
1

Untrained Graph Neural Networks for Denoising
Samuel Rey, Student Member, IEEE, Santiago Segarra, Senior Member, IEEE, Reinhard Heckel, Member, IEEE,

and Antonio G. Marques, Senior Member, IEEE

Abstract—A fundamental problem in signal processing is to
denoise a signal. While there are many well-performing methods
for denoising signals defined on regular domains, including
images defined on a two-dimensional pixel grid, many important
classes of signals are defined over irregular domains that can be
conveniently represented by a graph. This paper introduces two
untrained graph neural network architectures for graph signal
denoising, develops theoretical guarantees for their denoising
capabilities in a simple setup, and provides empirical evidence
in more general scenarios. The two architectures differ on how
they incorporate the information encoded in the graph, with
one relying on graph convolutions and the other employing
graph upsampling operators based on hierarchical clustering.
Each architecture implements a different prior over the targeted
signals. Finally, we provide numerical experiments with synthetic
and real datasets that i) asses the denoising behavior predicted by
our theoretical results and ii) compare the denoising performance
of our architectures with that of existing alternatives.

Index Terms—Geometric Deep Learning, Graph Decoder,
Graph Signal Denoising, Graph Signal Processing

I. INTRODUCTION

VAST amounts of data are generated and stored every day,
propelling the deployment of data-driven solutions to

address a wide variety of real-world problems. Unfortunately,
the input data suffers from imperfections and is corrupted
with noise, oftentimes associated with the data-collection
process. Noisy signals appear in a gamut of applications,
with examples including the processing of voice and images,
the measurements in electric, sensor, social and transportation
networks, or the monitoring of biological signals [1]–[3]. The
presence of noise entails a detrimental influence on the quality
of the data, which may become unusable when the noise power
is comparable to that of the signal. As a result, separating the
signal from the noise, which is referred to as signal denoising,
is a critical and ubiquitous task in contemporary data science
applications. While most existing works focus on the denoising
of signals defined over regular domains (time and space),
signals with irregular supports are becoming pervasive. In par-
ticular, signals obtained from sensors deployed across different
positions, such as voltage in power networks, temperature in

S. Rey and A. G. Marques are with the Department of Signal Theory
and Comms., King Juan Carlos University, Madrid, Spain, {samuel.rey,
antonio.garcia.marques}@urjc.es. S. Segarra is with the ECE Depart-
ment, Rice University, Houston, USA, segarra@rice.edu. R. Heckel is
with the ECE Department, Technical University of Munich, Munich, Ger-
many, reinhard.heckel@tum.de. Work in this paper was partially sup-
ported by the Spanish AEI Grants SPGRAPH (PID2019-105032GB-
I00/AEI/10.13039/501100011033), FPU17/04520 and EST21/00420, F661-
MAPPING-UCI CAM-URJC, F663-AAGNCS CAM-URJC, F861 AUTO-
BA-GRAPH CAM-URJC, and the USA NSF award CCF-2008555, and the
Institute of Advanced Studies at the Technical University of Munich, and
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 456465471, 464123524.

weather stations, or neurological activity on the brain, have
largely benefited from graph signal denoising since sensor
measurements are typically corrupted by noise [4]. Hence,
designing (nonlinear) denoising schemes for signals defined
over irregular domains constitutes a relevant problem both
from a theoretical and practical point of view.

A versatile and tractable approach to overcome the chal-
lenges inherent to data supported on irregular domains consists
of representing the underlying structure as a graph, with
nodes representing variables and edges encoding levels of
similarity, influence, or statistical dependence among nodes.
Successful examples of this approach can be found in the
subareas of network analytics, machine learning over graphs,
and graph signal processing (GSP) [1], [5], [6], with graph
neural networks (GNNs) and GSP being particularly relevant
for the architectures presented in this paper [7]–[9]. Note that
traditional data-processing architectures are designed to deal
with data defined over regular domains, such as images, and
hence, they may incur difficulties when learning and exploiting
the more complex structure present in many contemporary
applications. Nonetheless, GSP provides a principled approach
to handling this issue [2], [6], [7] Assuming that the structure
of the signals can be modeled by a graph, GSP uses the infor-
mation encoded in the graph topology to analyze, process, and
learn from the data. As a result, it is not surprising that GSP
has been successfully applied to design and analyze GNNs [?],
[10]–[12], a class of neural network (NN) architectures that
incorporate the graph topology information to enhance their
performance when the data is composed of signals defined
over a graph.

The importance of leveraging the graph influence when us-
ing deep nonlinear architectures is reflected in the wide range
of GNNs that co-exist in the literature, including graph convo-
lutional NNs (GCNNs) [13]–[15], graph recurrent NNs [16],
graph autoencoders [17]–[19], graph generative adversarial
networks [20], [21], and simplicial NNs [22], [23], to name
a few. Incorporating the graph structure into deep nonlinear
models involves a wide range of options when designing
the architecture. For example, GCNNs can be defined with
or without pooling layers and the convolution over a graph
can be implemented in several ways (vertex vs frequency),
each leading to architectures with different properties and
performances. In fact, one of the key questions when designing
a GNN is to decide the particular way in which the graph is
incorporated into the architecture.

Considering the preceding paragraphs, the goal of this work
is twofold. First, we explore different ways of incorporating
the information encoded in the graph and propose new graph-
based NN architectures to denoise graph signals. Second, we
provide theoretical guarantees for the denoising capabilities



2

of this approach and show that it is directly influenced by
the properties of the graph. The mathematical analysis, per-
formed on particular instances of these architectures, provides
guarantees on their denoising performance under specific
assumptions for the original signal and its underlying graph. In
addition, we provide empirical evidence about the denoising
performance of our method for scenarios more general than
those strictly covered by our theory, further illustrating the
value of our graph-aware untrained architectures.

The proposed architectures are untrained NNs, meaning
that the parameters of the network are optimized using only
the signal observation that we want to denoise, avoiding the
dependency on a training set with multiple observed graph
signals. The underlying assumption behind this untrained de-
noising architecture is that, due to the graph-specific structure
incorporated into the different layers, when tuning the network
parameters using stochastic gradient steps, the NNs are capable
of learning (matching) the structure of the signal faster than
that of the noise. Hence, the denoising process is carried
out separately for each individual observation by fitting the
weights of the NN and stopping the updates after a few
iterations. This same phenomenon has been observed to hold
true in non-graph deep learning architectures [24], [25] and
constitutes a framework that is closely related to that of zero-
shot learning [26], [27]. In the context of signal denoising, the
consideration of an overparametrized graph-aware architecture
along with early stopping avoids overfitting to the noise.

To incorporate the topology of the graph, the first archi-
tecture multiplies the input at each layer by a fixed (non-
learnable) graph filter [28], which can be seen as a generaliza-
tion of the convolutional layer in [14]. The second architecture
performs graph upsampling operations that, starting from a
low-dimensional latent space, progressively increase the size
of the input until it matches the size of the signal to denoise.
The sequence of upsampling operators are designed based on
hierarchical clustering algorithms [18], [29]–[31] so that, in
contrast to [32], matrix inversions are not required, avoiding
the related numerical issues. Our work is substantially differ-
ent from [18], [19], which deal with graph encoder-decoder
architectures. On top of our theoretical analysis and extensive
numerical simulations, additional differences to prior work
are that: (a) our graph decoder is an untrained network, and
thus, it does not need a training phase; (b) we only require
a decoder-like architecture for denoising graph signals, so
it is not necessary to jointly design and train two different
architectures as carried out in, [18], [19].

Contributions and outline. In summary, the contributions of
the paper are the following: (i) we present two new over-
parametrized and untrained GNNs for solving graph-signal
denoising problems; (ii) mathematical analysis is conducted
for each architecture offering bounds for their performance,
improving our understanding of nonlinear architectures and
the influence of incorporating graph structure into NNs; and
(iii) the proposed architectures are evaluated and compared
to other denoising alternatives through numerical experiments
carried out with synthetic and real-world data. These contrast
with the contributions of our preliminary work in [33], which

only considered a single underparametrized denoising archi-
tecture, did not provide mathematical analysis, and focused on
synthetic datasets. Moreover, moving to the overparametrized
regime not only endows the proposed architectures with a
larger learning capacity, but it also opens the door to a more
thorough theoretical analysis.

The remainder of the paper is organized as follows. Sec. I-A
reviews related works dealing with graph-signal denoising.
Sec. II explains fundamental concepts leveraged along the
paper. Sec. III formally introduces the problem at hand and
presents our general approach. Secs. IV and V detail the
proposed architectures and provide the mathematical analysis
for each of them. Numerical experiments are presented in
Sec. VI and concluding remarks are provided in Sec. VII.

A. Related works

Untrained NNs enable the recovery of signals without the
need of training over large (or any) datasets by carefully
incorporating prior information of the signals [24], [25], [34],
[35]. In [24], it is shown that fitting a standard convolutional
autoencoder to only one noisy signal using early stopping
enables the effective denoising of an image. For this approach
to work, it is key that the signal class (images) matches the
NN architecture (2D convolutional NN with particular filters).

Previous approaches to the graph-signal denoising task
included a graph-regularization term that promoted desired
properties on the estimated signals [36]. Some existing works
minimize the graph total variation pushing the signal value
at neighboring nodes to be close [36], [37]. Later on, total
generalized variation extended this idea to promote similar
values of higher-order terms [38]. A related approach as-
sumes that the signals are smooth on the graph and add a
regularization parameter based on the quadratic form of the
graph Laplacian [39]. Also, in [40], the authors propose a
spectral graph trilateral filter as a regularizer, based on the
prior assumption that the gradient is smooth over the graph.
It is worth noting that these alternatives rely on imposing
some notion of smoothness on the original graph signal.
Furthermore, classical denoising methods typically assume
that the signal and the graph are related by a linear or a
quadratic mapping. Nonetheless, the actual relation between
the signal and the graph may be of a different nature and,
in fact, in many relevant applications the actual prior is more
complex than that represented by linear and quadratic terms,
motivating the development of nonlinear models.

More recently, nonlinear solutions for denoising graph sig-
nals have been proposed to tackle the aforementioned issues.
In [41], a median graph filter [42] is used to denoise time-
varying graph signals defined over dynamic graphs. A different
nonlinear approach is followed in [32], where a graph autoen-
coder is trained to recover the denoised signals. To change the
size of the graph, the autoencoder relies on Kron reduction
operations [43]. However, since the Kron reduction is based on
the inverse of a submatrix of the graph Laplacian, it could fall
into numerical issues if the submatrix is singular. Moreover,
both architectures need several observations to recover the
noiseless signals. Later on, [44] proposes a graph unrolling



3

TABLE I: Summary of main notation.

Symbol Explanation
G, N Graph, number of nodes.
V , E Set of nodes and edges.
A,A ∈ RN×N Adjacency matrix, expectation of A.
V ∈ RN×N Matrix containing the eigenvectors of A.
Λ ∈ RN×N Diagonal matrix collecting the eigenvalues of A.
F , Θ Number of features of the GNN, learnable

parameters.
Z ∈ RN(0)×F (0)

Random input of the GNN.
T (ℓ)

Θ(ℓ){·|G} Linear graph-dependent transformation of the
GNN at layer ℓ.

fΘ(Z|G) GNN architecture.
x,n ∈ RN Noisy signal observation, noise vector.
x0, x̂0 ∈ RN Original signal, denoised estimate.
X ∈ RN×N Expected squared Jacobian of fΘ(Z|G) with

respect to Θ.
W ∈ RN×N Matrix containing the eigenvectors of X .
Σ ∈ RN×N Diagonal matrix containing the eigenvalues of X .
M(A) Set of SBMs with expected adjacency matrix A.
MN (βmin, ρ) Set of SBMs with minimum expected degree

increasing with N .
fΘ(H), fΘ(U) Two-layer GCG, two-layer GDec.
H ∈ RN×N Graph filter.
P(ℓ)∈RN(ℓ)×N(ℓ−1)

Membership matrix at layer ℓ.
U(ℓ)∈RN(ℓ)×N(ℓ−1)

Upsampling matrix at layer ℓ.

architecture based on GCNNs to approach the denoising task.
The architecture is trained in an unsupervised fashion and
relies on regularizing the objective function to avoid learning
the noise. Differently, our proposed solution implicitly encodes
the regularization in the architectures enabling them to learn
the signal faster than the noise.

II. PROCESSING ARCHITECTURES FOR GRAPH SIGNALS

This section introduces mathematical notation and the fun-
damentals of GSP and GNNs. In addition, the main notation is
summarized in Table I. Readers familiar with these concepts
may give a quick pass and move on to Sec. III.

A. Fundamentals of GSP

Let G = (V, E) denote an undirected1 graph, where V is
the set of N nodes, and E is the set of links such that (i, j)
belong to E if nodes i and j are connected. For a given
graph G, the symmetric adjacency matrix A ∈ RN×N has
non-zero entries Aij only if (i, j) ∈ E . The value of Aij

captures the strength of the link between nodes i and j. Define
the degree matrix as D = diag(A1), where 1 is the vector
of all ones and diag(·) is the diagonal operator that turns a
vector into a diagonal matrix. A popular alternative to A is
the degree normalized adjacency matrix Ã := D− 1

2AD− 1
2 .

Indeed, in the subsequent discussions, we assume that the
rows and columns of A are normalized by its degree, so that
A = Ã. Finally, when the adjacency matrix is symmetric, we
can write A = VΛV⊤, where V is an orthonormal N × N
matrix collecting the eigenvectors of A and Λ is diagonal
matrix collecting its eigenvalues.
Graph signals. In this paper, we focus on the processing of
graph signals which are defined on V . Graph signals can be

1Although our theoretical results assume that the graph is undirected, the
proposed architectures can tackle signals defined on directed graphs [45].

represented as a vector x = [x1, . . . , xN ]⊤ ∈ RN , where
the i-th entry represents the value of the signal at node i.
Since the signal x is defined on G, the core assumption of
GSP is that either the values or the properties of x depend
on the topology of G [46]. For instance, consider a graph
that encodes similarity. If the value of Aij is high, then one
expects the signal values xi and xj to be akin to each other.
This rationale helps to explain the success of GNNs since the
incorporation of G into the architectures amounts to including
prior information about the signals to process.
Graph filtering. Graph filters, an important tool of GSP, play
a fundamental role in the definition of our GNN architectures.
Graph filters are linear operators RN → RN that can be
expressed as a polynomial of the adjacency matrix of the form

H :=

M−1∑
m=0

hmAm, (1)

where H is the graph filter, hm are the filter coefficients, and
M ≤ N [28]. Since Am encodes the m-hop neighborhoods
of the graph, graph filters can be used to diffuse input graph
signals x across the graph as y =

∑M−1
m=0 hmAmx = Hx.

Because graph filters diffuse signals across (M−1)-hop neigh-
borhoods, they are widely used to generalize the convolution
operation to signals defined over graphs.
Frequency representation. The theoretical analysis developed
in this paper leverages the notion of bandlimited graph signals,
a widely-used definition that links the properties of a signal
to those of the (spectrum of) the supporting graph [7]. To be
specific, the frequency representation of the signal x is given
by the N -dimensional vector x̃ = V⊤x, with V⊤ acting as
the graph Fourier transform (GFT) [47]. Then, a graph signal
is said to be bandlimited if x̃ satisfies that x̃k = 0 for k > K,
where K ≤ N is referred to as the bandwidth of the signal x.
If x is bandlimited with bandwidth K it holds that

x = VK x̃K , (2)

with x̃K = [x̃1, · · · , x̃K ] collecting the active frequency
components and VK collecting the corresponding K eigenvec-
tors. This reduced-dimensionality representation, which can be
generalized to graph filters as well, has been shown to bear
practical relevance in real-world datasets and it is exploited in
denoising and other inverse problems [48].

B. Fundamentals of GNNs

Generically, we represent a GNN using a parametric non-
linear function fΘ(Z|G) : RN(0)×F (0) → RN that depends on
the graph G. The parameters of the architecture are collected
in Θ, and the matrix Z ∈ RN(0)×F (0)

represents the input
of the network. Despite the many possibilities for defining a
GNN, a broad range of such architectures recursively apply a
graph-aware linear transformation followed by an entry-wise
nonlinearity. Then, a generic deep architecture fΘ(Z|G) with
L layers can be described as

Ŷ(ℓ) = T (ℓ)

Θ(ℓ)

{
Y(ℓ−1)|G

}
, 1 ≤ ℓ ≤ L, (3)

Y
(ℓ)
ij = g(ℓ)

(
Ŷ

(ℓ)
ij

)
, 1 ≤ ℓ ≤ L, (4)



4

Algorithm 1: Proposed graph-signal denoising method
Inputs : x and G
Outputs: x̂0 and Θ̂(x)

1 Set fΘ(Z|G) as explained in Sec. IV or V
2 Generate Z from iid zero-mean Gaussian distribution
3 Initialize Θ(0) from iid zero-mean Gaussian
4 for t = 1 to T do
5 Update Θ(t) minimizing (7) with SGD
6 end
7 Θ̂(x) = Θ(T )

8 x̂0 = fΘ̂(x)(Z|G)

where Y(0) = Z and y = Y(L) denote the input and output
of the architecture, T (ℓ)

Θ(ℓ){·|G} : RN(ℓ−1)×F (ℓ−1) → RN(ℓ)×F (ℓ)

is a graph-aware linear transformation, Θ(ℓ) ∈ RF (ℓ−1)×F (ℓ)

are the parameters that define such a transformation, and
g(ℓ) : R → R is a scalar nonlinear transformation (e.g., the
ReLU function), which is oftentimes omitted in the last layer.
Moreover, N (ℓ) and F (ℓ) represent the number of nodes and
features at layer ℓ, Θ = {Θ(ℓ)}Lℓ=1 collects all the parameters
of the architecture, and y is the output of the GNN. Note that
although fΘ(Z|G) generates output signals defined in RN ,
which is the case of interest for this paper, it can be easily
adapted to output graph signals with more than one feature.

III. GNNS FOR GRAPH-SIGNAL DENOISING

We now formally introduce the problem of graph-signal de-
noising within the GSP framework, and present our approach
to tackle it using untrained GNN architectures. Given the graph
G, let us consider the observed graph signal x ∈ RN , which is
a noisy version of the original graph signal x0. With n ∈ RN

being a noise vector, the relation between x and x0 is

x = x0 + n. (5)

Then, the goal of graph-signal denoising is to remove as
much noise as possible from the observed signal x to estimate
the original signal x0, which is performed by exploiting the
information encoded in G.

A traditional approach for the graph-signal denoising task
is to solve an optimization problem of the form

x̂0 = argminx̌0
∥x− x̌0∥22 + αR(x̌0|G). (6)

The first term promotes fidelity to the signal observations, the
regularizer R(·|G) promotes denoised signals with desirable
properties over the given graph G, and α > 0 controls the influ-
ence of the regularization. Common choices for the regularizer
include the quadratic Laplacian R(x|G) = x⊤Lx [39], or reg-
ularizers involving high-pass graph filters R(x|G) = ∥Hx∥22
that foster smoothness on the estimated signal [36], [47].

While those traditional approaches exhibit a number of
advantages (including interpretability, mathematical tractabil-
ity, and convexity), they may fail to capture more complex
relations between G and x0, motivating the development of
nonlinear graph-denoising approaches.

As summarized in Algorithm 1, in this paper we advocate
handling the graph-signal denoising task by employing an

overparametrized GNN (denoted by fΘ(Z|G)) as described
in (3)-(4). The weights of the architecture, collected in Θ, are
learned by minimizing the loss function

L(x,Θ) =
1

2
∥x− fΘ(Z|G)∥22, (7)

applying stochastic gradient descent (SGD) in combination
with early stopping to avoid overfitting the noise. The entries
of the parameters Θ and the input matrix Z are initialized at
random using an iid zero-mean Gaussian distributions, and
the weights learned after a few iterations of denoising the
observation x are denoted as Θ̂(x). Note that Z is fixed to
its random initialization. Finally, the denoised graph signal
estimate is computed as

x̂0 = fΘ̂(x)(Z|G). (8)

The intuition behind this approach is as follows: since the
architecture is overparametrized it can in principle fit any
signal, including noise. However, as shown formally later,
both empirically and theoretically, the proposed architectures
fit graph signals faster than the noise, and therefore with early
stopping they fit most of the signal and little of the noise,
enabling signal denoising.
Remark 1. The proposed architectures are described as un-
trained NNs because, when minimizing (7), the weights in Θ
are learned to fit each observation x, with the denoised signal
x̂0 being the output for those particular weights. This implies
that each noisy-denoised signal pair (x, x̂0) is associated with
a particular value of the weights Θ, in contrasts with trainable
NNs, where the weights Θ are first learned by fitting the
signals in a training set and later used (unchanged) to denoise
signals that were not in the training set.

Regarding the specific implementation of the untrained
network fΘ(Z|G), there are multiple possibilities for selecting
the linear and nonlinear transformations T (ℓ)

Θ(ℓ) and g(ℓ) defined
in equations (3) and (4), respectively. As is customary in
NNs dealing with signals defined in RN , we select the ReLU
operator, defined as ReLU(x) = max(0, x), to be the entry-
wise nonlinearity g(ℓ). Then, we focus on the design of the
linear transformation, which is responsible for incorporating
the structure of the graph. The two following sections postulate
the implementation of two particular linear transformations
T (ℓ)

Θ(ℓ) (each giving rise to a different GNN) and analyze the
resulting architectures.

IV. GRAPH CONVOLUTIONAL GENERATOR

Our first architecture to address the graph-signal denoising
task is a graph-convolutional generator (GCG) network that
incorporates the topology of the graph into the NN pipeline
via vertex-based graph convolutions. Then, leveraging the fact
that convolutions of a graph signal on the vertex domain can
be represented by a graph filter H ∈ RN×N [28], we define
the linear transformation for the convolutional generator as

T (ℓ)

Θ(ℓ){Y(ℓ−1)|G} = HY(ℓ−1)Θ(ℓ). (9)

Remember that the F (ℓ−1) × F (ℓ) matrix Θ(ℓ) collects the
learnable weights of the ℓ-th layer, and the graph filter H is



5

given by (1). The coefficients {hm}M−1
m=0 are fixed a priori so

that H promotes desired properties on the estimated signal.
Using the linear transformation defined in (9), the output of
the GCG with L layers is given by the recursion

Y(ℓ) = ReLU(HY(ℓ−1)Θ(ℓ)), for ℓ = 1, ..., L− 1, (10)

y(L) = HY(L−1)Θ(L), (11)

where Y(0) = Z denotes the random input and the ReLU
is not applied in the last layer of the architecture. With the
proposed linear transformation, the GCG learns to combine
the features within each node by fitting the weights of the
matrices Θ(ℓ) while the graph filter H interpolates the signal
by mixing features from M − 1 neighborhoods.

Even though the proposed GCG exploits graph convolutions
to incorporate the graph topology into the architecture, it is
intrinsically different from other GCNNs. The linear transfor-
mation proposed in [14], arguably one of the most popular
implementations of GCNNs, is given by

T (ℓ)

Θ(ℓ){Y(ℓ−1)|G} = (A+ I)Y(ℓ−1)Θ(ℓ). (12)

Recalling the definition of graph filters in (1), it is evident that
(12) is a particular case of our proposed linear transformation,
obtained by setting the generative graph filter to H = A+I, a
low-pass graph filter of degree one. In addition to representing
a more general scenario, (10) endows the GCG with two main
advantages. First, the graph filter H allows us to incorporate
prior information on the signals to denoise, making our GCG
architecture more suitable to denoise a (high-) low-frequency
signal by employing a (high-) low-pass filter. Second, in (12)
there is an equivalence between the depth of the network and
the radius of the considered neighborhood, so that gathering
information from nodes that are M hops apart requires a GNN
with M layers. In contrast, with the architecture considered
in (10), the same can be achieved by considering a GCG
with L layers and a graph filter H of degree M/L [28],
reducing the number of learnable parameters and bypassing
some of the well-known over-smoothing problems associated
with (12) [49].

Next, we adopt some simplifying assumptions to provide
theoretical guarantees on the denoising capability of the GCG
(Sec. IV-A). Then, we rely on numerical tests to demonstrate
that the results also hold in more general settings (Sec. IV-B).

A. Guaranteed denoising with the GCG

To formally prove that the proposed architecture can suc-
cessfully denoise the observed graph signal x, we consider a
two-layer GCG given by

fΘ(Z|G) = ReLU(HZΘ(1))θ(2), (13)

where Θ(1) ∈ RF×F and θ(2) ∈ RF are the learnable
coefficients. With F denoting the number of features, we
consider the overparametrized regime where F ≥ 2N , and
analyze the behavior and performance of denoising with the
untrained network defined in (13).

We start by noting that scaling the i-th entry of θ(2) is
equivalent to scaling the i-th column of Θ(1), so that, without
loss of generality, we can set the weights to θ(2) = b, where

b is a vector of size F with half of its entries set to 1/
√
F and

the other half to −1/
√
F . Furthermore, since Z is a random

matrix of dimension N×F , the column space of Z spans RN ,
and hence, minimizing over ZΘ(1) is equivalent to minimizing
over Θ ∈ RN×F . With these considerations in place, the
optimization over (7) can be performed replacing the two-layer
GCG described in (13) by its simplified form

fΘ(H) = fΘ(Z|G) = ReLU(HΘ)b. (14)

Note that we replaced fΘ(Z|G) with fΘ(H) since the graph
influence is modeled by the graph filter H, and the influence
of the matrix Z is absorbed by the learnable weights Θ. Also
note that the behavior of the optimization algorithm of (13)
and (14) may differ and the upcoming theoretical analysis is
focused on the latter case.

The denoising capability of the two-layer architecture is
related to the eigendecomposition of its expected squared
Jacobian [35]. However, to understand which signals can be
effectively denoised with the proposed architecture, we need to
connect the spectral domain of the expected squared Jacobian
with the spectrum of the graph, given by the eigenvectors of
the adjacency matrix.

To that end, we next compute the expected squared Ja-
cobian of the two-layer architecture in (14). Denote as
JΘ(H) ∈ RN×NF the Jacobian matrix of fΘ(H) with
respect to Θ, which is given by

J⊤
Θ (H) =

 b1H
⊤diag(ReLU′(Hθ1))

...
bFH

⊤diag(ReLU′(HθF ))

 ∈ RNF×N , (15)

where θi represents the i-th column of Θ, and ReLU′ is the
derivative of the ReLU, which is the Heaviside step function.
Then, define the N ×N expected squared Jacobian matrix as

X := EΘ[JΘ(H)J⊤
Θ (H)]

=

F∑
i=1

b2iE
[
ReLU′(Hθi)ReLU

′(Hθi)
⊤]⊙HH⊤. (16)

Moreover, from the work in [50, Sec. 3.2], we note that
E
[
ReLU′(Hθi)ReLU

′(Hθi)
⊤] is in fact the so-called dual

activation of the step function. Therefore, combining the
expression for the dual activation of the step function from
[50, Table 1] with (16), we obtain that

X = 0.5
(
11⊤ − π−1 arccos(C−1H2C−1)

)
⊙HH⊤, (17)

where ⊙ represents the Hadamard (entry-wise) product,
arccos(·) is computed entry-wise, hi represents the i-th col-
umn (row) of H, C = diag([∥h1∥2, ..., ∥hN∥2]) is a normal-
ization term so that C−1H2C−1 is the autocorrelation of the
graph filter H.

Since X is symmetric and positive (semi) definite, it has
an eigendecomposition X = WΣW⊤. Here, the columns
of the orthonormal matrix W = [w1, . . . ,wN ] are the N
eigenvectors, and the nonnegative eigenvalues in the diagonal
matrix Σ are assumed to be ordered as σ1 ≥ σ2 ≥ ... ≥ σN .

After defining the two-layer GCG fΘ(H) and its expected
square Jacobian X , we formally analyze its performance



6

when denoising bandlimited graph signals. This is particularly
relevant given the importance of (approximate) bandlimited
graph signals both from analytical and practical points of
view [6]. For the sake of clarity, we first introduce the main
result (Th. 1) and then we detail a key intermediate result
(Lemma 1) that provides additional insight.

Formally, consider the K-bandlimited graph signal x0 as
described in (2), and let the architecture fΘ(H) have a
sufficiently large number of features F :

F ≥
(
σ2
1

σ2
N

)26

ξ−8N, with ξ ∈ (0, (2 log(2N/ϕ))−
1
2 ) (18)

being an error tolerance parameter for some prespecified ϕ.
Then, for a specific set of graphs with minimum number of
nodes NK,ϵ,δ that is introduced later in the section (cf. Ass. 1),
if we solve (7) running gradient descent with a step size η≤
1
σ2
1

, the following result holds (see App. A).

Theorem 1. Let fΘ(H) be the network defined in equa-
tion (14), and assume it is sufficiently wide, i.e., it satisfies
condition (18) for some error tolerance parameter ξ. Let x0

be a K-bandlimited graph signal spanned by the eigenvectors
VK , and let wi and σi be the i-th eigenvector and eigenvalue
of X . Let n be the noise present in x, set ϕ and ϵ to small
positive numbers, and let the conditions from Ass. 1 hold.
Then, for any ϵ, δ, there exists some NK,ϵ,δ such that if
N > NK,ϵ,δ , the error for each iteration t of gradient descent
with stepsize η used to fit the architecture is bounded as

∥x0 − fΘ(t)
(H)∥2 ≤

(
(1− ησ2

K)t + δ(1− ησ2
N )t
)
∥x0∥2

+ ξ∥x∥2 +
√∑N

i=1((1− ησ2
i )

t − 1)2(w⊤
i n)

2, (19)

with probability at least 1− e−F 2 − ϕ− ϵ.

As explained next, the fitting (denoising) bound provided
by the theorem first decreases and then increases with the
number of iterations t. To be more precise, let us analyze
separately each of the three terms in the right hand side of
(19). The first term captures the part of the signal x0 that is
fitted after t iterations while accounting for the misalignment
of the eigenvectors VK and WK . This term decreases with
t and, since δ can be made arbitrary small (cf. Lemma 1),
vanishes for moderately low values of t. The second term is
an error term that is negligible if the network is sufficiently
wide. Therefore, ξ can be chosen to be sufficiently small by
designing the architecture according to the condition in (18).
Finally, the third term, which depends on the noise present
in each of the spectral components of the squared Jacobian
(w⊤

i n)
2, grows with t. More specifically, if the σi associated

with a spectral component is very small, the term (1 − ησ2
i )

is close to 1 and, hence, the noise power in the i-th frequency
will be small. Only when t grows very large the coefficient
(1− ησ2

i )
t vanishes and the i-th frequency component of the

noise is fitted. As a result, if the filter H is designed such that
eigenvalues of the squared Jacobian satisfy that σK ≫ σK+1,
then there will be a range of moderate-to-high values of t for
which: i) the first term is zero and ii) only the K strongest
components of the noise have been fitted, so that the third term

can be approximated as
√∑K

i=1(w
⊤
i n)

2. Clearly, as t grows
larger, the coefficient ((1−ησ2

i )
t−1) will also be close to one

for i > K, meaning that additional components of the noise
will be fitted as well, deteriorating the performance of the
denoising architecture. This implies that if the optimization
algorithm is stopped before t grows too large, the original
signal is fitted along with the noise that aligns with the signal,
but not the noise present in other components.

In other words, Th. 1 not only characterizes the performance
of the two-layer GNN, but also illustrates that, if early stop-
ping is adopted, our overparametrized architecture is able to
effectively denoise the bandlimited graph signal. This result
is related to the error bound for denoising images presented
in [35], where x0 is assumed to lie in the span of WK .
However, when dealing with graphs, it is unclear which signals
would satisfy this requirement. Motivated by this, we assume
that x0 is a bandlimited signal (i.e., lies in the span of VK),
which is a natural condition employed in many applications.

As a consequence, a critical step to attain Th. 1 is to
relate the eigenvectors of X with those of the adjacency
matrix A, denoted as V. To achieve this, we assume that A
is random and provide high-probability bounds between the
leading eigenvectors of A and X . More specifically, consider
a graph G drawn from a stochastic block model (SBM) [51]
with K communities. Also, denote by M(A) the SBM with
expected adjacency matrix A = E[A], and by βmin the
minimum expected degree βmin := mini[A1]i. Given some
ρ > 0, we define as MN (βmin, ρ) the class of SBMs M(A)
with N nodes for which the minimum expected degree is βmin

or higher. Then, the condition of G being drawn from this SBM
whose expected minimum degree increases with N is formally
expressed in the following assumption.

Assumption 1. The model M(A) from which A is drawn
satisfies M(A) ∈ MN (βmin, ρ), with βmin = ω(ln(N/ρ)).

Here, ω(·) denotes the (conventional) asymptotic domi-
nance. We note that, as discussed in [52], the minimal degree
condition considered in Ass. 1 ensures that nodes belonging
to the same community also belong to the same connected
component with high probability, which is helpful to relate A
and A. Under these conditions, the following result holds.

Lemma 1. Let the matrix X be defined as in (17), set ϵ and δ
to small positive numbers, and denote by VK and WK the K
leading eigenvectors in the respective eigendecompositions of
A and X . Under Ass. 1, there exists an orthonormal matrix Q
and an integer NK,ϵ,δ such that, for N > NK,ϵ,δ , the bound

∥VK −WKQ∥F ≤ δ,

holds with probability at least 1− ϵ.

The proof is provided in App. B, and it leverages Ass. 1 to
relate the eigenvectors VK and WK based on the eigenvectors
of the expected values of A and X .

For a given K, Lemma 1 bounds the difference between the
subspaces spanned by the K leading eigenvectors of A and X
when graphs are big enough, a result that is key in obtaining
Th. 1. Moreover, the lemma shows that if the lower bound



7

NK,ϵ,δ increases, then the error encoded δ becomes arbitrary
small. Also note that, if a larger value of K is considered, then
the minimum required graph size NK,ϵ,δ will also be larger.
An inspection of (17) reveals that the result in Lemma 1 is
not entirely unexpected. Indeed, since H is a polynomial in
A, so is H2. This implies that V are also the eigenvectors
of H2, and because H2 appears twice on the right hand side
of (17), a relationship between the eigenvectors of X and V
can be anticipated. However, the presence of the Hadamard
product and the (non Lipschitz continuous) nonlinearity arccos
renders the exact analysis of the eigenvectors a challenging
task. Consequently, we resorted to a stochastic framework in
deriving Lemma 1.

B. Numerical inspection of the deep GCG spectrum

While for convenience, the previous section focused on
analyzing the GCG architecture with L = 2 layers, in practice
we often work with a larger number of layers. In this section,
we provide numerical evidence showing that the relation
between matrices A and X described in Lemma 1 also holds
when L > 2.

To that end, Fig. 1 shows the pairs of eigenvectors vi and
wi for the indexes i = {1, 3, 10, 64}, for a given graph G
drawn from an SBM with N = 64 nodes and 4 communities.
The GCG is composed of L = 5 layers and, to obtain the
eigenvectors of the squared Jacobian matrix, the Jacobian is
computed using the autograd functionality of PyTorch. The
nodes of the graph are sorted by communities, i.e., the first
N1 nodes belong to the first community and so on. It can be
clearly seen that, even for moderately small graphs, the leading
eigenvectors of A and X are almost identical, becoming
more dissimilar as the eigenvectors are associated with smaller
eigenvalues. It can also be observed how leading eigenvectors
have similar values for entries associated with nodes within
the same community. Moreover, Fig. 2 depicts the matrix
product V⊤W, where it is observed that the K = 4 leading
eigenvectors of both matrices are orthonormal. The presented
numerical results strengthen the argument that the analytical
results obtained for the two-layer case can be extrapolated to
deeper architectures.

Another key assumption of Lemma 1 is that G is drawn
from the SBM described in MN (βmin, ρ). This assumption
facilitates the derivation of a bound relating the spectra of A
and X (i.e., the subspaces spanned by the eigenvectors VK

and WK). However, the results reported in Fig. 3 suggest that
such a relation exists for other type of graphs, even though
its analytical characterization is more challenging. The figure
has 12 panels (3 rows and 4 columns). Each of the rows
corresponds to a different graph, namely: 1) a realization of
a small-world (SW) graph [53] with N = 150 nodes, 2)
the Zachary’s Karate graph [54] with N = 34 nodes, and
3) a graph of N = 316 weather stations across the United
States [55]. Each of the three first columns correspond to an
N × N matrix, namely: 1) the normalized adjacency matrix
A, 2) H2, the squared version of a low pass graph filter and
whose coefficients are drawn from a uniform distribution and
set to unit ℓ1 norm, and 3) the squared Jacobian matrix X .

Although we may observe some similarity between A and X ,
the relation between X and the graph G becomes apparent
when comparing the matrices H2 and X . The matrix H is
a random graph filter used in the linear transformation of
the convolutional generator fΘ(H), and it is clear that the
vertex connectivity pattern of X is related to that of H2.
Since X and H2 are closely related and we know that the
eigenvectors of H2 and those of A are the same, we expect
W (the eigenvectors of X ) and V (the eigenvectors of A) to
be related as well. To verify this, the fourth column of Fig. 3
represents V⊤

KWK , i.e., the pairwise inner products of the K
leading eigenvectors of A and those of X . It can be observed
that the K leading eigenvectors are close to orthogonal, which
means that the relation observed in the vertex domain carries
over to the spectral domain and VK and WK expand the
same subspace. These results suggest that a deep GCG could
be able to denoise signals living in the subspace spanned by
VK . However, because the bound in Th. 1 assumed a 2-layer
GCG, we address this hypothesis numerically in Sec. VI.

To summarize, the presented results illustrate that the analyt-
ical characterization provided in Sec. IV-A, which considered
a 2-layer GCG operating over SBM graphs, carries over to
more general setups.

V. GRAPH UPSAMPLING DECODER

The GCG architecture presented in Sec. IV incorporated the
topology of G via the vertex-based convolutions implemented
by the graph filter H. In this section, we introduce the graph
decoder (GDec) architecture. In contrast to the GCG and other
GCNNs, this novel graph-aware denoising NN incorporates the
topology of G via a (nested) collection of graph upsampling
operators [33]. Specifically, we propose the linear transforma-
tion for the GDec denoiser to be given by

T (ℓ)

Θ(ℓ){Y(ℓ−1)|G} = U(ℓ)Y(ℓ−1)Θ(ℓ), (20)

where U(ℓ) ∈ RN(ℓ)×N(ℓ−1)

, with N (ℓ) ≥ N (ℓ−1), are graph
upsampling matrices to be defined soon. Note that, compared
to (9), the graph filter H is replaced with the upsampling
operator U(ℓ) that depends on ℓ. Adopting the proposed linear
transformation, the output of the GDec with L layers is given
by the recursion

Y(ℓ)= ReLU(U(ℓ)Y(ℓ−1)Θ(ℓ)), for ℓ = 1, ..., L−1, (21)

y(L)= U(L)Y(L−1)Θ(L), (22)

where the ReLU is also removed from the last layer.
Similar to the GCG, the proposed GDec learns to combine

the features within each node. However, the interpolation of
the signals in this case is determined by the graph upsampling
operators {U(ℓ)}Lℓ=1, rather than by employing convolutions.
The size of the input N (0) is now a design parameter that will
determine the implicit degrees of freedom of the architecture.
Note that, from the GSP perspective, the input feature matrix
Y(ℓ−1) ∈ RN(ℓ−1)×F (ℓ−1)

represents F (ℓ−1) graph signals,
each of them defined over a graph G(ℓ−1) with N (ℓ−1) nodes.
Therefore, even though the input Y(0) = Z is still a random
white matrix across rows and columns, since N (ℓ) ≥ N (ℓ−1),
the dimensionality of the input is progressively increasing.



8

1 8 16 24 32 40 48 56 64

0.05

0.10

0.15

0.20

0.25

V1
W1

1 8 16 24 32 40 48 56 64
−0.30
−0.25
−0.20
−0.15
−0.10
−0.05
0.00
0.05
0.10

V3
W3

1 8 16 24 32 40 48 56 64
−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3
0.4
0.5

V10
W10

1 8 16 24 32 40 48 56 64
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

V64
W64

Fig. 1: Comparison between the eigenvectors of the matrices A and X for an SBM graph with N = 64 nodes and K = 4
communities, and for a GCG of L = 5 layers. From left to right, the figures represent the first, third, tenth, and last eigenvectors.

2 4 6 8 10

2

4

6

8

10 0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2: Heatmap representation of the matrix product V⊤
KWK .

The low values of the off-diagonal entries illustrate the orthog-
onality between both sets of eigenvectors. These eigenvectors
are the same as those depicted in Fig. 1.

A closer comparison with the GCG reveals that the smaller
dimensionality of the input Z endows the GDec architecture
with fewer degrees of freedom, rendering the architecture more
robust to noise. Not only that, but the graph information is now
included via the graph upsampling operators U(ℓ) instead of
relying on graph filters. Clearly, the method used to design the
graph upsampling matrices, which is the subject of the next
section, will have an impact on the type of graph signals that
can be efficiently denoised using the GDec architecture.

A. Graph upsampling operator from hierarchical clustering

Regular upsampling operators have been successfully used
in NN architectures to denoise signals defined on regular
domains [35]. While the design of upsampling operators in
regular grids is straightforward, when the signals are defined
on irregular domains the problem becomes substantially more
challenging. The approach that we put forth in this paper is to
use agglomerative hierarchical clustering methods [29]–[31] to
design a graph upsampling operator that leverages the graph
topology. These methods take a graph as an input and return
a dendrogram; see Fig. 4. A dendrogram can be interpreted
as a rooted-tree structure that shows different clusters at the
different levels of resolution ν. At the finest resolution (ν = 0)
each node forms a cluster of its own. Then, as ν increases,
nodes start to group together (agglomerate) in bigger clusters
and, when the resolution becomes large (coarse) enough, all
nodes end up being grouped in the same cluster.

By cutting the dendrogram at L + 1 resolutions, including
ν = 0, we obtain a collection of node sets with parent-child
relationships inherited by the refinement of clusters. Since
we are interested in performing graph upsampling, note that

the dendrogram is interpreted from left to right. This can be
observed in the example shown in Fig. 4, where the three red
nodes in the second graph (ν = 10, layer ℓ = 1) are children
of the red parent in the coarsest graph (ν = 12, layer ℓ = 0).
In this sense, the graph upsampling operator is given by the in-
verse operation of the clustering algorithm. We leverage these
parent-children relations to define the membership matrices
P(ℓ) ∈ {0, 1}N(ℓ)×N(ℓ−1)

, where the entry P
(ℓ)
ij = 1 only if the

i-th node in layer ℓ is the child of the j-th node in layer ℓ−1.
Moreover, we can further exploit the dendrogram to obtain
coarser-resolution versions of the original graph G. To that
end, note that the clusters at layer ℓ can be interpreted as nodes
of a graph G(ℓ) with N (ℓ) nodes and adjacency matrix A(ℓ).
There are several ways of defining A(ℓ) based on the original
adjacency matrix A. While our architecture does not focus on
a particular form, in the simulations we set A

(ℓ)
ij ̸= 0 only

if, in the original graph G, there is at least one edge between
nodes belonging to the cluster i and nodes from cluster j. In
addition, the weight of the edge depends on the number of
existing edges between the two clusters.

With the definition of the membership matrix P(ℓ) and the
adjacency matrix A(ℓ), the upsampling operator of the ℓ-th
layer is given by

U(ℓ) =
(
γI+ (1− γ)A(ℓ)

)
P(ℓ), (23)

where γ ∈ [0, 1] is a pre-specified constant. Notice that U(ℓ)

first copies the signal value from the parents to the children
by applying the matrix P(ℓ), and then every child performs
a convex combination between this value and the average
signal value of its neighbors. This design promotes that nodes
descending from the same parent have similar (related) values,
which conveys a notion (prior) of smoothness on the targeted
graph signals. As we show in Sec. VI, the implicit smoothness
prior results in a better performance when denoising smooth
signals but, on the other hand, makes the architecture more
sensitive to model mismatch. Therefore, when dealing with
high-frequency signals, a worth-looking approach left as a
future research direction is to rely on algorithms that cluster
the nodes considering not only the topology of G but also the
properties of the graph signals.

Because the membership matrices P(ℓ) are designed using a
clustering algorithm over G, and the matrices A(ℓ) capture how
strongly connected the clusters of layer ℓ are in the original
graph, these two matrices are responsible for incorporating
the information of G into the upsampling operators U(ℓ).
Furthermore, we remark that the upsampling operator U(ℓ)



9

1 20 40 60 80100120140

1
20
40
60
80

100
120
140

0.0

0.2

0.4

0.6

0.8

1.0

1 20 40 60 80100120140

1
20
40
60
80

100
120
140

0.0

0.2

0.4

0.6

0.8

1.0

1 20 40 60 80100120140

1
20
40
60
80

100
120
140

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30

1
5

10

15

20

25

30 0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30

1
5

10
15
20
25
30

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30

1
5

10
15
20
25
30

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30

1
5

10
15
20
25
30

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25

1

5

10

15

20

25 0.0

0.2

0.4

0.6

0.8

1.0

1 50 100150200250300

1
50

100
150
200
250
300 0.0

0.2

0.4

0.6

0.8

1.0

1 50 100150200250300

1
50

100
150
200
250
300 0.0

0.2

0.4

0.6

0.8

1.0

1 50 100150200250300

1
50

100
150
200
250
300 0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 60 70

1
10
20
30
40
50
60
70 0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3: Illustration of matrices A, H2, X , and V⊤
KWK , shown in columns 1, 2, 3, and 4, respectively, for different types of

graphs. The rows 1, 2, and 3 correspond to a small world, the Zachary’s Karate, and the weather stations graph. The graph
filter H2 is created as a square graph filter with coefficients drawn from a uniform distribution and with unitary ℓ1 norm. For
each graph (rows), it can be seen that the matrices A, H2, and X are related, and that VK and WK are close to orthogonal.

Fig. 4: Dendrogram of an agglomerative hierarchical clustering
algorithm and the resulting graphs with 2, 4, 7 and 14 nodes.

can be reinterpreted as the application of P(ℓ) followed by
the application of a graph filter

H̃(ℓ) = γI+ (1− γ)A(ℓ), (24)

which sets the filter coefficients as h0 = γ and h1 = 1− γ.

B. Guaranteed denoising with the GDec

As we did for the GCG, our goal is to theoretically char-
acterize the denoising performance of the GNN architecture
defined by (21)-(23). To achieve that goal, we replicate the
approach implemented in Sec. IV-A. We first derive the
matrix X and provide theoretical guarantees when denoising
a K-bandlimited graph signal with the GDec. Then, to gain
additional insight, we detail the relation between the subspace
spanned by the eigenvectors W and the spectral domain of
A. This relation is key in deriving the theoretical analysis.

We start by introducing the 2-layer GDec

fΘ(Z|G) = ReLU(UZΘ(1))θ(2). (25)

Then, following a similar reasoning to that provided after (14),
instead of employing the architecture in (25) we can optimize
(7) over its simplifying version

fΘ(U) = fΘ(Z|G) = ReLU(UΘ)b. (26)

An important difference with respect to the GCG presented in
(14) is that the matrix Θ has a dimension of N (0) × F , so
it spans RN(0)

instead of RN . Since N (0) < N , the smaller
subspace spanned by the weights of the GDec renders the
architecture more robust to fitting noise, but, on the other hand,
the number of degrees of freedom to learn the graph signal
of interest are reduced. As a result, the alignment between
the targeted graph signals and the low-pass vertex-clustering
architecture becomes more important.

The expected squared Jacobian X = EΘ[JΘ(U)J⊤
Θ (U)] is

obtained following the procedure used to derive (17), arriving
at the expression

X = 0.5

(
11⊤ − 1

π
arccos(C̃−1UU⊤C̃−1)

)
⊙UU⊤, (27)

where ui represents the i-th row of U, and C̃ =
diag([∥u1∥2, ..., ∥uN∥2]) is a normalization matrix.

Then, let x0 be a K-bandlimited graph signal and let fΘ(U)
have a number of features F satisfying (18). If we solve (7)
running gradient descent with a step size η ≤ 1

σ2
1

, the following
result holds.

Theorem 2. Let fΘ(U) be the network defined in equa-
tion (26). Consider the conditions described in Th. 1 and let



10

N (0) match the number of communities K (see Ass. 1). Then,
for any ϵ, δ, there exists some NK,ϵ,δ such that if N > NK,ϵ,δ ,
then the error for each iteration t of gradient descent with
stepsize η used to fit the architecture is bounded as (19), with
probability at least 1− e−F 2 − ϕ− ϵ.

The proof is analogous to the one provided in App. A
but exploiting Lemma 2 instead of Lemma 1. Lemma 2 is
fundamental in attaining Th. 2 and is presented later in the
section.

Th. 2 formally establishes the denoising capability of the
GDec when x0 is a K-bandlimited graph signal and K = N (0)

matches the number of communities in the SBM graph. When
compared with the GCG, the smaller dimensionality of the
input Z, and thus the smaller rank of the matrix Θ, constrains
the learning capacity of the architecture, making it more
robust to the presence of noise. However, this additional
robustness also implies that the architecture is more sensitive
to model mismatch, since its capacity to learn arbitrary signals
is smaller. Intuitively, the GDec represents an architecture
tailored for a more specific family of graph signals than the
GCG. Moreover, employing the GDec instead of the GCG
has a significant impact on the relation between the subspaces
spanned by VK and WK .

To establish the new relation between VK and WK , assume
that the adjacency matrix is drawn from an SBM M(A) with
K communities such that M(A) ∈ MN (βmin, ρ), so that
the SBM follows Ass. 1. In addition, set the size of the latent
space to the number of communities so N (0) = K. Under this
setting, the counterpart to Lemma 1 for the case where fΘ(U)
is a GDec architecture follows.

Lemma 2. Let the matrix X be defined as in (27), set ϵ and
δ to small positive numbers, and denote by VK and WK the
K leading eigenvectors in the respective eigendecompositions
of A and X . Under Ass. 1, there exist an orthonormal matrix
Q and an integer NK,ϵ,δ such that for N > NK,ϵ,δ the bound

∥VK −WKQ∥F ≤ δ,

holds with probability at least 1− ϵ.

Lemma 2 asserts that the difference between the subspaces
spanned by VK and WK becomes arbitrarily small as the size
of the graph increases. The proof is provided in App. C and
the intuition behind it arises from the fact that the upsampling
operator can be understood as U = H̃P, where H̃ is a graph
filter of the specific form described in (24). Remember that
P is a binary matrix encoding the cluster in the layer ℓ −
1 to which the nodes in the layer ℓ belong. Since we are
only considering two layers, and we have that N (0) = K, the
matrix P is encoding the node-community membership of the
SBM graph and, hence, the product PP⊤ is a block matrix
with constant entries matching the block pattern of A. As
shown in the proof, this property can be leveraged to bound
the eigendecomposition of A and X .

C. Analyzing the deep GDec

The deep GDec composed of L > 2 layers can be con-
structed following the recursion presented in (21) and (22). In

this case, by stacking more layers we perform the upsampling
of the input signal in a progressive manner and, at the same
time, we add more nonlinearities, which helps alleviating the
rank constraint related to the input size N (0). In the absence of
nonlinear functions, the maximum rank of the weights would
be N (0), and thus, only signals in a subspace of size N (0)

could be learned. By properly selecting the number of layers
and the input size when constructing the network, we can
obtain a trade-off between the robustness of the architecture
and its learning capability.

In addition, the effect of adding more layers is also reflected
on the smoothness assumption inherited from the construction
of the upsampling operator. Adding more layers is related to
less smooth signals, since the number of nodes in G with a
common parent, and thus, with similar values, is smaller.

We note that numerically illustrating that the bound between
VK and WK holds true for the deep GDec, and that its
denoising capability is not limited to signals defined over
SBM graphs provide results similar to those in Sec. IV-B.
Therefore, instead of replicating the previous section, we
directly illustrate the performance of the deep GDec under
more general settings in the following section, where we
present the numerical evaluation of the proposed architectures.

VI. NUMERICAL RESULTS

This section presents different experiments to numerically
validate the theoretical claims introduced in the paper, and
to illustrate the denoising performance of the GCG and the
GDec. The experiments are carried out using synthetic and
real-world data, and the proposed architectures are compared
to other graph-signal denoising alternatives. The code for the
experiments and the architectures is available on GitHub2.
For hyper-parameter settings and implementation details the
interested reader is referred to the online available code.

A. Denoising capability of graph untrained architectures

The goal of the experiment shown in Figs. 5a and 5b is
to illustrate that the proposed graph untrained architectures
are capable of learning the structured original signal x0 faster
than the noise, which is one of the core claims of the paper.
To that end, we generate an SBM graph with N = 64 nodes
and K = 4 communities, and define 3 different signals:
(i) “Signal”: a piece-wise constant signal x0 with the value
of each node being the label of its community; (ii) “Noise”:
zero-mean white Gaussian noise n with unit variance; and
(iii) “Signal + Noise”: a noisy observation x = x0 +n where
the noise has a normalized power of 0.1. Figs. 5a and 5b
show the normalized mean squared error (NMSE), with the
error for each realization being ∥x0− x̂0∥22/∥x0∥22. The mean
is computed for 100 realizations of the noise as the number
of epochs increases when the different signals are fitted by
the 2-layer GCG and the 2-layer GDec, respectively. It can be
seen how, in both cases, the error when fitting the noisy signal
x decreases for a few epochs until it reaches a minimum, and
then starts to increase. This is because the proposed untrained

2https://github.com/reysam93/Graph Deep Decoder

https://github.com/reysam93/Graph_Deep_Decoder


11

0 100 200 300 400 500
Epochs

10−3

10−2

10−1

100

M
ea
n 
Er
ro
r

Sign+Noise
Sign
Noise

0 100 200 300 400 500
Epochs

10−4

10−3

10−2

10−1

100

M
ea
n 
Er
ro
r

Sign+Noise
Sign
Noise

50 100 500 1000 2000
Number of nodes

10−6
10−5
10−4
10−3
10−2
10−1
100

Ei
ge

nv
ec
to
r e

rro
r

SBM, K=8
CAVE, K=8
REG, K=1
SW, K=5
PLC, K=1

Fig. 5: a) Error of the 2-layer GCG when fitting a piece-wise constant signal, noise, and a noisy signal, as a function of the
number of epochs. The graph is drawn from an SBM with 64 nodes and 4 communities, and the normalized noise power is
Pn = 0.1. b) Counterpart of a) but for the 2-layer GDec architecture. c) Mean distance between the K leading eigenvectors
of the adjacency matrix and X as a function of the graph size for several graph models.

0 300 600 900 1200 1500
Epochs

10−2

10−1

100

M
ea
n 
Er
ro
r

Rand
BL, K=16
BL, K=32
BL, K=4
DW

0 100 200 300 400 500
Epochs

10−3

10−2

10−1

100

M
ea
n 
Er
ro
r

TV
LR
BL, K=25
BL, K=8

2L-GCG
GCG
GD

0 100 200 300 400 500
Epochs

10−2

10−1

100

M
ea
n 
Er
ro
r

TV
LR
BL, K=25
BL, K=8

2L-GCG
GCG
GD

Fig. 6: Median MSE when denoising a graph signal as a function of the number of epochs. a) The 2-layer GCG is used to
denoise different families of signals. b) Performance comparison between total variation, Laplacian regularization, bandlimited
models, the 2-layer GCG, the deep GCG, and the deep GDec, when the signals are bandlimited. c) Counterpart of b) for the
case where signals are diffused white.

architectures learn the signal x0 faster than the noise, but if
they fit the observation for too many epochs, they start learning
the noise as well and, hence, the MSE increases. As stated by
Th. 1 and Th. 2, this result illustrates that, if early stopping
is applied, both architectures are capable of denoising the
observed graph signals without a training step. It can also
be noted that, under this setting, the GDec learns the signal
x0 faster than the GCG and, at the same time, is more robust
to the presence of noise. This can be seen as a consequence
of GDec implicitly making stronger assumptions about the
smoothness of the targeted signal.

The goal of the second test case is two-fold. First, it illus-
trates that the result presented in Lemma 1 is not constrained
to the family of SBM (as specified by Ass. 1), but can be
generalized to other families of random graphs as well. In
addition, it measures the influence of the number of nodes
in the discrepancies between VK and WK . To that end,
Fig. 5c contains the mean eigenvector similarity measured as
1
K ∥VK − WKQ∥F as a function of the number of nodes
in the graph. The eigenvector similarity is computed for 50
realizations of random graphs and the presented error is the
median of all the realizations. The random graph models
considered are: the SBM (“SBM”), the connected caveman
graph (“CAVE”) [56], the regular graph whose fixed degree
increases with its size (“REG”), the small world graph (“SW”)
[53], and the power law cluster graph model (“PLC”) [57].
The second term in the legend denotes the number of leading
eigenvectors taken into account in each case, which depends
on the number of active frequency components of the specific
random graph model. We can clearly observe that for most of
the random graph models, the eigenvector error goes to 0 as

N increases and, furthermore, the error is below 10−1 even
for moderately small graphs. This illustrates that, although the
conditions assumed for Lemma 1 and Lemma 2 focus on the
specific setting of the SBM, the results can be applied to a
wider class of graphs. Here, the regular graphs are particularly
interesting since most classical signals may be interpreted as
signals defined over regular graphs. As a result, this empirical
evidence motivates the extension of the proposed theorems to
more general settings as a future line of work.

B. Denoising synthetic data

We now proceed to comment on the denoising performance
of the proposed architectures with synthetic data. The usage of
synthetic signals allows us to study how the properties of the
noiseless signal influence the quality of the denoised estimate.

The first experiment, shown in Fig. 6a, studies the error of
the denoised estimate obtained with the 2-layer GCG as the
number of epochs increases. The reported error is the NMSE
of the estimated signal x̂0, and the figure shows the mean
values of 100 realizations of graphs and graph signals. The
normalized power of the noise present in the data is 0.1.
Graphs are drawn from an SBM with N = 64 nodes and
4 communities, and the graph signals are generated as: (i) a
zero-mean white Gaussian noise with unit variance (“Rand”);
(ii) a bandlimited graph signal (cf. 2) using the K leading
eigenvectors of A as base (“BL”); and (iii) a diffused white
(“DW”) signal created as y = med(Hw|G), where w is a
white vector whose entries are sampled from N (0, 1), H is
a low-pass graph filter, and med(·|G) represents the graph-
aware median operator such that the value of the node i is the



12

median of its neighborhood [41], [42]. The results in Fig. 6a
show that the best denoising error is obtained when the signal
is composed of just a small number of eigenvectors, and the
performance deteriorates as the bandwidth (i.e., the number of
eigenvectors that span the signal subspace) increases, obtaining
the worst result when the signal is generated at random. This
result is aligned with the theoretical claims since it is assumed
that the signal x0 is bandlimited. It is also worth noting that
the architecture also achieves a good denoising error with the
“DW” model, showcasing that the GCG is also capable of
denoising other types of smooth graph signals.

Next, Fig. 6b compares the performance of the 2-layer GCG
(“2L-GCG”), the deep GCG (“GCG”) and the deep GDec
(“GDec”) with the baseline models introduced in Sec. III,
which are the total variation (“TV”) [36], Laplacian regu-
larization (“LR”) [39], and bandlimited model (“BL”) [48].
In this setting, the graphs are SBM with 256 nodes and 8
communities, and the signals are bandlimited with a bandwidth
of 8. Since the “BL” model with K = 8 captures the actual
generative model of the signal x0, it achieves the best denois-
ing performance. However, it is worth noting that the GCG
obtains a similar result, outperforming the other alternatives.
On the other hand, the “LR” obtains an error noticeably larger
than that of “BL” and “GCG”, highlighting that, even though
“BL” and “LR” are related models their different assumptions
lead to different performances. Moreover, the benefits of using
the deep GCG instead of the 2-layer architecture are apparent,
since it achieves a better performance in fewer epochs.

On the other hand, Fig. 6c illustrates a similar experiment
but with the graph signals generated as “DW”. Under this
setting, it is clear that the GDec outperforms the other alterna-
tives. These results showcase the benefits of employing a non-
linear architecture relative to classical denoising approaches.
Furthermore, this experiment corroborates that the GDec is
more robust to the presence of noise when the signals are
aligned with the prior implicitly captured by the architecture.

C. Denoising real-world signals

Finally, we assess the performance of the proposed architec-
tures in several real-world datasets. To the baselines considered
in the previous experiments, we add the following competi-
tive denoising algorithms: graph trend filtering (“GTF”) [37],
a graph-aware median operator (“MED”) [41], a GCNN
(“GCNN”) implemented as in [14], a graph attention net-
work (“GAT”) [58], a Kron reduction-based autoencoder (“K-
GAE”) [43], and the graph unrolling sparse coding architecture
(“GUSC”) in [44]. Moreover, we consider the following noise
distributions: (i) zero-mean Gaussian distribution, which is the
noise model typically assumed for sensor measurements in
signal processing; (ii) uniform distribution on some interval
[0, a], where a ∈ R+ is chosen accordingly to the desired
noise power; and (iii) Bernoulli distribution to model errors
in binary signals. Next, we describe the selected datasets and
analyze the achieved results, which are summarized in Table II.
Temperature. We consider a network of 316 weather stations
distributed across the United States [47]. Graph signals repre-
sent daily temperature measurements in the first three months

of the year 2003. The graph G represents the geographical
distance between weather stations and is given by the 8-nearest
neighbors graph. The first and second rows of Table II list
the NMSE when the noise is drawn from a Gaussian and a
uniform distribution, respectively. In both cases, the noise has a
normalized power of 0.3. It is clear that the GDec architecture
outperforms the alternatives in both scenarios. Furthermore,
we can observe that the GCG achieves a better performance
than GCNN, showcasing the benefits of being able to use a
more general graph filter.
S&P 500. In this experiment, we have 189 nodes representing
stocks belonging to 6 different sectors of the S&P 500 with
the graph signals representing the prices of those stocks at
particular time instants. We follow [59] to estimate the graph
G assuming that the signals are drawn from a multivariate
Gaussian distribution and are smooth on G. We consider
the noise specifications described in the previous dataset and
provide the NMSE in the third and fourth rows of Table II.
It is worth noting that considering Gaussian noise in this
dataset constitutes a more challenging denoising problem
than using uniform noise. A plausible explanation is that the
graph is estimated assuming that the data follows a Gaussian
distribution, and hence, it is harder to separate the Gaussian
noise from the true signals. In the presence of Gaussian noise,
the GCG and the GDec outperform the other 8 alternatives.
However, when the noise follows a uniform distribution, the
best performance is obtained by the GCG and the GCNN,
with GDec being the third best. In addition, we observe
that traditional methods yield an error that is considerably
larger than that incurred by the proposed architectures. This
is aligned with our initial intuition about linear and quadratic
methods being more limited when the actual relation between
x0 and G is more intricate, as is the case for financial data.
Cora. Lastly, we consider the Cora citation network
dataset [14]. Nodes represent different scientific documents
and edges capture citations among them. Like in [44], we
consider the 7 class labels as binary graph signals encoding if
the particular node belongs to that class. For each signal, we
consider 25 realizations of Bernoulli noise that randomly flips
30% of the binary values of the signals, resulting in a total
of 175 noisy graph signals. With the error rate denoting the
proportion of labels correctly recovered after the denoising
process, Table II shows the error metric averaged over all
the signals. Moreover, since the graph is formed by several
connected components, we report two results: the error rate
when the whole graph is considered (fifth row) and the error
rate when only the largest connected component is considered
(sixth row). It can be seen that the GCG yields the best
performance in both cases.

VII. CONCLUSION

In this paper, we faced the relevant task of graph-signal
denoising. To approach this problem, we presented two over-
parametrized and untrained GNNs and provided theoretical
guarantees on the denoising performance of both architectures
when denoising K-bandlimited graph signals under some
simplifying assumptions. Moreover, we numerically illustrated



13

TABLE II: Denoising error of several datasets with different types of random noise

DATASET
(METRIC) METHOD BL TV LR GTF MED GCNN GAT K-GAE GUSC GCG GDec

TEMPERATURE Gaussian 0.062 0.117 0.095 0.066 0.053 0.123 0.045 0.134 0.044 0.056 0.035
(NMSE) Uniform 0.063 0.117 0.094 0.064 0.053 0.118 0.047 0.136 0.049 0.057 0.036

S&P 500 Gaussian 0.350 0.238 0.231 0.239 0.319 0.252 0.199 0.354 0.203 0.188 0.188
(NMSE) Uniform 0.216 0.246 0.161 0.298 0.340 0.091 0.222 0.273 0.127 0.094 0.121

CORA Whole G 0.154 0.142 0.115 0.126 0.167 0.099 0.141 0.135 0.099 0.093 0.121
(ERROR RATE) Conn. comp. 0.151 0.141 0.105 0.116 0.165 0.093 0.139 0.135 0.094 0.088 0.125

that the proposed architectures are also capable of denoising
graph signals in more general settings. The key difference be-
tween the two architectures resided in the linear transformation
that incorporates the information encoded in the graph. The
GCG employs fixed (non-learnable) low-pass graph filters to
model convolutions in the vertex domain, promoting smooth
estimates. On the other hand, the GDec relies on a nested
collection of graph upsampling operators to progressively
increase the input size, limiting the degrees of freedom of the
architecture, and providing more robustness to noise. In addi-
tion to the aforementioned analysis, we tested the validity of
the proposed theorems and evaluated the performance of both
architectures with real and synthetic datasets, showcasing a
better performance than other classical and nonlinear methods
for graph-signal denoising. Finally, we consider extending the
results from Th. 1 and Th. 2 to more general scenarios as an
interesting future line of work.

APPENDIX A
PROOF OF TH. 1

Let x0 be a K bandlimited graph signal as described in (2),
which is spanned by the K leading eigenvectors of the graph
VK , with x̃0 denoting its frequency representation. Let Q be
an orthonormal matrix that aligns the subspaces spanned by
VK and WK , and denote as x̄0 = WKQx̃0 the bandlimited
signal using WK as basis and whose frequency response
is also x̃0. Note that x̄0 can be interpreted as recovering
x0 from its frequency response using WK in lieu of VK .
Also, note that x0 − x̄0 = (VK − WKQ)x̃0 represents the
error between the signal x0 and its approximation inside the
subspace spanned by WK . With these definitions in place,
in [35, Th. 3] the authors showed that error when denoising
a signal x = x0 + n is bounded with probability at least
1− e−F 2 − ϕ by

∥x0 − fΘ(t)
(Z|G)∥2 ≤ ∥Ψx0∥2 + ξ∥x∥2 (28)

+

√∑N
i=1((1− ησ2

i )
t − 1)2(w⊤

i n)
2,

with Ψ := W(IN − ηΣ2)tW⊤, and IN the N ×N identity
matrix. However, note that the bound provided for ∥Ψx0∥2
in [35] requires x0 lying in the subspace spanned by WK ,
which is not the case. As a result, we further bound this term

as

∥Ψx0∥2 = ∥Ψ(x0 + x̄0 − x̄0)∥2
(i)
= ∥ΨK x̄0 +Ψ(VK −WKQ)x̃0∥2
(ii)

≤ ∥ΨK x̄0∥2 + ∥Ψ(VK −WKQ)x̃0∥2
(iii)

≤ ∥ΨK∥2∥x̄0∥2 + ∥Ψ∥2∥VK −WKQ∥F ∥x̃0∥2
(iv)

≤ (∥ΨK∥2 + δ∥Ψ∥2) ∥x0∥2
(v)
=
(
(1− ησ2

K)t + δ(1− ησ2
N )t
)
∥x0∥2. (29)

Here, ΨK := WK(IK − ηΣ2
K)tW⊤

K , and ΣK represents
a diagonal matrix containing the first K leading eigenvalues
σk. We have that (i) follows from x̄0 being bandlimited in
WK , so Ψx̄0 = ΨK x̄0. Then, (ii) follows from the triangle
inequality, and (iii) from the ℓ2 norm being submultiplicative
and using the Frobenius norm as an upper bound for the ℓ2
norm. In (iv) we apply the result of Lemma 1, which holds
with probability at least 1 − ϵ because N > NK,ϵ,δ , and the
fact that, since both WK and VK are orthonormal matrices,
we have that ∥x0∥2 = ∥x̄0∥2 = ∥x̃0∥2. We obtain (v) from
the largest eigenvalues present in ΨK and Ψ.

Finally, the proof concludes by combining (29) and (28).

APPENDIX B
PROOF OF LEMMA 1

Define Ã as Ã := E[Ã] = E[D]−
1
2AE[D]−

1
2 and let X

be given by (17). Denote by H a graph filter defined as a
polynomial of the expected adjacency matrix Ã, and let X̄ be
the expected squared Jacobian using the graph filter H, i.e.,

X̄ = 0.5

(
11⊤ − 1

π
arccos(C−1H2C−1)

)
⊙H2, (30)

where C is the counterpart of C in (17), but using H instead
of H. Given the following eigendecompositions Ã = VΛV⊤,
X = WΣW⊤, Ã = V̄Λ̄V̄⊤, and X̄ = W̄Σ̄W̄⊤, for
arbitrary orthonormal matrices T and R, we have that

∥VK −WKQ∥F ≤ (31)
∥VK − V̄KT∥F + ∥V̄KT− W̄KR∥F + ∥W̄KR−WKQ∥F.

To prove the theorem, we bound the three terms on the right
hand side of (31).
Bounding ∥V̄KT−W̄KR∥F. From the definition of an SBM,
it follows that A = E[A] = BΩB⊤, where B ∈ {0, 1}N×K

is an indicator matrix encoding the community to which
each node belongs, and Ω is a K × K matrix encoding
the link probability between the communities of the graph.



14

Therefore, Ã and X̄ are both block matrices whose blocks
coincide with the communities in the SBM. This implies that
the eigenvectors associated with non-zero eigenvalues must
span the columns of B. Hence, the leading eigenvectors must
be related by an orthonormal transformation, from where it
follows that, given T, we can always find R such that

∥V̄KT− W̄KR∥F = 0. (32)

Bounding ∥VK−V̄KT∥F. Under Ass. 1, as it is shown in [52],
with probability at least 1− ρ we have that

∥Ã− Ã∥ ≤ 3

√
3 ln(4N/ρ)

βmin
. (33)

Then, we combine the concentration (33) with the Davis-
Kahan results [60, Th. 2], which bound the distance between
the subspaces spanned by the population eigenvectors (V̄K)
and their sample version (VK). Denoting as λ̄i the i-th
eigenvalue collected in Λ̄, i.e. λ̄i = Λ̄ii, we obtain that there
exists an orthonormal matrix T such that

∥VK − V̄KT∥F ≤
√
8K

λ̄K − λ̄K+1
∥Ã− Ã∥F

≤ 3
√
8K

λ̄K

√
3 ln(4N/ρ)

βmin
, (34)

where we note that, since Ã follows an SBM, then λ̄i = 0
for all i > K.

Since βmin = ω(ln(N/ρ)), we obtain that

∥VK − V̄KT∥F → 0, as N → ∞. (35)

Bounding ∥W̄KR−WKQ∥F. If we show that ∥X−X̄∥ → 0
as N → ∞, we can then mimic the procedure in (33) and (34)
to show that the difference between the leading K eigenvectors
of X and X̄ also vanishes. Hence, we are left to show that
∥X − X̄∥ → 0 as N → ∞. From the definitions of X and
X̄ , it follows that

∥X − X̄∥ ≤ 0.5∥H2 −H2∥ (36)

+
1

2π
∥ arccos(C−1H2C−1)⊙H2−

arccos(C−1H2C−1)⊙H2∥.

To bound the difference between the sampled and expected
filters, we have that

∥H2 −H2∥ =

∥∥∥∥∥∥
(

L∑
ℓ=0

hℓÃ
ℓ

)2

−

(
L∑

ℓ=0

hℓÃ
ℓ

)2
∥∥∥∥∥∥ (37)

=

∥∥∥∥∥
2L∑
ℓ=0

αℓ(Ã
ℓ − Ã

ℓ
)

∥∥∥∥∥ ≤
2L∑
ℓ=0

αℓ

∥∥∥Ãℓ − Ã
ℓ
∥∥∥ ,

for suitable coefficients αℓ and recalling that L = 2. Then, we
can then leverage the fact that ∥Ã∥ = ∥Ã∥ = 1 to see that∥∥∥Ãℓ − Ã

ℓ
∥∥∥ ≤ ℓ

∥∥∥Ã− Ã
∥∥∥. We thus get that

∥H2 −H2∥ ≤
2L∑
ℓ=0

ℓαℓ

∥∥∥Ã− Ã
∥∥∥→ 0, as N → ∞, (38)

where the limiting behavior follows from (33). Finally, to
bound the second term in (36), we first note that the argument
of the norm can be re-written as arccos(C−1H2C−1) ⊙
(H2−H2)+(arccos(C−1H2C−1)−arccos(C−1H2C−1))⊙
H2. The limit in (38) ensures that the first of these two
terms vanishes. Similarly, it follows that ∥C−1H2C−1 −
C−1H2C−1∥ → 0 which, combined with the fact that arccos
is a uniformly continuous function, we can always find an Nδ′

such that ∥ arccos(C−1H2C−1)−arccos(C−1H2C−1)∥ ≤ δ′

with high probability. Combining this result with (38) and
applying the Davis-Kahan Theorem as done to obtain (34)
we get that

∥W̄KR−WKQ∥F → 0, as N → ∞. (39)

Replacing (32), (35), and (39) into (31) our result follows.

APPENDIX C
PROOF OF LEMMA 2

Recall that Ã = E[Ã], and define H̃ := γI+ (1− γ)Ã as
the specific graph filter introduced in Sec. V-A as a polynomial
of Ã. Let X be given by equation (27), and denote by X̄ the
expected squared Jacobian using the graph filter H, i.e.,

X̄ = 0.5

(
11⊤ − 1

π
arccos(C̃

−1
UU⊤C̃

−1
)

)
⊙ UU⊤ (40)

with U = H̃P and where the matrix C̃ is the counterpart
of C̃ in (27), but using U in lieu of U. Given the eigende-
compositions Ã = VΛV⊤, X = WΣW⊤, Ã = V̄Λ̄V̄⊤,
and X̄ = W̄Σ̄W̄⊤, analogously to Lemma 1, we bound the
difference between VK and WK by bounding the three terms
in the right hand side of (31).

Bounding ∥V̄KT − W̄KR∥. We have that UU⊤ =

H̃PP⊤H̃
⊤

. Since P is a binary matrix indicating to which
community belongs each node, PP⊤ is a block diagonal
matrix that captures the structure of the communities of the
SBM. Then, because H̃ is also block matrix with the same
block pattern that the SBM, it turns out that the matrix
X̄ is also a block matrix whose blocks coincide with the
communities in the SBM graph. Therefore, the rest of the
bound is analogous to that in Lemma 1.

Bounding ∥VK − V̄KT∥. The relation between A and A is
the same as in Lemma 1 so the bound provided in (35) holds.

Bounding ∥W̄KR−WKQ∥. To derive this bound we show
that ∥UU⊤ −UU⊤∥ = ∥H̃PP⊤H̃⊤ − H̃PP⊤H̃

⊤
∥ goes to

0 as N grows. From (38) we have that ∥H − H∥ → 0, as
N → ∞, and hence, ∥H̃− H̃∥ → 0, as N → ∞. Therefore,
it can be seen that

∥UU⊤ − UU⊤∥ → 0, as N → ∞, (41)

with ∥UU⊤ − UU⊤∥ vanishing as N grows. The remainder
of the derivation of the bound is analogous to that for (39).



15

REFERENCES

[1] E. D. Kolaczyk and G. Csárdi, Statistical analysis of network data with
R. Springer, 2014, vol. 65.

[2] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and ap-
plications,” Proc. IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[3] S. Rey, F. J. I. Garcia, C. Cabrera, and A. G. Marques, “Sampling and
reconstruction of diffused sparse graph signals from successive local
aggregations,” IEEE Signal Process. Lett., vol. 26, no. 8, pp. 1142–1146,
2019.

[4] J. Wu, C. Ma, L. Li, W. Dong, and G. Shi, “Probabilistic undirected
graph based denoising method for dynamic vision sensor,” IEEE Trans.
Multimedia, vol. 23, pp. 1148–1159, 2020.

[5] M. I. Jordan, Learning in graphical models. Springer Science &
Business Media, 1998, vol. 89.

[6] P. Djuric and C. Richard, Cooperative and Graph Signal Processing:
Principles and Applications. Academic Press, 2018.

[7] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[8] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Process. Mag., vol. 34, no. 4, pp. 18–42, 2017.

[9] V. M. Tenorio, S. Rey, F. Gama, S. Segarra, and A. G. Marques, “A
robust alternative for graph convolutional neural networks via graph
neighborhood filters,” in Conf. Signals, Syst., Computers. IEEE, 2021,
pp. 1573–1578.

[10] F. Scarselli, M. Gori, A. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, 2008.

[11] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural
network architectures for signals supported on graphs,” IEEE Trans.
Signal Process., vol. 67, no. 4, pp. 1034–1049, 2019.

[12] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., 2020.

[13] S. Sakhavi, C. Guan, and S. Yan, “Learning temporal information for
brain-computer interface using convolutional neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5619–5629, 2018.

[14] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[15] Q. Li, Z. Han, and X. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in AAAI Conf. Artif. Intell.,
2018.

[16] Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic graph convolutional
recurrent neural network: A deep learning framework for network-
scale traffic learning and forecasting,” IEEE Trans. Intell. Transp. Syst.,
vol. 21, no. 11, pp. 4883–4894, 2019.

[17] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, “Mgae: Marginalized
graph autoencoder for graph clustering,” in ACM Conf. Inf. Knowl.
Manag., 2017, pp. 889–898.

[18] S. Rey, V. Tenorio, S. Rozada, L. Martino, and A. G. Marques, “Deep
encoder-decoder neural network architectures for graph output signals,”
in Conf. Signals, Syst., Computers. IEEE, 2019, pp. 225–229.

[19] S. Rey, V. Tenorio, S. Rozada, L. Martino, and A. G. Marques,
“Overparametrized deep encoder-decoder schemes for inputs and outputs
defined over graphs,” in European Signal Process. Conf. IEEE, 2021.

[20] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, “Graphgan: graph representation learning with generative
adversarial nets,” in AAAI Conf. Artif. Intell., vol. 32, 2018.

[21] W. Liu, P. Chen, F. Yu, T. Suzumura, and G. Hu, “Learning graph
topological features via gan,” IEEE Access, vol. 7, 2019.

[22] M. T. Schaub, Y. Zhu, J.-B. Seby, T. M. Roddenberry, and S. Segarra,
“Signal processing on higher-order networks: Livin’ on the edge... and
beyond,” Signal Process., vol. 187, p. 108149, 2021.

[23] T. M. Roddenberry, N. Glaze, and S. Segarra, “Principled simplicial
neural networks for trajectory prediction,” in Int. Conf. Mach. Learn.,
2021.

[24] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in IEEE
Conf. Comput. Vision Pattern Recog., 2018, pp. 9446–9454.

[25] R. Heckel and P. Hand, “Deep decoder: Concise image representations
from untrained non-convolutional networks,” in Intl. Conf. Learn. Repr.,
2018.

[26] S. Liu, M. Long, J. Wang, and M. I. Jordan, “Generalized zero-shot
learning with deep calibration network,” in Adv. Neural Inf. Process.
Syst., 2018, pp. 2005–2015.

[27] B. Yaman, S. A. H. Hosseini, and M. Akçakaya, “Zero-shot self-
supervised learning for mri reconstruction,” in Int. Conf. Learning
Representations, 2021.

[28] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.
Signal Process., vol. 65, no. 15, pp. 4117–4131, 2017.

[29] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Prentice
Hall Englewood Cliffs, NJ, 1988, vol. 6.

[30] G. Carlsson, F. Memoli, A. Ribeiro, and S. Segarra, “Hierarchical
clustering of asymmetric networks,” Adv. Data Anal. Classification,
vol. 12, no. 1, pp. 65–105, Mar 2018.

[31] G. Carlsson, F. Mémoli, A. Ribeiro, and S. Segarra, “Axiomatic con-
struction of hierarchical clustering in asymmetric networks,” in IEEE
Int. Conf. Acoustics, Speech and Signal Process., 2013, pp. 5219–5223.

[32] T. H. Do, D. M. Nguyen, and N. Deligiannis, “Graph auto-encoder for
graph signal denoising,” in IEEE Int. Conf. Acoustics, Speech and Signal
Process., 2020, pp. 3322–3326.

[33] S. Rey, A. G. Marques, and S. Segarra, “An underparametrized deep
decoder architecture for graph signals,” in IEEE Intl. Wrksp. Computat.
Adv. Multi-Sensor Adaptive Process. IEEE, 2019, pp. 231–235.

[34] G. Mataev, P. Milanfar, and M. Elad, “Deepred: Deep image prior
powered by red,” in IEEE/CVF Intl. Conf. Comput. Vision Wrksp., 2019.

[35] R. Heckel and M. Soltanolkotabi, “Denoising and regularization via
exploiting the structural bias of convolutional generators,” in iclr, 2020.

[36] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovacevic, “Signal
denoising on graphs via graph filtering,” in IEEE Global Conf. Signal
and Info. Process. IEEE, 2014, pp. 872–876.

[37] Y. Wang, J. Sharpnack, A. Smola, and R. Tibshirani, “Trend filtering on
graphs,” in Artif. Intell. Statistics. PMLR, 2015, pp. 1042–1050.

[38] S. Ono, I. Yamada, and I. Kumazawa, “Total generalized variation for
graph signals,” in IEEE Int. Conf. Acoustics, Speech and Signal Process.
IEEE, 2015, pp. 5456–5460.

[39] J. Pang and G. Cheung, “Graph laplacian regularization for image
denoising: Analysis in the continuous domain,” IEEE Trans. Signal Inf.
Process. Netw., vol. 26, no. 4, pp. 1770–1785, 2017.

[40] M. Onuki, S. Ono, M. Yamagishi, and Y. Tanaka, “Graph signal
denoising via trilateral filter on graph spectral domain,” IEEE Trans.
Signal Inf. Process. Netw., vol. 2, no. 2, pp. 137–148, 2016.

[41] D. Tay and J. Jiang, “Time-varying graph signal denoising via median
filters,” IEEE Trans. Circuits Syst., II, Exp. Briefs, 2020.

[42] S. Segarra, A. G. Marques, G. R. Arce, and A. Ribeiro, “Design of
weighted median graph filters,” in IEEE Intl. Wrksp. Computat. Adv.
Multi-Sensor Adaptive Process., 2017, pp. 1–5.

[43] F. Dorfler and F. Bullo, “Kron reduction of graphs with applications to
electrical networks,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60,
no. 1, pp. 150–163, 2012.

[44] S. Chen, Y. C. Eldar, and L. Zhao, “Graph unrolling networks: Inter-
pretable neural networks for graph signal denoising,” IEEE Trans. Signal
Process., 2021.

[45] A. G. Marques, S. Segarra, and G. Mateos, “Signal processing on
directed graphs: The role of edge directionality when processing and
learning from network data,” IEEE Signal Process. Mag., vol. 37, no. 6,
2020.

[46] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
2013.

[47] ——, “Discrete signal processing on graphs: Frequency analysis,” IEEE
Trans. Signal Process., vol. 62, no. 12, pp. 3042–3054, 2014.

[48] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal Process.,
vol. 63, no. 24, pp. 6510–6523, 2015.

[49] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks from
the topological view,” in AAAI Conf. Artif. Intell., vol. 34, no. 04, 2020,
pp. 3438–3445.

[50] A. Daniely, R. Frostig, and Y. Singer, “Toward deeper understanding
of neural networks: The power of initialization and a dual view on
expressivity,” in Adv. Neural Inf. Proc. Syst., 2016, pp. 2253–2261.

[51] M. Newman, Networks. Oxford University Press, 2018.
[52] M. T. Schaub, S. Segarra, and J. N. Tsitsiklis, “Blind identification of

stochastic block models from dynamical observations,” SIAM J. Math.
Data Sc., vol. 2, no. 2, pp. 335–367, 2020.

[53] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.



16

[54] W. W. Zachary, “An information flow model for conflict and fission in
small groups,” J. Anthrop. Res., vol. 33, no. 4, pp. 452–473, 1977.

[55] “National centers for environmental information,” [Online]. Available:
https://www.ncei.noaa.gov/data/global-summary-of-the-day, 2020.

[56] D. J. Watts, “Networks, dynamics, and the small-world phenomenon,”
Amer. J. Sociology, vol. 105, no. 2, pp. 493–527, 1999.

[57] P. Holme and B. J. Kim, “Growing scale-free networks with tunable
clustering,” Physical review E, vol. 65, no. 2, p. 026107, 2002.

[58] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” in Int. Conf. Learning Representations,
2018.

[59] J. V. D. M. Cardoso, J. Ying, and D. P. Palomar, “Algorithms for learning
graphs in financial markets,” arXiv preprint arXiv:2012.15410, 2020.

[60] Y. Yu, T. Wang, and R. J. Samworth, “A useful variant of the Davis–
Kahan theorem for statisticians,” Biometrika, vol. 102, no. 2, pp. 315–
323, 2015.

Samuel Rey (Student Member, IEEE) received the
degree in Telecommunication Engineering in 2016
and the M.Sc. in Telecommunications Engineering
in 2018, both with highest honors, from King Juan
Carlos University (URJC), Madrid, Spain. He is
currently working towards his Ph. D. thesis with the
Department of Signal Theory and Communications
of King Juan Carlos University. His current research
focuses are graph signal processing, graph neural
networks, non-convex optimization, and data science
over networks. He received the “Best Young Inves-

tigator Award” across all M. Sc. students at URJC in 2018. He was awarded
with the Spanish Federal FPU Scholarship for Ph. D. studies in 2018, and
with the Mobility Grant for Ph. D. FPU students in 2021.

Santiago Segarra (Senior Member, IEEE) received
the B.Sc. degree in Industrial Engineering with
highest honors (Valedictorian) from the Instituto
Tecnológico de Buenos Aires (ITBA), Argentina, in
2011, the M.Sc. in Electrical Engineering from the
University of Pennsylvania (Penn), Philadelphia, in
2014 and the Ph.D. degree in Electrical and Systems
Engineering from Penn in 2016. From September
2016 to June 2018 he was a postdoctoral research
associate with the Institute for Data, Systems, and
Society at the Massachusetts Institute of Technology.

Since July 2018, Dr. Segarra is a W. M. Rice Trustee Assistant Professor in the
Department of Electrical and Computer Engineering at Rice University. His
research interests include network theory, data analysis, machine learning,
and graph signal processing. Dr. Segarra received the ITBA’s 2011 Best
Undergraduate Thesis Award in Industrial Engineering, the 2011 Outstand-
ing Graduate Award granted by the National Academy of Engineering of
Argentina, the 2017 Penn’s Joseph and Rosaline Wolf Award for Best
Doctoral Dissertation in Electrical and Systems Engineering, the 2020 IEEE
Signal Processing Society Young Author Best Paper Award, the 2021 Rice’s
School of Engineering Research + Teaching Excellence Award, and five best
conference paper awards.

Reinhard Heckel (Member, IEEE) received the
Ph.D. degree in electrical engineering from ETH
Zurich. He was a Visiting Ph.D. Student with the
Department of Statistics, Stanford University. He is
currently a Rudolf Moessbauer Assistant Professor
with the Department of Electrical and Computer
Engineering (ECE), Technical University of Munich,
and an Adjunct Assistant Professor with the De-
partment of Electrical and Computer Engineering
(ECE), Rice University, where he was an Assistant
Professor, from 2017 to 2019. Before that, he was

a Post-Doctoral Scholar with UC Berkeley—sharing an office with Ilan
Shomorony—and a Researcher with the Cognitive Computing and Computa-
tional Sciences Department, IBM Research Zurich.. He is working in the
intersection of machine learning and signal/information processing with a
current focus on deep networks for solving inverse problems, learning from
few and noisy samples, and DNA data storage.

Antonio G. Marques (Senior Member, IEEE) re-
ceived the Telecommunications Engineering degree
and the Doctorate degree, both with highest honors,
from Carlos III University of Madrid, Spain, in 2002
and 2007, respectively. In 2007, he became a faculty
of the Department of Signal Theory and Communi-
cations, King Juan Carlos University, Madrid, Spain,
where he currently develops his research and teach-
ing activities as a full professor. From 2005 to 2015,
he held different visiting positions at the University
of Minnesota, Minneapolis. In 2015, 2016 and 2017

he was a visitor scholar at the University of Pennsylvania, Philadelphia.
His current research focuses on signal processing, machine learning, data
science and artificial intelligence over graphs, and nonlinear and stochastic
optimization of wireless, power and transportation networks. Dr. Marques has
served the IEEE in a number of posts, including as an associate editor and
the technical / general chair of different conferences, and, currently, he is a
Senior Area Editor of the IEEE Transactions on Signal Process. a member of
the IEEE Signal Process. Theory and Methods Tech. Comm. His work has
been awarded in several journals, conferences and workshops, with recent ones
including IEEE SSP 2016, IEEE SAM 2016, IEEE SPS IEEE Y.A. Best Paper
Award 2020, and CIT 2021. He is the recipient of the “2020 EURASIP Early
Career Award” and a member of IEEE, EURASIP and the ELLIS society.


	Introduction
	Related works

	Processing architectures for graph signals
	Fundamentals of GSP
	Fundamentals of GNNs

	GNNs for graph-signal denoising
	Graph convolutional generator
	Guaranteed denoising with the GCG
	Numerical inspection of the deep GCG spectrum

	Graph upsampling decoder
	Graph upsampling operator from hierarchical clustering
	Guaranteed denoising with the GDec
	Analyzing the deep GDec

	Numerical results
	Denoising capability of graph untrained architectures
	Denoising synthetic data
	Denoising real-world signals

	Conclusion
	Appendix A: Proof of Th. 1
	Appendix B: Proof of Lemma 1
	Appendix C: Proof of Lemma 2
	References
	Biographies
	Samuel Rey
	Santiago Segarra
	Reinhard Heckel
	Antonio G. Marques


