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Abstract
We study the impact of experimental imperfections on a recently proposed protocol for
performing quantum simulations of vibronic spectroscopy. Specifically, we propose a method for
quantifying the impact of these imperfections, optimizing an experiment to account for them, and
benchmarking the results against a classical simulation method. We illustrate our findings using
a proof of principle experimental simulation of part of the vibronic spectrum of tropolone. Our
findings will inform the design of future experiments aiming to simulate the spectra of large
molecules beyond the reach of current classical computers.

Supplementary material for this article is available online
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(Some figures may appear in colour only in the online journal)

Introduction

Quantum chemistry is expected to benefit greatly from the
development of quantum simulators and quantum computers,
because the ability of classical computers to simulate quant-
um mechanical processes is severely limited. For example,
the calculation of molecular energies can in principle be done
on a quantum computer involving relatively few qubits [1].

It has recently been shown that the estimation of mole-
cular vibronic spectra can in principle be done using a
quantum optics simulator [2, 3], whereas there is no known
efficient classical algorithm for this task. Vibronic spectra,
arising from simultaneous electronic and vibrational

transitions in molecules, play an important role in determining
the optical and chemical properties of those molecules. In
addition to being useful for fundamental research in mole-
cular physics and chemistry, calculating these spectra helps in
assessing the performance of different molecules for appli-
cations in photovoltaics [4], biology [5], and other forms of
industry [6].

The protocol for estimating vibronic spectra is con-
siderably simpler than other quantum simulation protocols
which require particle interactions or even full quantum
computing. Since the vibrational modes of a molecule can be
approximated as quantum harmonic oscillators, vibrational
transitions can be mapped onto standard operations on
quantum harmonic oscillators [7]. An experiment that
implements simple transformations such as displacements,
squeezing, rotations, and measurements in the Fock basis is
sufficient to simulate this physics and therefore reconstruct
the vibronic spectrum of a molecule. This protocol scales
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linearly in the number of vibrational modes to be simulated,
does not require any post-selection, and can be implemented
with readily available tools in several platforms. It is inspired
by the boson sampling protocol [8] which has been demon-
strated experimentally [9–11].

Various experimental platforms that make use of quant-
um harmonic oscillators have been used to simulate vibronic
spectra, as shown by recent experiments using super-
conducting devices [12] and trapped ions [13]. Moreover, the
original theoretical proposal [2] suggests the use of quantum
optics, in which each mode of the electromagnetic field is
modelled as a quantum harmonic oscillator. Quantum optics
has for example been used to simulate other molecular
vibrational properties using this framework [14]. The choice
of platform imposes practical limitations on what can be
achieved. Quantum optics is promising due to the availability
of good sources of squeezing [15] and the large number of
modes which can be manipulated, interfered, and mea-
sured [16, 17].

However, any experimental implementation of a quant-
um algorithm on a platform that does not have fault-tolerant
architecture is necessarily degraded by imperfections in the
system operations. This is a potential limitation to the per-
formance of all specialized quantum processors. In optical
platforms, scattering and absorption losses, mode mis-
matches, detector noise and unanticipated correlations may all
contribute to less than ideal operation. The presence of
experimental imperfections in any platform was not con-
sidered in the original proposal. These imperfections can be
expected to affect the simulation, possibly reducing both the
accuracy and precision of the results.

In this work, we explore the impact of these imperfec-
tions on a quantum optical simulation of vibronic spectrosc-
opy. We first describe in more detail the analogy between
vibronic spectra and quantum optics using a specific transition
in tropolone as an example. We then introduce the Gaussian
state formalism, which we show can be used to quantify the
impact of imperfections. Using this formalism, we propose a
method for adapting an experimental setup to account for its
imperfections. We also introduce a classicality criterion that
can be used to benchmark the performance of an imperfect
simulation. Next, we perform a proof of principle experiment
in which we simulate part of the vibronic spectrum of tro-
polone. This experiment highlights the impact of imperfec-
tions and illustrates our method for accounting for them.
Finally, we discuss our experimental results in light of our
analysis.

The 370nm transition in tropolone

We first illustrate the connection between vibronic spectro-
coscopy and quantum optics using the example of tropolone
(C7H6O2), which is a molecule contributing to the taste and
color of black tea [18] (see figure 1). In the 370nm electronic
transition in tropolone, the change in molecular configuration
caused by the electronic excitation distorts the vibrational
modes and couples them to each other. In the following, we

focus on two of these modes which couple only to each other
due to selection rules [19], and use a harmonic approximation
of the potential wells corresponding to the vibrational degrees
of freedom. Focusing on only two modes, as opposed to the
full set of vibrational modes, simplifies the chemical problem
and allows us to focus on the physics of the quantum optics
simulation. We can write the change in mass-weighted normal
coordinates (q1, q2) of the two modes under study as [19, 20]:
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According to the Franck–Condon principle [21, 22], the
intensity of a given vibrational transition is proportional to the
overlap between the wave function of its initial vibrational
state and that of its final vibrational state. If the initial
vibrational state is the ground state and the final state has m1

energy quanta in mode 1 and m2 energy quanta in mode 2,
then this overlap can be written as:

= á ñ( ) ∣ ∣ ˆ ∣ ∣ ( )P m m m m U, , 0,0 , 2Dok1 2 1 2
2

where ÛDok is the operator implementing mode transformation
(1), known as the Doktorov operator [23]. P(m1, m2) is then
the normalized intensity of the transition at frequency

w w+m m1 1 2 2, where ω1=176 cm−1 and ω2=110 cm−1

are the excited state vibrational frequencies of modes 1 and 2.
P(m1, m2) is known as the Franck–Condon factor for this
transition.

We now consider the quantum optics analogy to the
vibrational transition described above. Equation (1) can be
interpreted in quantum optics as a Bogoliubov transformation
between two optical modes. If the initial state of these two
modes is vacuum, then this transformation can be achieved in
quantum optics via two single mode squeezing operations and
a beam splitter [24]. ( )P m m,1 2 becomes the probability of
detecting m1 photons in mode 1 and m2 photons in mode 2.
An ideal quantum optics experiment that prepares two
appropriate single mode squeezed vacuums (SMSV), inter-
feres them on a beam splitter with the appropriate reflectivity,
and measures the resulting photon number distribution using
photon number resolving detectors can therefore be used to
estimate the Franck–Condon factors associated with the
370nm transition in tropolone.

We note that in this example, equation (1) does not
include a displacement term. Such a term is present for many
molecules. Accounting for this additional term in a quantum
optics simulation would require an additional displacement
step in the state preparation process.

Theory

Quantifying the impact of imperfections

In the absence of imperfections, equations (1) and (2) would
be used to determine which squeezing parameters and beam
splitter reflectivity to use in an experiment aiming to simulate
the spectrum of tropolone. However, in the presence of

2
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imperfections these experimental parameters will not yield the
targeted photon number statistics. To obtain useful results
from an experiment, we require a method for comparing the
experimentally generated photon number statistics to those of
the target optical state.

In the limit of a large number of modes, we cannot
directly compare the experimentally generated state to the
target state in the photon number basis because there is no
known efficient classical algorithm for calculating these
photon number statistics. We therefore propose to use the
Gaussian state formalism [25, 26] to describe the optical
states. This formalism applies to states that have a Gaussian
quasi-probability distribution in phase space and to operations
that preserve the Gaussian nature of these states, known as
Gaussian transformations. Since the initial state (vacuum) and
all the optical operations are Gaussian, as well as most rea-
listic sources of imperfection, both the ideal target state and
the experimentally generated optical state can be described as
multimode Gaussian states. A Gaussian state can be effi-
ciently characterized experimentally in the phase space
description, and although the photon number statistics of
Gaussian states cannot be efficiently calculated, the fidelity
between two such states can be [27–29] using their covariance
matrices and displacement vectors.

The fidelity between the experimentally generated state
and the target state can be used to bound their difference in
photon number statistics. The fidelity F between two states
described by density matrices ρ1 and ρ2 is related to the trace
distance D by [30]:

r r r r-( ) ( ) ( )D F, 1 , . 31 2 1 2
2

D is related to the maximum classical l1 distance between

different possible measurement outcomes by:

r r =( ) ( ) ( )
{ }

D D p q, max , , 4
E

m m1 2
m

where the maximisation is over all sets of detector POVMs
{Em} at the output of the network, and r= ( )p Etrm m1 and

r= ( )q Etrm m2 . If we consider the POVMs projecting onto
photon numbers, we then have that:

 r r- -∣∣ ∣∣ ( ) ( )P P F1 , , 51 2 1 2
2

where P1 and P2 correspond to the photon number statistics
associated with states ρ1 and ρ2.

Equation (5) now gives us an efficiently calculable
measure for bounding the distance between experimental
photon number statistics and those of the ideal state. If ρ1 is
the density matrix corresponding to the experimentally gen-
erated state and ρ2 is that of the ideal state, we can use this
inequality to bound the error on an experimental estimate of
the Franck–Condon factors.

In addition to the error bound calculated in this way, we
can also account both for the statistical error in estimating the
Franck–Condon factors due to the finite number of exper-
imental samples and for small deviations from a Gaussian
model of an experiment. If the statistical error is bounded by
òstat and the error caused by deviations from a Gaussian model
of an experiment is bounded by òG, then the distance between
the estimated photon number statistics Pexp derived from the
set of measurement results and the Franck–Condon factors P
is bounded by:

  r r- - + +∣∣ ∣∣ ( ) ( )P P F1 , , 6exp exp ideal
2

stat G

where ρexp corresponds to the Gaussian description of the
experimentally generated state and ρideal is the density matrix
of the target state.

Figure 1. Overview of the scheme for estimating vibronic spectra. (A) A vibronic transition in a molecule such as tropolone (pictured, top)
consists of a joint electronic and vibrational excitation. Depending on the energy of the absorbed photon, different vibrational states are
excited, leading to complex spectra (bottom). The heights of the peaks depend on the overlaps between the ground state of the molecule and
the excited vibrational states of the excited molecule. (B) We model vibronic transitions using a harmonic approximation of the vibrational
modes. The harmonic oscillators describing the excited state (in blue) are squeezed by S and displaced by D with respect to the ground state
(in red). The overlaps between the different Fock states determine the heights of the spectral peaks. (C) We simulate this process using a
quantum optics experiment with squeezing S and displacement D (top). Each optical mode is mapped onto a vibrational mode of the
molecule; in our case we consider two coupled vibrational modes of tropolone. The probabilities of measuring photon number outcomes
using photon number resolving detectors (PNRD) are mapped onto the heights of the peaks in the spectrum (bottom).
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Designing an experiment

Using the metric described above, we propose a method for
determining, in the presence of imperfections, experimental
parameters that yield a state that is as close as possible to the
target optical state. Typically, an experimental setup has a
certain number of experimental parameters that can be con-
trolled, such as the pump power, which determines the
squeezing, or the interference between the modes. There also
are a certain number of parameters that cannot be controlled
such as the loss and the detector dark counts. The task of
producing the state with the highest fidelity to the target state
can be formulated as an optimisation problem over the con-
trollable parameters given the presence of the uncontrollable
parameters.

To optimize the fidelity, an accurate description of the
experimentally generated state must first be formulated as a
function of all the experimental parameters. This procedure
can be done efficiently since the number of steps required to
produce this description is polynomial in the number of
modes. Indeed, the squeezers and detectors can all be char-
acterized independently. Efficient methods exist to char-
acterize interferometers [31]. Losses at the input and output of
the interferometer can be individually characterized using
classical light. Mode overlaps can be determined using their
pair-wise Hong–Ou–Mandel dip visibility. The experimen-
tally generated state can therefore in principle be accurately
described for any combination of experimental parameters.

However, the numerical optimization procedure for
finding this optimal quantum state is not necessarily efficient.
The fidelity can be expected to be a nonlinear function of all
the experimental parameters, so the optimization procedure is
not straightforward. However, numerical optimization tech-
niques can be used to at least find a local optimum in para-
meter space, which depending on the desired accuracy of the
simulation may be suitable.

Benchmarking against classical simulations

Quantum optical experiments aiming to estimate vibronic
spectra are worthwhile if they outperform known classical
algorithms. Although the idealised original proposal by Huh
et al may outperform known classical algorithms, it is not
a priori clear that an imperfect experiment designed accord-
ing to the principles described above would also do so. Fur-
thermore, while there is no known efficient exact classical
algorithm for calculating vibronic spectra, some classical
approximation strategies do exist. One case-by-case strategy
involves guessing which transitions are likely to contribute
the most to the spectrum and only calculating the corresp-
onding Franck–Condon factors [32]. A quantum optics
experiment with imperfections will only be worthwhile if
such other approximation strategies yield worse estimates of
vibronic spectra than the experiment.

We propose the following efficient classical approx-
imation algorithm as a benchmark that experiments must
outperform in order to produce better than classical estimates
of vibronic spectra. This algorithm is conceptually similar to

the quantum simulation protocol, so that the same analysis
tools can be used in both cases.

We start by finding the classical optical state, defined as
having a regular P-function in phase space [33], that max-
imises the fidelity to the target state within the space of all
optical states. First, we note that the displacement operation
that occurs in the state preparation process can in principle
occur before the interferometer instead of after, so that the
vibronic spectroscopy experiment consists of squeezed and
displaced states sent into an interferometer. The fidelity being
invariant under unitary transformations, finding the closest
classical state to the ideal target state is equivalent to finding
the closest classical state to these initial displaced squeezed
states. The closest single mode classical state to a single mode
displaced Gaussian state is a coherent state with the same
displacement [34]. Therefore, the closest multimode classical
state to the target state is a multimode coherent state with the
same displacement. In the case of the transition in tropolone
discussed above, the closest classical state is vacuum due to
the absence of displacement in equation (1).

Next, we simulate sampling from the photon number
statistics of this state. Since this state is classical, its photon
number statistics can efficiently be sampled from using a
classical algorithm [35]. Since this state is also Gaussian,
equation (5) can be used to estimate the target vibronic
spectrum to within some error bound. To outperform this
classical algorithm, an experiment must yield an error bound
given by equation (6) that is smaller than that yielded by the
classical state.

This classical approximation strategy can also be used as
a classicality witness for the optical state: any experimental
state with a higher fidelity must have a non-regular P-func-
tion. We therefore use this best classical state as our bench-
mark for demonstrating a quantum advantage in experiment.
Any experimental optical state that beats the witness is both a
non-classical state and produces a better approximation of
vibronic spectra than would be possible with any classical
state. Furthermore, we note that if an experimentally gener-
ated state beats our classicality criterion, then currently
known classical simulation algorithms based on the phase
space description of the state are generally not applicable
[35, 36]. Whether other efficient classical simulation strate-
gies, for example those recently used to study lossy boson
sampling [37, 38], can be applied here is an open question

Experiment

Overview

We perform a proof of principle experiment to simulate the
transition in tropolone described by equation (1). We choose
tropolone to illustrate our findings for the following reasons.
First, we note that the vibronic transition described by
equation (1) does not include a displacement term, which is
present in many other molecules. Displacements can be
implemented in quantum optics using classical laser light and
do not affect the classicality of a state, as defined by the
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regularity of its P-function [33]. Furthermore, the squeezing
parameters for the two modes in the ideal experiment are 0.19
and 0.72, which is quite large compared to most other
molecules. The absence of displacement and these large
squeezing parameters allow us to focus our analysis on the
quantum mechanical aspects of the experiment. These factors
also allow us to highlight the impact of imperfections such as
loss, which squeezing is strongly affected by, on an
experiment.

Our setup (figure 2(A)) starts with a squeezing operation
implemented by a 100kHz pulsed laser at 780nm that is
focused inside a periodically poled potassium titanyl phos-
phate (KTP) waveguide. This produces a degenerate two
mode squeezed vacuum (TMSV) at 1560nm [39], the two
modes of which we separate and couple into the two inputs of
a fiber beam splitter. We then use two transition-edge sensors
(TES) [40] to sample from the photon number statistics from
the two outputs of the beam splitter. The frequency of the
occurrence of photon numbers m1 and m2 in modes 1 and 2
gives a direct estimate of the joint probability in equation (2)
and thus of the Franck–Condon factors for the transition
towards the states with m1 and m2 vibrational quanta.

Our setup deviates in the following ways from the ideal
setup described above. Firstly, we approximate the two
independent SMSVs that are required in an ideal setup using a
TMSV, since TMSVs are experimentally simpler to generate
and mode-match. The TMSV can be converted into two
identical SMSVs using the beam splitter in our setup, but not
into the two SMSVs with different squeezing values that we

require. Furthermore, the two modes are not exactly identical
and so do not interfere perfectly on the beam splitter; the
Hong–Ou–Mandel dip [41] between the two modes has a
94% visibility. Another significant imperfection is the limited
system efficiency from the photon source to the detectors;
approximately 60% of the generated photons are not detected.
This loss mostly comes from the low coupling efficiency from
the photon source into single mode fiber, and is expected to
degrade the squeezing. Finally, our TES detectors are noisy,
with a 0.2% dark count probability and a probability of 0.1%
of detecting pump photons that leak through our setup. Since
photons from the pump have twice the energy of the down-
converted photons and TESs are energy-resolving detectors,
these events register as two-photon events.

Characterization

To produce an optical state that maximizes the fidelity to the
target state in the presence of imperfections, we first char-
acterize the experimental setup in order to realise a model for
the experiment within the Gaussian state formalism. In the
following, we explain how this characterization and model-
ling is performed. Figure 2 shows the model for the experi-
ment that we use as a result of this characterization process.

Figure 2. (A) We approximate the Franck–Condon factors of tropolone experimentally by sending pump pulses at 780nm into a periodically
poled KTP waveguide, separating the two orthogonally polarized downconverted modes at 1560nm using a polarizing beam splitter (PBS),
and rotating the polarization of one of the two modes using a half wave plate (HWP). We then couple these two modes into polarization-
maintaining (PM) fiber, interfere them in a tunable PM beam splitter (BS), and measure them using two fiber-coupled transition-edge sensors
(TES). (B) We model this experiment as follows. The two downconverted modes are modeled as a two mode squeezed vacuum (TMSV)
interfered on the beam splitter and measured by TESs modeled as noisy photon number resolving detectors (PNRD). This process occurs in
the presence of loss and noise produced by the non-overlapping parts of the two modes (both of which are modeled using beam splitters, see
supplementary materials available online at stacks.iop.org/JPB/51/245503/mmedia). The squeezing parameter r of the TMSV and the
transmissions of the beam splitters in our model of the experiment are shown in the table on the right. The underlying data for this experiment
is available upon reasonable request from the authors.
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Detectors. We model the TESs as photon number-resolving
detectors that, despite having a very low intrinsic dark count
rate, suffer from the following noise mechanisms.

Firstly, our TESs have some degree of inefficiency. This
inefficiency is accounted for in our estimate of the total
system efficiency described in the following section.

Secondly, the binning procedure that we use to extract
photon numbers from the analogue output signal is
susceptible to electronic noise on our detectors. With a
vacuum input, there still is a 0.2% probability of wrongly
registering a one photon event. We approximate this noise as
a dark count mechanism, which can be accounted for within a
Gaussian model by considering that our detector is sensitive
to both a noiseless input signal and to an additional mode
containing a thermal state with a 0.2% single photon
component.

Thirdly, some pump photons leak through our setup and
make it to the detectors. Since TESs resolve the energy of
incoming photons, these pump photons are counted as two-
photon events. We find that our TESs have a 0.1% probability
of detecting these pump photons. This noise mechanism can
be included within our model by considering that our detector
is sensitive to an additional pump mode containing a weak
coherent state with a 0.1% single photon component.

This noise can be included in our estimate of the fidelity.
Within our aforementioned model, the coherent states in our
noise modes have a fidelity of about 0.998 to vacuum, and
since the fidelity for a product state is the product of the
fidelities, the total fidelity of these noise modes to vacuum is
0.995 8. This fidelity must then be multiplied by the estimated
fidelity of the optical state before the detectors in order to
determine the total fidelity.

Squeezing and loss. We characterize the total loss
(including detector inefficiency) and squeezing in our
system using a tomography technique similar to that
described in [42]. We model our photon source as a perfect
TMSV with additional loss in the two modes, use our model
for the detectors described above, and numerically find the
squeezing parameter and the distribution of the loss in both
arms which yield the photon number statistics that most
closely match the experimental photon number statistics in
terms of l1 distance. We follow this procedure for the beam
splitter set first to 100:0, and then to 0:100, in order to
determine how the losses in the system are distributed in both
modes both before and after the beam splitter. We note that
since balanced losses can mathematically be commuted
through the beam splitter, we need to consider losses in
only one of the output ports of the beam splitter in our model.

To verify that our estimate of the losses is reliable, we
perform this tomographic procedure for one of the two beam
splitter settings for several different pump powers ranging
from 10 to 300 μW. We find that at powers exceeding
100μW our results are skewed as higher order nonlinearities
start affecting the pump and the downconverted modes. We
therefore use the values for the loss that are found in the low
power region in figure 3, and estimate the error on these

values to be ±2 %. These values are also consistent with the
heralding efficiencies estimated from the photon number
statistics in this plateau region.

The tomography procedure yields the squeezing para-
meter that we can directly used in our Gaussian model. The
squeezing parameter r is related to the pump power P by the
following relation [43]:

µ ( )P r . 72

Once the squeezing parameter has been determined for
one power, we can use equation (7) to determine the
squeezing for any power. To estimate the error on our
estimate of the squeezing parameter, we fit the squeezing
parameters determined from our optimization procedure to a
curve given by equation (7) in the plateau region. This fit is
shown in figure 3. We estimate the error on our estimate of
the value of the squeezing parameter at low powers to
be 0.01.

We also use our tomography results to estimate the error
òG stemming from our Gaussian approximation of the
experiment. Figure 3 shows the deviation, quantified by l1
distance, between the measured photon number statistics and
those of the closest lossy TMSV measured with noisy
detectors determined by our tomography technique. At low
powers, this error is less than 10−3, so we consider that our
description of the optical state and of our detectors is
satisfactory.

Distinguishability. We characterise the distinguishability δ

between the optical modes by using the depth of the Hong–
Ou–Mandel interference [41], shown in figure 3, measured by
setting the beam splitter to 50:50 and measuring the number
of coincidence counts at the outputs as we rotate the HWP in
our experimental setup. We use SNSPDs as our photon
detectors for this procedure due to their greater ease of
operation. We choose to treat the non-overlapping parts of the
two modes as noise, such that the ratio of noise photons to
signal photons in the system is δ. We choose to model this
noise as virtual beam splitters of reflectivity δ, placed just
after the squeezing operation for both modes, between each
mode and a virtual thermal state containing the same average
number of photons as the TMSV. The ±2% error on our
estimate of δ comes from the error on the estimate of the
depth of the measured Hom-Ou-Mandel dip. We note that our
model for the noise given by the distinguishability is only an
approximation of the full description of this noise, which
would require taking several additional non-interfering modes
into account [44]. However, our model provides a rough
estimate of the contribution of this noise towards the
degradation of the fidelity.

Beam splitter reflectivity. The beam splitter reflectivity was
set by blocking one mode in our experiment, setting the beam
splitter to be fully transmissive so that the maximum photon
number at the detector for that mode could be determined for
a given pump power, and then adjusting the beam splitter
until the average photon number at the detector was the
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desired fraction of the maximum. The error on our estimate of
the reflectivity was estimated at ±1%.

Optimization and results

Finding the optimal state. The characterization procedure
described previously yields a Gaussian model for the
experiment. For any value of the beam splitter reflectivity
and squeezing parameter, we now have a Gaussian
description of the output state that accounts for the
imperfections in the setup.

We aim to find the values of the squeezing parameter r
and beam splitter reflectivity tBS that maximize the fidelity of
the experimentally generated state to the target state, given the
detector noise, mode mismatch, and losses in our setup. We
use Matlab’s built-in fminsearch procedure. Given the small
size of the parameter space, this routine can be expected to
find the global optimum for the fidelity. Figure 2(B) shows
the values of r and tBS that maximize the fidelity within our
model. This maximum theoretical fidelity is 0.891.

Given the errors in our model, we expect not to achieve
this maximum fidelity in practice. To obtain a more
reasonable estimate of the fidelity, we use a Monte Carlo
method to determine the most likely value of the fidelity that
we achieve as well as the error on this value. We simulate 100
states produced by our experiment, where we randomly select
the experimental parameters from a Gaussian probability
distribution determined by the estimated mean and standard
deviations given by our analysis. The mean and standard
deviation in the fidelity of these samples are used as our
fidelity estimate and as the error on this estimate. With this
method, we revise our estimate of the fidelity to the target
state to 0.890(1).

Estimated Franck–Condon factors. We collected 1638 370
samples over the course of about 20 s from the photon
number statistics of our state from which we estimate the
Franck–Condon factors of the transition under study. Table 1
compares our experimental estimate to the exact theoretical
target values numerically calculated using equations (1) and
(2). By comparing our experimental values to the exact
values, we find an error of 0.206. This error is quite large; the

following section will provide a detailed analysis of the
sources of error.

Error analysis and classicality. We apply equation (6) to our
experiment to determine the theoretical error bound using our
analysis of the fidelity and the observed deviation from
Gaussian behavior in our system. Given the large number of
samples, we neglect the sampling error. We find a bound for
the trace distance of 0.455. Our experimental results are
indeed within this bound.

We also apply our classicality criterion to this experi-
ment. The classical state with the highest fidelity to the target
state is vacuum, which has a fidelity of 0.879 to the target
state. Our experiment has a higher fidelity by about 10
standard deviations and therefore satisfies our classicality
criterion. Using vacuum, the classical approximation algo-
rithm described above would yield an error bound of 0.476,
which is worse than what we achieved in experiment.
However, we note that since vacuum is a Gaussian state,
then in the specific case where the closest classical state is
vacuum the difference in photon number statistics between
the target optical state and the closest classical state can be
efficiently calculated, as opposed to simply bounded using the
fidelity.

Figure 3. Characterization data for our experiment. (A) Total losses for the two modes in our setup, estimated from our tomography
procedure for different pump powers, with the beam splitter set to full transmission. We use the average and the standard deviation of the
values in the shaded area for our estimate of the experimental parameters. (B) Squeezing parameter, estimated from our tomography
procedure, as a function of pump power. Within the shaded area, we find that the relation between squeezing parameter and pump power is
very close to the theoretical relation µP r2. (C) Deviation between our experimental photon number statistics and the theoretical photon
number statistics given by our model for the optical state, quantified by the l1 distance. (D) Coincidence counts on our detectors measured as
a function of the angle of the half wave plate (HWP) in our setup. We observe a clear Hong–Ou–Mandel dip [41].

Table 1. Most significant Franck–Condon factors estimated by our
experiment and by simulations for an ideal experiment.

Frequency Experiment Ideal

0 0.9628 0.7731
ω1 0.0129 0
ω2 0.0127 0
2ω1 0.0035 0.1097
2ω2 0.0038 0.0041
ω1+ω2 0.0035 0.0469
4ω1 <10−4 0.0233
3ω1+ω2 <10−4 0.0200
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Discussion

In order to contribute to future designs of experiments, in this
section we discuss our experimental results, and in particular
we analyse the main ways in which different experimental
imperfections contribute to the degradation of the fidelity.
Figure 4 shows the effect of different sources of imperfection
on the fidelity in our experimental setup. An ideal experiment
consists of SMSVs and ideal detectors (black solid line). The
additional dashed and dotted lines indicate the effect of
additional imperfections that must be accounted for in our
experiment. The orange dashed and dotted line indicates the
effect of all the parameters that we account for in our analysis,
and the orange square corresponds to our experiment. The flat
green solid line indicates the maximum fidelity that can be
achieved with the best classical state. These theoretical curves
can easily be derived using our Gaussian model for the
experiment.

We see that our classicality criterion is relatively tolerant
of experimental imperfections to simulate transitions that
involve large amounts of squeezing. An enhancement over
the best classical state can be achieved with values of loss up
to 90%, with noisy detectors, and with the use of a TMSV
instead of two SMSVs. For loss exceeding 90%, the noise on
our detectors degrades the fidelity below that of the best
classical state. For transitions in other molecules that involve
less squeezing, such as the ( ) ( )S A S Bg u0

1
1 1

1
2 transition in

benzene or the -SO SO2 2 transition studied by Shen et al
[13], we expect that our level of detector noise would prevent
us from outperforming this criterion for any level of loss.

A comparison of our experimental results and of the ideal
theoretical results for a perfect experiment to simulations of

other intermediate states is shown in table 2. The loss leads to
an overestimate of the Franck–Condon factor corresponding
to vacuum, both for our experiment and for a theoretical lossy
SMSV. Furthermore, whereas the Franck–Condon factors for
odd numbers of excitations should be 0 due to the difference
in symmetry between the ground state and the odd-numbered
excited states, our experiment finds these to be non-zero due
to photons which would correspond to higher order Franck–
Condon factors being lost. The use of a TMSV instead of two
independent SMSVs causes us to experimentally find photon
numbers that are roughly symmetric in both modes, to within
the imbalance in the loss in the two arms We see from our
results that, in the case of tropolone, although the high
squeezing and absence of displacement has allowed us to
highlight the issue of imperfections in an experiment, by the
same token our simulations result in a large error in esti-
mating Franck–Condon factors.

We now address the larger issue of the scalability of this
protocol for the estimation of vibronic spectra in light of our
results. In principle, the technology for deterministic sources
of squeezing, interferometry and photon counting all exist,
but imperfections are the main limiting factor. Whereas the
use of a TMSV instead of two SMSVs in our experiment can
easily be addressed, the issue of loss is more problematic.
State of the art experiments in quantum optics optimised for
loss still struggle to reach higher than 80% system efficiencies
[45]. It is not yet clear whether efficiencies can be sig-
nificantly improved beyond this. Once this obstacle is cleared,
we expect that large-scale and accurate simulations of
vibronic spectra are within reach.

Conclusion

We have proposed a method for accounting for experimental
imperfections in quantum optical simulations of vibronic
spectroscopy, following the proposal by Huh et al. We have
shown that the impact of these imperfections can be

Figure 4. Maximum achievable fidelity as a function of the fraction
of light lost in a simulation of tropolone, for different imperfections
in an experimental setup. We simulate an ideal setup that is only
affected by loss (black solid line), to which we add our noisy
detectors (blue dashed line), then replace the SMSVs by a TMSV
(red dotted line), then add our measured partial overlap between the
modes (orange dashed–dotted line). The cross and the circle
respectively indicate the best SMSV for our level of loss and the best
SMSV without loss but with noisy detectors, yielding the estimated
Franck–Condon factors shown in table 1. The orange square
indicates the experimental parameters used for our experiment. For
this analysis, we assume equal loss in both modes, hence the
discrepancy between the orange square and the position of the
orange dashed–dotted line.

Table 2. Most significant Franck–Condon factors, fidelities, and
errors estimated by our experiment, and by simulations for an ideal
experiment, the best SMSVs for our level of loss, and the best
SMSV in a lossless experiment but with noisy detectors.

Frequency Experiment Ideal
Lossy
SMSVs

Best
SMSVs

0 0.9628 0.7731 0.9327 0.7631
ω1 0.0129 0 0.0377 0.0015
ω2 0.0127 0 0.0073 0.0015
2ω1 0.0035 0.1097 0.0136 0.1102
2ω2 0.0038 0.0041 0.0004 0.0046
ω1+ω2 0.0035 0.0469 0.0053 0.0466
4ω1 <10−4 0.0233 0.0004 0.0234
3ω1+ω2 <10−4 0.0200 0.0003 0.0199

Fidelity 0.890(1) 1 0.9068 0.9958

Error 0.206 0 0.195 0.005
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quantified, that an experimental setup can be adjusted to
account for the presence of these imperfections, and that a
classicality benchmark that experiments must outperform to
be worthwhile can be formulated. We illustrated these results
using a proof of principle experiment that simulated part of
the vibronic spectrum of tropolone.

Our results inform future efforts for performing larger
scale simulations of vibronic spectra with current quantum
optics technology, for example using recent advances in fiber-
loop based experiments [16, 17] and integrated photonics
[10]. We also note that our approach for dealing with
imperfections can be applied to the other platforms which
have been proposed for vibronic spectra estimation [12, 13].
We envisage that our work will be useful for efficiently
approximating the spectra of large molecules that are outside
the reach of classical computers.
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