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Abstract— Assuming the availability of a reliable aircraft
trajectory planner, this paper presents a probabilistic method-
ology to detect conflicts between aircraft, in the cruise phase
of the flight, in the presence of wind prediction uncertainties
quantified by ensemble weather forecasts, which are regarded
as realizations of correlated random processes and employed to
derive the eastward and northward components of the wind
velocity. First, the Karhunen-Loève expansion is used to obtain
a series expansion of the wind components in terms of a set of
uncorrelated random variables and deterministic coefficients. Then,
the uncertainty induced by these uncorrelated random variables in
the outputs of the aircraft trajectory planner is quantified by means
of the arbitrary polynomial chaos technique. Finally, the probability
density function of the great circle distance between each pair of
aircraft is derived from the polynomial expansions using a Gaussian
kernel density estimator and employed to estimate the probability
of conflict. The arbitrary polynomial chaos technique allows the
effects of uncertainties in complex nonlinear dynamical system, such
as those underlying aircraft trajectory planners, to be quantified
with high computational efficiency, only requiring the existence of a
finite number of statistical moments of the random variables of the
Karhunen-Loève expansion, while avoiding any assumption on their
probability distributions. In order to demonstrate the effectiveness
of the proposed conflict detection method, numerical experiments
are conducted through an optimal control based aircraft trajectory
planner for a given wind forecast represented by an ensemble
prediction system.
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I. INTRODUCTION

During the last decades, air traffic has grown at a
steady rate. This growth has been affected by several
crises. However, historic data show that commercial avia-
tion has always recovered from them. To deal with the
increase in air traffic, in 2005, the International Civil
Aviation Organization (ICAO) proposed a new operational
concept for Air Traffic Management (ATM) [1]. In the
European Union, the Single European Sky ATM Research
(SESAR) [2] is the ongoing program aimed to develop
new ATM systems to better coordinate air traffic opera-
tions, thus increasing the efficiency, capacity, and safety
of the current ATM system, while decreasing the environ-
mental impact of commercial aviation. Similar programs
are being developed in other countries, such as The Next
Generation Air Transportation System (NextGen) [3], in
the USA, and the Collaborative Actions for Renovation
of Air Traffic Systems (CARATS), in Japan [4]. The main
objective of the ATM is to ensure the safety of the flight.

A conflict among aircraft is one of the most dangerous
situations in air traffic, which happens when the distance
between two or more aircraft is smaller than the required
minimum separation. More specifically, according to the
current regulation [5], the horizontal separation distance
should not be lower than 5 [NM], whereas the vertical
separation should not be less than 1000 [ft].

Aircraft conflict avoidance systems operate in two
stages, which are detection and resolution. In the detection
stage, aircraft trajectories are predicted in the relevant
airspace. Then, a conflict is detected when the probability
of losing separation distance exceeds a certain thresh-
old. In the resolution stage, selecting the most suitable
manoeuvres, the predicted trajectories are modified in
order to avoid the detected conflict. The sooner a conflict
is detected, the more efficient Conflict Resolution (CR)
manoeuvres can be performed in the resolution phase.
Moreover, early Conflict Detection (CD) also reduces the
workload of the air traffic controllers.

There are various sources of uncertainty that influence
the accuracy of the aircraft trajectory prediction, such as
data uncertainty, which appears when data are not exactly
known, operational uncertainty, which originates in the
lack of knowledge on the decisions taken by individuals,
equipment uncertainty, which is associated with mal-
functions and breakdowns of communication, navigation,
and surveillance systems, and weather uncertainty, which
appears when meteorological phenomena, mainly wind
and thunderstorms, are not precisely predicted. Moreover,
weather uncertainty affects the air traffic as a whole,
thus having a very high influence on the accuracy of the
trajectory prediction [6].

This paper investigates the aircraft CD problem in the
presence of wind uncertainty. More specifically, the CD
problem is studied in the cruise phase of the flight, in
which probabilistic wind forecasts generated by Ensemble
Prediction Systems (EPS) are employed to represent wind
uncertainty.
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Weather forecasts are estimates of the future state of
the atmosphere. They are usually generated by estimating
the initial conditions of the atmosphere using observations
and then computing the temporal evolution of its state
using a Numerical Weather Prediction (NWP) model.
However, since these NWP models are very sensitive to
the initial conditions, small errors in the initial state may
result in large errors in the forecast. In EPS forecasts, the
NWP model is run several times using slightly different
initial conditions and model parameters, and then a set of
forecasts is obtained, which is referred to as the ensem-
ble. The individual forecasts of the ensemble are called
members, which are assumed to be equiprobable. The
differences between their corresponding initial states are
consistent with the uncertainties in the observations. The
goal of EPS, which typically are composed of between
10 and 50 members, is to represent the variety of states
to which the atmosphere can evolve. Ideally, the future
state of the atmosphere should be within the limit of the
spread of the predicted ensemble. Further details on EPS
can be found in [7], [8], [9].

The essence of the probabilistic approach to the air-
craft CD problem is to estimate the separation distance
loss probability between aircraft. The aircraft CD problem
has been traditionally associated with the aircraft CR
problem. Aircraft CD and Resolution (CD&R) methods
can be classified, according to the look-ahead time at
which they operate, into strategical, tactical, and oper-
ational, which operate with look-ahead times of more
than 30 [min], between 30 and 10 [min], and less than
10 [min], respectively. A recent survey paper on aircraft
CD&R is [10], which includes literature on aircraft CD in
the presence of wind uncertainty. Another recent survey
paper on stochastic modeling in aviation, which includes
literature on aircraft CD in the presence of wind uncer-
tainty, is [11].

In the aircraft CD problem, the aircraft trajectories are
first predicted and then analyzed to calculate the probabil-
ity of conflict between them. In particular, in the aircraft
CD in which the wind forecast is represented by EPS, the
uncertainty contained in the ensemble forecast has to be
propagated to the prediction of the trajectories. There are
two common approaches to trajectory prediction for CD
using wind forecast generated by EPS: the transformation
approach and the ensemble approach.

In the transformation approach, the probability distri-
butions of the relevant uncertain meteorological param-
eters, such as the eastward and northward components
of the wind velocity, are estimated from the ensemble
forecast and, using a probabilistic trajectory planner, the
probability distributions of the variables used to detect the
conflict, such as the aircraft positions with respect to time,
are obtained. In the ensemble approach, a deterministic
trajectory planner is used to calculate a trajectory for each
member of the ensemble wind forecast, thus obtaining an
ensemble of trajectories, which is then employed to derive
the probability distributions of the variables used to detect
conflicts. Since it is less demanding from the computa-

tional point of view and provides similar results than the
transformation approach [12], the ensemble approach is
more suitable for practical applications.

In [13], a methodology to statistically quantify the
severity of conflicts between aircraft flying at the same
altitude, in the presence of wind forecast uncertainties
derived from the PEARP EPS released by Météo-France,
consisting of 35 members, is presented. The severity of
the conflict is characterized by using two descriptors:
conflict intensity and conflict probability. Conflict inten-
sity is defined as the mean minimum distance between a
pair of aircraft approaching a waypoint. The wind vector
components are modeled as four-parameter beta distribu-
tions. The probability of conflict is obtained in terms of
the Probability Density Function (PDF) of the minimum
distance between aircraft, calculated from the PDFs of
the wind components using the transformation approach,
which allows the joint PDF of a set of random variables to
be obtained from the joint PDF of another set of random
variables. In [14], the aircraft CD methodology proposed
in [13] is combined with a CR technique, in which
conflicts between aircraft are solved, while minimizing
the deviations from the original aircraft trajectories.

In [15], a methodology to compute the probability of
conflict between aircraft flying 3D routes, in the presence
of wind and temperature forecast uncertainties derived
from the COSMO-D2 EPS released by the Deutscher
Wetterdienst, consisting of 20-members, is presented. The
ensemble approach is used, in which aircraft trajectories
are calculated deterministically for each member of the
ensemble and then, a deterministic CD method is con-
ducted for all the computed trajectories. Since all the
members are assumed to be equiprobable, the probability
of conflict between each pair of aircraft is calculated as
the fraction of members for which a conflict between
these two aircraft is identified.

In [16], a multiple model method for aircraft con-
flict detection and resolution in the presence of intent
and weather uncertainty, is proposed. It is based on
probabilistic multiple model aircraft trajectory prediction.
If a multiple model trajectory prediction is used, the
separation vector between two aircraft has a Gaussian
mixture distribution and an efficient randomized algo-
rithm is proposed to estimate the conflict probability.

In [17], an efficient method for estimating the proba-
bility of conflict between aircraft is presented which is
based on the so-called subset simulation technique, in
which the small conflict probabilities are computed as a
product of larger conditional conflict probabilities, reduc-
ing the computational cost and improving the accuracy of
the probability estimation.

This paper presents a methodology to compute the
probability of conflict between aircraft, flying at the same
altitude, in the presence of wind prediction uncertainties
quantified by ensemble weather forecasts. More specif-
ically, the European Center for Medium-range Weather
Forecast (ECMWF) EPS, consisting of 51 members, has
been considered.
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The eastward and northward components of the wind
velocity have been modelled as two correlated random
processes and the different members of the ensemble
have been regarded as realisations of the two stochas-
tic processes. The multiple uncorrelated Karhunen-Loève
(muKL) expansion [18] has been applied to the ensemble
to reduce the dimensionality of the representation of the
two correlated random processes. The muKL expansion
allows a set of uncorrelated random variables to be ex-
tracted, which encapsulate the uncertainty contained in the
random processes. These random variables are the random
inputs of the optimal control model used to generate the
aircraft trajectories. The resulting model is a complex
stochastic optimal control model, which is difficult to
solve. Therefore, a surrogate model has been devised,
which is computationally easier to solve and accurately
approximates the propagation of the uncertainties, repre-
sented by the uncorrelated random variables, on the state
variables of the solution of the optimal control problem.
The state variables of this solution include the optimal
trajectories of the aircraft. Polynomial Chaos Expansion
(PCE) [19] has been used to formulate this surrogate
model. PCE is a spectral method, which consists in the
projection of the model outputs on a basis of orthog-
onal stochastic polynomials in the random inputs. This
probabilistic method yields an efficient representation of
the variability of the model outputs with respect to the
variability of its inputs. In particular, in this paper, a
data-driven moment-based PCE technique called arbitrary
Polynomial Chaos (aPC) has been employed [20].

The Karhunen-Loève (KL) expansion is one of the
most common approaches for dimension reduction in
representing random processes as the infinite sum of
orthogonal deterministic basis functions, called eigen-
functions, multiplied by uncorrelated random coefficients.
This infinite sum can be truncated depending on the
precision required in the representation of the random
process. The KL expansion has been developed for a sin-
gle random process or ensembles of statistically indepen-
dent random processes and, therefore, its generalization
to multi-correlated processes, namely to several random
processes with mutual correlation, is not straightforward.
Indeed, if the cross-covariances of several random pro-
cesses are not zero, it is not easy to calculate consistent
expansions for all the random processes that reflect both
the structure of the autocorrelation and the structure
of the cross-covariance. To overcome this difficulty, the
muKL expansion has been introduced in [18]. The muKL
expansion is a methodology that extends the classical
KL expansion to multi-correlated nonstationary stochastic
processes, which is based on the spectral decomposition
of a suitable assembled random process and gives series
expansions of the random processes using a single set of
uncorrelated random variables.

The aPC expansion is a statistical moment-based PCE
technique that allows surrogate models to be built. It
extends the PCE techniques that require the knowledge of
the PDF of the input random variables, such as the gener-

alized polynomial chaos expansion [19]. Indeed, the aPC
expansion only requires the existence of a finite number
of moments of the input random variables of the model,
which can be discrete or continuous and can be specified
analytically as PDFs or numerically as histograms or raw
data sets. This means that this polynomial expansion does
not require the existence of a parametric PDF, avoiding
the necessity to fit parametric probability distributions
to data, which is very useful especially when a reduced
amount of data is available.

In this paper, using the muKL expansion, the random
processes that represent the components of the wind are
approximated by a finite sum of the product of certain
eigenfunctions multiplied by their corresponding uncorre-
lated random variables, which are characterized by using
the aPC expansion. In the muKL expansion, the obtained
uncorrelated random variables are ordered according to
the amount of variability explained by each of them,
which allows the truncation of the infinite sum to be
carried out for a given precision. Then, the aPC expansion
is calculated using the most significant random variables.
A set of nodes and weights are computed in order to
develop the surrogate models for the state variables of
the optimal control model used to generate the aircraft
trajectories, which represent the variability of the optimal
trajectories of each aircraft. Finally, using the haversine
formula, the marginal and joint PDFs of the distance
between aircraft at each time instant are estimated, from
which the aircraft conflict probabilities are computed.

This paper is organized as follows. Section II presents
the general formulation of the muKL expansion, which
allows for the dimension reduction of multi-correlated
random processes. Section III describes the moment-
based PCE technique, which permits the uncertainty
quantification to be carried out. Section IV outlines the
computational and statistical properties of the surrogate
models represented by the PCE expansions, which are
employed to estimate the marginal and joint PDFs of
the distance between aircraft. The practical application
of the proposed methodology for aircraft CD is shown
in Section V. Finally, some conclusions are drawn in
Section VI.

II. Karhunen-Loève Expansion for Multi-correlated
Random Processes

As mentioned before, the eastward and northward
components of the wind forecast represented by the EPS
are considered as realizations of correlated stochastic
processes. Therefore, to implement their KL expansion,
a specific methodology for correlated processes is em-
ployed. In particular, the muKL expansion is used, which
is one of the two methodologies proposed in [18] with
the aim to generalize the KL expansion in order to model
multi-correlated non-stationary stochastic processes. The
other approach is referred to as the Multiple Correlated
KL (mcKL) expansion. The muKL technique has been
chosen in this paper, since it allows the series expansions
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of the correlated processes to be generated in terms of
a single set of uncorrelated random variables, whereas
in the mcKL approach a different set of mutually cor-
related random variables must be developed for each
process. In this section, the muKL method is described
for convenience. A more in-depth treatment of the method
accompanied by illustrative examples is given in [18].

Let (Ω,Λ, P ) be a probability space, where Ω is the
sample space, Λ is a σ-algebra, and P is a probability
measure. Consider the following ensemble of n zero-
mean, square-integrable stochastic processes:

{f1(s;ω), . . . , fn(s;ω))}, ω ∈ Ω. (1)

Without loss of generality, it is assumed that all these
processes are defined in the same bounded interval [0, S],
where index s usually denotes time or space. More specif-
ically, in this paper, index s represents the spatial position
in which weather data are predicted. Then, the correlation
between the aforementioned processes is defined in terms
of the following n(n+ 1)/2 covariance kernels:

Cij(s1, s2) = E[fi(s1;ω)fj(s2;ω)], 1 ≤ i ≤ j ≤ n,
(2)

where E[ · ] is the statistical expectation operator. In
particular, Ci(s1, s2) = Cii(s1, s2) represents the auto-
covariance function of the process fi(s, ω).

Notice that if the n processes (1) are mutually in-
dependent, then the conventional KL expansion can be
directly applied to each process, resulting in multiple
series which can be built separately [21]. Conversely, if
the cross-covariances (2) are not zero, then the classical
KL expansion is not capable of providing consistent
expansions for all the random processes, which reflect
the autocorrelation and the cross covariance structure.

The muKL approach overcomes this drawback by
generating a series expansion for each random process
of the ensemble processes (1) in terms of a single set
of uncorrelated random variables [22]. To obtain such a
series, the following assembled process is defined:

f̃(s, ω) = fi(s− Si−1;ω), s ∈ Ii, (3)

where Si = iS and Ii = (Si−1, Si], 1 ≤ i ≤ n,
with I1 = [0, S1]. That is to say, the restriction of the
assembled process f̃(s, ω) to the interval Ii corresponds
to the process fi(s, ω). Notice that f̃(s, ω) is a second-
order process as well, which satisfies

E[f̃(s, ω)] = 0, E[f̃(s1, ω)f̃(s2, ω)] = C̃(s1, s2),

where C̃(s1, s2) is the assemble covariance function,
which is defined as

C̃(s1, s2) = Cij(s1 − Si−1, s2 − Sj−1), s1 ∈ Ii, s2 ∈ Ij .
(4)

Then, a conventional KL expansion can be applied to
the assembled process (3) obtaining

f̃(s, ω) =

∞∑
k=1

√
λkf̃k(s)ξk(ω), (5)

with ξk(ω) uncorrelated random variables, which are
calculated as

ξk(ω) =
1√
λk

∫ Sn

0

f̃(s, ω)f̃k(s)ds,

with λk and f̃k(s) defined as eigenvalues and eigenfunc-
tions of a symmetric compact integral operator [23] whose
kernel is (4), namely λk and f̃k(s) are solutions to the
following homogeneous Fredholm integral equation of the
second kind:

λkf̃k(s1) =

∫ Sn

0

C̃(s1, s2)f̃k(s2)ds2. (6)

In practical applications, it is more convenient to work
with non-negative covariance functions. Unfortunately,
the assembled covariance C̃(s1, s2) might have negative
eigenvalues due to the fact that, in general, it is not
positive semi-definite, even if all the covariances (2) are.
Thus, a positivity condition for the assembled covariance
C̃(si, sj) is imposed, that is to say

m∑
j=1

m∑
i=1

C̃(si, sj)xixj ≥ 0,

for any finite sequence {s1, . . . , sm} and any real numbers
xi, i = 1, . . . ,m. Namely, the m×m matrix

C̃ =


C̃(s1, s1) C̃(s1, s2) · · · C̃(s1, sm)

C̃(s2, s1) C̃(s2, s2) · · · C̃(s2, sm)
...

...
. . .

...
C̃(sm, s1) C̃(sm, s2) · · · C̃(sm, sm)


must be positive semi-definite for any collection of m
different values of s ∈ [0, S].

Thus, the eigen-pairs {λk, f̃k(s)}, k = 1, 2, . . . , can be
calculated and arranged according to the magnitudes of
the eigenvalues λk using (6). Moreover, each eigenfunc-
tion f̃k(s) can be expressed in terms of n subfunctions
ϕ
(i)
k (s), i = 1, . . . , n, which are defined as

ϕ
(i)
k (s) = f̃k(s+ Si−1)I[0,S](s),

being I[0,S] the indicator function in the interval [0, S].
Therefore, the i-th random process fi(s, ω) of the original
ensemble (1) is represented as follows:

fi(s, ω) =

∞∑
k=1

√
λkϕ

(i)
k (s)ξk(ω). (7)

Notice that the eigenvalues λk and the random vari-
ables ξk(ω) which appear in (7), are the same as the ones
introduced in (5). Moreover, for each index i, the col-
lection of subfunctions {ϕ(i)k (s)}, k = 1, 2, . . . is neither
orthogonal nor normalized in s ∈ [0, S]. Nevertheless, this
drawback can be overcome by normalizing ϕ(i)k (s) within
[0, S], namely the random process fi(s, ω) is rewritten as

fi(s, ω) =

∞∑
k=1

√
λ̂
(i)
k ϕ̂

(i)
k (s)ξk(ω), (8)

being ϕ̂
(i)
k (s) = ϕ

(i)
k (s)/

∥∥ϕ(i)k (s)
∥∥
2

and λ̂
(s)
k =

λk
∥∥ϕ(i)k (s)

∥∥2

2
.
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For practical purposes, the dimensionality of the ex-
pansion (5) is reduced via truncation, and its associated
mean-square error can be calculated. A truncated assem-
bled process, which only considers the first M elements
of the expansion, is defined as follows:

QM (s, ω) =

M∑
k=1

√
λkf̃k(s)ξk(ω), (9)

whereas the associated mean-squared error is calculated
as

ε2M =

∫ Sn

0

E[(f̃(s, ω)−QM (s, ω))2]ds. (10)

Taking into account that ξk(ω) are uncorrelated ran-
dom variables and f̃k(s) are orthonormal eigenfunctions,
the mean-squared error (10) can be expressed as

ε2M =

∞∑
k=M+1

λk. (11)

Thus, the truncation error of the series expansion (5)
decreases with respect to the decay rate of the eigenvalues.
Furthermore, the mean-squared error (10) is an upper
bound on the truncation error of the series expansion
(8), whereas the errors of the cross-covarances Cij(s1, s2)
are bounded by the error of the assembled covariance
C̃(s1, s2) defined in (4).

In practical applications, a key aspect of any KL
expansion is the election of the appropriate number of
terms in the truncated expansion. In particular, in the
muKL expansion, a threshold for the error εM can be
imposed to determine the choice of M in (9). According
to (11), this can be achieved by imposing a threshold on
the relative sum of eigenvalues, as follows:

M∑
k=1

λk ≥ δ

∞∑
k=1

λk,

being δ ∈ [0, 1] an arbitrary constant chosen so that
the accuracy of the approximation is satisfactory for a
particular application.

Notice that, in order to incorporate the muKL ex-
pansion into the aircraft trajectory planner model, the
eigenfunctions ϕ

(i)
k (s), i = 1, . . . , n, associated to the

expansions of the eastward and northward components
of the wind velocity must be interpolated to be converted
into analytic expressions. Moreover, the uncertainty of the
corresponding random variables ξk(ω) must be quantified,
which can be done using the aPC expansion introduced
in Section III.

III. Moment-Based Arbitrary Polynomial Chaos

This section introduces the aPC approach, which is
employed in this article to represent the propagation of
the uncertainties through the aircraft trajectory planner
model. A more complete description of this methodology
can be found in [20].

Let ξ = (ξ1, ξ2, . . . , ξNU
) be a vector of NU indepen-

dent random variables in the probability space (Ω,Λ, P )

introduced in Section II. Notice that, for the sake of
simplicity, the formal dependency on ω is dropped for
ξi(ω), i = 1, . . . , NU . Then, a surrogate model for each
output variable x(t, ξ) of the aircraft trajectory planner
can be computed, which is represented by a multidi-
mensional polynomial expansion. In particular, a linear
combination of NP stochastic multivariate orthonormal
polynomials Ψk(ξ) with deterministic coefficients αk(t)
can be used to approximate the output variable x(t, ξ) as
follows:

x(t, ξ) = x(t; ξ1, ξ2, . . . , ξNU
, ) ≈

NP∑
k=1

αk(t)Ψk(ξ1, ξ2, . . . , ξNU
).

(12)

In (12), the multivariate orthonormal polynomials
Ψk(ξ), with 1 ≤ k ≤ NP , are calculated as the prod-
uct of univariate orthonormal polynomials ψi

j(ξi), with
1 ≤ i ≤ NU , 1 ≤ j ≤ p, where i indicates the elements
of the vector of random variables and j the order of the
univariate orthonormal polynomials. As a consequence of
the orthonormality of the polynomials, the NP coefficients
αk(t) introduced in (12) can be calculated as follows:

αk(t) =

∫
ξ∈Ω

x(t, ξ)Ψ(ξ)dP (ξ). (13)

In particular, in this article, a Gaussian quadrature rule
based on the statistical moments of ξ = (ξ1, ξ2, . . . , ξNU

)
is employed to solve (13). For a given multivariate
function F(ξ), the full tensor product quadrature formula
F(ξ) can be written as∫ d1

c1

· · ·
∫ dNU

cNU

F(ξ) ≈

p1∑
i1=1

· · ·
pNU∑

iNU
=1

F(ζi1 , . . . , ζiNU )(wi1 ⊗ · · · ⊗ wiNU
),

(14)

being ζij and wij , 1 ≤ i ≤ NU , 1 ≤ j ≤ p, respectively,
the nodes and weights of the numerical integration, which
are obtained from the statistical moments of the random
variables ξ = (ξ1, ξ2, . . . , ξNU

) [20].
Therefore, the statistical moments of the random

variables of the aircraft trajectory planner model are
employed to determine the optimal nodes and weights
of the surrogate model, as well as the corresponding
orthonormal polynomials. Thus, the aPC approach offers a
general framework, which permits to handle both random
variables with known parametric distributions and data
sets with unknown parametric distributions [24].

IV. Uncertainty Quantification

The polynomial expansion (12) provides a computa-
tionally efficient way to obtain the mean and variance
of the output variables x(t, ξ) of the aircraft trajectory
planner model using the coefficients αk(t). Specifically,

µx = α1(t),

σ2
x =

NP∑
k=2

α2
k(t).
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Moreover, according to the quadrature rule defined in
(14), the mean and variance can be easily calculated in
terms of scalar products as:

µx = x(t; ζi1 , . . . , ζiNU ) ·w,
σ2
x = (x(t; ζi1 , . . . , ζiNU )− µx)

2 ·w,

being w = (wi1 , . . . , wiNU
), 1 ≤ i ≤ p, the vector of

Gaussian quadrature weights.
The polynomial expansion (12) also allows the PDFs

of the output variables of the aircraft trajectory planner
model to be estimated at each time instant. More specif-
ically, a kernel density estimation approach can be used,
which is based on the formulation of a data smoothing
problem [25]. Then, given a safety threshold, the marginal
and joint PDFs of the output variables can be employed to
estimate the separation distance loss probability between
aircraft along their whole trajectories.

V. Application

To demonstrate the effectiveness of the probabilistic
methodology for aircraft CD proposed in this paper, a
numerical experiment has been conducted. In this ex-
periment, a conflict scenario involving three aircraft has
been considered, in which the trajectory of each aircraft
is predicted and, given a safety threshold, the separation
distance loss probability between each pair of aircraft
is estimated. This probability is calculated, at each time
instant, from the PDFs of the distance between aircraft.

More specifically, an optimal control based aircraft
trajectory planner is considered, in which precise mod-
els of the aircraft are formulated. The use of accurate
aircraft dynamic models is required in order to improve
the predictability of the trajectories and obtain realistic
estimates. To solve the optimal control problems, a nu-
merical pseudospectral knotting method is employed. In
particular, both the aircraft model used and the numerical
resolution method applied are those described in [26].
Thus, the distances between pairs of aircraft involved in
the CD problems, as well as their corresponding PDFs,
are derived from the optimal state variables obtained in
the solution of these optimal control problems.

In the considered scenario, the three aircraft, denoted
as Aircraft A, Aircraft B, and Aircraft C, are assumed
to be flying at cruise level. The latitudes and longitudes
of their initial positions are indicated in Table I. The
specific time at which the aircraft are located at these
initial positions is March 19, 2022 at 06:00 UTC, which
will be referred to as the initial time of the experiment.
Their trajectories are predicted using the aforementioned
optimal control based aircraft trajectory planner, in which
the objective functional considered is the final time,
namely it has been assumed that the aircraft must reach
their final positions in minimum time. The latitudes and
longitudes of the final positions of each aircraft are also
given in Table I. A representation of this scenario along
with the initial and final positions of the aircraft are
shown in Figure 1. More specifically, as shown in the

instrumental chart of the Spanish upper airspace repre-
sented in Figure 1, the Aircraft A follows Airway UN871,
Aircraft B follows Airway UN873 and, after reaching
the VOR/DME GDV of Gran Canaria switches to Airway
UN858, and Aircraft C follows Airway UN729.

TABLE I: Initial and final positions of Aircraft A, Aircraft
B, and Aircraft C.

Units Aircraft A Aircraft B Aircraft C
Initial latitude ϕI [deg] 25.869 N 25.283 N 25.147 N
Final latitude ϕF [deg] 28.505 N 28.689 N 28.746 N
Initial longitude λI [deg] −18.389 E −17.428 E −14.964 E
Final longitude λF [deg] −14.677 E −14.967 E −15.547 E
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Fig. 1: Inital and final positions of the three aircraft
considered in the numerical experiment. Aircraft A, B,
and C are represented in green, yellow, and red colours,
respectively.

As mentioned in Section I, to predict the aircraft
trajectories, wind data obtained from the 50-member
ECMWF EPS have been used. The default eastward
and northward components of the wind velocity of each
member of the ECMWF EPS forecast are provided at
a regular latitude-longitude grid, with a spatial resolution
from 0.5 to 3 [deg], at 9 atmospheric levels corresponding
to different pressure levels from 1000 to 50 [hPa]. Custom
spatial resolutions can also be selected. The temporal
coverage is 6 hour data two times daily.
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In this paper, the chosen pressure level is 200 [hPa],
which corresponds to the cruise altitude and the selected
spatial resolution is 0.5× 0.5 [deg]. Moreover, a series of
equally-weighted forecasts with different time horizons
have been used. Specifically, the predictions published on
March 19, 2022 at 00:00 with time horizon 06 [h], March
18, 2022 at 12:00 with time horizon 18 [h], March 18,
2022 at 00:00 with time horizon 30 [h], March 17, 2022
at 12:00 with time horizon 42 [h], March 17, 2022 at
10:00 with time horizon 54 [h], and on March,16 2022 at
12:00 with time horizon 66 [h]. Therefore, a total of 300
members of these ensambles have been employed whose
forecasts coincide with the initial time of the experiment.
The mean and standard deviation, measured in [m/s],
of the eastward and northward components of the wind
velocity, obtained from these 300 ensemble members, are
shown in Figures 2 and 3, respectively.
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Fig. 2: Mean value, in [m/s], of the magnitude of the com-
ponents of the wind velocity calculated using ECMWF
EPS forecasts for March 19, 2022 at 6:00 for the pressure
altitude 200 [hPa].
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Fig. 3: Standard deviation, in [m/s], of the magnitude
of the components of the wind velocity calculated using
ECMWF EPS forecasts for March 19, 2022 at 6:00 for
the pressure altitude 200 [hPa].

Therefore, the muKL expansion of the wind velocity
components has been computed using 300 realizations of
the stochastic process. In particular, a truncated muKL
expansion, represented by Equation (9), with M = 4
has been considered. The percentages of variability ex-
planation by each random variable of the expansion are
reported in Table II.

As already mentioned in Section II, to include the
wind velocity information in the aircraft trajectory plan-

TABLE II: Percentages of explanation of each random
variable of the muKL expansion.

Random variable % of explanation
ξ1(ω) 29.394
ξ2(ω) 17.930
ξ3(ω) 13.079
ξ4(ω) 8.610
Total 69.013

ner model, an analytic function that interpolates the
eigenfunctions of the wind velocity components derived
from the muKL expansion must be determined. More
specifically, in this paper, a Radial Basis Functions (RBF)
based interpolation method is employed. The RBF is a
widespread technique that allows multidimensional data
to be interpolated, which can be gridded or scattered,
namely the RBF can deal with both structured and un-
structured data [27].

Once the aircraft trajectories are predicted using the
optimal control based aircraft trajectory planner, the corre-
sponding optimal state variables are employed to calculate
both the main statistics and the PDFs of the distance
between each pair of aircraft at each time instant. More
specifically, the orthodromic distance between aircraft
is computed from the obtained optimal latitudes and
longitudes using the haversine formula.
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Fig. 4: Mean distance between each pair of aircraft
together with the corresponding 2-sigma uncertainty en-
velopes. The horizontal solid black line represents a
distance of 5 [NM], the minimum separation required.

Figure 4 shows the mean distances between each
pair of aircraft together with their associated 2-sigma
confidence envelopes calculated using the proposed CD
probabilistic methodology. The black horizontal line rep-
resents the minimum separation distance between aircraft
required by the current regulation, namely 5 [NM] [5].
It can be seen in Figure 4 that, based on the 2-sigma
confidence envelope criterion, conflicts between Aircraft
A and Aircraft C and between Aircraft B and Aircraft C
are detected, whereas no conflict between Aircraft A and
Aircraft B is indicated. Moreover, the same conclusion
is obtained if a 3-sigma confidence envelope criterion is
used.

The vertical grey segments depicted in Figure 5 rep-
resent five time instants, namely 1235.08 [s], 1265.88 [s],
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Fig. 5: Mean distance between Aircraft A and Aircraft
B together with the corresponding 2-sigma uncertainty
envelope. The vertical segments in grey represent five
time instants, namely 1235.08 [s], 1265.88 [s], 1296.68
[s], 1327.48 [s], and 1358.28 [s], at which the PDF of the
distance between these aircraft is calculated and shown
in Figure 6. The horizontal solid black line represents a
distance of 5 [NM], the minimum separation required.

Fig. 6: PDFs of the distance between Aircraft A and Air-
craft B at time instants 1235.08 [s], 1265.88 [s], 1296.68
[s], 1327.48 [s], and 1358.28 [s]. The solid black line
represents a distance of 5 [NM], the minimum separation
required.

1296.68 [s], 1327.48 [s], and 1358.28 [s], at which the
PDFs of the distances between Aircraft A and Aircraft
B have been estimated. The resulting PDFs are shown in
Figure 6. At the point of closest distance, which occurs
at time 1296.68 [s], the probability of conflict is 0.0085,
which is a significant value from the air traffic safety point
of view. Thus, it can be concluded that, unlike the CD
criterion based on the the 2-sigma confidence envelope,
the CD criterion based on the probability is able to detect
a conflict between Aircraft A and Aircraft B.

The surrogate model (12) allows not only the marginal
PDF of the distance between two aircraft at any time
instant to be calculated but also the joint PDF of the
distances between two aircraft in correspondence with two
different time instants to be computed. As an example,
the joint PDF of the distances between Aircraft A and
Aircraft B, at times 1296.68 [s] and 1199.66 [s], is

(a) Joint PDF.

(b) Joint CDF.

Fig. 7: Joint PDF and joint CDF of the distances between
Aircraft A and Aircraft B at times 1296.68 [s] and 1199.66
[s].

represented in Figure 7.a, whereas the corresponding joint
CDF is shown in Figure 7.b. From this joint probability
distribution it is possible to calculate both joint and con-
ditional probabilities of conflict. For instance, knowing
that the distance between Aircraft A and Aircraft B at
time 1199.66 [s] is higher than 25 [NM], the probability
of conflict at time 1296.68 [s] conditioned by this event
becomes 4.89 · 10−16, which is considerably lower than
the marginal probability 0.0085.

VI. Conclusions

In this paper, a probabilistic approach to aircraft con-
flict detection in the cruise phase of flight in the presence
of wind prediction uncertainty quantified by an ensemble
weather forecast has been proposed. Specifically, a con-
flict among aircraft has been assumed to happen when the
distance between two or more aircraft is smaller than the
required minimum separation.

To this purpose, the multiple uncorrelated Karhunen-
Loève expansion, the arbitrary polynomial chaos ex-
pansion, and a Gaussian kernel density estimator have
been combined with a deterministic trajectory planner
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to quantify the uncertainty associated to the northward
and eastward components of the wind velocity and obtain
the probability density function of the distance between
aircraft at different time instants, which allows the proba-
bility of conflict between pairs of aircraft to be calculated.
The joint probability density function of the distance
between two aircraft at two different time instants has
also been estimated, which permits joint and conditional
probabilities of conflict between pairs of aircraft to be
computed.

The ensemble prediction system provided by the Eu-
ropean Centre for Medium-Range Weather Forecast has
been employed in this paper as the probabilistic wind
forecast, whereas a deterministic aircraft trajectory plan-
ner based on pseudospectral optimal control has been used
to generate the aircraft trajectories. However, the proposed
data-driven probabilistic methodology for aircraft conflict
detection is a general approach in which any ensemble
prediction system and any deterministic aircraft trajectory
planner can be employed.

In the numerical experiments, the proposed method-
ology has been applied to detect conflicts among aircraft
flying at cruise altitude. More specifically, conflicts be-
tween aircraft have been detected not only by calculating
the marginal probability of occurrence at a certain time
instant but also computing the conditional probability of
occurrence, in which the conditioning event is assumed to
be information about the distance between the two aircraft
at a previous time instant. As expected, information about
the distance between two aircraft at a certain previous
time instant has a great influence on the probability of
conflict between the same aircraft at a future time instant.
Moreover, it has been proven that this approach to conflict
detection based on the probability of occurrence is much
more accurate than the approach based on confidence
envelopes of the separation between aircraft, which, from
the safety point of view, is a key aspect for the air traffic
management system.

The proposed methodology represents a new frame-
work to expand the capabilities of current aircraft conflict
detection systems in the presence of uncertainty on wind
velocity, since it is able of yielding marginal and con-
ditional probabilities of conflict and not only confidence
intervals.
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