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I. INTRODUCTION

Entanglement has proven to be a central resource in
quantum information processing using either discrete or
continuous variable (CV) systems (such as field modes
of light, nanomechanical oscillators or cold atomic gases)
[1]. Any attempt to create an entangled state is limited
by the residual noise and decoherence, and proper tools
to verify entanglement are needed to evidence the suc-
cess of an experiment. In CV systems these tools can
roughly be divided into those that apply to Gaussian
states [2–6] (see [7] for a complete review), and those
that apply to more general states [8, 9]. Most tools en-
tail an optimization of an entropy-like functional like a
convex roof construction [10, 11], the proper choice of
a set of observables that witness the entanglement for a
broad class of states [12, 14–18], or the suitable selection
of a finite [19–24] or infinite [25, 26] series of inequalities
(concerning moments of the quadrature variables) which
are mainly based on the well-known criterion of positive
partial transposition (PPT) [1, 27]. The need to opti-
mize or accurately choose a tool in accordance with the
specific properties of a quantum state makes the char-
acterization of entanglement a computationally intricate
problem [28], which becomes even more involved as the
mixedness of the state or the number of constituents of
the system grows.

Entanglement shared by two subsystems has been real-
ized experimentally in various systems [29], but increas-
ing the number of entangled components is a big experi-
mental challenge, such that the preparation of states with
more than bipartite entanglement has been achieved in
few systems only [30–32]. The limitations due to noise
and decoherence typically get increasingly severe with
growing number of entangled subsystems. Under given
imperfect conditions it might not be possible to create a
genuinely n-partite entangled state in an n-partite sys-
tem, whereas the preparation of a bipartite entangled
state might still be feasible. Tools to verify bipartite
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or genuine n-partite entanglement have been explored in
detail [33], but tools that analyse the range in between
have been established only recently [8, 34–37]. Only
those tools, however, will help us to gauge experimental
progress and eventually achieve the creation of genuine
n-partite entanglement.

We build up here on a hierarchy of separability crite-
ria that detect k-partite entanglement in n-partite dis-
crete systems [36], and extend this approach to the case
of contiuous variable systems. Based on this hierarchy,
we present versatile hierarchies of separability criteria
that apply to Gaussian and non-Gaussian states such
as photon-added/subtracted states [38] that display par-
ticularly strong non-classical correlations properties [39–
44].

The paper is organized as follows: We start with an in-
troduction to CV systems and hierarchies of separability
criteria in Sec. II. The formulation of these hierarchies
for CV systems is presented in Sec. III, which is accom-
panied with a discussion of the similarities with the PPT
criterion (see Sec. III A). We apply these hierarchies to
Gaussian and non-Gaussian states in Sec. IV, and the
possible experimental assessment of the criterion is dis-
cussed in Sec. V.

II. BASIC DEFINITIONS

A. Phase space representation

The Hilbert space Hn of a quantum system composed
by n modes results from the n-fold tensor product of
the single-mode Hilbert space H1 = L2(R), and all the
physical information about the system is encoded in the
density operator ρ̂. The m-th mode is described in
terms of the canonical operators, i.e. position Q̂m and
momentum P̂m. Equivalently it may be described by
their dimensionless counterparts q̂m = Q̂m

√
MΩ/~ and

p̂m = P̂m/
√
MΩ~ defined in terms of the frequency Ω

and and mass M . From now on we will use only the
dimensionless operators and define the operator-valued
vector x̂ = (q̂1, p̂1, ..., q̂n, p̂n)T whose elements satisfy the
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canonical commutation relations [x̂m, x̂l] = −i [Jn]ml,
with the symplectic matrices

Jn =

n⊕
m=1

J1 and J1 =

(
0 −1
1 0

)
,

of the composite system and a single subsystem.
It is convenient to describe a continuous variable sys-

tem in terms of the real symplectic space (R2n,Jn), i.e.
phase space [7, 27], rather than the infinite dimensional
complex Hilbert space Hn. Quantum mechanical opera-
tors Â are then replaced by their Weyl symbol

WA(x) =

∫
R2n

d2nξ

(2π)2n
eix

TJnξTr
[
Âe−ix̂

TJnξ
]
, (1)

i.e. functions WA(x) of classical phase space variables
x = (q1, p1, ..., qn, pn) [45]. The Weyl symbol of a density
matrix ρ̂ is typically referred to as Wigner function, and
it is denoted by W (x) [46].

The Wigner function W (x) of a Gaussian state ρ̂ has
the particularly simple form [46]

W (x) =
e−

1
2 (x−x̄)TV −1(x−x̄)

(2π)n
√

det(V )
,

where the vector x̄ = Tr(ρ̂x̂) contains the expectation
values (first-moments) of the dimensionless phase space
variables, and the covariance matrix V is defined by

Vml =
1

2
Tr (ρ̂ {[x̂]m − [x̄]m , [x̂]l − [x̄]l}) ,

where {., .} denotes the anti-commutator. In this case,
W is completely characterized by the vector x̄ and the
real symmetric 2n × 2n matrix V , i.e. by 2n2 + n real
parameters. According to the Heisenberg uncertainty re-
lation, the covariance matrix of any quantum state must
satisfy V ≥ i

2Jn [27, 46], which implies the positive defi-
niteness V > 0. Since the entanglement of the system is
invariant under local unitary displacements [27], we shall
take the first-moment vector equal to zero (x̄ = 0) from
now on.

Here, we are concerned with the class of entangled
states ρ̂ whose Wigner function may be expressed as the
product of a polynomial function F (x) and the Wigner
function of a Gaussian state with covariance matrix V ,
i.e.

W (x) =
F (x)e−

1
2xV

−1x

(2π)n
√

det(V )
. (2)

Direct examples of this kind of states are those states
which are generated by a series of photon-creation [47]
or photon-subtraction operations [44, 48, 49], or more
general, a coherent superposition of both [20, 50]. We
shall refer to the latter as photon-manipulated states. In
that case, the degree of the polynomial corresponds to the
number of such manipulations that need to be applied to

a Gaussian state to arrive at the state in question. We
should, however, stress that F (x) may be also an analytic
function with domain in all the phase space (a function
with a convergent Taylor series), such that the set of non-
Gaussian states with Wigner function (2) may comprise a
broader class of CV states than the photon-manipulated
states, as for example Schrödinger cat states.

B. Hierarchy of separability criteria

A pure state of an n-partite quantum system is con-
sidered n-partite entangled if it can not be written as a
simple tensor product of two state-vectors each of which
describes a part of the subsystems only. If an n-partite
quantum state can not be written as a simple tensor prod-
uct of ki-partite entangled ki-partite state-vectors with
ki < k, then the state is k-partite entangled.

A mixed n-partite state ρ̂ is considered k-partite en-
tangled if it can not be represented as an average over
projectors onto pure states that are less than k-partite
entangled, i.e.

ρ̂ 6=
k−1∑
j=1

∫
dµj(a)

∣∣∣Ψ (a)
j,n

〉〈
Ψ

(a)
j,n

∣∣∣ , (3)

where |Ψ (a)
j,n 〉 are j-partite entangled n-partite states,

µj(a) are positive functions that satisfy
∑k−1
j=1

∫
dµj(a) =

1, and the summation is restricted to values j < k. Phys-
ically, this definition means that a k-partite entangled
state can be realized by mixing different states that are
at most k-partite entangled, but since the states that en-
ter this average may carry entanglement between differ-
ent groups of subsystems, a k-partite entangled n-partite
state is not necessarily separable with respect to a certain
bipartition.

Our starting point to detect k-partite entanglement
is a hierarchy of separability criteria τk,n. It is based
on a comparison between several matrix elements of the
density operator in question with respect to some product
states. As shown in [51], genuine n-partite entanglement
is identified through the condition

τn(ρ̂) = |〈Φ1| % |Φ2〉|︸ ︷︷ ︸
f(%)

−
2n−1−1∑
j=1

√
〈Φ1j | % |Φ1j〉 〈Φ2j | % |Φ2j〉︸ ︷︷ ︸

fj(%)

> 0 , (4)

where |Φ1〉 =
⊗n

m=1 |ϕm〉 and |Φ2〉 =
⊗n

m=1 |ϕn+m〉 are
two product vectors, and the vectors |Φ1i〉 and |Φ2i〉 are
defined in terms of the inequivalent possibilities to divide
the n-subsystems into two groups: there are 2n−1− 1 in-
equivalent such bipartitions, each of which that can be
characterized by a vector vj whose n elements adopt the
values 0 or 1, and the groups are defined by the subsys-
tems associated with the value 0 and 1 respectively. In
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terms of these vectors, we have the definition

|Φ1j〉 =

n⊗
m=1

|ϕm+n[vj ]m
〉 , |Φ2j〉 =

n⊗
m=1

|ϕm+n−n[vj ]m
〉 ,

(5)
that is, the vectors |Φ1j〉 and |Φ2j〉 are obtained from the
vectors |Φ1〉 and |Φ2〉 through a permutation of state vec-
tors |ϕm〉 with |ϕn+m〉 that belong to those subsystems
that are grouped together in the j-th bipartition.

If a pure state ρ̂ = |Ψ〉 〈Ψ | is separable with respect to
the j-th bipartition, then f(ρ̂) = fj(ρ̂). Since the fj(%̂)
are non-negative, this implies that τn is non-positive. As
this reasoning holds for any bipartition, and, in addition
τn is convex, τn is indeed non-positive for any state %
that can be decomposed into bi-separable pure states.

A fully separable pure state is bi-separable with respect
to all bi-partitions; accordingly, one may introduce the

function τbi,n(ρ̂) = f(%) − (2n−1 − 1)−1
∑2n−1−1
j=1 fj(%),

and a positive value of τbi,n identifies a mixed state to
be at least bi-partite entangled. In the same fashion, one

can introduce scalar factors a
(k,n)
j ≥ 0 [36] for n ≥ k ≥ 2

such that

τk,n(ρ̂) = f(%)−
∑
j

a
(k,n)
j fj(%) (6)

can be positive only if ρ̂ is at least k-partite entangled.

In order to detect entanglement properties as reli-
ably as possible, a suitable choice of probe vectors |ϕi〉
is in order. In practice, it is desirable to find an
optimal set of normalized such vectors that maximize
τk,n. Advantageously, the number of probe vectors scales
only linearly with n, but a full optimization over the
infinite-dimensional vectors without simplifying assump-
tions does not seem to be a fruitful endeavour. Simi-
larly to the concept of Gaussian entanglement of forma-
tion [10], we therefore require that all probe vectors are
Gaussian. Each Gaussian probe state |ϕm〉 is then char-
acterized by it first and second moments

x̄m = (q̄m, p̄m), and (7)

Σm =

[
σ

(m)
xx σ

(m)
xp

σ
(m)
xp σ

(m)
pp

]
, (8)

with det(Σm) = 1/4, σ
(m)
xx ≥ 0 and σ

(m)
pp ≥ 0. In the

following we will identify choices for these parameters
that yield strong criteria. Remarkably enough, this al-
lows us to reproduce the PPT criterion for two-mode
and pure three-mode Gaussian states. Beyond that, even
with this simplifying assumption, Eq.(6), is able to detect
non-Gaussian entanglement [20], for which criteria only
based on the second moments of the quadrature variables
fail. Both observations demonstrate that assuming Gaus-
sian probe states, makes the present hierarchy an easily
accessible but strong tool.

III. HIERARCHIES OF INSEPARABILITY
CRITERIA FOR CV SYSTEMS

The τk,n are parametrized by the first and second mo-
ments of the Weyl symbols of the operators |Φ1〉 〈Φ1|,
|Φ2〉 〈Φ2|, |Φ1j〉 〈Φ1j | , and |Φ2j〉 〈Φ2j |. Let us denote their
vectors of first moments by XΦ1 , XΦ2 , XΦ1j and XΦ2j ,
and their matrices of second moments byΣΦ1

,ΣΦ2
,ΣΦ1j

and ΣΦ2j
. Since also the matrix element 〈Φ1| ρ̂ |Φ2〉 en-

ters the definition of τk,n, it is convenient to introduce
also moments

XΦ21
=

∫
d2nx x W|Φ2〉〈Φ1|(x)∫
d2nx W|Φ2〉〈Φ1|(x)

(9)

and ΣΦ12
defined analogously, where the explicit normal-

ization is introduced because the overlap between |Φ1〉
and |Φ2〉 is typically not unity.

As shown in Eq.(A6) in the appendix A, ΣΦ21
can

easily be constructed from the covariance matrices Σm

defined in Eq. (8) via the prescription

ΣΦ21
=

n⊕
m=1

Σm,n+m, (10)

with

Σm,n+m =
Σm +Σn+m

2 det(Σm +Σn+m)

+ i
ΣmJ

T
1 Σn+m −Σn+mJ

T
1 Σm

2 det(Σm +Σn+m)
.

The first moments are then given by [52]

XΦ21
=
XΦ1

+XΦ2

2
+ iΣΦ21

Jn(XΦ1
−XΦ2

) . (11)

As it is extensively illustrated in appendix A, one may
express τk,n in a rather compact form

τk,n(ρ̂) =
e−

α
2 |fΦ21

|
4
√

det (ΣΦ1
+ΣΦ2

)
−
∑
j

a
(k,n)
j e−

βj
4

√
fΦ1j

fΦ2j
,(12)

with

fu =
exp

(
1
2K

T
(
V −1 +Σ−1

u

)−1
K
)
F (x)

∣∣∣
x=~0√

det (Σu + V )
, (13)

and K =
(
∂
∂x +Σ−1

u Xu

)
for u = Φ21, Φ1j , Φ2j . The

quantities

α = <
(
XT
Φ21
Σ−1
Φ21
XΦ21

)
+ (XΦ1

−XΦ2
)TJTn <(ΣΦ21

)Jn(XΦ1
−XΦ2

) (14)

and

βj = XT
Φ1j
Σ−1
Φ1j
XΦ1j +XT

Φ2j
Σ−1
Φ2j
XΦ2j , (15)
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are quadratic functions of the first-moment vectors, and
< denotes the real part. We provide the expressions for
the vectors XΦ1

, XΦ2
, XΦ1j

, and XΦ2j
, as well as for the

covariance matrices ΣΦ1
, ΣΦ2

, ΣΦ1j
, and ΣΦ2j

in Eqs.
(B1) to (B8), in appendix B.

The general expression Eq.(12) holds for any state
whose Wigner function can be cast in the form of Eq.(2).
If F (x) = 1 in Eq.(2), i.e. if ρ̂ is Gaussian, then fu
defined in Eq. (13) takes the simpler form

f(G)
u =

exp
(

1
2 (Xu)

T
Σ−1
u

(
V −1 +Σ−1

u

)−1
Σ−1
u Xu

)
√

det (Σu + V )
.

In order to identify general properties of the states |Φi〉
that yield potentially maximal values for τk,n, we will
make the assumption

ΣΦ1
= ΣΦ2

= Σ, (16)

i.e. we assume that |ϕm〉 and |ϕn+m〉 (for m = 1, ..., n)
have the same covariance matrix. With this assumption
Eqs. (14) and (15) reduce to α = α′ and βj = β′j with

β′j = 2α′ +
1

2
(XΦ1

−XΦ2
)TP T

j Σ
−1Pj(XΦ1

−XΦ2
) ,

and α′ = 1/4(XΦ1
+XΦ2

)TΣ−1(XΦ1
+XΦ2

), with

Pj =

n⊕
m=1

(−1)[vj ]mI , (17)

where I is the two-dimentional identity matrix, and vj ,
which is defined in the context of Eq. (5), characterizes
the bipartition j. With the help of the following identity
valid for quadratic matrices [53]

1

Σ + V
= Σ−1 −Σ−1(V −1 +Σ−1)Σ−1, (18)

one may easily show that the hierarchy τ ′k,n resulting

from the assumption Eq.(16) can be expressed as

τ ′k,n(ρ̂) =
e−

1
8 (XΦ1

+XΦ2
)T 1
Σ+V (XΦ1

+XΦ2
)√

det (Σ + V )
hk,n,

where hk,n is a function which does not depend on (XΦ1+
XΦ2), i.e. hk,n = hk,n(Σ,XΦ1 −XΦ2).

Since Σ and V are positive definite, the exponent is
non-positive, such that τ ′k,n adopts its maximum only if
XΦ1

+XΦ2
= 0. That is, assuming Gaussian probe vec-

tors and Eq. (16) permits to perform an essential part of
the maximization of τk,n analytically, which eases the re-
liable estimation of Tk,n = max

Φ1,Φ2

τk,n substantially. With
this, we arrive at

T̃k,n = max
X,Σ

τ̃k,n,

with

τ̃k,n(ρ̂) =
e
−2XTJTn

1

Σ−1+V−1 JnX√
det (Σ + V )

−
∑
j

a
(k,n)
j

e−
1
2X

T (Pj)
T 1
Σ+V PjX√

det (Σ + V )
, (19)

which can readily be optimized numerically.

A. Resemblance to the PPT Criterion

Since Eq. (19) is the result of several restrictions that
potentially weaken the hierarchy, a critical assessment of
its strength is in order. Since most of existing separabil-
ity criteria are concerned with separability with respect
to a given bipartition, we focus for the moment on this
question. According to Eq. (19), the inequality

e−
1
2X

T (Pj)
T 1
Σ+V PjX ≥ e−2XTJTn

1

Σ−1+V−1 JnX ,

is satisfied for any mixed Gaussian state that is bisep-
arable with respect the bipartition j. Since this scalar
inequality is satisfied for any choice of X, it implies the
matrix inequality [54],

4JTn
1

Σ−1 + V −1
Jn ≥ (Pj)

T 1

Σ + V
Pj . (20)

In the following, we will show that this permits us to
recover the ppt-criterion for mixed two-mode and pure
three-mode Gaussian states, when all the probe states
|ϕm〉 are chosen to be pure infinitely-squeezed states,
with covariance matrix with σmpp → 0 (∀m) for squeez-
ing in momentum, or σmxx → 0 (∀m) for squeezing in
position. It is worthwhile noting that if inequality (20)
is violated in all the bipartitions, then ρ̂ is genuine mul-
tipartite entangled.

1. Two-mode Case

The covariance matrix V of any two-mode Gaussian
state can be expressed in the standard form (C1), in
terms of four coefficients a, b, c, d ∈ R [7].

According to the ppt-criterion, a two-mode Gaussian
state is separable if and only if the symplectic eigenvalues
{ν̃1, ν̃2} of the partial transpose of the covariance matrix

Ṽj with respect to the bipartition j satisfy [7, 21]

ν̃1, ν̃2 ≥
1

2
. (21)

These are directly obtained from the roots {±iν̃1,±iν̃2}
of the characteristic polynomial of the matrix JT2 Ṽj ,
which is given by

λ4 + ∆̃2
1λ

2 + ∆̃2
2 = 0 (22)
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with ∆̃2
1 = 1

4 (a2 + b2 − 2cd), ∆̃2
2 = 1

16 (ab− c2)(ab− d2),
which are the symplectic invariants.

On other hand, inequality (20) in the two-mode case
may be translated into the eigenvalue problem of the
product matrix [54],

Z1 = 4P1 (Σ + V )P1J
T
n

(
Σ−1 + V −1

)−1
Jn (23)

such that, inequality (20) is not violated as long as all
of the eigenvalues

{
λ

(i)
z ; i = 1, 2, 3, 4

}
of Z1 are non-

negative, i.e. λ
(i)
z ≥ 1 ∀i.

Using the standard form (C1) and substituting Σm by
the covariance matrix of a pure squeezed state (see Eq.
C2)), Z1 results in the matrix Z1(r) defined in Eq. (C3)
whose entries are given in terms of rational functions in
the squeezing parameter r, as discussed in more detail in
appendix C.

In the limit of infinite squeezing in momentum (r →
0), we find that Z1 (see Eq.(C4)) has λ

(1)
z = λ

(2)
z = 1

as doubly-degenerate eigenvalue, and the other two are
given by the characteristic polynomial(

λz
4

)2

− ∆̃2
1

(
λz
4

)
+ ∆̃2

2 = 0 . (24)

Since the roots of Eq. (24) are related with the roots
of Eq. (22) through the expression λ = ±i

√
λz/2, the

conditions λ
(3)
z ≥ 1 and λ

(4)
z ≥ 1 are indeed equivalent

to Eq. (21). That is, given the optimal choice of probe
states with |ϕm〉 = |ϕn+m〉 (m = 1, ..., n) and infinitely-
squeezed covariance matrix, we recover exactly the nec-
essary and sufficient PPT criterion from the inequality
(20). It is straightforwardly to show that this assertion
also holds if we consider infinite squeezing in position
(r →∞) (see Eq.(C5)).

2. Three-mode Case

The foregoing discussion sets the stage of the procedure
that one has to follow in order to show the analogue
result for pure three-mode Gaussian states. In this case,
the comparison between the inequalities (20) and (21)
has to be in terms of the three possible bipartitions of
the system, such that the characteristic polynomial of
the matrices Zj (j = 1, 2, 3) leads to the characteristic

polynomial of the matrices JT3 Ṽj . We defer the details
of the proof to the appendix C.

We may apply the same procedure to study the case
of mixed tripartite-entangled states, but one finds that
this assertion is not longer true. For mixed three-mode
Gaussian states inequality (20) can not be expected to re-
produce the PPT criterion, since PPT basically discerns
fully inseparability in the case of mixed states [5, 32],
whereas τ3,3 identifies genuine tri-partite entanglement.
However, we found that τ2,3 still detects entanglement
of the vast majority of three-mode bipartite entangled
states.

IV. EXAMPLES

We now turn the attention to illustrate how expression
(12) provides reliable estimates of k-partite entanglement
in Gaussian and non-Gaussian states.

FIG. 1. (color online). Density-map of the inseparability
properties of the Werner-type GHZ state defined in Eq. (25)
in terms of the mixing g and squeezing parameter r. The
black-solid line depicts the border between bipartite entan-
gled (blue region) and separable states according to the PPT
criterion. Within the former, the blue-dashed and orange-
dot-dashed lines delimit the region of the states for which the
hierarchies T2,3 and T3,3 return positive values, respectively.

A. Mixed genuine tripartite entangled states

Let us start analyzing the inseparability properties of
a mixed tripartite Gaussian entangled state, whose co-
variance matrix may be expressed as follows,

V = VGHZ + gI3, with g ≥ 0, (25)

where In =
⊕n

m=1 I, and

VGHZ =
1

2


a 0 −c 0 −c 0
0 b 0 c 0 c
−c 0 a 0 −c 0
0 c 0 b 0 c
−c 0 −c 0 a 0
0 c 0 c 0 b

 , (26)

with

a =
1

2

(
e2r + cosh(2r)

)
b =

1

2

(
e−2r + cosh(2r)

)
c =

1

2
sinh(2r),

is the covariance matrix of the continuous-variable ana-
logue of the GHZ states [5]. Here, g plays the role of a
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mixing parameter, while r ≥ 0 is the squeezing param-
eter. We compare the hierarchies τ2,3 and τ3,3 with the
PPT criterion applied to the bipartition 1|23 [5].

As one can see in Fig. (1), τ3,3 detects that this state is
genuinely tri-partite entangled in a substantial part in the
parameter regime, and for sufficiently strong squeezing,
even substantially mixed states are still genuinely tri-
partite entangled. States that are too strongly mixed to
be genuinely tri-partite entangled can still be identified
to be bipartite entangled via τ2,3, which detects nearly
as many states as the ppt criterion.

FIG. 2. (color online). T2,2(ρ̂) as a function of the amplitude
|α| for the CPS-TSVS defined in Eq.(27) with r = 0, α =

|α|ei
√

2
2 , and β = |β|ei

π
2 .

B. Coherent-Photon Added/Subtracted Two-mode
States

To demonstrate the performance on non-Gaussian
states we investigate the inseparability properties of co-
herently photon-subtracted two mode squeezed vacuum
states (CPS-TSVS). These states derive from the locally
squeezed two-mode vacuum state by applying the oper-
ator (αâ1 + βâ2)u, where âl (l = 1, 2) is the photon-
annihilation operator of the lth mode and |α|2 + |β|2 = 1
[50]. For simplicity, we shall consider the states obtained
for u = 1 and symmetrically squeezed in both modes.
The covariance matrix V and the polynomial function
F that define the Wigner function via Eq. (2) take the
form, V = 1

2diag(e−2r, e2r, e−2r, e2r), and

F (x) = 2 cosh2(r)
(

(x2
1 + p2

1)|α|2 + (x2
2 + p2

2)|β|2

+ 2<((x1 − ip1)(x2 + ip2)α∗β)
)

+ 2 sinh2(r)
(

(x2
1 + p2

1)|α|2 + (x2
2 + p2

2)|β|2

+ 2<((x1 + ip1)(x2 − ip2)α∗β)
)

− 4 cosh(r) sinh(r)
(
|αp1 + βp2|2

− |αx1 + βx2|2
)
− 1. (27)

In [20] it is shown that the PPT criterion based on the
second-order correlations fails to unveil the entanglement
of this state for r = 0, what makes this state particularly
interesting to demonstrate the strength of the hierarchy.
Remarkably enough, figure (2) shows that expression (12)
is able to detect this purely non-Gaussian entanglement
in agreement with [20]. Fig.(2) corresponds to a specific
choice of the phases of the complex parameters α and β,
but, we found τ2,2 to perform equally well for any other
choice of phases.

FIG. 3. (color online). Time evolution of T2,2(ρ̂(t)) when the
system is initially in the CPS-TSVS state plotted in Fig. (2)
with |α| = 0.5, and it is in contact with independent thermal
reservoirs with Nth = 2 (black-solid line) and with Nth = 4
(red-dashed line).

C. Time evolution of an initially non-Gaussian
entangled state

Finally, the tractable form of the hierarchy (12) also
permits to study the time evolution of the k-partite en-
tanglement under the influence of environmental noise.
Let us investigate how the two-mode non-Gaussian en-
tanglement of the foregoing example is influenced when
each mode is in contact with an independent heat bath.
To be specific we assume the environmental coupling of
both modes to be modelled with the same rate γ, and
both baths to have the same temperature characterized
by the mean photon number Nth. The open system dy-
namics is governed by a Fokker-Plank equation in the in-
teraction picture (see Eq.D1 in appendix D), which has
been extensively employed to study the effects of losses
and thermal hopping in CV systems [55].

The time-dependent Wigner function is obtained from
the Green function of the Fokker-Plank equation (see ap-
pendix D for further details). In the interaction picture,
one finds that the covariance matrix evolves according to

V (t) = ε(t) + σ(t), (28)
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with

ε(t) =
e−γt

2
V (0),

σ(t) = (1− e−γt)V(Nth,0),

where V (0) = 1
2diag(e−2r, e2r, e−2r, e2r), V(Nth,0) =

1+2Nth
2 (I ⊕ I), and the polynomial part F (x, t) is given

by

F (x, t) = F
(
e
γ
2 t(ε−1(t)σ(t) + I2)−1x

)
+

1

2

∑
l,m

(
ε−1(t) + σ−1(t)

)−1

lm

∂2F (e
γ
2 tx)

∂ [x]l ∂ [x]m

∣∣∣∣∣
x=~0

,(29)

For t = 0, Eq.(29) returns the initial expression Eq.(27)
for the state (F (x, 0) = F (x)), whereas in the long time
(F (x, t → ∞) → 1) the system evolves asymptotically
into the symmetrical separable thermal (Gaussian) state.

One may appreciate from the figure 3 that the initial
non-Gaussian entanglement is degraded asymptotically in
time: the hierarchies shows that the two-mode entangle-
ment features an exponential decay.

This example illustrates that Eq.(12) may provide an
accurate description of multipartite CV entanglement in
realistic dissipative scenarios. As the hierarchy deals with
Gaussian and non-Gaussian states at the same footing,
Eq.(12) is particularly of interested to study the time evo-
lution of k-partite entanglement when the state evolves
from Gaussian to non-Gaussian, or vice-versa.

V. EXPERIMENTAL QUANTIFICATION

Let us now briefly discuss how the hierarchies (12) and
(19) can be assessed with experimental data. The stan-
dard procedure would be based on the experimental re-
construction of the Wigner function in terms of quantum
state tomography [56, 57] or a measurement scheme spe-
cially designed for multicomponent CV systems [58], fol-
lowed by the analytical evaluation of Eqs.(12) and (19).
However, the hierarchies for Gaussian states (19) may be
also directly accessed by performing Gaussian measure-
ments, modelled in terms of a positive-valued operators
with Gaussian Weyl symbol [27, 59], which will be char-
acterized by a covariance matrix σM and first-moment
vector XM that plays the role of the outcome of the
measurement. If one performs such a measurement on
the whole n-mode system, the probability of the outcome
XM is given by [59]

p(XM ;σM ) =
e
− 1

2X
T
M

1
σM+V XM

(2π)n
√

det (σM + V )
.

One may immediately identify the terms in the sum in
Eq.(19) as (2π)np(PjX;Σ), since these terms are derived
from diagonal matrix elements (see Eq.(A2), (A3)). On
the other hand, the first term in Eq.(19), which results

from off-diagonal matrix elements (see Eq.(A1)), may be
expressed in terms of the Fourier transform p̂(ω;Σ) of
the probability distribution p(X;Σ), i.e.

p̂(ω;Σ) =
1

(2π)n

∫
R2n

d2nXe−iω
TXp(X;Σ),

such that Eq.(19) may be brought in the form,

τ̃k,n(ρ̂) = e−2XTJTnΣJnX

∫
R2n

d2nωe−2ωTΣJnX p̂(ω;Σ)

− (2π)n
∑
j

a
(k,n)
j p(PjX;Σ). (30)

as we extensively show in appendix E. This expression
relates τ̃k,n directly to the measurement statistics of a
Gaussian measurement with covariance matrix Σ.

Since the projection of ρ̂ onto a one-mode pure
infinitely-squeezed state (whose covariance matrix we il-
lustrate in (C2)) models an (ideal) homodyne measure in
the m-th mode of the system [57, 60, 61], the results of
Sec. III A indicate that one may completely certify the in-
separability of arbitrary two-mode and pure three-mode
Gaussian states by a collective of simultaneous (ideal)
homodyne measures on each mode of the system.

VI. CONCLUDING REMARKS AND OUTLOOK

The strength of the hierarchy as demonstrated by the
explicit examples in Sec IV and the prospect to obtain
a fine-grained characterization of multi-mode entangle-
ment properties even for non-Gaussian states based only
on Gaussian measurements underlines the practical value
of the separability criteria presented here. In particular,
the recent development of opto-mechanical experiments
[62, 63] that permit the realization of controlled interac-
tions between massive degrees of freedom [64] and light
call for tools that permit to verify experimental achieve-
ments. Whereas experiments on continuous variable en-
tangled systems were in the realm of Gaussian states for
a long time, this new generation of experiments permits
to realize sizeable non-linear interactions which result in
the generation of non-Gaussian entangled states.

This prospect to create and probe entangled states that
were out of reach until recently, highlights the demand for
theoretical tools for the analysis of entanglement proper-
ties beyond the Gaussian theory. In particular with the
capacity to probe entanglement properties also in multi-
mode systems, the present separability criteria promise
to be a valuable theoretical support for a series of exper-
iments to come.
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Appendix A: Derivation of Eq.(12)

In this appendix we illustrate the derivation of expres-
sion (12) starting from the formulation Eq.(6) of the hi-
erarchy τk,n(ρ̂) in Hn. The latter involves the following
three matrix elements

〈Φ1 | ρ̂ |Φ2〉 , (A1)

〈Φ1j | ρ̂ |Φ1j〉 , (A2)

〈Φ2j | ρ̂ |Φ2j〉 . (A3)

with |Φ1〉, |Φ2〉, |Φ1j〉, and |Φ2j〉 defined in Eqs. (4) and
(5). One may compute these matrix elements by using
the trace product rule [65],

〈φ |ρ̂|ψ〉 = Tr (ρ̂ |ψ〉〈φ|)

= (2π)n
∫
d2nxW (x)W|ψ〉〈φ|(x). (A4)

Hence, we must first derive the Weyl symbol W|Φ2〉〈Φ1|
corresponding to the n-fold tensor product operator
|Φ2〉〈Φ1| =

⊗n
m=1 |ϕn+m〉 〈ϕm|. According to the defi-

nition in Eq.(1), this may be expressed as

W|Φ2〉〈Φ1|(x) =

n∏
m=1

W|ϕn+m〉〈ϕm|(q, p). (A5)

Moreover, W|ϕn+m〉〈ϕm| may be directly derived by using
the classical formulation of the Wigner function [65], and
the expression for the wave function of any single-mode
pure Gaussian state, i.e.

φm(q) =

√√√√ 2σ
(m)
pp

π(1 + 4(σ
(m)
xp )2)

e
−σ

(m)
pp (q−q̄m)2

1+2iσ
(m)
xp

+iqp̄m
.

Doing so, one arrives at the Gaussian function

W|ϕl〉〈ϕm|(q, p) = Nm,le
− 1

2 (((q,p)−Xm,l)
TΣ−1

m,l((q,p)−Xm,l))

(A6)
with first-moment Xm,l = 1/2((q̄m, p̄m) + (q̄l, p̄l))

T +
iΣm,lJ1((q̄m, p̄m) − (q̄l, p̄l))

T and covariance matrix as
given in Eq.(10), where the absolute value of the normal-
izing factor is given by

|Nm,l| =
e

−1
4 det(Σm+Σl)

((X−)TJT1 (Σm+Σl)J1X
−)

π 4
√

det(Σm +Σl)
,

with X− = (q̄m, p̄m)− (q̄l, p̄l). Notice that, from Eq.(10)
it is deduced that ΣΦ21

is a complex symmetric ma-
trix which in general is not Hermitian. One may follow
the same recipe to obtain the other Weyl symbols corre-
sponding to the operators |Φ1j〉〈Φ1j |, and |Φ2j〉〈Φ2j |.

By virtue of the trace product rule (A4), the matrix
element (A1) takes the form,

〈Φ1 | ρ̂ |Φ2〉 =
NΦ21√
det(V )

∫
R2n

d2nx F (x)e−
1
2x

TV −1xe−
1
2 (x−XΦ21

)TΣ−1
Φ21

(x−XΦ21
)

=
NΦ21√
det(V )

∫
R2n

d2nx

(
F (x)e

1
2

(
xTΣ−1

Φ21
XΦ21

+XT
Φ21

Σ−1
Φ21

x−XT
Φ21

Σ−1
Φ21

XΦ21

))
e
− 1

2x
T
(
V −1+Σ−1

Φ21

)
x

=
(2π)nNΦ21e

− 1
2X

T
Φ21

Σ−1
Φ21

XΦ21√
det(V −1 +Σ−1

Φ21
) det(V )

[
e

1
2 ( ∂

∂x )
T
(
V −1+Σ−1

Φ21

)−1

( ∂
∂x )
(
F (x)eX

T
Φ21

Σ−1
Φ21

x
)]
x=~0

,

where we made use of the symmetry property of the
pseudo-covariance matrix ΣΦ21 = ΣT

Φ21
. In this expres-

sion, x is 2n-dimensional real vector. Since the exponen-

tial of the differential operator describes a shift in phase
space (see appendix E), we can conveniently manipulate
this expression to obtain,

〈Φ2 | ρ̂ |Φ1〉 =
πnNΦ21

e−
1
2X

T
Φ21

Σ−1
Φ21

XΦ21√
det(V +ΣΦ21

)

[
e

1
2

(
∂
∂x+Σ−1

Φ21
XΦ21

)T(
V −1+Σ−1

Φ21

)−1(
∂
∂x+Σ−1

Φ21
XΦ21

)
F (x)

]
x=~0

. (A7)

Similarly, one may derive the analogue expression for the matrix elements given in Eqs. (A2) (A3) by substituting
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the pair XΦ21
, ΣΦ21

for the corresponding pair XΦ1j
,

ΣΦ1j
, and XΦ2j

, ΣΦ2j
in Eq. (A7) (and by taking NΦ21

equal to π−n). After replacing the result for each matrix
element in Eq.(6) and some straightforward algebra, one
arrives at expression Eq.(12) for the hierarchy that is
valid as long as the Wigner function of the system can
be expressed as in Eq.(2).

Appendix B: First-moment vectors and covariance
matrices associated to the bipartition j

In this appendix we describe in more detail how to ob-
tain the vectors XΦ1j

and XΦ2j
, and the matrices ΣΦ1j

,
ΣΦ2j

and Pj associated with the bipartition labelled by
j. In Sec. II, we stated that |Φ1j〉 and |Φ2j〉 are ob-
tained from |Φ1〉 and |Φ2〉 by interchanging the one-mode
states |ϕm〉 with |ϕm+n〉 corresponding to those subsys-
tems that are grouped together in the bipartition j (see
Eq.(5)). On the other hand, from Eqs. (11) and (10) one
obtains that the first-moment vectors of |Φ1〉 and |Φ2〉
are given by,

XΦ1 =

n⊕
m=1

x̄m, (B1)

XΦ2
=

n⊕
m=1

x̄n+m. (B2)

and the covariance matrices are given by

ΣΦ1
=

n⊕
m=1

Σm, (B3)

ΣΦ2 =

n⊕
m=1

Σn+m. (B4)

Analogously, one may deduce the covariance matrices
ΣΦ1j and ΣΦ2j by permuting the corresponding matrices
Σm and Σn+m in the expressions (B3) and (B4), respec-

tively. Doing so, one obtains that,

ΣΦ1j
=

n⊕
m=1

Σm+n[vj ]m
, (B5)

ΣΦ2j =

n⊕
m=1

Σm+n−n[vj ]m
. (B6)

The same reasoning may be applied to derive the first-
moment vectors, where one interchanges the correspond-
ing vectors x̄m and x̄n+m in Eqs.(B1) and (B2). These
permutations may be expressed in a compact way with
the matrix P defined in Eq.(17), such that XΦ1j

and
XΦ2j

may be written as [52]

XΦ1j
=
XΦ1

+XΦ2

2
+

1

2
Pj(XΦ1

−XΦ2
), (B7)

XΦ2j =
XΦ1 +XΦ2

2
− 1

2
Pj(XΦ1 −XΦ2). (B8)

Appendix C: Resemblance to the PPT Criterion

1. Two-mode Gaussian case

The standard form of the covariance matrix of any two-
mode Gaussian state reads [7]

V =
1

2

 a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

 , {a, b, c, d} ∈ R4, (C1)

whereas the covariance matrix of a one-mode pure
squeezed state may be expressed as follows

Σ(r) = diag

(
1

4r
, r

)
, (C2)

where r is the squeezing parameter.
After substituting Eqs. (C1) and (C2) in the expres-

sion for the matrix (23), one obtains that the latter takes
the following form

Z1(r) =


(1+2ar)(a(b+2r)−d2)−4cdr2

(a+2r)(b+2r)−d2 0 2r(2r(ad−bc)+d(1+cd)−abc)
(a+2r)(b+2r)−d2 0

0 (a+2r)(a(1+2rb)−2rc2)−cd
(1+2ar)(1+2br)−4c2r2 0 2r(c(1+cd)−abd)+ac−bd

(1+2ar)(1+2br)−4c2r2

2r(2r(bd−ac)+d(1+cd)−abc)
(a+2r)(b+ar)−d2 0 (1+2br)(b(a+2r)−d2)−4cdr2

(a+2r)(b+2r)−d2 0

0 2r(c(1+cd)−abd)+bc−ad
(1+2ar)(1+2br)−4c2r2 0 (b+2r)(b(1+2ra)−2rc2)−cd

(1+2ar)(1+2br)−4c2r2

 .

(C3)

As one may see, the entries of the matrix Z1(r) are ra-
tional functions in terms of the squeezing parameter r,

and the limit r → 0 reads

lim
r→0

Z1(r) =

 1 0 0 0
0 a2 − cd 0 ac− bd
0 0 1 0
0 bc− ad 0 b2 − cd

 . (C4)

Similarly, one may derive the expression for Z1(r) in the
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limit r →∞, which corresponds to an infinite squeezing
in position. Doing so, one may replace r in (C3) by 1/r,
and then take the limit r → 0, i.e.

lim
r→0

Z1

(
1

r

)
=

 a2 − cd 0 −bc+ ad 0
0 1 0 0

−ac+ bd 0 b2 − cd 0
0 0 0 1

 . (C5)

Both (C4) and (C5) have λ
(1)
z = λ

(1)
z = 1 as a dou-

bly degenerate eigenvalue. The other two eigenvalues are

given by λ
(3)
z = 4ν̃2

1 and λ
(3)
z = 4ν̃2

1 , as we point out in
Sec. III A. This illustrates that the hierarchy expressed in
terms of the inequality (20) reproduces the results of the
PPT criterion when we choose infinitely-squeezed probe
states either in momentum or position.

2. Three-mode Gaussian case

The standard form of a pure three-mode Gaussian
state reads [7]

V =
1

2


a1 0 e+

12 0 e+
13 0

0 a1 0 e−12 0 e−13

e+
12 0 a2 0 e+

23 0
0 e−12 0 a2 0 e−23

e+
13 0 e+

23 0 a3 0
0 e−13 0 e−23 0 a3

 , (C6)

where a1, a2, a3 ∈ R, and e±12, e±13, e±23 are simple func-
tions of a1,a2, and a3.

The characteristic polynomial reads λ6+∆̃3
1λ

4+∆̃3
2λ

2+

∆̃3
3 = 0, and the symplectic invariants

{
∆̃3
l

}
(l = 1, 2, 3)

are obtained from [21]

∆̃3
l = M2l(J

T
3 Ṽ

2
1 ),

where M2l(J
T
3 Ṽ

2
1 ) is the principal minor of order 2l of

the matrix JT3 Ṽ
2

1 , i.e. it is the sum of all the determi-
nants of all the 2l × 2l submatrices obtained by deleting
6 − 2l rows and the corresponding 6 − 2l columns [21].
Since one has to follow the same procedure for each bi-
partition, we illustrate here only the case for S1|S2S3,
where Sm symbolizes the m-th mode (m = 1, 2, 3). Al-
though the whole expression of ZS1|S2S3

(r) is straight-
forwardly derived from (23) by replacing Σm = Σ(r)
for m = 1, 2, 3 (its entries are again rational functions in
terms of the squeezing parameter r), it is rather lengthy
so that we only provide the final expression after taking
the limit r → 0,

lim
r→0

ZS1|S2S3
(r) =


1 0 0 0 0 0
0 a2

1 − e+
13e
−
13 − e

+
12e
−
12 0 a1e

+
12 − a2e

−
12 − e

−
13e

+
23 0 a1e

+
13 − a3e

−
13 − e

−
12e

+
23

0 0 1 0 0 0
0 a2e

+
12 − a1e

−
12 + e+

13e
−
23 0 a2

2 − e+
12e
−
12 + e+

23e
−
23 0 a2e

+
23 + a3e

−
23 − e

−
12e

+
13

0 0 0 0 1 0
0 a3e

+
13 − a1e

−
13 + e+

12e
−
23 0 a3e

+
23 + a2e

−
23 − e

−
13e

+
12 0 a2

3 − e+
13e
−
13 + e−23e

+
23

 . (C7)

This matrix has λ
(1)
z = λ

(2)
z = λ

(3)
z = 1 as a three-times

degenerate eigenvalue, and the other eigenvalues are the
roots of the polynomial

−
(
λz
4

)3

+ ∆̃3
1

(
λz
4

)2

− ∆̃3
2

(
λz
4

)
+ ∆̃3

3 = 0. (C8)

As we have already seen for the two-mode case, the roots
of the characteristic polynomial of JT3 Ṽ

2
1 are related to

those of (C8) through the expression λ = ±i
√
λz/2.

Hence, the inequality (20) applied in the bipartition
S1|S2S3 reproduces the PPT criterion for pure three-
mode Gaussian states.

Analogously, one may show that this assertion holds
for the other bipartitions S2|S1S3 and S3|S1S2. Now
the roots of the corresponding characteristic polyno-

mial are
{

1, 1, 1, 4ν̃2
S2|S1S3,1

, 4ν̃2
S2|S1S3,2

, 4ν̃2
S2|S1S3,3

}
and{

1, 1, 1, 4ν̃2
S3|S1S2,1

, 4ν̃2
S3|S1S2,2

, 4ν̃2
S3|S1S2,3

}
, in terms of

the symplectic eigenvalues of the partially transpose
covariance matrix corresponding to the bipartitions
S2|S1S3 and S3|S1S2, respectively.

Once again, it is important note that the assertion also
holds for infinite squeezing in position (r →∞). One gets
at the following matrix for Z1(r), which is analogue to
(C7),
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lim
r→0

ZS1|S2S3

(
1

r

)
=


a2

1 − e+
13e
−
13 − e

+
12e
−
12 0 a1e

−
12 − a2e

+
12 − e

+
13e
−
23 0 a1e

−
13 − a3e

+
13 − e

+
12e
−
23 0

0 1 0 0 0 0
a2e
−
12 − a1e

+
12 + e−13e

+
23 0 a2

2 − e+
12e
−
12 + e+

23e
−
23 0 a2e

−
23 + a3e

+
23 − e

+
12e
−
13 0

0 0 0 1 0 0
a3e
−
13 − a1e

+
13 + e−12e

+
23 0 a3e

−
23 + a2e

+
23 − e

+
13e
−
12 0 a2

3 − e+
13e
−
13 + e−23e

+
23 0

0 0 0 0 0 1

 . (C9)

from which one obtains the same characteristic polyno-
mial as given in (C8).

Appendix D: Time evolution of the Wigner function

We consider the time evolution of an n-mode system
governed by the Fokker-Plank equation in the interaction
picture [55, 66]

∂W (x, t)

∂t
=

((
∂

∂x

)T
Γx+

(
∂

∂x

)T
D

∂

∂x

)
W (x, t)(D1)

with
(
∂
∂x

)T
=
⊕n

l=1

(
∂
∂ql
, ∂
∂pl

)
; Γ andD are 2n×2n real

symmetric matrices that encode the interaction with the
environment. In the case of interest here, these take the
form Γ = γ/2 (I ⊕ I) and D = γ(1 + 2Nth)/4 (I ⊕ I),
where Nth is the mean photon number of the baths.

Eq.(D1) is a linear Fokker-Plank equation with time-
independent coefficients that can be straightforwardly
solved by using the Green function method [67], that
permit to relate W (x, t) and W (x, 0) via

W (x, t) =

∫
R2n

d2nx′ W (x′, 0)G(x,x′, t). (D2)

in terms of the Green function G(x,x′, t) which takes the
form (see [67, 68])

G(x,x′, t) =
1

(2π)n
√

det(σ(t))
e−

1
2 (x−b(t)x′)Tσ(t)−1(x−b(t)x′)(D3)

where

b(t) = e−Γ t,

σ(t) = σ(∞)− e−Γ tσ(∞)e−Γ t,

and σ(∞) is the stationary solution of Eq(D1), which is
obtained from solving

Γσ(∞) + σ(∞)Γ = 2D.

The integration of expression (D2) with the Wigner func-
tion W (x, 0) of CPS-TSVS state results in the solutions
depicted in Eqs. (28) and (29).

Appendix E: Experimental quantification

In this section we will show the derivation of the fol-
lowing identity

〈Φ1 | ρ̂ |Φ2〉 = (2π)n
∫
R2n

d2nx W (x)W|Φ2〉〈Φ1|(x)

= e−2XTJTnΣJnX

∫
R2n

d2nω e−2ωTΣJnX p̂(ω;Σ),(E1)

which has been used to obtain Eq.(30) of Sec. V. To start
with, the probability distribution p(X;Σ), correspond-
ing a Gaussian measurement with covariance matrix Σ
and first-moment vector X on an n-mode system with
Wigner function W (x), is given by

p(X;Σ) =

∫
R2n

d2nx W (x)
e−

1
2 (x−X)TΣ−1(x−X)

(2π)n
√

det(Σ)
. (E2)

Introducing an unitary transformation U , such thatD =
UTΣU (or D−1 = UTΣ−1U) is a diagonal matrix, per-
mits to rephrase this as

p(UX̃;D) =

∫
R2n

d2nx̃ W (Ux̃)
e−

1
2 (x̃−X̃)TD−1(x̃−X̃)

(2π)n
√

det(D)

with x = Ux̃ andX = UX̃, where we have used d2N x̃ =
d2Nx since the Jacobian determinant |det(U)| = 1.
From here it becomes clear that p(X;Σ) can be con-
sidered a multidimensional convolution transform with
a Gaussian kernel, and its inverse formula is well estab-
lished [69]. Using the latter for Eq.(E2), one obtains

W (X) = exp

(
−1

2

(
∂

∂X

)T
Σ

(
∂

∂X

))
p(X;Σ).

We may derive a more suitable form for this expression by
using the Fourier transform of the Dirac delta function,
that is
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W (x) = exp

(
−1

2

(
∂

∂x

)T
Σ

(
∂

∂x

))∫
R2n

d2nu p(u;Σ)δ(x− u)

=
1

(2π)2n

∫
R2n

∫
R2n

d2nud2nω p(u;Σ)exp

(
−1

2

(
∂

∂x

)T
Σ

(
∂

∂x

))
exp

(
iωT (x− u)

)
=

1

(2π)2n

∫
R2n

∫
R2n

d2nud2nω p(u;Σ)exp

(
1

2
ωTΣω

)
exp

(
iωT (x− u)

)
. (E3)

On the other hand, the phase-space counterpart of |Φ2〉〈Φ1| is given by,

W|Φ2〉〈Φ1|(x) =
1

(2π)n
√

det(Σ)
e−2XTJTnΣJnXe−

1
2 (x−2iΣJnX)TΣ−1(x−2iΣJnX), (E4)

according to Eqs. (A5) and (A6) in appendix A. By replacing Eq.(E3) and (E4) in the expression for the matrix
element (E1), one obtains

〈Φ1 | ρ̂ |Φ2〉 = (2π)n
∫
R2n

d2nx W (x)W|Φ2〉〈Φ1|(x)

=
1

(2π)n

∫
R2n

∫
R2n

d2nωd2nu p(u;Σ)e−iω
Tue

1
2ω

TΣωe−2XTJTnΣJnX

× 1

(2π)n
√

det(Σ)

∫
R2n

d2nx eiω
Txe−

1
2 (x−2iΣJnX)TΣ−1(x−2iΣJnX) (E5)

=
1

(2π)n

∫
R2n

∫
R2n

d2nωd2nu p(u;Σ)e−iω
Tue

1
2ω

TΣω

× 1

(2π)n
√

det(Σ)

∫
R2n

d2nx e−
1
2x

TΣ−1x+i(ω+2JnX)Tx (E6)

=
1

(2π)n

∫
R2n

∫
R2n

d2nωd2nu p(u;Σ)e−iω
Tue

1
2ω

TΣω
(
e−

1
2 (ω+2JnX)TΣ(ω+2JnX)

)
(E7)

= e−2XTJTnΣJnX

∫
R2n

d2nω e−2ωTΣJnX

(
1

(2π)n

∫
R2n

d2nu e−iω
Tup(u;Σ)

)
, (E8)

as we wanted to show. To derive Eq.(E8), one can
separate x-dependent function from functions that de-
pend on ω and u only. Using Σ = ΣT , one then ar-
rives at Eq.(E6). Performing the integration of x re-
sults in Eq.(E7), rearranging terms yields to the de-
sired form Eq.(E8). Substituting the explicit expression

p(u;Σ) =
exp(− 1

2u
T (V +Σ)−1u)

(2π)n
√

det(V +Σ)
in Eq. (E8), and per-

forming the integrals, we recover

|〈Φ1 | ρ̂ |Φ2〉| =
e
−2XTJTn

1

Σ−1+V−1 JnX√
det (Σ + V )

,

which is the first term in Eq.(19).
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