
1
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Abstract—This paper looks at the task of network topology
inference, where the goal is to learn an unknown graph from
nodal observations. One of the novelties of the approach put
forth is the consideration of prior information about the density
of motifs of the unknown graph to enhance the inference of
classical Gaussian graphical models. Directly dealing with the
density of motifs constitutes a challenging combinatorial task.
However, we note that if two graphs have similar motif densities,
one can show that the expected value of a polynomial applied to
their empirical spectral distributions will be similar. Guided by
this, we first assume that we observe a reference graph with a
density of motifs similar to that of the sought graph, and then,
we exploit this relation by incorporating a similarity constraint
and a regularization term in the graph learning optimization
problem. The (non-)convexity of the optimization problem is dis-
cussed, and a computationally efficient alternating majorization-
minimization algorithm is designed. We assess the performance of
the proposed method through exhaustive numerical experiments,
where different constraints are considered and compared against
popular alternatives on both synthetic and real-world datasets.

Index Terms—Network topology inference, graphical models,
graph signal processing, motif distribution

I. INTRODUCTION

HARNESSING graphs to model the underlying structure
of signals is gaining relevance due to the rising of

data defined over non-Euclidean domains. This graph-based
perspective is at the core of graph signal processing (GSP)
and machine learning over graphs, fields devoted to the
development of methods for processing and learning from
signals defined over irregular supports modeled by graphs [1]–
[4]. Successful applications of these methods are found when
processing signals in power, communication, social, geograph-
ical, financial, and brain networks, to name a few [1], [5]–
[7]. While the default approach is to assume that the graph
is known and to focus on the processing of the network data,
there are many relevant scenarios where the topology of the
graph is unknown. To handle this, a preliminary (critical)
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step is to learn the topology of the graph from a set of
nodal observations. The key to this task, which is commonly
known as network topology inference or graph learning, is
to leverage models/assumptions relating the properties of the
observed signals to the topology of the sought graph [8]–
[12]. Noteworthy approaches to this task include partial cor-
relations and Gaussian graphical models [13]–[17], sparse
structural equation models [18], [19], smooth (total variation)
models [20]–[22], and graph stationary models [8], [23]–[25],
among others.

All the aforementioned graph-learning approaches share one
common characteristic: the focus is placed on the signals
rather than the graphs. Indeed, most works learn the graph
that best explains the observations without considering any
prior information about the topology of the graph other than
its sparsity. If information about the topological structure of
the graph is available, we can harness it to improve the
quality of the estimated graphs by promoting desired structural
characteristics. An initial step in this direction is taken in
joint graph-learning algorithms [15], [26]–[28], where several
graphs are jointly estimated under the additional assumption
that they are close to each other in some sense. This assump-
tion is indeed justified when, e.g., the graphs being estimated
proceed from the same distribution. Nonetheless, measuring
the distance between two graphs is a non-trivial endeavor, and
joint inference works are typically constrained to comparing
graphs with a common set of nodes and promoting similar
edge support across all graphs.

Some other works are also starting to take into consideration
prior information about the graph. A relevant example is
found in [17], where the authors propose recovering the
graph Laplacian from a set of Gaussian Markov random field
(GMRF) observations while considering simple spectral con-
straints like setting the number of zero eigenvalues. However,
as we discuss in Section III-B, these constraints are limited
and cannot capture more complex information. Alternatively,
[24] introduces a different graph learning method where the
unknown graph is assumed to be drawn from a graphon. The
main limitations of such an approach are that the graphon is
assumed to be known, which may not be trivial in practice
since it involves knowing the distribution of the unknown
graph, and moreover, that not every graph may be represented
as a graphon.

In contrast with previous works, this paper proposes a
novel graph-learning algorithm that considers prior infor-
mation about the topology of the graph in a general yet
informative way. We lead with the assumption that a reference
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graph with a density of motifs similar to that of the sought
graph is known. Note that access to such a reference graph is
common in the context of dynamic graphs, graph sampling, or
multi-layered graphs [29], [30]. Furthermore, reference graphs
have been successfully employed in, e.g., face recognition
and genome inference [31], [32]. In this work, to harness the
information encoded in the reference graph while avoiding the
challenges associated with the combinatorial nature of motifs,
we reveal a connection between the spectra of both graphs.
Then, we approach the graph learning task as an optimization
problem where we exploit the spectral similarity between the
reference and the sought graph as a constraint. Because the
resulting algorithm is derived from the density of motifs, it
is local in nature, which allows us to compare graphs of
different sizes (as described in further detail in later sections).
Furthermore, the proposed similarity constraints involve the
empirical distribution of the eigenvalues, which results in
constraints that are more informative than the ones considered
in previous works. To the best of our knowledge, this is the
first graph learning algorithm harnessing the density of motifs
to capture prior information about the graph topology.

After reviewing basic ideas in graph signal processing
and graph learning in Section II, the structure and main
contributions of the paper are summarized next:

1) We relate the structural characteristics of a graph de-
scribed by the density of motifs to the graph spectrum
(Section III-A), and introduce the similarity constraints
to propose an optimization program for network topology
inference (Section III-B).

2) We analyze the non-convexity of the similarity constraints
and introduce a convex relaxation based on Majorization-
Minimization techniques (Section IV).

3) We propose a convex computational efficient algorithm
and provide guarantees for its convergence (Section V).

Interesting generalizations of the considered graph learning
problem are discussed in Section VI, and then, the effective-
ness of the proposed approach is demonstrated in Section VII,
followed by brief concluding remarks.

II. PRELIMINARIES: GRAPHS, GSP AND GMRFS

We briefly introduce graph-related and GSP-related notation
and review the definition of GMRFs.
Graphs: Let G := (V, E) denote an undirected and weighted
graph with a set of nodes V and a set of edges E . The graph is
composed of |V| = N nodes and, for every i, j ∈ V , we have
that (i, j) ∈ E if and only if the nodes i and j are directly
connected. The neighborhood of any node i represents the set
of nodes that are connected to i, i.e., Ni := {j ∈ V|(i, j) ∈
E}. The connectivity of G is captured in the sparse adjacency
matrix A ∈ RN×N with Aij = 0 only if (i, j) ̸∈ E , and whose
entry Aij represents the weight of the edge between nodes i
and j.
Graph signals and GSP: Together with the graph G, we
consider signals defined on (associated with) V , the nodes of
G. Formally, a graph signal can be modeled as a function from
the vertex set to the real field x : V → R or, equivalently, as
an N -dimensional vector x ∈ RN , with xi denoting the signal

value at node i. The last key element in the GSP framework
is the so-called graph-shift operator (GSO), an N ×N matrix
denoted as S [2]. The GSO, whose entries satisfy that Sij

can be non-zero only if i = j or (i, j) ∈ E , captures the
topology of the underlying graph G and can be understood
as a topology-aware local operator that can be applied to
process graph signals. Typical choices for the GSO include
the adjacency matrix A, the graph combinatorial Laplacian
L := diag(A1)−A, and its normalized variants [1], [2]. Note
that diag(·) denotes the diagonal operator that transforms a
vector into a diagonal matrix and 1 denotes the vector of all
ones. Since G is undirected, it follows that S is symmetric and
it can be diagonalized as S = VΛV⊤, where the orthonormal
matrix V ∈ RN×N collects the eigenvectors of S, and the
diagonal matrix Λ=diag(λ) collects the eigenvalues λ∈RN .
GMRF: A multivariate normal distribution is said to form
a GMRF with respect to a graph G = (V, E) if the edges
not present in E correspond to zeros on the precision matrix
(the inverse covariance matrix). Upon selecting the GSO S as
the positive definite precision matrix, the previous definition
implies that if the random graph signal x follows a multivariate
normal distribution N (0,S−1), then x is a GMRF with respect
to S.

As a result, the probability density function (PDF) of a zero-
mean GMRF with GSO S is simply

fx(x;S) = (2π)−N/2 det(S)1/2 exp

(
−1

2
xTSx

)
. (1)

The above expression will be critical to postulate an optimiza-
tion that learns (estimates) the GSO S (and, hence, the edge
set E) from nodal observations, a key question at the core of
Gaussian graphical models [13], [14], [33].

III. GRAPH LEARNING FROM MOTIF SIMILARITY

Suppose now that we have access to a collection of M graph
signals X = [x1, ...,xM ]. Each of the M signals collects N
measurements (one per node) associated with the nodes of a
graph G that is not known. The graph learning problem aims
at using X ∈ RN×M to estimate the GSO S ∈ RN×N and,
as a result, to identify the unknown edge set E that connects
the nodes in the graph G. To render this problem tractable, we
consider two main assumptions:

• First, we assume that we have prior knowledge about the
local properties of the graph G and, in particular, on the
distribution of its motifs. More specifically, we consider
that a reference graph G̃ with a density of motifs similar to
that of the unknown graph G is available. Understanding
a graph as a composition of motifs is particularly inter-
esting due to the local nature of motifs [34]. Intuitively,
assuming that two graphs have a similar density of motifs
can be interpreted as assuming that both graphs have
common “building blocks” or similar patterns.

• The second assumption establishes a relation between the
(properties of the) observations in X and the underlying
graph G. In particular, we consider that the columns of
X are (independent) realizations of a GMRF with zero
mean and GSO S. While other models relating the graph
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signals with the unknown supporting graph exist, we
focus on GMRF due to its flexibility, solid statistical foun-
dations, and wide adoption within the network science
community. Nonetheless, in Section VI we discuss how
to generalize our approach to models beyond GMRF.

The goal of this section is to formulate the motif-based
graph learning problem rigorously (Problem 1) and postulate
an associated constrained optimization problem that leverages
the information in X and the previous assumptions to generate
as solution the desired S. To that end, we need to describe in
more detail our approach to assess motif similarity (remainder
of this section and Section III-A) and then set a formulation
combining motif similarity with the GMRF topology estima-
tion framework (Section III-B). The first step is to describe the
structural properties of a graph G in terms of the density of
rooted balls, or motifs. A rooted graph is simply a graph with
a special labeled node, denoted by a tuple (G, ρ). If (G, ρ) is
such that each node in G is in the r-hop neighborhood of the
root ρ, we say that it is a rooted r-ball. For a given integer
radius r ≥ 0, a graph G yields a family of rooted r-balls. For
each node i ∈ V , consider the induced subgraph of the r-hop
neighborhood of i. Then, treating i as the root, this yields a
rooted r-ball “centered” at i, which we denote as Vr(G, i).

Then, for a given motif αr, we define the rooted motif
density as

τr(αr,G) =
1

N
|{i = 1, ..., N : Vr(G, i) ∼= αr}| , (2)

where Vr(G, i) ∼= αr denotes isomorphism of rooted r-balls,
i.e., graph isomorphism with the extra condition that the roots
coincide. Simply put, the quantity τr(αr,G) measures the
frequency with which a specific motif αr appears in the graph
G by computing the proportion of rooted r-balls in G that are
isomorphic to αr. We illustrate this in Fig. 1.

Based on (2), we can compare the similarity between two
graphs in terms of their motif densities. With this notation at
hand, we formalize the graph learning problem introduced at
the beginning of the section.

Problem 1. Let G be an unknown graph with node set V , N =
|V| and GSO S ∈ RN×N . Furthermore, i) let G̃ be a reference
graph with node set Ṽ , Ñ = |Ṽ| and GSO S̃ ∈ RÑ×Ñ and
ii) let X ∈ RN×M be a set of M graph signals defined over
G. Our goal is to use X and G̃ to find the underlying graph
structure encoded in S under the assumptions that:

(AS1a) Graphs G and G̃ have nodes with degree at most D.

(AS1b) Graphs G and G̃ present a similar density of motifs, so
that |τr(α(k)

r ,G)− τr(α
(k)
r , G̃)| ≤ ϵ for every k, with ϵ being

a small positive number, r ∈ (0, R], and {α(k)
r }Kk=1 being the

set of all (isomorphisms of) rooted r-balls inside the graph G.

(AS2) The columns of X are M independent realizations of a
GMRF with zero mean and GSO S [cf. (1)].

Examining the proposed motif-related assumptions, we note
that (AS1a) ensures that there are finitely many possible r-
balls on a given graph, which will be used in the derivation
presented in the following section. On the other hand, (AS1b)
provides prior information about the density of motifs of the
sought graph based on a structurally similar reference graph.
From the definition of rooted motif density in (2), we can
observe that τr(αr,G) is an expectation of the frequency
with which the motif αr appears in the graph G. Moreover,
since this expectation is computed locally at each node,
(AS1b) endows the inference problem with some interesting
properties. First, it allows us to compare graphs of different
sizes, something that was non-trivial in other works where the
graph similarity promoted graphs with similar supports [15],
[28]. Also, note that assuming that two graphs have similar
densities of motifs is a laxer requirement than assuming they
have similar supports. Second, we do not require to know the
whole graph G̃ since we can approximate its associated motif
density through a smaller subgraph, so knowing a sampled
version of G̃ suffices.

Unfortunately, despite its attractive properties, the rooted
motif density is intrinsically a combinatorial metric that leads
to an NP-hard problem when directly incorporated into an
optimization framework. In the next section, we present a way
to overcome this issue.

A. From similar densities of motifs to spectral distributions

We are interested in finding an alternative approach to take
advantage of the graph similarity specified in (AS1b) without
falling into an NP-hard combinatorial problem. To that end, we
start by noting that, due to the nature of the GSO, the diagonal
entries of Sr are strictly dictated by the r-balls centered at each
node. Furthermore, since tr(Sr) = tr(Λr), it seems evident
that the density of motifs is closely related to the eigenvalues
of the GSO, collected in the N × N diagonal matrix Λ =
diag(λ). This suggests that the spectra of two graphs with
similar densities of motifs should be similar.

Motivated by the previous discussion, we encode the similar
density of motifs between two graphs by means of test
functions applied to the spectral distribution of the graphs.
Let λ ∈ RN denote the vector containing the eigenvalues of
S, and denote its associated empirical spectral density function
as µλ, with µλ(λi) quantifying the multiplicity of the ith
eigenvalue normalized by the number of nodes in S. Indeed,
µλ is (formally) a probability distribution on R. Then, for
any continuous function, g : R → R compute the Lebesgue
integral

cg(λ) =

∫
g(λ) dµλ(λ) =

1

N

N∑
i=1

g(λi), (3)
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where the last equality follows from S having a discrete
spectrum. With these definitions in place, the following result
shows that if S and S̃ have similar densities of motifs, then
cg(λ) and cg(λ̃) are close.

Theorem 1. Let λ ∈ RN and λ̃ ∈ RÑ denote the eigenvalues
of the GSOs of the graphs G and G̃. For any continuous test
function g, under (AS1a) and (AS1b), it follows that

|cg(λ)− cg(λ̃)| ≤ δϵ + δr, (4)

where cg(·) is given in (3), δϵ ≥ 0 is a constant dependent
only on g, D, and ϵ such that δϵ → 0 as ϵ → 0, and δr ≥ 0 is
a constant dependent only on g, D, and r such that δr → 0
as r → max{N, Ñ}.

The proof of the theorem is provided in Appendix A. In a
nutshell, the proof shows that for any continuous test function
g, the quantity cg(λ) can be approximated by the expected
value of some continuous function depending only on rooted
r-balls.

Theorem 1 reduces the similarity of motif densities between
two graphs to a comparison of an appropriate test function
g applied to their empirical spectral densities. This quantity
cg(λ) is less expressive than the motif densities τr(α

(k)
r ,G) in

describing the structure of the graph, but it bypasses the com-
binatorial difficulties in computing the precise motif densities.
In the next section, we show that this trade-off is beneficial,
as it enables easy integration into network topology inference
methods. Moreover, it is worth mentioning that the connection
revealed in Theorem 1 can be leveraged in other graph-related
problems beyond the graph learning task considered here.

B. Graph motif-enhanced optimization for GMRF learning

Suppose for now that we ignore the assumptions (AS1a) and
(AS1b). Leveraging (AS2) and the PDF in (1), we have that the
likelihood of the joint observation of the M signals in X =
[x1, ...,xM ] is

∏M
m=1(2π)

−N/2 det(S)1/2 exp
(
− 1

2x
T
mSxm

)
.

Upon adopting a maximum likelihood (ML) approach, ex-
ploiting the monotonicity of the log function, and using the
observations in X to build the empirical covariance matrix
Ĉ = 1

M

∑M
m=1 xmx⊤

m, the matrix S can be estimated as

min
S

tr(ĈS)−log det(S)

s.t : S ⪰ 0, (5)

with the constraint S ⪰ 0 guaranteeing that the precision
matrix is positive semidefinite and that the log det function
in the objective is well defined. In the context of GMRF, a
widely adopted approach is to augment the objective in (5)
with a sparsity promoting regularizer λ∥S∥1, giving rise to
the celebrated graphical lasso algorithm [13], [14], [33]. In
the previous, λ > 0 controls the level of sparsity and ∥S∥1
denotes the ℓ1 norm of the vectorization of the matrix S. On
top of augmenting the ML formulation with an ℓ1 norm, other
graph learning approaches incorporate topological conditions
by considering a set of feasible GSOs S and augmenting the
formulation in (5) with the constraint S ∈ S [35], [36].

Hence, the key to our approach is to formulate a modified
version of the ML estimation in (5) capable of exploiting

the availability of the reference graph G̃ and the results in
Theorem 1. More specifically, we encode the fact of G and G̃
having similar densities of motifs by leveraging (4) and, as a
result, approach Problem 1 through the following non-convex
optimization program:

min
S,V,λ

tr(ĈS)−log det(diag(λ)) + α∥S∥1

+
β

2
∥S−Vdiag(λ)V⊤∥2F

s.t : |cg(λ)− cg(λ̃)| ≤ δ, S ∈ S, V⊤V = I. (6)

Note that this alternative formulation for learning GMRFs
is amenable to constraints involving the spectrum of S. In
addition, λ̃ is a known constant since it can be obtained from
the eigendecomposition of the reference graph cg(λ̃).

We refer to the first constraint in (6) as the similarity
constraint because, as stated in Theorem 1, it stems from
the assumption that G and G̃ have similar motif densities.
Intuitively, this constraint promotes desirable properties on the
eigenvalues of S by requiring that evaluating the empirical
spectral distribution of S and S̃ using a common test function
g results in a similar value. If we are interested in further
reducing the size of the feasible set, it is possible to simulta-
neously employ several test functions {gj}Jj=1 resulting in the
associated set of functions {cgj}Jj=1. We can trivially modify
the program in (6) to include a similarity constraint for each
function cgj . When several constraints are included, we face a
trade-off between the improvement in the estimation of S and
the additional complexity of enlarging the set of constraints. In
the remainder of the paper, we assume that a single similarity
constraint is used, and leave the (optimal) combination of
multiple constraints as a future research direction.

The optimization framework introduced in (6) estimates sep-
arately the GSO S from its eigendecomposition Vdiag(λ)V⊤,
including a Frobenius-norm penalty in the objective function
to encourage that S and Vdiag(λ)V⊤ stay close. Dealing with
V and λ as explicitly separated optimization variables allows
us to incorporate constraints involving the spectrum of the
graph. While this sacrifices convexity, the selected approach
is amenable to designing an efficient iterative algorithm, as
detailed in Section V. Consideration of graph eigenvalues as
explicit optimization variables in the context of graph learning
has been explored in, e.g., [8] and [17]. In [8], the eigenvectors
were considered to be given. Meanwhile, in [17], they consider
that S = L and the (convex) spectral constraints are mainly
concerned with relatively simple conditions, such as bounding
the minimum and maximum value of non-zero elements in λ
or selecting the number of connected components (number of
zero eigenvalues). In contrast, the similarity constraints con-
sidered in this paper are more involved and lead to non-convex
formulations. Moreover, they stem from the assumption that
two graphs have similar motif densities. We explore these
differences in more detail through the numerical experiments
presented in Section VII.

Capturing more complex prior information about (the spec-
trum of) S comes at the cost of employing non-convex
constraints. However, since the optimization in (6) was already
non-convex, it does not fundamentally change the complexity
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of the problem. This is further discussed in the following
section, where a convex-approximation approach to handle the
similarity constraints is introduced.

IV. CONVEX RELAXATION FOR THE SIMILARITY
CONSTRAINTS

Solving the optimization problem introduced in (6) is a
challenge due to its non-convexity, stemming from the bilinear
terms involving V and λ, the orthogonality of V, and the
similarity constraint. The bilinear terms and the orthogonality
constraint can be dealt with by implementing an alternating
optimization scheme and leveraging results from optimization
over manifolds [37], respectively. However, dealing with the
similarity constraint requires further elaboration.

To analyze the curvature of the similarity constraint, we
start by noting that |cg(λ) − cg(λ̃)| ≤ δ is a composition of
functions, an operation that is non-convex in general [38]. We
also observe that the convexity of cg is determined by the
convexity of the test function g. Then, due to the presence
of the absolute value, the similarity constraint will only be
convex when the considered test function g is affine.

According to the definition of the function cg(·) provided
in (3), it follows that any affine function g(x) = ax+ b with
a, b ∈ R delimits the same feasible set independently of the
values of a and b. Thus, we select the affine function g(x) = x,
which results in the similarity constraint∣∣∣∣∣ 1N

N∑
i=1

λi − C

∣∣∣∣∣ =
∣∣∣∣ 1N tr(S)− C

∣∣∣∣ ≤ δ, (7)

where the constant C := cg(λ̃) encodes the value of the
test function evaluated over the known reference graph. A
closer inspection reveals that, when C = 1 and δ = 0, (7) is
equivalent to tr(S) = N , a common constraint used to fix the
scale of the GSO when learning the graph topology [21]. That
is to say, the constraint tr(S) = N represents a particular case
of the similarity constraints put forth in this paper. Moreover,
using (7) as a constraint incorporates information about the
true scale of the graph, avoiding the scale ambiguity inherent
to most network topology inference approaches. Indeed, we
observe in Section VII that this general approach reduces the
scale ambiguity of the estimated GSO.

Nonetheless, using a linear test function might not be
enough to capture more complex relations between the spectral
distributions of S and S̃. We tackle this issue below by dis-
cussing a convex alternative to leverage more general classes
of test functions.

A. Convex relaxation for convex or concave test functions

Since our goal is to develop a convex relaxation for the
similarity constraint defined in (4), we can focus on either
convex or concave test functions g without loss of generality.
Therefore, we start our discussion by proposing a convex
relaxation under the assumption that g is concave.

We already discussed that the similarity constraint |cg(λ)−
cg(λ̃)| ≤ δ is non-convex due to the composition of the
absolute value and the function cg(λ) − cg(λ̃). Then, the

first step towards obtaining a convex surrogate consists of
decomposing the similarity constraint into the inequalities

cg(λ) ≤ cg(λ̃) + δ cg(λ) ≥ cg(λ̃)− δ, (8)

where the left and the right constraints are respectively con-
cave and convex due to the concavity of g.

The pair of constraints in (8) determines a feasible set
equivalent to the one determined by our original similarity
constraint based on the composition of functions. Hence, we
replace the optimization problem in (6) with its equivalent
form

min
S,V,λ

tr(ĈS)−log det(diag(λ)) + α∥S∥1

+
β

2
∥S−Vdiag(λ)V⊤∥2F + γcg(λ)

s.t : cg(λ) ≥ cg(λ̃)− δ, S ∈ S, V⊤V = I. (9)

Here, the key difference is that we kept the convex inequality
from (8) as a constraint while the concave inequality is used to
augment the objective function. Note that, from the perspective
of duality theory, any constraint can be equivalently expressed
as a regularization term in the objective function with a non-
negative parameter (here denoted as γ) playing the role of the
dual variable.

Even though the objective function of (9) is still non-convex
due to the presence of convex and concave terms, now the
optimization problem can be efficiently solved by an MM
approach [39]. Based on the MM framework, we consider an
iterative linear upper bound to the function cg(λ) leading to
a convex iterative algorithm that approximates the similarity
constraint. Because cg(λ) is concave, a suitable upper bound
is provided by

u(λ,λ(t−1)) = ∇cg(λ
(t−1))⊤λ, (10)

which is the first-order approximation of the Taylor series of cg
centered at the solution of the previous iteration λ(t−1). Note
that we have omitted the terms that do not involve the variable
λ since they are constants in the optimization problem.

Intuitively, the original non-convex similarity constraint
|cg(λ)−cg(λ̃)|≤δ ensured that

cg(λ) ∈ [cg(λ̃)− δ, cg(λ̃) + δ] (11)

for any feasible λ. Now, with the proposed convex relaxation
based on the MM algorithm, the feasible set is modified as
follows. First, the convex constraint cg(λ)− cg(λ̃) ≥ δ in (9)
ensures that

cg(λ) ∈ [cg(λ̃)− δ,∞]. (12)

Then, successively minimizing the upper bound u(λ,λ(t−1))
brings the value of cg(λ) closer to cg(λ̃) − δ, the minimum
value inside the feasible set. Thus, the value of γ is chosen to
promote that cg(λ̃) is inside the interval defined in (11). This
process can be interpreted as starting with a loose constraint
for the maximum value of cg(λ̃) that gets tightened as the
iterative algorithm converges. All the details about the specific
implementation of the convex iterative algorithm that solves
(9) are provided in Section V.
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The last step is to discuss the formulation for convex
functions g, which lead to a convex cg(λ). Using an approach
analogous to that for the concave case, from the two con-
straints in (8), we incorporate the convex one into the graph-
related optimization. This entails replacing cg(λ) ≥ cg(λ̃)−δ
with cg(λ) ≤ cg(λ̃) + δ in (9). Additionally, since for the
convex case we are interested in maximizing cg(λ), we replace
γcg(λ) with −γcg(λ) in the objective of (9) and employ an
MM approach to minimize a linear upper bound of −γg(λ).

To summarize, following an MM approach, we obtain a
convex relaxation for the similarity constraint for every test
function g that is differentiable and either convex or concave.
Next, we present the specific iterative algorithm that simulta-
neously deals with the MM relaxation, the bilinear terms, and
the orthogonality constraints.

V. ALGORITHMIC IMPLEMENTATION

We solve the network topology inference task presented in
Problem 1 by developing an iterative algorithm that solves (9).
To that end, we combine an alternating optimization approach
that decouples the bilinear terms involving λ and V via MM
while incorporating the convex relaxation of the similarity
constraint. The resulting algorithm falls into the family of
Block Successive Upper bound Minimization (BSUM) [40].
This class of algorithms blend techniques from MM and
alternating optimization, and they converge to a stationary
point under mild conditions.

Our proposed BSUM algorithm solves (9) by updating the
optimization variables S, V, and λ in three separated steps. At
each step, we optimize over one of the optimization variables
while the rest remain fixed, procuring simpler problems that
can be solved efficiently. Then, for a maximum number of T
iterations, the following steps are computed at each iteration
t = 0, 1, ..., T .

Step 1. The first step estimates the block of variables repre-
sented by S while the rest remain fixed. This results in the
convex optimization problem given by

S(t+1) =argmin
S

tr(ĈS)+α∥S∥1+
β

2
∥S−V(t)Λ(t)V(t)⊤∥2F

s.t : S ∈ S, (13)

where Λ(t) = diag(λ(t)). The resulting problem is a com-
bination of linear and (convex) quadratic terms, that can be
handled by a number of projected algorithms. First, let H be
a matrix of signed ones matching the sign of the entries of
S such that ∥S∥1 = tr(SH), and hence, tr(ĈS) + α∥S∥1 =
tr(KS), where K = Ĉ +H. Also, define the linear operator
S : s ∈ RN(N−1)/2

+ → Ss ∈ RN×N that maps the vector s
into the matrix S = Ss satisfying the constraints in S, and
denote the adjoint linear operator of S as S∗ : Y ∈ RN×N →
S∗Y ∈ RN(N−1)/2. Then, we efficiently approximate (13) by
solving

s(t+1) =

(
s(t) − 1

∥S∥22
(S∗(Ss(t))− z)

)+

, (14)

Algorithm 1: Graph learning from similarity con-
straints.
Input: Ĉ, cg(λ̃)
Output: Ŝ.

1 Initialize S(0), s(0), λ(0), and V(0).
2 for t = 1 to T do
3 Set s(t+1) as in (14).
4 S(t+1) = Ss(t+1).
5 Set V(t+1) as the eigenvectors of S(t+1).
6 Set λ(t+1) as the solution to (17).
7 end
8 Ŝ = S(T )

where z=S∗(V(t)Λ(t))V(t)⊤−β−1K), (a)+ = max(a, 0), and
∥S∥2 denotes the operator norm. Finally, we update S(t+1) as
S(t+1) = Ss(t+1).

The derivation of the solution presented in (14) from the
initial problem (13) is provided in Appendix B for complete-
ness.

Step 2. The second step estimates the block of variables V
while the others remain fixed. Ignoring the constant terms, the
resulting optimization problem is given by

V(t+1) = argmin
V

β

2
∥S(t+1) −VΛ(t)V⊤∥2F

s.t : V⊤V = I, (15)

which can be equivalently rewritten as

V(t+1) = argmax
V

tr(V⊤S(t+1)VΛ(t))

s.t : V⊤V = I. (16)

We note that the orthogonality constraint implies that the
optimization variables V belong to the Stiefel manifold. This
is a well-known optimization problem and, as explained in
[37, Chapter 4.8], it follows that the solution to (16) is setting
V(t+1) to the eigenvectors of S(t+1).

Step 3. The last step estimates the block of variables λ while
the others remain fixed. The resulting optimization problem
after ignoring the constant terms can be compactly written as

λ(t+1) = argmin
λ

−
N∑
j=1

log(λj) +
β

2
∥λ− λ̂∥22 + γu(λ,λ(t))

s.t : cg(λ) ≥ cg(λ̃)− δ, (17)

where u(λ,λ(t)) denotes the linear majorization of cg(λ) at
λ(t), and the vector λ̂ collects the elements on the diago-
nal of V(t+1)⊤S(t+1)V(t+1), which are the eigenvalues of
S(t+1). Recall that combining the inequality constraint and the
minimization of the upper bound u(λ,λ(t)) incorporates the
prior information about the distribution of the graph spectrum.
Moreover, (17) assumes that the test function g is concave,
but, as explained in Section IV, the formulation can be easily
modified to account for a convex g.
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The overall procedure is summarized in Algorithm 1. Ana-
lyzing its computational complexity, we observe that Step 1 re-
quires a moderate number of operations while the complexity
of Step 2 is O(N3) because it computes the eigendecomposi-
tion of S. Regarding Step 3, directly solving the optimization
problem in (17) would result in a computational complexity
of O(N3.5). However, because the problem is strictly convex
and separable for each optimization variable λj , it can be
solved efficiently, resulting in a much smaller computational
complexity. As a result, the most expensive operation in prac-
tice is the eigendecomposition performed in the second step,
and hence, the complexity of the overall algorithm is O(N3).
We stress that this is considerably efficient since learning the
graph topology involves O(N2) variables. Furthermore, recall
that the original setting in Problem 1 involves comparing the
density of motifs of two graphs, which is a challenging NP-
hard combinatorial problem. Then, regarding the number of
iterations, we observed that small values of T are enough for
the solution to converge. This is further studied in Fig. 3.

Another key aspect of the proposed BSUM algorithm is its
convergence to a stationary point, which is formally stated in
the following proposition.

Proposition 1. Let Y∗ denote the set of stationary points
of (9). Then, the sequence (S(t),V(t),λ(t)) generated by
Algorithm 1 converges to a stationary point in Y∗ as t → ∞.

To prove the convergence of our algorithm, we leverage the
results in [40] and [41]. To be more specific, conditions under
which BSUM algorithms converge to a stationary point were
identified in [40, Th. 1b]. However, the original result in [40]
did not consider formulations with non-convex constraints,
and this is relevant in our setup because the optimization
problem in Step 2 includes the non-convex orthogonality
constraint V⊤V = I. Fortunately, in the context of tensor
decompositions, [41] proved that the sequence generated by
BSUM algorithms still converges when considering orthogo-
nality constraints like the one in Step 2. As a result, leveraging
[41], we can prove the claim in Proposition 1 by showing that
our problem satisfies the original conditions identified in [40,
Th. 1b]. To be precise, upon denoting the objective function
in (9) as ϕ(S,V,λ), we have that: (i) the objective functions
in (13), (16), and (17) are upper bounds of ϕ(S,V,λ)1 ; (ii)
the level set {(S,V,λ) |ϕ(S,V,λ) ≤ ϕ(S(0),V(0),λ(0))} is
compact; (iii) the optimization problems in Step 1 and Step
3 are strictly convex; and (iv) the non-smooth components of
ϕ(S,V,λ) only involve the variables in S. As a result, the
conditions specified in [40, Th. 1b] are met and, invoking [40,
Th. 1b] and [41], it follows that the solution of our algorithm
converges to a stationary point.

VI. BEYOND GMRFS

To simplify exposition and promote clarity, our discussion
has been focused on addressing the motif-similarity graph-
learning design for the conditions outlined in Problem 1.

1To be rigorous, when stating that the objective functions of the steps 1, 2
and 3 are upper bounds of ϕ(S,V,λ) we are also considering the constant
terms omitted in the optimization problems (13), (16), and (17).

However, as pointed out at different points of the manuscript,
our approach can be used under more general circumstances
than those considered so far, including non-Gaussian graphical
models. Three generalizations particularly appealing are: (i)
having access to more than one reference graph G̃r; (ii) having
access to the actual spectral density function as µλ in lieu of
G̃; and (iii) considering more general models than a GMRF to
represent the relation between the signals X and the GSO S.
Next, we briefly discuss the modifications to the optimization
in (9) required to account for these generalizations.

Starting with the first generalization, let us suppose that
we have access to R reference graphs, denoted as {G̃r}Rr=1.
Assuming that the sought graph G is similar to the graphs
in {G̃r}Rr=1 requires only considering the set of constraints
[cf. (8)]

cg(λ) ≤ cg(λ̃r) + δr cg(λ) ≥ cg(λ̃r)− δr, (18)

for all r. Here, λ̃r denotes the eigenvalues of the r-th reference
graph and the value of δr can be selected based on prior
information on the similarity between G and G̃r. If such
information does not exist, then δr is set to δ for all r.
Moreover, while all the constraints in (18) can be incorporated
into (9), a more prudent approach is to identify first the most
restrictive ones and then augment the constraints (objective)
of (9) only with those.

We might encounter several reference graphs with similar
densities of motifs if, e.g., they are samples drawn from a
common random graph model. This leads us to the second
generalization, which consists in having access to the desired
(true) spectral density function µλ associated with the random
graph model at hand. With an eye on real-world applications,
the paper has mostly focused on the case where the prior
information on the distribution of motifs comes from a ref-
erence graph G̃ and its empirical spectral density function.
However, there may be cases where the actual spectral density
function µλ is known or, alternatively, where promoting some
desired properties over the spectral density is of interest. The
key to designing graph-learning algorithms that handle the
knowledge of µλ efficiently is to leverage (3), which relates
the evaluation of the test functions over the ensemble and
the sample distribution. More specifically, it suffices with
replacing the sample estimate cg(λ̃) in constraint (8) with
the ensemble estimate

∫
g(λ) dµλ(λ) computed based on µλ,

with no additional changes being required in the optimization.
The third generalization deals with more encompassing

models to represent the relation between the observed signals
and the sought graph. A meaningful and tractable alternative is
to consider that the signals are Gaussian and graph stationary
[42], [43]. Basically, a zero-mean random graph signal x is
said to be stationary in a GSO S if its covariance matrix
Cx = E[xxT ] can be written as a polynomial of S [43].
Clearly, GMRFs are a particular instance of graph stationary
models, since we have that Cx = S−1. As a result, graph
stationarity has been recently used in a number of graph-
learning-related problems [8], [23], [44]. For the setup at
hand, considering that the signals are both Gaussian and graph
stationary implies that the eigenvectors of S and those of
the precision matrix Θ ∈ RN×N are the same and, as a
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result, that the product SΘ is the same as the product ΘS.
Then, a tractable way to adapt our formulation in (9) to deal
with stationary GMRF signals is to consider the constraint
SΘ = ΘS, which results in the following optimization
problem

min
Θ,S,V,λ

tr(ĈΘ)−log det(Θ) + α∥S∥1

+
β

2
∥S−Vdiag(λ)V⊤∥2F + γcg(λ)

s.t : cg(λ) ≥ cg(λ̃)− δ, S ∈ S, V⊤V = I,

ΘS = SΘ. (19)

Intuitively, rather than promoting a sparse precision matrix
such that Θ = S, (19) learns a precision matrix Θ that is a
polynomial of the sparse GSO. This less restrictive assumption
results in a more flexible graph-learning algorithm capable of
handling a larger range of scenarios. Even though the resulting
optimization problem is non-convex, it is amenable to an
iterative approach similar to the one presented in Section V,
but with an additional step for estimating the new optimization
variable Θ.

VII. NUMERICAL RESULTS

We now present numerical experiments to gain intuition
about the proposed graph-learning algorithm and to assess its
performance. We consider different test functions and compare
the results achieved with popular graph-learning algorithms
over a range of scenarios. The code implementing the proposed
algorithm and the experiments is available on GitHub2.

Upon proper selection of the test functions, the method
proposed in this paper is robust to the graph scale ambiguity.
Since, in general, this is not the case for most graph-learning
algorithms, to provide a fairer comparison, we set the true
GSO S∗ and its estimate Ŝ to have unit Frobenius norm before
computing the error. The resulting error metric is given by

err(Ŝ,S∗) =

∥∥∥∥∥ Ŝ

∥Ŝ∥F
− S∗

∥S∗∥F

∥∥∥∥∥
2

F

. (20)

In addition, in the numerical experiments, we focus on es-
timating the combinatorial Laplacian L, so we solve the
optimization problem in (9) by setting the set of feasible
GSOs to L := {Lij ≤ 0 for i ̸= j; L = L⊤; L1 = 0}.
While our algorithms work for any type of GSO, most of the
literature focuses on learning Laplacians, so setting S = L
here facilitates the comparisons with the state of the art.

A. Proposed test functions

The test functions g are at the core of the similarity con-
straints proposed in this paper. Hence, before presenting the
numerical results, we provide the different test functions con-
sidered in the experiments and the associated upper bounds.
Linear test function. Considering g(x) = x results in the
similarity constraint (7). Since it involves the tr(S), we denote
it as “Tr” in the experiments. This function renders the
similarity constraint convex, so no upper bound is required.

2https://github.com/reysam93/motif nti

Heat kernel test function. Setting g(x) = e−x results
in a convex function cg with an associated upper bound
u(λ,λ(t−1)) = 1

N

∑N
i=1 λie

−λ(t−1)

. This is denoted as “Heat”
in the experiments.
Square root test function. Setting g(x) =

√
x results

in a concave function cg with an associated upper bound
u(λ,λ(t))) = 1

2N

∑N
i=1

λi

λ
(t−1)
i

. This is denoted as “Sqrt” in
the experiments.
Quadratic test function. Setting g(x) = x2 results in
a convex function cg with an associated upper bound
u(λ,λ(t−1)) = − 2

N

∑N
i=1 λ

(t−1)
i λi. This is denoted as “Sq”

in the experiments.
Band-rejection test function. Setting g(x) = (x − 1.5)2/4
results in a convex function cg with an associated upper bound
given by u(λ,λ(t−1)) = 1

N

∑N
i=1(0.75 − 0.5λ

(t−1)
i )λi. This

test function concentrates around small and large values of λ,
resembling a band-rejection filter. This is denoted as “BR” in
the experiments.

B. Results on synthetic graphs

By using synthetic data, we can test the algorithms in a
wider range of settings, facilitating getting insights. In the
following experiments, the graph signals X = [x1, ...,xM ] are
sampled from a GMRF where the covariance matrix is given
by the pseudo-inverse of the true Laplacian denoted as (L∗)†.
The reported error corresponds to the mean error averaged
across 100 realizations of random graphs and graph signals.
Test case 1. The first experiment probes how the test functions
in Section VII-A influence the spectrum of the estimated
graphs. We generate the target graph G and the reference
graph G̃ as two lattice graphs with 4 neighbors and N = 200
and Ñ = 150 nodes, respectively. The histograms of their
eigenvalues λ and λ̃ are depicted in Fig. 2a and Fig. 2b,
where we can observe that the spectra of both graphs are
clearly similar. Then, the remaining panels show the spectrum
of the estimated GSOs, λ̂, obtained following Algorithm 1
when no similarity constraint is employed (Fig. 2c), as well
as for the different test functions. It can be seen that employing
any of the selected similarity constraints renders the empirical
distribution of λ̂ closer to the ground truth than not using
any constraint. It is also worth noting that “Heat” and “Sqrt”
test functions (Fig. 2e and Fig. 2f) properly capture the
distribution of low-valued eigenvalues but struggle with high-
valued eigenvalues, resulting in longer tails. On the other hand,
“BR” and “Sq” test functions (Fig. 2g and Fig. 2h) are better
suited for capturing the shape of the distribution associated
with medium and large eigenvalues, but are less precise with
the smaller ones. This interesting behavior could help in
designing specific test functions that efficiently capture the
shape of the spectral distribution of the graph, a worth-looking
problem that is considered as a future research direction.

In addition to visually comparing the spectral distribution of
the estimated graphs, Fig. 3a shows the error of the estimated
eigenvalues as the number of signal observations M increases.
The error is measured as err(λ̂,λ∗), where the Frobenius
norm is replaced by the ℓ2 norm of the vectors. Once again,

https://github.com/reysam93/motif_nti
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Fig. 2: Histograms representing the empirical spectral distribution of different Laplacian matrices. Panels a) and b) show the
histograms of the true Laplacian L∗ and the reference Laplacian L̃. Panel c) shows the histogram of the estimated L̂ when
no similarity constraint is used, and panels d), e), f), g) and h) show the histogram of L̂ when the considered constraints are
linear, heat kernel, square root, band-rejection, and quadratic, respectively.

we observe that the worst performance is obtained when no
similarity constraint is used (“Unc” in the legend), clearly
illustrating the benefit of accounting for the similarity of G
and G̃ based on their local structures. Furthermore, we ob-
serve that the quadratic (“Sq”) and band-rejection (“BR”) test
functions consistently outperform the linear constraint (“Tr”).
This supports our previous hypothesis that more sophisticated
test functions are more capable of capturing the relationship
between the reference and the sought graph.

Test case 2. We continue by evaluating the error of the
estimated Ŝ when graphs are sampled from the small world
(SW) random graph model [45] as edge density increases.
True GSOs S∗ have N = 100 nodes while the reference
graphs have Ñ = 150 nodes. In both cases, the number
of neighbors of each node increases as reflected in the x-
axis of Fig. 3b. The edge rewiring probability is 0.1, and
the number of observations is M = 1, 000. The results
illustrated in Fig. 3b compare the performance of our proposed
approach with that of the following baselines: (i) “Pinv”, which
considers the naive solution given by the pseudo-inverse of the
sample covariance matrix Ĉ; (ii) “GLasso”, which estimates
Ŝ by means of the graphical Lasso algorithm [14]; and (iii)
“Tr=N”, which solves problem (6) replacing the similarity
constraint by the fixed constraint tr(S) = N employed in
[21]. Our graph-learning algorithm based on similar motif
densities is denoted as “MGL” followed by an additional
label indicating the similarity constraint considered. Looking
at the results, we observe that the proposed MGL approach
outperforms the other baselines independently of the selected
similarity constraint. Of special interest is the comparison
between “Tr=N” and “MGL-Tr” since the two constraints are
intimately related, as discussed in Section IV. The results
show that “MGL-Tr” clearly outperforms “Tr=N”, which was
expected because the first case employs information about the
true value of the tr(S). Moreover, since the experiments are
conducted with S = L, the value of tr(S) represents the sum

of the degrees across nodes, so the trace constraint can be
interpreted as approximately fixing the value of ∥S∥1 to its
true value.

Test case 3. This experiment evaluates the robustness of
the similarity constraints to discrepancies between G and G̃.
Furthermore, we compare the performance of the proposed
method with the spectral graph learning (SGL) algorithm in
[17], which yields state-of-the-art performance when dealing
with graphs with multiple connected components. We draw
the true S∗ from a stochastic block model (SBM) [46] with
K = 5 communities and edge probabilities of p = 0.3 and
q = 0 for nodes within the same community and nodes
of different communities. That is, the SBM graphs have 5
separate connected components, a setting for which the SGL
algorithm is tailored. On the other hand, the reference GSO S̃
is drawn from an SBM with 150 nodes and the same values
of p and K, but the value of q increases progressively as
indicated in the x-axis of Fig. 3c. The number of samples is
M = 1,000 independently of the number of nodes and, as
indicated in the legend, we consider the error of the estimated
Ŝ for graphs with 100 and 150 nodes. In other words, larger
values in the x-axis imply that the discrepancy between S̃ and
S∗ increases. Also, note that the error lines associated with
the SGL algorithm remain constant since they do not depend
on the reference graph.

A first look at the results from Fig. 3c reveals that our MGL
algorithm is surprisingly robust to the proposed perturbation
on the reference graph. The error remains below 0.1 even for
values of q that are comparable to the values of p. Indeed,
this phenomenon suggests that the similarity constraints are
capturing information about the spectrum that goes beyond
unveiling the number of zero eigenvalues. Next, focusing on
the graphs with 100 nodes (solid lines), the best performance
is achieved by the SGL algorithm. This was expected since
the spectral constraints of SGL exactly capture the number of
disconnected communities. More illuminating are the results
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Fig. 3: Mean error of the estimated GSOs when using synthetic data and different types of graphs. a) G and G̃ are generated
as lattice graphs with 4 neighbors per node; b) G and G̃ are sampled from a small world model; c) G and G̃ are sampled from
an SBM model. All figures show errors averaged over 100 realizations of graphs and signals.

of graphs with 150 nodes (dashed lines), where it can be
observed that the MGL outperforms the SGL algorithm for the
two selected similarity constraints. This change of behavior is
caused because the error of SGL increases with the number
of nodes, while the error of the MGL decreases as the graph
grows. We stress that this behavior is counter-intuitive because
the number of samples remains constant independently of the
number of nodes, and hence, a higher N should carry a higher
error. Nonetheless, the rationale behind this result is as follows.
The functions cg(λ) described in (3) may be interpreted as
estimating the expectation of some test function g across all
the nodes of the graph, and hence, as the number of nodes
increases the estimation of this expectations improves. As
a result, the similarity constraint carries more information
when the graph has N = 150 nodes, compensating the
additional error derived from estimating a larger number of
edges, and hence resulting in a better estimate. Finally, note
that information about the number of zero eigenvalues can be
incorporated into our proposed model seamlessly.
Test case 4. The next experiment assesses the performance
of the MGL algorithm with moderately large graphs. Figs. 4a
and 4b respectively show the running time and the error of the
estimated GSO as the number of nodes increases. We consider
SW graphs with either k = 4 or k = 10 neighbors and fix the
number of observed signals to M = 104. First, Fig. 4a shows
that the proposed algorithm takes between 20 and 120 seconds
(considering T = 5 or T = 50 iterations) to estimate graphs
with 103 nodes, which is a reasonable running time. Then,
in Fig. 4b, we observe that the error is consistently below
0.1, showcasing that small values of T are enough to obtain
a valid estimate. More interestingly, focusing on the error of
the setting “T =50, k=4”, we observe that the quality of the
estimated GSO barely degrades when N increases if T is large
enough. This is aligned with the results from Test case 3, and
it shows that the similarity constraint carries more information
when graphs are larger.
Test case 5. he last experiment involving synthetic graphs
investigates the benefits of considering a more general model
for the graph signals. To that end, we sample the graph
signals from a zero-mean multivariate Gaussian distribution
whose covariance matrix is given by a polynomial of the GSO
(in contrast with previous experiments, where the covariance

matrix was the inverse of the GSO). The reference and the
target graphs are lattice graphs with 4 neighbors, and 50 and 20
nodes, respectively. Then, Fig. 4c, compares the performance
of Algorithm 1, which assumes that the covariance of the
observed signals is S−1, with the model introduced in (19)
(“Pol” in the legend), which assumes that the covariance is a
polynomial of S. As expected, we observe that Algorithm 1
has a worse performance because the observed signals do
not comply with the assumed model. In contrast, the better
performance of the “Pol” model showcases the potential
benefits of considering more lenient assumptions.

C. Results on real-world graphs

We close the numerical experiments by validating our
proposed algorithm over two datasets with real-world graphs.
Student network dataset. In this experiment, we consider
two graphs with 32 nodes from the Ljubljana student net-
work dataset3. In these graphs, nodes represent students from
the University of Ljubljana, and the edges of the different
networks capture different types of interactions among the
students. Because the same students (nodes) are represented
across both selected networks, it is expected that the topology
of the graphs will be related, allowing us to further assess the
value of the method in this paper. This dataset does not contain
graph signals, which are created as a GMRF using (L∗)† as
the covariance. The combination of real graphs and synthetic
data brings us the opportunity of evaluating the performance
of the MGL algorithm on real graphs while ensuring that the
observed signals comply with the assumed model.

The results are depicted in Fig. 5, where we can observe
the error of the estimated graph L̂ as the number of samples
increases (represented in the x-axis). It can be seen that
the MGL based on the band-rejection test function (“MGL-
BR”) consistently outperforms the other alternatives. We also
note that, for the first values of the number of samples,
using the fixed constraint tr(S) = N renders a smaller error
than using the graph similarity constraint based on the linear
test function (“MGL-Tr”). This contrast with the behavior
previously observed can be explained because the number

3The original data can be found at http://vladowiki.fmf.uni-lj.si/doku.php?id=
pajek:data:pajek:students

http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
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of SW graphs increases. c) compares the performance of the MGL algorithm as described in Algorithm 1 and the alternative
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GMRF distribution and the reported error is the average over 100 realizations.
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Fig. 5: Error of the estimated GSO using the graphs from
the Ljubljana student network dataset. Different baselines are
considered and signals are sampled from a GMRF distribution.

of nodes is small (N = 32), and hence, as commented in
Test case 3, the benefit of the similarity constraints is more
limited. Nonetheless, as the number of samples increases, the
performance of “MGL-Tr” quickly surpasses that of “Tr=N”.
We also observe that, for the largest values of M , the errors
of “SGL”, “Unc”, and “MGL-Tr”, seem to converge to the
same value. We recall that the “Unc” model is a particular
implementation of the Laplacian estimation proposed in [16].

Senate votes dataset. Lastly, we consider a dataset containing
the roll-call votes of the U.S. Senate [47]. As done in [26], we
represent the congresses as networks with 50 nodes (one per
U.S. state) that encode the ideological representation of each
state. Signals x1, ...,xM correspond to the votes on different
laws and proposals. When voting on a proposal (say the m-th
one), we codify the vote of each senator as 1 for a yea, −1 for
a nay, and 0 for abstention. We then obtain the value of xm

for the i-th node as the sum of the votes of the two senators
representing the i-th U.S. state, and repeat this process for
i = 1, ..., 50. The resultant graph signals are categorical and,
thus, do not follow the assumption of being sampled from a
GMRF. As a result, this experiment will help to illustrate that
the MGL algorithm may be employed even when the observed
graph signals do not follow a Gaussian distribution.

Modeling the dataset at hand as a dynamic graph, we

set the graph corresponding to the 114th congress (years
2015 and 2016) as the known reference graph G̃, and our
goal is to estimate G, the graph corresponding to the 115th
congress (years 2017 and 2018). It is worth mentioning that
the MGL algorithm is not employing specific information
about the number of non-zero eigenvalues. We have access
to 499 and 591 observed signals for each of the graphs. Since
there are no evident ground-truth graphs, we consider as the
true underlying graphs those inferred using the unconstrained
solution of problem (6) when all the signals are available.
The error of the estimated L̂ is reported in Fig. 6, where the
x-axis denotes the M observed signals considered. For low
values of M , the “MGL-BR” and “MGL-Heat” outperform
the alternatives, even though “Unc” is the algorithm used
to generate the ground-truth graph. Moreover, in additional
experiments, we observe that considering the median error
instead of the mean, the heat test function outperforms the
band-rejection test function. Recalling that the heat test func-
tion learns small eigenvalues better than the larger ones,
the superior performance of the heat test function suggests
that in these networks the small eigenvalues play a more
fundamental role than in previous settings. On the other hand,
as M increases, the error of the different models converges
towards the same value, except for “Tr=N” and “MGL-Tr”,
showing that the trace-based constraints struggle to capture
the topological properties of this graph.

To further assess the performance of the proposed algorithm,
we employ the estimated graphs to predict the node labels via
spectral graph clustering. The results are portrayed in Fig. 7,
where we compare the topology and the labels of the true
graph (Fig. 7a) with the estimates obtained with different graph
learning algorithms. The labels (colors) of the nodes represent
the ideological representation of each state with red, blue,
and yellow nodes corresponding to states with two Republican
senators, two Democratic senators, and senators from different
parties, respectively. When only 100 samples are employed,
we observe that using the “MGL-BR” algorithm (Fig. 7b) is
the alternative that correctly predicts more labels, obtaining
an accuracy of 0.9. In contrast, most of the nodes show the
same label in the “Unc” solution (Fig. 7d), and the “SGL”
solution (Fig. 7c) misses most of the yellow nodes, resulting
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Fig. 6: Error estimating the GSO from the roll-call votes of the
U.S. congress dataset. Signals are randomly sampled among
all signals, and the error is the average over 100 realizations.

in accuracies of 0.4 and 0.66, respectively. When 150 signals
are employed, it can be seen that the estimate “MGL-Heat”
(Fig. 7e) is the alternative that learns more labels while main-
taining a single connected component. The resulting accuracy
is 0.96, which is also the accuracy obtained when the ground
truth graph is employed. Similarly, the “MGL-BR” estimate
with 150 samples (Fig. 7f) also achieves an accuracy of 0.96,
but it segregates the nodes in three connected components,
which is useful in this context of node clustering but might
be undesirable in other applications. Finally, the “SGL” and
“Unc” alternatives have an accuracy of 0.58 and 0.68.

VIII. CONCLUSION

In this paper, we faced the relevant problem of learning
the topology of a graph from a set of GMRF nodal obser-
vations. The novel framework proposed herein departs from
the maximum likelihood estimator of the sought graph G
and then exploits the assumption that the motif density of a
known graph G̃ is similar to that of G. Indeed, comparing the
density of motifs of two graphs is a non-trivial combinatorial
task that we addressed by leveraging a relation between the
distribution of the spectra of both graphs. More precisely, we
showed that, when two graphs have similar motif densities,
evaluating a continuous test function over their respective
empirical distribution of eigenvalues renders a similar value.
This observation was exploited as a constraint in an opti-
mization problem. The resulting similarity constraints were
non-convex for most test functions, so we also developed a
convex relaxation by proposing an efficient iterative algorithm
capable of handling any differentiable convex or concave test
function. The proposed algorithm blends techniques from MM
algorithms and alternating optimization, it is guaranteed to
converge to a stationary point, and its computational complex-
ity is cubic in the number of nodes. Then, we evaluated the
proposed algorithm through different numerical experiments
involving synthetic and real-world data, where we assessed
the influence of several test functions and showed that the
proposed algorithm outperforms other popular alternatives.
Finally, relying on information about the density of motifs
is a promising approach that can be extended to a gamut of
applications, a task considered as a future research direction.

APPENDIX A
PROOF OF THEOREM 1

Let S and S̃ denote the GSOs of G and G̃, and let λ ∈ RN

and λ̃ ∈ RÑ denote their respective eigenvalues. From
(AS1a), it follows that λi is contained in a bounded interval of
R for every i, so the spectrum of S has compact support. The
same holds for S̃. Denote the union of the supports of both
empirical spectral densities by A. According to the Stone-
Weierstrass theorem [48], any continuous function defined
over a compact domain can be approximated arbitrarily and
uniformly well by polynomials. That is to say, there is some
polynomial of degree r, which we denote by gr, such that for
all λ ∈ A, it holds that |g(λ)− gr(λ)| ≤ δ1 for some δ1 ≥ 0.
Moreover, δ1 → 0 as r → ∞. One can then see that

|cg(λ)− cgr (λ)| ≤ δ1, (21)

with the same bound holding for λ̃.
Let {α(k)

r }Kk=1 be an enumeration of all isomorphism classes
of rooted r-balls whose underlying graph satisfies (AS1a).
Define the function h on these rooted r-balls so that for each
α
(k)
r , h(α

(k)
r ) yields the diagonal entry at the root of the

polynomial gr applied to the GSO of α
(k)
r . Since there are

only finitely many such rooted r-balls, the magnitude of h is
bounded by some constant C ≥ 0.

Let ρ be a node in G. Then, if the rooted ball Vr(G, ρ) is
isomorphic to α

(k)
r for some k, we have that

[gr(S)]ii = h(α(k)
r ) = h(Vr(G, ρ)). (22)

Since G satisfies (AS1a), every rooted r-ball Vr(G, ρ) satisfies
(AS1a), so that we can write

cgr (λ) =
1

N

N∑
i=1

h(Vr(G, i)) =
K∑

k=1

h(α(k)
r )τr(α

(k)
r ,G), (23)

with a similar equality holding for cg(λ̃) and G̃. By (AS1b),
we have

|cgr (λ)− cgr (λ̃)| ≤
K∑

k=1

|h(α(k)
r )| · |τr(α(k)

r ,G)− τr(α
(k)
r , G̃)|

≤ min{K,max{N, Ñ}} · Cϵ. (24)

We conclude the proof via a simple application of the
triangle inequality.

|cg(λ)− cg(λ̃)| ≤ |cg(λ)− cgr (λ)|+ |cgr (λ)− cgr (λ̃)|
+ |cgr (λ̃)− cg(λ̃)|

≤ 2δ1 +min{K,max{N, Ñ}} · Cϵ =: δ.
(25)

APPENDIX B
EFFICIENT APPROXIMATION FOR STEP 1

We now provide the details to develop the efficient solution
for (13). We start by exploiting the symmetry of the GSO.
To that end, recall that S : s ∈ RN(N−1)/2

+ → Ss ∈ RN×N

denotes the linear operator mapping the non-negative vector
s into the matrix S = Ss while ensuring that the constraints
in S are satisfied. Also, recall that ∥S∥1 = tr(SH), where
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(a) Ground truth.

Poly estimate
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(e) MGL-Heat, 150 samples.
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Fig. 7: Representation of the senate network for the 115th congress. a) Shows the true graph, b), c) and d) show the estimates
obtained with “MGL-BR”, “SGL” and “Unc” algorithms when 100 samples are available, while e), f), g) and h) show the
estimates obtained with “MGL-Heat”, “MGL-BR”, “SGL”, and “Unc” when 150 samples are available. The color of the nodes
in a) represents the true node labels, and the colors from b) to h) represent the node labels estimated through a spectral graph
clustering algorithm considering the graph estimated with each method.

H is an N × N matrix of signed ones with the sign of its
entries matching the sign of the entries of S, so we have that
tr(ĈS) + α∥S∥1 = tr(KS), where K = Ĉ+H.

Then, we rewrite the problem in (13) as

s(t+1)= argmin
s

tr(KSs)+
β

2
∥Ss−V(t)Λ(t)V(t)⊤∥2F

s.t : s ≥ 0, (26)

where the number of optimization variables has been reduced
to less than half. Moreover, we denote as S∗ : Y ∈ RN×N →
S∗Y ∈ RN(N−1)/2 the adjoint linear operator of S such
that ⟨Ss,Y⟩ = ⟨s,S∗Y⟩. Then, we reformulate (26) as the
following equivalent quadratic problem

min
s≥0

1

2
∥Ss∥2F − z⊤s, (27)

with z = S∗(V(t)Λ(t))(V(t))⊤ − β−1K). Although the
problem in (27) is strictly convex, the non-negativity constraint
prevents us from obtaining a closed-form solution. To circum-
vent this issue, we replace the objective function of (27) with
an upper bound centered at s(t), resulting in the optimization

min
s≥0

1

2
s⊤s− s⊤

(
s(t) − 1

∥S∥22
∇f(s(t))

)
. (28)

The term ∇f(s(t)) = S∗(Ss(t)) − z denotes the gradient of
the objective function in (27) and ∥S∥22 denotes the operator
norm given by ∥S∥22 = sup∥x∥=1 ∥Sx∥2F .

Finally, the closed-form solution from the KKT optimality
conditions of (28) is given by

s(t+1) =

(
s(t) − 1

∥S∥22
∇f(s(t))

)+

, (29)

which is the update for the first step provided in (14).
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