps2/km) (1/Wkm) (ps/Wkm) (ps3/km) (THz) (THz)
Surface gravity waves in deep water 0.01-12.5 0.001-729 0.1-80 0.1-4 0.06-0.1 . 7

(Refs.[1, 2, 8, 41, 54, 66, 67, 72, 73, 74]) (m2/s) (1/sm2) (1/sm) (m3/s) (1/m) (1/m)

Table 1: The unstable spectrum for feasible experimental scenarios when we disregard the linear amplification/attenuation coefficient (i.e. η(t) → 0). The seventh
column shows the modulation wave number (numerically) computed for the displayed values (expressed in SI units) of the problem parameters. These values are
indicative and were extracted from previous theoretical and experimental studies in the realm of the NLSE and Hirota equation. Notice that the variable KI plays
the role of a modulation frequency in the MI analysis of optical fiber experiments.

3. Wigner instability analysis with linear gain/loss effects

In this section we address the emergence of instability in the
presence of a non-vanishing linear gain/loss contribution iη(t)ψ.
This reproduces the laboratory conditions in a broad range of
experimental situations: for instance, η(t) < 0 regards the dissi-
pation rate due to the friction with the walls in deep-water wave
[8, 40, 41, 43] as well as photon losses in light propagation ex-
periments [17, 33, 44, 45], or alternatively, η(t) > 0 represents
a wind forcing effect [43] as well as a spontaneous emission
noise generated by optical amplifiers in fibers [28, 75].

Accordingly, after doing an appropriate change of variables
[40, 43], i.e.

ψ(x, t)→ φ(x, t)e
∫ t

0 η(τ)dτ, (16)

the Hirota equation endowed with a linear absorp-
tion/amplification coefficient can be cast in the usual form, i.e.

iφt + iα(t)|φ|2φx + βφxx + iγφxxx + θ(t)|φ|2φ = 0, (17)

with α(t) = αe2
∫ t

0 η(τ)dτ and θ(t) = θe2
∫ t

0 η(τ)dτ. Importantly, the
Eq.(17) also admits a stationary plane-wave-like solution, i.e.

φpw =
φ0
√

2π
exp

(
i
θφ2

0

2π

∫ t

0
e2

∫ τ

0 η(τ′)dτ′dτ
)
. (18)

Additionally, the linear gain/loss contribution introduces a
time-dependent coefficient in front of the wave amplitude (4),
i.e.

Eψ(t) = Eφ(t)e2
∫ t

0 η(τ)dτ. (19)

While the (linear) gain intensifies the amplitude of small in-
stabilities, the (linear) loss can completely suppress the wave
amplitude in the short time unless instability comes into play
[40]. By appealing an exponentially exploding perturbative so-
lution once substituted (16) in (5), and after some manipulation
we arrive to the subsidiary condition

−
2
t

∫ t

0
η(τ)dτ < ImΩmax, t > 0, (20)

which determines the emergence of the instability under lin-
ear dissipation in the first stages of the dynamics (e.g. the in-
equality (20) is akin to the condition (15)). Since the structure
of Eq.(17) is formally equivalent to (1), we may carry out a
similar procedure as before by replacing ψpw → φpw in the

study of both the Benjamin-Feir and incoherent instabilities.
From the Wigner transform definition (2), it is readily to see
that such replacement returns stationary solutions equal to the
Eqs. (8) and (12), and thus, the MI analysis in the Wigner
framework retrieves identical results for the dispersion rela-
tion (see the Eqs.(9) and (13)) as well as unstable spectrum
(see the Eqs.(10) and (14)) once substituted the coefficients
α → α(t) and θ → θ(t). For instance, for the simple case of
a time-independent coefficient, say η(t) = η0, and vanishing
Lorentzian spectrum damping (i.e. p0 = 0), the condition (20)
directly yields

K4 −
ψ2

0θ(t)
2πβ

e2η0tK2 +
4η2

0

β2 < 0. (21)

Observe that the linear gain/loss influences the unstable
spectrum as well: this is effectively increased or reduced by the
amplification/attenuation coefficient. As a consequence, the
linear amplification can substantially diminish the degrading
effects owing to the Lorentzian spectrum damping. On the
other side, the (linear) dissipation will eventually stabilize any
unstable stationary solution despite how small is the coefficient
η [40, 43] (e.g. see the inequality (21) when t → ∞). In other
words, we may expect that (linear) dissipation inhibits the
appearance of extreme wave situations in the long time limit,
nonetheless this may survive at short time scales t � |η−1|

provided the subsidiary condition (20) holds.

To summarize, we have shown that the incoherent modula-
tion analysis reveals new features about the MI of the Hirota
equation which are unappreciated by following the standard
Benjamin-Feir treatment [21]: we found out that the Lorentzian
spectrum damping in conjunction with the SS interaction en-
hances up the instability features rendering an extended unsta-
ble spectrum [37, 38]. On the other side, the instability structure
arising from the Kerr interaction is significantly resilient to the
stabilizing effects of the TOD, while the SS contribution may be
eventually cancelled out. We finally saw that (linear) gain/loss
effects dominate the instability structure for moderates values
of the nonlinear interactions.

4. Extreme wave events

Relying on our previous results, we now discuss in paral-
lel the attainable observation of remarkable wave events (e.g.
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FPUT recurrences or Peregrine solitons) in two specific exper-
imental situations: ultrashort pulses traveling in optical fibers
[3, 9, 33, 44, 67, 69, 70, 71], and surface gravity waves in
deep water [1, 2, 8, 41, 54, 66, 67, 72, 73, 74]. As previously
mentioned, it is widely recognized that the formation of rogue
waves may occur whenever the relevant system exhibits a base-
band MI [5, 34, 62]. Concretely, it was shown for generalized
NLSE that the Peregrine soliton solution is closely related to
the existence of baseband MI [29, 30, 31]. Similarly, the so-
called Akmediev breathers, which are fundamental for the ap-
pearance of the rogue waves in the NLSE [15] and the Hirota
equation [11, 13], are direct consequence of the MI dynamics
[7, 10]. Based on these previous theoretical findings and our
current results, we could conclude that the observation of ex-
treme wave events arising from MI conditions are accessible
within the available lab technologies despite the unavoidable
degrading effects owing to the linear or Landau-like dampings.

Let us first ignore the linear gain/loss effects. Table 1 dis-
plays the instability spectrum followed from our treatment for
typical experimental values of the problem parameters in both
platforms. Our analysis indicates that the MI characteristic of
the Hirota equation is fairly robust to realistic Lorentzian spec-
trum damping effects, and signatures of the unstable dynamics
could manifest for a broad range of feasible modulation fre-
quencies . 0.61THz in optical fiber scenarios, or alternatively,
modulation wave numbers . 7m−1 in the case of surface gravity
waves experiments. Interestingly, these results are in quantita-
tive agreement with previous experimental realizations in the
realm of the NLSE, for which the damping effects were disre-
garded. More specifically, in Refs. [9, 19] it was demonstrated
the generation of the FPUT recurrence and Peregrine solitons in
optical fibers by Benjamin-Feir MI with modulation frequen-
cies 340-520GHz and 196-278GHz, repectively. Similarly, in
Ref. [1] it was experimentally probed the formation of Pere-
grine solitons in water wave tanks for a carrier wavenumber
around 11.63m−1.

Let us first ignore the linear gain/loss effects. Table 1 dis-
plays the instability spectrum followed from our treatment for
typical experimental values of the problem parameters in both
platforms. Our analysis indicates that the MI characteristic of
the Hirota equation is fairly robust to realistic Lorentzian spec-
trum damping effects, and signatures of the unstable dynamics
could manifest for a broad range of feasible modulation fre-
quencies . 0.61THz in optical fiber scenarios, or alternatively,
modulation wave numbers . 7m−1 in the case of surface grav-
ity waves experiments. Interestingly, these results are in quanti-
tative agreement with previous experimental realizations in the
realm of the NLSE, for which the damping effects were disre-
garded. More specifically, in Refs. [9, 19] it was demonstrated
the generation of the FPUT recurrence and Peregrine solitons in
optical fibers by Benjamin-Feir MI with modulation frequen-
cies 340-520GHz and 196-278GHz, repectively. Similarly, in
Ref. [1] it was experimentally probed the formation of Pere-
grine solitons in water wave tanks for a carrier wavenumber
around 11.63m−1.

As illustrated in Sec.3, the effects of the linear dissipation is
twofold: to attenuate the instability wave amplitude as well as

to shrink the unstable spectrum. To analyse the first degrading
effect let us focus on the subsidiary condition (20) for a time-
independent dissipation η(t) = η0 and vanishing TOD (recall
the MI gain is then determined by the Eq.(13) once substituted
α → α(t) and θ → θ(t)). By replacing certain characteristic
values of the problem parameters and the modulation number
KI from the table 1, we may obtain a rough estimation for the
damping rate beyond which the dissipation dominates the wave
amplitude dynamics: η0 < 0.5×10−3km−1 for ultrashort pulses,
and η0 < 0.49s−1 for surface gravity waves. A direct compar-
ison to the typical loss in standard optical fibers (for instance,
' 0.18 dB/km [41, 71], i.e. 2% of losses in 500m) manifests
that the attenuation amplitude does not represent a crucial bar-
rier for the observation of MI emerging from the Hirota equa-
tion in the early stage. On the other side, the harmful effects
upon the unstable spectrum (given by the Eq.(14)) can be ex-
pressed as follows in the short time scale t � η−1

0 ,

|KI |
2 = |KI |

2
η0=0 + 2η0t

(
ψ2

0θ

2πβ
+

(ψ2
0α

8πβ

)2)
+ O

(
(η0t)2

)
, (22)

where |KI |η0=0 corresponds to the values given by Table 1. Ac-
cordingly to the result (22), we must get a compromise between
the strength of the nonlinear interactions and the dissipative co-
efficient, otherwise the unstable spectrum will decrease rela-
tively fast making hard to match the MI conditions in the first
stages of dynamics. For instance, in experimental realizations
of the FPUT recurrence in water tanks [8] (see also [41]), a
realistic dissipative coefficient η0 was estimated to vary from
1.3 × 10−3m−1 to 1.6 × 10−3m−1 (notice that KI represents a
modulation frequency in this case). This leads to the unstable
spectrum to decay with a ratio ∼ 6.5(ms2)−1, which is within
the typical spatial and time scales in water tank experiments.
Additionally, it has been recently shown both analytically and
numerically that periodic anomalous wave events in the NLSE
may be observed provided the attenuation or amplification pa-
rameter is small in comparison with certain characteristic time
T [61]. Extrapolating this condition to our more general situa-
tion, we obtain

η0T 2
(
ψ2

0θ

2πβ
+

(ψ2
0α

8πβ

)2)
� 1, (23)

Clearly, the subsidiary condition (23) manifest that the ratio be-
tween the Kerr interaction and velocity dispersion dominates
the aforementioned characteristic time, and thus, the attainabil-
ity of periodic extreme wave events.

5. Concluding remarks

In this work we have addressed the unstable structure of the
damped Hirota equation by following a (first-order) incoher-
ent MI analysis in the Wigner-function framework. Our results
stress out that this incoherent analysis renders a more complete
description of the instability in presence of significant higher-
order contributions than the standard Benjamin-Feir approach.
While the latter treatment completely disregards the instabil-
ity effects owing to the higher-order nonlinearity, the former
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analysis unveils an intriguing interplay between this and the
Lorentzian spectrum damping: contrary to most common intu-
ition from the NLSE, a moderate Lorentzian spectrum damping
may assist the MI arising from the SS interaction. Unlike pre-
vious works, we also show that the stabilizing effects due to the
TOD barely influences the unstable structure owing to the Kerr
interaction in comparison with the SS nonlinearity. Addition-
ally our treatment proves convenient to study the impact of (lin-
ear) time-dependent gain/loss terms, we show that these may
eventually dominate the emergence of the MI independent of
their strength. Beside, we contrast our results with current ex-
perimental platforms (e.g ultrashort pulses in optical fibers and
surface gravity waves in deep waters), and identify the regimes
where extreme wave events driven by the MI may appear de-
spite the degrading effects due to the Lorentzian spectrum and
linear dissipative dampings.

Remarkably, the recent experimental progresses in the obser-
vation of FPUT recurrence in dissipative water tanks [8, 41],
the generation of breathing solitons in amplified/attenuated mi-
croresonators [75] or in noise-driven optical fibers [44], as well
as the creation of optical solitons in non-ideal photonic crystal
waveguides [45] open new avenues to get a deeper understand-
ing of the formation of extreme wave events in more realistic
situations. In this sense, the present treatment could provide a
valuable theoretical support to plan a new series of experiments
to study interesting wave events driven by the MI dynamics
when the linear dissipative and Lorentzian spectrum damping
effects play a prominent role, as occur for ultrashort pulses or
surface gravity waves in less controlled mediums.
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Appendix A. Wigner-Hirota equation derivation

This section is devoted to illustrate the derivation of the
Eq.(3) by starting from expression (1) once performed the
Wigner-Moyal transform given by (2). For seek of clarity it is
convenient to rephrase the latter in terms of arbitrary complex
functions u, v, i.e. [42, 55]

W[u, v] =

∫
R

e−ikyu(x +
y
2
, t) v∗(x −

y
2
, t)dy, (A.1)

so that the Wigner-Moyal transform (2) is retrieved by W =

W[ψ, ψ]. Following the definition (A.1), we may rewrite the

Hirota equation (1) as follows

Wt[ψ, ψ] = W[ψt, ψ] + W[ψ, ψt]

= W[−α|ψ|2ψx + iβψxx − γψxxx + iθ|ψ|2ψ, ψ]

+ W[ψ,−α|ψ|2ψx + iβψxx − γψxxx + iθ|ψ|2ψ]

= −α
(
W[|ψ|2ψx, ψ] + W[ψ, |ψ|2ψx]

)
+ iβ

(
W[ψxx, ψ] −W[ψ, ψxx]

)
− γ

(
W[ψxxx, ψ] + W[ψ, ψxxx]

)
+ iθ

(
W[|ψ|2ψ, ψ] −W[ψ, |ψ|2ψ]

)
.

We can go further by appealing to the Wigner-Moyal transform
properties, that is

W[u, v] = (W[v, u])∗, W[∂xu, v] =
(
ik+

1
2
∂x

)
W[u, v],(A.2)

which yields the following equalities

W[ψxx, ψ] −W[ψ, ψxx] = 2ikWx[ψ, ψ], (A.3)

and

W[ψxxx, ψ] + W[ψ, ψxxx] = −3k2Wx +
1
4

Wxxx[ψ, ψ]. (A.4)

Using the property of the convolution of Fourier transforms we
further obtain

W[|ψ|2ψ, ψ] −W[ψ, |ψ|2ψ]

=
1

2π

∫
R

∫
R

e−iλy
{
Z(x + y/2, t) − Z(x − y/2, t)

}
dy (A.5)

×W[ψ, ψ](x, k − λ, t)dλ,

and

W[|ψ|2ψx, ψ] + W[ψ, |ψ|2ψx]

=

∫
R

∫
R

i(k − λ)e−iλy

2π

{
Z(x +

y
2
, t) − Z(x −

y
2
, t)

}
dy

×W[ψ, ψ](x, k − λ, t)dλ (A.6)

+

∫
R

∫
R

e−iλy

4π

{
Z
(
x +

y
2
, t
)

+ Z
(
x −

y
2
, t
)}

dy

×Wx[ψ, ψ](x, k − λ, t)dλ,

where in the last expression we again used (A.2). Now, after
gathering (A.3), (A.4), (A.5), (A.6), we arrive at Wigner-Hirota
equation (3).

Appendix B. The dispersion relation

Here we show how to obtain the dispersion relation (7), as
well as the derivation of the expressions (9) and (13). By intro-
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ducing the ansatz (5) into Eq. (3), we obtain the following

− iε FK,Ω(k)Ω ei(Kx−Ωt) =
(
− 2βk + 3γk2

)
iε FK,Ω(k) K ei(Kx−Ωt)

+
1
4
γ iε FK,Ω(k) K3 ei(Kx−Ωt)

+
1

2π

∫
R

∫
R

(
iθ − iα(k − λ)

)
e−iλy

{
Z
(
x +

y
2
, t
)
− Z

(
x −

y
2
, t
)}

dy

×
(
W0(k − λ) + ε FK,Ω(k − λ) ei(Kx−Ωt)

)
dλ

−
α

4π
iεK ei(Kx−Ωt)

×

∫
R

∫
R

e−iλy
{
Z
(
x +

y
2
, t
)

+ Z
(
x −

y
2
, t
)}

FK,Ω(k − λ) dy dλ,

where

Z(x, t) =
1

2π

∫
R

W0(k) dk +
1

2π
ε ei(Kx−Ωt)

∫
R

FK,Ω(k) dk.

The above formula has higher order terms in ε, which we ne-
glect in agreement with the MI analysis. The linearized version
is as follows

− FK,Ω(k)Ω =
(
− 2βk + 3γk2

)
FK,Ω(k) K +

1
4
γ FK,Ω(k) K3

−
1

2π
α FK,Ω(k) K ψ2

0 +
i

4π2

∫
R

FK,Ω(k) dk

×

∫
R

(
θ − α(k − λ)

)
W0(k − λ)

∫
R

e−iλy sin
(Ky

2

)
dy dλ.

After plugging the Fourier transform of the sine function in the
right hand side and reorganizing the expression we obtain

FK,Ω(k)∫
R FK,Ω(k)dk

= −
1

4π

(
(αk − θ)

(
W0(k + K/2) −W0(k − K/2)

)
+ α

K
2
(
W0(k + K/2) + W0(k − K/2)

))
/
(
Ω +

1
4
γ K3 −

1
2π
αKψ2

0

+
(
− 2βk + 3γk2) K

)
.

Finally, integrating in k, the above formula can be rewritten as

1 +
1

4π

∫
R

(
Ω +

γ

4
K3 −

αψ2
0

2π
K +

(
− 2βk + 3γk2) K

)−1

×
(
(αk − θ)

(
W0(k + K/2) −W0(k − K/2)

)
+ α

K
2
(
W0(k + K/2) + W0(k − K/2)

))
dk = 0.

which, yields the dispersion relation (7), as wanted.
Accordingly, the integral involved in the dispersion relation

can be performed by means of the standard contour-integration
techniques. Clearly, one of the poles is determined from the
roots of the polynomial in the denominator, that is

Ω +
γ

4
K3 −

αψ2
0

2π
K +

(
− 2βk + 3γk2) K = 0, (B.1)

which are given by

k± =
1

6γ

(
2β ±

√
4β2 −

3γ
(
πγK3 − 2αKψ2

0 + 4πΩ
)

π

)
.(B.2)

As mentioned in the Sec.2, these poles may switch between the
upper or lower half plane for the broad set of complex values of
the modulation frequencyΩ and the problem parameters, which
prevents to discern a general form of the residues for a selected
integration contour. Nonetheless, in the non-dispersive situa-
tion γ = 0 this boils down to a pole whose location is fully
determined by Ω, i.e.

k± → k0 =
1

4πβ

(
2πΩ − αKψ2

0

)
. (B.3)

Appendix B.1. Benjamin-Feir instability
In this appendix we show how to obtain the dispersion rela-

tion (9) for the stationary solution (8). Inserting the latter into
the equation (7) yields

0 = 1 +
ψ2

0

4π

∫
R

1

Ω +
γ
4 K3 −

αψ2
0

2π K +
(
− 2βk + 3γk2) K

×
{
(αk − θ)

(
δ(k + K/2) − δ(k − K/2)

)
+ α

K
2
(
δ(k + K/2) + δ(k − K/2)

)}
dk.

By separating the integral into two parts weighted by Dirac
delta functions, we immediately obtain the following algebraic
expression

1 +
ψ2

0

4π

[
−

θ

Ω + γK3 + βK2 − αψ2
0K/2π

+
θ

Ω + γK3 − βK2 − αψ2
0K/2π

]
= 0.

The desired dispersion relation (9) is directly obtained by solv-
ing this equation in terms of Ω.

Appendix B.2. Incoherent modulation instability: instability
growth rate

We now present the derivation of the relation (13) associated
to the Lorentzian-type stationary solution when the TOD can
be neglected (i.e. γ = 0). By replacing (12) into the general
dispersion relation (7), we arrive to the expression

1 +
ψ2

0K p0

4π2

∫
R

(
− αk + 2θk + α(p2

0 + K2/4)
)

×
[
(3γKk2 − 2βKk + Ω + γK3/4 − αKψ2

0/2π)
]−1

×
[(

k − (ip0 +
K
2

)
)(

k − (ip0 −
K
2

)
)]−1

×
[(

k − (−ip0 +
K
2

)
)(

k − (−ip0 −
K
2

)
)]−1

dk = 0.

As mentioned in Appendix B and Sec. 2, we neglect TOD
to simplify computations. Thus, dispersion relations can be
rewritten as

1 +
ψ2

0 p0

8βπ2

∫
R

(
αk − 2θk − α(p2

0 + K2/4)
)

(B.4)

×
[(

k −C
)(

k − (ip0 +
K
2

)
)(

k − (ip0 −
K
2

)
)]−1

×
[(

k − (−ip0 +
K
2

)
)(

k − (−ip0 −
K
2

)
)]−1

dk = 0,
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where C = Ω
2βK −

αψ2
0

4βπ . Notice that C is proportional to the root
given by the Eq.(B.3) mentioned in the previous appendix, i.e.
C = k0/K.

As stated before the integration (B.4) can be carried out by
using contour integration techniques. So, in this integration we
find 5 poles: 2 with negative imaginary part, 2 with positive
imaginary part and one pole C. We set Im(C) < 0 and perform
the contour integration upon the upper-half complex plane for
simplicity, which means to assume K < 0. As a result we obtain
a quadratic equation in Ω

( Ω

2βK
−
αψ2

0

4βπ

)2
− 2ip0

( Ω

2βK
−
αψ2

0

4βπ

)
(B.5)

−
K2

4
− p2

0 −
αψ2

0

8πβ
ip0 +

θψ2
0

8πβ
= 0,

which we solve to find (13). Recall that if γ , 0 we would have
six roots to deal with, since the fifth pole (denoted by C) would
be replaced by the two poles determined by the roots (B.2).
Although we could proceed in the same way, it would not be
straightforward to apply the residue theorem as mentioned in
the previous appendix (see discussion below the Eq.(B.2)).

Appendix B.3. Incoherent modulation instability: unstable
wavenumber set

Accordingly, in order to deduce (14), we look for those K in
(13) such that Im(Ω) > 0. Using the polar representation, we
can write the square root expression in (13) as

√
r cos (µ/2) + i

√
r sin (µ/2),

where
r =
√

a2 + b2, µ = tan−1(b/a),

with

a =
ψ2

0θ

2πβK2 − 1, b = −
ψ2

0

2πβK2 p0α.

Thus, for the instability analysis it is enough to check that

Im(Ω) = 2p0βK ± βK2 √r cos (µ/2) > 0. (B.6)

We start analyzing the expression cos (µ/2). For µ ∈ [0, 2π)
we have that

b
2a

=
−

ψ2
0

2πβK2 p0α

ψ2
0

πβK2 θ − 2
.

Since we fixed all parameters in the Hirota equation to be
positive, we observe that b < 0. Furthermore, it is convenient
to focus first on the situation of K < 0, and consider the cases
a < 0 and a > 0 separately.

Assume first that a < 0, which means

K ∈
(
−∞,−

√
ψ2

0θ

2πβ

)
. (B.7)

Also, a < 0 and b < 0 implies µ ∈ (π, 3π/2), and µ/2 ∈
(π/2, 3π/4). Hence, recalling simple trigonometric properties,
we have that

√
r cos (µ/2) = −

√
r

√
1 + cos µ

2

= −

√
r
2

√
1 −

1√
1 + (b/a)2

= −

√
r
2

√
1 −
|a|
r

= −

√
r
2

√
r − |a|

r
= −

1
√

2

√
r − |a| = −

1
√

2

√
r + a.

Therefore, the condition (B.6) can be rewritten as follows

Im(Ω) = ±
βK2

√
2

√
r + a + 2p0βK

= βK(±
K
√

2

√
r + a + 2p0) > 0.

Since K < 0, we need that

K
√

2

√
√

a2 + b2 + a + 2p0 < 0,

or equivalently,

K2

2
(
√

a2 + b2 + a) > 4p2
0.

Substituting back expressions for a, b we deduce

K2 <
ψ2

0θ

2πβ
+

(ψ2
0α

8πβ

)2
− 4p2

0,

that is,

K > −

√
ψ2

0θ

2πβ
+

(ψ2
0α

8πβ

)2
− 4p2

0.

Combining with (B.7) we obtain the unstable wavenumber
set

K ∈
[
−

√
ψ2

0θ

2πβ
+

(ψ2
0α

8πβ

)2
− 4p2

0 ,−

√
ψ2

0θ

2πβ

]
.

Second we treat the situation a > 0. Since, K < 0 we have
the following interval for K

K ∈
[
−

√
ψ2

0θ

2πβ
, 0

]
. (B.8)

Now, a > 0 and b < 0, so we have that µ ∈ (3π/2, 2π) and
µ ∈ (3π/4, π). Using again trigonometric properties, we find
that

√
r cos (µ/2) = −

1
√

2

√
r + a.

This is exactly the same as in the case of a < 0, and the compu-
tations for the instability interval leads to similar conclusions

K > −

√
ψ2

0θ

2πβ
+

(ψ2
0α

8πβ

)2
− 4p2

0.
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However, with (B.8) we have that

K ∈
[
−

√
ψ2

0θ

2πβ
, 0

]
.

Combining both cases, we obtain the unstable wavenumber
set for K < 0:

K ∈
[
−

√
ψ2

0θ

2πβ
+

(ψ2
0α

8πβ

)2
− 4p2

0 , 0
]
. (B.9)

The instability interval for K > 0 can be also obtained from
the Eq.(B.9) by appealing to the fact that the contour integra-
tion in (B.4) when it is performed upon the upper-half complex
plane returns an identical result (B.5) by replacing the poles by
its complex conjugate instead, i.e. Im(C∗) = Im(Ω)/2β(−K).
As a consequence, the result (B.9) must hold when taking −K
as well, which immediately implies (14), as we wanted to show.
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