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Abstract—We analyze the sampling and posterior recovery
of diffused sparse graph signals from observations gathered at
a single node using an aggregation sampling scheme. Diffused
sparse graph signals can be modeled as the output of a linear
graph filter to a sparse input, and are useful in scenarios where
a few seeding (source) nodes generate a non-zero input which
is then diffused according to the network dynamics dictated by
the filter. Instead of considering a traditional setup where the
observations correspond to the signal values at a subset of nodes,
here the observations are obtained locally at a single node via the
successive aggregation of its own value and that of its neighbors.
Depending of the particular application, the goal is to use the
local observations to recover the diffused signal or (the location
and values of) the seeds. Different sampling configurations are
investigated, including those of known and unknown location of
the sources as well as that of the diffusing filter being unknown.

Index Terms—Diffused Graph Signals, Interpolation, Aggre-
gation Sampling, Source identification, Active Sampling.

I. INTRODUCTION

The prevalence of network science and big data has moti-
vated the emergence of graph Signal Processing (SP), whose
goal is to extend classical SP tools to signals defined on
irregular domains represented by a graph. Graph SP problems
which have recently received attention include the sampling
of bandlimited graph signals (BGS) [1]-[4], filtering [S]-[9],
and network topology inference [10]-[12], to name a few.

This paper investigates the recovery of diffused sparse graph
signals (DSGS) from observations taken at a particular node
using an aggregation sampling scheme (AGSS) [4]. DSGS
are a class of signals that can be modeled as a sparse
graph signal (zero everywhere except in a few seeding nodes)
which is then diffused through the network via a graph
filter. Our ultimate goal is to reconstruct both the observed
signal and the seeds from the available observations. The
AGSS is a sampling method for graph signals (introduced
in [4]) where nodes successively aggregate the values of the
signal in their neighborhood. Recovery can be guaranteed
even if observations are gathered at a single node and it
can be implemented distributively. Our contribution is the
generalization of the AGSS, which was originally proposed
for BGS, for DSGS. Additionally, we generalize existing
results for support identification and blind deconvolution with
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observations from the AGSS. The algorithms presented in this
paper are relevant also for distributed estimation and source
localization. Sampling and recovery using as input the signal
value at a subset of nodes were discussed in [1]-[3] for BGS,
and in [13] for DSGS. Aggregation and space-shift sampling
(a generalization of the AGSS considering multiple nodes) for
BGS were investigated in [4]. Blind deconvolution and filter
identification for DSGS in a centralized setup with access to
the full signal (no sampling) were investigated in [14].

Paper organization: Sec. II reviews graph SP concepts and
defines formally DSGS and the AGSS. Sec. III presents the
main results, including the recovery schemes with known and
unknown seeds, as well as unknown diffusing filter. The effect
of noise, the design of the sampling matrix and consideration
of more than one sampling node are also briefly analyzed. Suc-
cinct illustrative numerical results, including some showcasing
practical relevance in real datasets, are presented in Sec. IV.

II. FUNDAMENTALS OF GRAPH SP

Let G = (N,E&) denote a directed graph, where N is
the set of nodes, with cardinality NV, and £ is the set of
edges, with (i,7) € & if ¢ is connected to node j. The set
N; :={j|(j,i) € £} denotes the incoming neighborhood of
node i. For a given G, the adjacency matrix A € RV*N g
sparse with non-zero elements A;; if and only if (j,4) € £. If
G is unweighted, the elements A;; are binary. If the graph is
weighted, then the value of A;; captures the strength of the
link between 7 and j. The focus of this paper is not on analyz-
ing G, but a graph signal defined on its set of nodes. Such a
signal can be represented as a vector x = [z1,...,zy]T € RY
where the i-th entry represents the signal value at node <.

The graph-shift operator (GSO). The GSO S is defined as
an N x N matrix whose entry S;; can be non-zero only if
i =7 or (j,i) € £&. Common choices for S are A [5] and the
graph Laplacian [10]. S represents a linear transformation that
can be computed locally. Specifically, if y = [y1,...,yn]T is
defined as y = Sx, then node ¢ can compute y; provided that
it has access to the values of x; at its neighbors j € N;. We
assume that S is diagonalizable so that there exists an N x N
matrix V and a diagonal matrix A such that S = VAV 1L,

Graph filters. Given a GSO S € RV*N the linear trans-
formation represented by the matrix H € RV*V is called a
linear shift-invariant graph filter if H can be written as [5]

H:=Y,'ms. (1)

For a given input x, the output of the filter is simply
y = Hx. The coefficients of the filter are collected into



h := [hg,...,hy_1]T, with L — 1 denoting the filter degree.
To show the relevance of graph filters in the context of local
linear transformations [6]—[8], define the [-th shifted signal

z() .= S!x and further define the N x N matrix

Z = [z(0)7z(1),...7z(N_1)] = [x,8x,...,8" x|, (2

that groups the signal x and the result of the first N — 1
applications of the GSO. It is then clear that: a) the output
of the graph filter can be found as y = Hx = Zh, with h
being zero-padded if L < N; b) since S is a local operator,
the /-th column of Z can be found locally from the (I — 1)-
th one as z) = Sz(~V; and ¢) as one moves right-wise
in (2), the columns of Z can be viewed as the evolution of
a process which is diffused linearly according to the local
structure codified in S. Indeed, it is known that graph filters
are useful to encode linear network dynamics [8], [14].

DSGS. Given a GSO S € RV | the signal x ¢ RY is called a
diffused sparse graph signal of order .S if it can be written as

x = Hs, where H:Z?;f)l RSt and [s]lo <S.  (3)

Clearly, signals in (3) can be viewed as the state reached
after the diffusion process modeled by H is over, and the
sparse input s € R has been spread through the graph.

Frequency domain representation. Use the eigenvectors of S
to define the matrix U:=V !, and its eigen-values to define
the Vandermonde matrix ¥ € RV*Z where W= (M) L.
Then, the frequency representations of a signal x and of a filter
h are defined as % := Ux and h:= Wh, with U and ¥ acting
as Graph Fourier Transforms (GFT) [8], [15]. Exploiting those,
the output y =Hx in the frequency domain is given by

y = diag(¥h)Ux = diag(h)% = ho x. ©))

with o denoting the entry-wise product. Identity (4) is the
counterpart of the convolution theorem for time signals [8].

A. Sampling BGS

Consider the sampling set M C A with cardinality M < N
and suppose that we are interested in obtaining the M values of
the vector x corresponding to the entries indexed by M. Then,
use M to define the (fat) selection matrix Cpq € {0, 1}M*¥N
matrix whose elements satisfy: Y. C 'M.,i; = 1 for all 4; and
>iCmyij = 1if j € Mand ), Cprij = 0 otherwise.
With these notational conventions, the sampled version of the
graph signal x,q is then xyq := Cpx. If the sampling set
is M = {1,..., M}, then the selection sampling is denoted as
simply Cj; and corresponds to the first M rows of the identity
matrix of size N. While in classical SP uniform sampling
exhibits a number of advantages [16], it is not clear how to
design good selection matrices Cpq for graph signals. For
the particular case of BGS (which are signals x that can be
written as x = VgXg, with X € CK representing the K <
N first frequency coefficients and Vi = VCL e CVxK
their associated eigenvectors), two sampling schemes, briefly
presented next, have been proposed: selection and aggregation
sampling [1], [2], [4]. While for time varying signals both
schemes reduce to traditional sampling [4], for more general
graph topologies, they produce different outcomes.
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In selection sampling, the vector collecting the observations
is xpq = CyVixg. The goal is to recover x from X4,
which can be done via x = VgXg = Vi (CuVig)ixu,
with T denoting the pseudoinverse [2].

An equally valid, but less intuitive approach, is to fix a
node, say %, and consider the sampling of the signal seen
by this node as the GSO S is applied recursively. In other
words, as the signal has been locally diffused according to
S, as described in (2). Then, using the definition of matrix
Z in (2) and with e; denoting the ¢ canonical vector, the
successively aggregated signal at node 7 is the ¢-th row of
Z, that is z;, := (el Z)" = ZTe,;. Sampling is now reduced
to the selection of M out of the N elements of z;, that
is zy,, = Cumzi = Cu(Z7e;). Leveraging the
results in [4], the signal x can be recovered from za; as
X = VK(CM‘Ideiag(Ui))TzM,,» with v; = [Vi,la vaey V;,N]T.

III. AGGREGATION SAMPLING OF DSGS

This section considers the problem of reconstructing DSGS
from local observations obtained from AGSS. In contrast
with BGS, the interest when dealing with DSGS can be
either in recovering x (signal reconstruction) or in recovering
s (distributed source localization and estimation). For that
reason, we start by analyzing the case where H = I and x = s.
After that, we discuss the more general case where the nodes
sample the signal x = Hs, both for known and unknown H.
A collaborative setting where more than one node collects the
samples closes the section. To help readability, a summary of
the setups considered is provided in Table I.

. Sparse Obs. .
Scenario support H Cnm matrix Equation
Sparse recovery Known Iﬁnimll Fixed © 8)
Active sampling Known I;IHZVIII Flexible (] (10)
Blind sparse Unknown | KPOWM 1 giced ) (11)
recovery H=1
Diffused recovery Known Known Fixed = ®) replacglg
© with
Diffused active Known Known Flexible = ao, rep Ia'cqmg
recovery © with 2
Blind diffused Unknown Known Fixed = (11), re.plagng
recovery © with
Blind . Unknown | Unknown Fixed P (14)
deconvolution

TABLE I: Compilation of the settings considered in Sec. III.

A. Aggregating the sparse input

A critical aspect to analyze the recovery x = s from its
aggregated samples is to write the relationship between the
sampled signal za and the sparse input s. For the ease of
exposition, we do that in the form of a lemma.

Lemma 1: Given the GSO S € RV*¥ | the sampling matrix
Cq and a sparse input x = s, the shifted signal z; and its
sampled version z 4 ; can be expressed as

zZm,i = Cmz; and z; = \Ileiag('ui)Us =0;s. (5

For the expression above, note that we have defined the
observation matrix @; := ¥’ diag(v;)U, where we recall
that ¥ is the GFT for filters, U is the GFT for signals, and
v; = [Vi1,..., Vin]T. While nontrivial, (5) can be derived
after substituting (2) into (3), or by a minor modification
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of the proof in [4, Lemma 2]. Interestingly, (5) reveals that
Zm,; depends on how strongly the seeds express each of the
frequencies (represented by Us), how strongly the sampling
node senses each of the frequencies (represented by the
frequency pattern v;) and the spectral effect of the diffusion
(powers of the GSO) captured in the Vandermode matrix W.

To proceed with the recovery of the sparse input, let us
denote as S the support of s, define s5 := Cgs € R as the
vector collecting the non-zero values of s, and suppose for
now that this support is known. Then, we have that

zZpmi = Cpm©®;s = Cy®;CLss. (6)

This setup would correspond to the case where the indexes
of the seeding nodes (identity of the influencers or location
of the sources) is known, but their particular values are not.
Clearly, for the recovery problem in (6) being identifiable, a
necessary condition is M/, the number of observations in z 4 ;,
being no less than S, the number of unknowns in ss. Consider
first the extreme case M = S. It is then clear that the sparse
signal §(), with the superscript (i) denoting the index of the
sampling node, can be recovered as

s = cLsy — (Cm©®;CE)~!

and s ZM,is (7

provided that the inverse exists, which will depend on the
particular set of rows M and columns S. For the standard
case of M > S and the observations being corrupted by
additive noise, the observed signal y; is given by y; = z;+w;.
Assuming that the noise w; is zero-mean, independent of x,
and with known covariance matrix R{ := = E[w,;w/], the best
linear unbiased estimator of the sparse mputs is [17]

80 =CLsl) and 8¢ = (M) (RY )™y, with (8)

R\, :=CyRYCE, and My =R, ) /?Cr©;CL,
provided that R( R " 1s non-singular. Note that if the noise is
Gaussian, the estimator in (8) attains the Cramér-Rao bound.

Using (8), the error covariance matrix is [17]
58)1] =
which depends on the noise model, the spectrum of the GSO,
the seed nodes, the node taking the observations, and the
sample-selection scheme adopted. (9) can then be used to
assess the performance of the estimation. The particular error
metric depends on the application at hand [18]. The most
commonly used is the Mean Square Error (MSE), which
corresponds to minimizing trace(Rgl)), with other popular
metrics including the spectral norm )\maX(Rg)) and the log
determinant log det(R").

1) Active sampling: Critical for the error performance is
the design of a good sampling matrix. This requires solving
first the optimal scheme for a fixed node 7 (which is a relevant
problem by itself) and then selecting the best node (provided
that the system operating conditions yield such a possibility).
Except for trivial cases, optimizing the sampling set is NP-
hard. In particular, when the interest is in the MSE, the optimal

R := E[(ss — 8%)(ss — ML M), 9

sampling matrix Cgf/)l* corresponds to
min
Cm

s.b. Camyij € {01}, >2.Cm,i5 =1,

trace((cgefcﬂ(CMRg,j)cﬂ)—lCM@icg)T)
ICmllo = M, (10)

which is a fractional high-order polynomial minimization over
binary variables. While convex relaxations to approximate (10)
are available, greedy schemes for related problems have been
shown to work well [19], and are advocated here.

2) Blind (sparse) recovery: In many relevant applications
(e.g., those dealing with inverse problems) the seeds in S are
unknown. In that case, the noiseless recovery requires solving

s* = arg msin lIsllo s.t. zpar,i = Ca©ss, (11)
and then setting XY = §(9 = s*. Leveraging results from
sparse recovery, it can be shown that identifiability needs M >
2S5 and the observation matrix ©; to be full spark [20]. The
problem in (11), which does not account for noise, is NP-hard
due to the presence of the ¢y norm. A standard approach is
to relax the equality with a least squares cost and relax the ¢
norm with a (weighted) ¢; regularizer. This yields

s == argmin | (R0 (Yats — Cr®is) 3 +7llslls.

where (Rfj) M)’l/ 2 accounts for the colored noise and 7 is
the regularization parameter.

B. Aggregating the diffused sparse input

We now analyze the recovery of x = Hs from its aggre-
gated samples, assuming first that the filter H is known. The
main difference with reference to the previous case is that now
the relation between s and z a4 ,; is

zymi = Cpz; and z; = ¥ diag(v; o h)Us := E;s, (12)
where E; := \Ileiag('uiofl)U. Compared with (5), we notice
that the observations depend not only on the frequency pattern
of the sampling node v;, but also on the frequency response
of the diffusing filter h. Intuitively, nodes with a frequency
pattern more aligned with that of the diffusing filter (so that
|det(diag(v; o h))| is large) are more likely to give rise to a
better reconstruction in the presence of noise.

Apart from replacing the observation matrix ®; with =,
another important difference stems from the particular error
to minimize. Since in this case x and s are different, de-
pending on the application the focus can be on estimating
s and minimizing the MSE associated with R = E[(ss —
ég))(sS - ég))T] or on estimating x and minimizing the MSE
associated with ng = E[(x—%®)(x—%x®)T]. This requires
to premultiply (or not) the error terms in the objectives of
the optimizations presented in the previous sections. Such a
dichotomy was not an issue for BGS since the frequency co-
efficients are a byproduct and the ultimate goal was to recover
x. By contrast, for DSGS both x (signal reconstruction) and
s (source localization) are meaningful on their own.



C. Blind deconvolution

There may be scenarios where the diffusing filter H =

lL:_Ol h;S* is unknown. The recovery problem in this case
is considerably more challenging, but it can be tackled pro-
vided that L, the order of the diffusing filter, is sufficiently
small. To be specific, after some manipulations, the expression
x = Hs with H being a graph filter can be written as
x = V(®T ©UT)Tvec(shT), where ® stands for the Khatri-
Rao product (cf. [14]). We can then relate the samples z a4,
with the unknown s and h as

zai = Ca Pl diag(vy) (BT © UT)Tvec(shT),  (13)

which is a system of M bilinear equations. If the support S
is known, the number of unknowns is L + S. If it is not, the
number is L+ N and the constraint ||s||o < S must be added,
further complicating the problem. The resultant problem can
be handled by an alternating scheme that iterates between
optimizing s given h and optimizing h for the new s. More
sophisticated approaches include lifting techniques that define
the lifted variable 3 := sh7?, the observation matrix ®; :=
U diag(v;) (T ©UT)T, and find an approximation to

min [|z,i — Cri®ivee(E)|5 +7rank () +72) 220, (14)

where 1 and 7, are regularization parameters and || 22,0 is
defined as the number of non-zero rows of 3. The estimates
§( and h) are then found the main left and right singular
vectors of X*, which are subject to an inherent scaling ambi-
guity. See [14] for further justification and suitable relaxations.

In the case of selection sampling (SS), the expression
analogous to (13) is

xpm = Cum V(2T © UT)Tvec(sh?), (15)

which is also a bilinear system similar to the previous one.
Note that, as in the BGS case (cf. II-A), the role of V in SS
is taken by W’ diag(v;) in AGSS.
D. Space-shift sampling of diffused sparse signals

In many setups, access to more than one sampling node is
available. This is useful to robustify the recovery and reduce
the number of required samples per node, which is convenient
because the conditioning number of the Vandermonde matrix
¥ (one of the factors in ©®;) worsens as the samples per
node increase. The resultant sampling scheme is referred to
as space-shift sampling [4]. To particularize it to the setup
at hand, define the vectorized version of Z as z and then the
N2x N matrix Y := [diag(v1), . . ., diag(vy )] diag(h). With
this conventions, Z can be written as z = (Io®” )Y Us, where
® stands for the Kronecker product. The sampled version in
this case is given as z,q = Cqz, where C 4 is a selection
matrix of size M x N2. The results in the previous sections
can be applied to this case as well provided that ®; and C
are replaced with © := (I® ¥7)YU and C .

IV. NUMERICAL EXPERIMENTS
Short simulations to illustrate and gain intuition about some
of the results presented are shown here.

Test case 1. First, we consider a stochastic block model (SBM)
graph with N nodes and B communities with N, = N/B
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Fig. 1: Recovery rate of DSGS in SBM graphs. Signals are recovered
via the /1-norm relaxation using the Laplacian as the GSO. 500
simulations with different graphs: N = 50, B =5, M = 8, RS) M=
107°L.

7o)
I A *
100 L
[N}
7]
=
2 10°
#ps6s;s -
10720 | (¥ sas P~
P
——
8 10 12 14

Number of Observations

Fig. 2: Median MSE of recovered signals defined over 95 real-world
graphs using a blind diffused recovery scheme.

nodes each [21]. Edges exist with probability py, = 0.4 if the
incident nodes are in the same community and with probability
peyy = 0.1 if they are not. The remaining parameters are given
in the caption of Fig. 1. The index of the seeding nodes is
chosen uniformly at random and the seed value is drawn from
a zero-mean unit variance Gaussian (ZMUVG). The filter taps
have length L = 6 and each of them is drawn from a ZMUVG.
Fig. 1 depicts the recovery rate, defined as the proportion of
simulations for which the seeds are correctly identified and
the ¢9-norm of the error is less than 0.1, as the number of
seeds S increases. All sampling nodes are considered, and
the median error is reported. The 10 scenarios (lines) in the
figure consider if: 1) Cgs is known or not (“Known”/“Unk”);
2) the sampling node ¢ is in the same community than one
of the seeds or is a random node (“Comm”/“Rand”); 3) the
sampled signal is either s or x (“5”/“2”); and 4) the sampling
scheme is AGSS or SS (“AGSS”/“SS”) . The results confirm
that recovery is harder as S increases, that blind schemes are
not able to recover the signal if S > M/2 = 4, and that
knowledge of Cs notably facilitates the recovery. We also
observe that if the other two criteria are fixed, AGSS always
outperform SS, confirming that AGSS are more robust and less
sensitive to the sampling configuration [4]. Similarly, “Comm”
is always better than “Rand”. This is not surprising since the
(diffused) seed values reach the sampling node faster if the
node belongs to the same community. This also explains why
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Fig. 3: Recovery rate of DSGS in directed and undirected SBM
graphs for varying filter bandwidth length. Signals are recovered via
the pseudoinverse (known Cs) and the £;-norm relaxation (unknown
Cs) using the adjacency matrix as the GSO. Directed graphs with
non-diagonalizable adjacency matrices are discarded. 100 graph-
realizations for each type of graph, selecting the sampling node ¢
from all the N nodes as the one leading to the smallest /2-norm
of (s — 8). The remaining parameters are: N = 30,B = 2,py, =
0.25,pyy = 0.05,M =4, R, =107°1

—©-Und known
—A—Und filt known
Und unk

—+—Und filt unk

—= Dir known
Dir filt known

-Ac-Dir unk

=== Dir filt unk

Recovery Rate

0.3 0.4 0.5 0.6 0.7 0.8
Intra-Cluster Pobability

Fig. 4: Recovery rate of sparse and DSGS in directed and undirected
SBM graphs for different probabilities of inter-cluster and intra-
cluster links. Signals are recovered via the pseudoinverse (known
Cs) and the ¢;-norm relaxation (unknown Cgs) using the adja-
cency matrix as the GSO. The tested intra-cluster probability are
[0.3,0.4,0.5,0.6,0.7,0.8], as shown in the horizontal axis. The
corresponding inter-cluster probabilities are [0.1,0.15,0.2,0.25,0.3].
For each point in the figure, 100 graph-realizations are considered
and, for each of those realizations, the N = 30 nodes are tested, so
that the rates shown correspond to averages across 3000 trials. The
remaining parameters are: B =3, M =9, Rfj?M =10"°I

recovering x seems to be always easier than recovering (non-
diffused) signal s.

Test case 2. Fig. 2 tests our schemes in the D&D protein
structure database [22], where nodes account for amino acids,
links capture similarity, and signals are the expression level of
the amino acids. We assume that the data can be accurately
modeled as DSGS and try to recover the full signal follow-
ing the blind diffused recovery scheme (label “DSGS,17),
its space-shift counterpart with 2 and 5 nodes (“DSGS,2”,
“DSGS,5”), and AGSS modeling the data not as DSGS but
as bandlimited (“BGS”). The median error of all graphs is
reported and all sampling nodes are considered, selecting the
25th error percentile. The main observations are: 1) BGS
yields the worst performance, pointing out that the DSGS

model is a good fit for the information in the D&D database;
and 2) for the “DSGS,1” the median MSE increases when
the number of observations is high. This stems from the
conditioning number of as explained in Sec. III-D. In contrast,
the “DSGS,2” and “DSGS,5” schemes are more robust.

Test case 3.We test our schemes in the ETEX dataset [23],
which contains {y;}?2, graph signals whose nodes correspond
to different locations and ¢ represents time. We use as GSO the
Adjacency of the geographical graph [24], the seed is set as
s = ¥y, and the signal to be sampled and recovered is x = y;
for all ¢ > 0. Using M = 16 samples and the same approach
than in the second test case, we run the experiment for 29
different signals (one per t,t > 0), obtaining MSE of 3-10~°
and 1.5-107° for “DSGS,1” and “DSGS,2” respectively.
Test case 4. In Fig. 3 we analyze the impact on the recovery
of two factors: a) the bandwidth of the diffusing filter and
b) the directivity of the supporting graph. To this end, let us
consider a bandpass filter h whose non-zero band consists
of W elements randomly drawn from a ZMUVG. Moreover,
we consider two types of SBM graphs: one where links are
directed (denoted as “Dir” in the figure) and antoher one with
undirected links (“Und”). For this test case, the adjacency
matrix is chosen as GSO. The remaining parameters are
detailed in the caption of Fig. 3. The plotted results reveal that
successful interpolation from DSGS samples is more amenable
in directed than undirected graphs. The additional information
about the edge direction contained in the GSO, central during
both filtering and the AGSS, helps identifying the seeds in
S. Furthermore, lower W hinders the diffusion of the seeds,
making the recovery harder. Indeed, in the extreme case of
W = 0 the factor diag(v;oh) in (12) renders the observations
Zero.

Test case 5. Fig. 4 studies the impact of the density of the
graph on the recoverability of the signals. In this experiment,
both the intra-cluster and the inter-cluster probability vary in
the same direction, as explained in the caption of the figure.
The results show that the recovery rate tends to improve
when the graphs are denser. With a higher link probability,
the chances that any node is close to the seeds increases, so
that they can access the information related with the non-zero
elements of the sampled signal. As a result, the fraction of
nodes able to recover the signal increases. In addition, the plot
confirms that directed graphs (“Dir”) have a better recovery
rate than undirected graphs (“Und”), which is consistent with
the results presented for the test case 3.
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