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Abstract—This paper studies the formation mission design
problem for commercial aircraft in the presence of uncertainties.
Specifically, it considers uncertainties in the departure times
of the aircraft and in the fuel burn savings for the trailing
aircraft. Given several commercial flights, the problem consists
in arranging them in formation or solo flights and finding
the trajectories that minimize the expected value of the
direct operating cost of the flights. The formation mission
design problem is formulated as an optimal control problem
of a stochastic switched dynamical system and solved using
nonintrusive generalized polynomial chaos based stochastic
collocation. The stochastic collocation method converts the
stochastic switched optimal control problem into an augmented
deterministic switched optimal control problem. With this
approach, a small number of sample points of the random
parameters are used to jointly solve particular instances of the
switched optimal control problem. The obtained solutions are
then expressed as orthogonal polynomial expansions in terms of
the random parameters using these sample points. This technique
allows statistical and global sensitivity analysis of the stochastic
solutions to be conducted at a low computational cost. The aim
of this study is to establish if, in the presence of uncertainties,
a formation mission is beneficial with respect to solo flight
in terms of the expected value of the direct operating costs.
Several numerical experiments have been conducted in which
uncertainties on the departure times and on the fuel saving
during formation flight have been considered. The obtained
results demonstrate that benefits can be achieved even in the
presence of these uncertainties.

Index Terms—Formation Flight, Formation Mission Design,
Commercial Aircraft, Stochastic Switched Systems, Stochastic
Optimal Control, Generalized Polynomial Chaos.

I. INTRODUCTION

This paper studies the formation mission design problem
for commercial aircraft in the presence of uncertainties,
considering extended formations, in which the longitudinal
distance between aircraft is between 10 and 40 wingspans.
This paper is actually a follow-up to [1], where the
potential contribution of formation flight to mitigating the
environmental impact of aviation and increasing the capacity
of the Air Traffic Management (ATM) system is discussed and
the formation mission design problem is studied in the absence
of uncertainties using deterministic switched optimal control
techniques.

The solution of the formation mission design problem in
the presence of uncertainties is stochastic, i.e, its components
are random processes, which can be characterized by their
mean and standard deviation functions. The expected values
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and the standard deviations of the latitude and longitude of
the optimal trajectories with respect to the expected value of
the timing and the expected values and standard deviations
of the timing of the trajectory as functions of the expected
value of the distance are useful for ATM purposes, such as
conflict detection and traffic synchronization. The expected
values and standard deviations of the fuel consumption and
final time of each flight of the formation mission permit the
Direct Operating Costs (DOC) to be estimated in such a way
that airlines can establish to what extent a formation mission
is economically beneficial.

The relative contributions of each random variable to
the variability of the latitude and longitude of the optimal
trajectories of each aircraft as functions of the expected value
of the timing and the variability of the timing of the trajectories
of each aircraft as functions of expected value of the distance
allow both the ATM staff to establish which sources of
uncertainty must be reduced to increase the predictability
of the trajectories and airlines to determine what sources of
uncertainty must be reduced to decrease the DOC.

The proposed methodology is an effective tool for solving
the formation mission design problem in the presence of
uncertainties and quantifying the effects of uncertainties in
the departure times of the aircraft and in the fuel burn savings
of the trailing aircraft on the solution of the problem.

Formation flight can have a great added value in two major
current air transport-related concerns, the decarbonisation of
the aviation sector and an increase in the (ATM) capacity
[2]. The key enabling factors for this concept of operation
are a formation control system to keep the aircraft flying
in formation at the optimal relative position to optimize the
fuel burn savings for the trailing aircraft and an ATM system
capable of synchronizing flights departing from different
airports to ensure that the formation mission occurs as
planned. In extended formations, due to the great distance
between the leader and the follower aircraft, instabilities, such
as meandering and external factors, may affect the motion
of the vortices. It is therefore important to maintain the
relative position between the follower aircraft and the leader’s
wake vortices precisely, as the fuel burn savings are very
sensitive to that relative positioning. This can be done using a
formation control system capable of continuously locating the
wake vortices, maintaning the aircraft in the optimal relative
position, and, in this way, optimizing the fuel savings during
the formation flight [3].

While technical issues related to maintain an efficient and
safe formation flight have been solved in the last years, some
concerns have yet to be addressed. In particular, a major
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change in airworthiness standards, policies, and procedures is
required. In the 40th International Civil Aviation Organization
(ICAO) Assembly, formation flight was proposed as a strategic
objective, and the need to develop a new operational concept
which includes reduced separations between aircraft allowing
formation was established [4].

Additionally, the main aircraft manufacturers are making a
serious effort to implement formation flight. Airbus, the major
European aircraft manufacturer, is undertaking an ambitious
project called Fello’fly [5], which aims to demonstrate the
technical, operational, and economical viability of formation
flight for long-haul commercial flights. In November 2021,
the first flight test was carried out in transoceanic flights1.
In this project, Airbus is collaborating with airlines and air
navigation service providers in order to tackle the formation
flight challenges. The objective of this project is not only to
demonstrate the operational feasibility of formation flight, but
also identify safety procedures and standards for transatlantic
operations, enabling a controlled entry into service by 2025.
Boeing has conducted an extended formation flight study, in
which flight tests on Boeing’s ecoDemonstrator platform have
been carried out [6].

It is well known that uncertainty in flight departure times
is among the main causes of trajectory uncertainty, which
generates inefficiency in the ATM system [7]. However, timing
is a crucial factor in formation missions. Indeed, considering
the usual cruise speed of most long-haul commercial aircraft,
missing the rendezvous location by, for instance, ten minutes
means spatially missing the partner aircraft by 150 km. Such
cases require catch-up maneuvers, which result in a loss
of performance compared to the planned formation mission.
Thus, uncertainties in both departure times and fuel burn
savings for the trailing aircraft must be considered in the
formulation of the formation mission design problem and
their effects on the resulting aircraft trajectories and the
DOC of the formation mission must be quantified. Although
aircraft trajectories are not only affected by uncertainty in
the initial conditions but also by uncertainties in the aircraft
performance models, operational uncertainty, and weather
uncertainty, mainly wind and storms, this paper only considers
uncertainties in the departure times of the aircraft and in the
fuel burn savings for the trailing aircraft. These uncertain
parameters are modeled by means of random variables, which
are described by probability distribution functions. The aircraft
model is assumed to be known with precision as is the relevant
wind field.

Given several commercial flights, the problem consists in
establishing how to organize them in formation or solo flights
and in finding the trajectories that minimize the expected
value of the DOC of the formation mission. This paper
only considers formations of up to three aircraft, because
the difficulties in synchronizing more than three flights
make formations of more than three aircraft operationally
impractical. Moreover, increasing the number of aircraft in
the formation asymptotically reduces the benefits obtained
from the formation. Since each aircraft can fly solo or in

1https://simpleflying.com/airbus-a350s-bird-like-flight/

various positions within a formation, the mission is modeled
as a stochastic switched dynamical system, in which the flight
modes of the aircraft are described by sets of stochastic
ordinary differential equations, the discrete state describes the
combination of flight modes of the individual aircraft, and
logical constraints establish the switching logic among the
discrete states of the system. In this paper, the formation
mission design problem is formulated as an optimal control
problem of a stochastic switched dynamical system.

A deterministic switched dynamical system is a particular
type of hybrid system that consists of several subsystems and
a switching law that specifies the active subsystem at each
time instant. Deterministic switched dynamical systems are
described by both a continuous and a discrete dynamics, in
which the transitions among discrete states are not established
in advance. In particular, in this paper, each aircraft is
assumed to have different flight modes, namely solo flight
and flight in different positions within a formation, and
their combination is represented by the discrete state of
the switched dynamical system, which models their joint
dynamic behavior. Each flight mode is represented by different
dynamical equations, which may include or not include
formation flight benefits in terms of fuel burn savings.
Additionally, logical constraints in disjunctive form, based on
the stream-wise distance between aircraft, model the switching
logic among the discrete states of the system. Stochastic
switched dynamical systems inherit all the features of the
deterministic switched dynamical systems. Additionally, both
the discrete and the continuous dynamics are affected by
uncertainties. This general definition can encompass a wide
range of stochastic phenomena. This paper considers those
stochastic hybrid systems in which random variables only
affect the continuous dynamics. More specifically, random
variables represent uncertain parameter values and uncertain
initial conditions. The probability distribution functions of
these random variables are assumed to be known. In this
case, the continuous dynamics is described by a set of
stochastic differential equations but the discrete dynamics is
deterministic. The adjective stochastic as used in this paper
means that the solutions of the differential equations depend on
a vector of random variables. A systematic account of recent
developments regarding deterministic and stochastic hybrid
systems is given in the monography [8].

An optimal control problem of the stochastic switched
dynamical system described above is an optimal control
problem in which the continuous dynamics of the system is
represented by stochastic differential equations, the objective
functional is a stochastic functional, and the constraints, which
are defined by means of stochastic functions, must be satisfied
almost surely, i.e., with probability 1. The set of possible
exceptions in which the constraints are not satisfied may
be non-empty but must have probability 0. The adjective
stochastic for these functions and the objective functional
means in this paper that they depend on a vector of random
variables. This problem is referred to as the Stochastic
Switched Optimal Control Problem (SSOCP).

Modeling, control, and optimal control of stochastic
switched systems are addressed in [8], [9], in which the
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random factors acting on the continuous dynamic models of
the switched system in each discrete state are represented by
some idealized processes, such as the Wiener process, and
tools such as stochastic calculus have been employed to obtain
solutions.

Another approach to model uncertainties in switched
dynamical systems is to treat uncertainties as random variables
or random processes and recast the original deterministic
switched dynamical system as a stochastic switched dynamical
system. This type of stochastic systems are different from
those represented by classical stochastic differential equations,
where the random inputs are idealized processes. Consider
a stochastic optimal control problem in which only random
variables are present in its formulation like in the formation
mission design problem studied in this paper. One of the most
commonly used methods to solve optimal control problems
of stochastic dynamical systems of this type is the Monte
Carlo sampling, in which independent realizations of the
random variables are generated based on their probability
distributions. For each realization, the optimal control problem
becomes deterministic. The need for large number of solutions
for accurate results can lead to an excessive computational
cost, especially for optimal control problems that are
already computationally intensive in the deterministic settings,
as the mission design problem considered in this paper.
The Generalized Polynomial Chaos (gPC) expansion can
contribute to alleviating this drawback. A systematic and
coherent presentation of numerical strategies for uncertainty
quantification and stochastic computing is given in [10], with
a focus on the methods based on the gPC approach.

In stochastic collocation methods the stochastic model
equations are satisfied at a discrete set of points, called nodes,
in the corresponding random space. Polynomial approximation
theory is used to locate the nodes strategically to increase the
numerical accuracy. With this approach, a small number of
sample points of the random variables are used to solve jointly
particular instances of the SSOCP. The obtained solutions are
then expressed as orthogonal polynomial expansions in terms
of the random variables using these sample points. This is
a nonintrusive methodology because the model equations are
not altered. This technique allows statistical and sensitivity
analysis of the stochastic solutions to be conducted at a
low computational cost. Thus, the gPC method converts the
SSOCP into an augmented deterministic Switched Optimal
Control Problem (SOCP), in which particular instances of the
SSOCP are solved together as a single deterministic optimal
control problem. In this paper, the resulting SOCP is solved
using the method described in [1]. It is important to point
out that the gPC method is applicable to solve the SSOCP
when the solution depends smoothly on the random variables.
This means that the solutions obtained for each combination
of sample points of the random variables must give rise to the
same discrete solution, i.e., to the same sequence of discrete
states of the switched dynamical system that represents the
formation mission.

Aircraft trajectories are specified by a sequence of
geographical coordinates of spatial positions and the timing,
i.e., a sequence of time instants at which the corresponding

point of the trajectory must be reached. Thus, any delay of
the aircraft in reaching a spatial position is considered a
temporal deviation from the trajectory as much as a spatial
deviation at a given time instant. The uncertain position of
an aircraft at a given time can be described by a region
of confidence. Likewise, the uncertain timing of an aircraft
trajectory at a given spatial position can be described by an
interval of confidence. In this paper, the expected values of the
geographical coordinates together with the expected value of
timing obtained in the solution of the SSOCP are considered
as the reference trajectories to be followed by the aircraft of
the formation mission.

As previously mentioned, the solution of the formation
mission design problem in the presence of uncertainties is
stochastic, i.e., its components are random processes which
can be characterized by their mean and standard deviation
functions. Given the gPC expansion, these functions can be
directly computed from the coefficients of this expansion [10].
The expected value coincides with the first coefficient, whereas
the variance is the sum of the squares of the other coefficients
of the gPC expansion. The statistical information estimated
from the stochastic solutions includes the expected values and
standard deviations of the latitude and longitude of the optimal
trajectories and the other state variables with respect to time,
together with the expected values and standard deviations of
the timing of the trajectory as functions of the distance. They
also include the expected values and the standard deviations
of the arrival times and, in the case of formation flight, the
expected values and the standard deviations of the latitude,
longitude, and time of the rendezvous and splitting locations.
The expected values and standard deviations of the fuel
consumption of each flight of the formation mission are
also estimated. This information is combined to estimate the
expected value of the DOC.

Additionally, in the numerical experiment that involves two
random variables, a global sensitivity analysis of the stochastic
solution is also conducted [11]. In this paper, the global
sensitivity analysis is based on the Sobol’ indices, which
enable the determination of what proportions of the variance
of the solutions of the switched optimal control problem can
be attributed to the different random variables of the switched
optimal control model. The purpose of the sensitivity analysis
is to identify the random variables that have more influence
on the variability of a component of the stochastic solution
with the aim of reducing its variability acting on the source.

A. Previous approaches

In [12], a review of the literature on stochastic modeling
with applications to ATM is provided, including literature on
stochastic optimal control.

In [13], the problem of aircraft conflict prediction is studied
for two-aircraft midair encounters. First, a model is presented
for prediction of the aircraft positions along a time horizon,
during which each aircraft is following a prescribed flight
plan in the presence of additive wind perturbations on its
velocity. Then, a method for estimating the probability of
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conflict is proposed. This method is based on a Markov chain
approximation of the stochastic processes that models the
aircraft flight. In [14], the aircraft conflict prediction problem
is formulated as a reachability problem in a stochastic hybrid
system framework. Specifically, a switching diffusion model
is employed to predict the future positions of an aircraft
following a given flight plan, and the probability that the
aircraft enters an unsafe region of the airspace is estimated
using a numerical algorithm for reachability computation.

In [15], an approach to aircraft trajectory optimization in
the presence of uncertainties based on gPC is presented,
where only one random variable has been considered,
which represents an uncertain aerodynamic parameter of the
dynamic model of the aircraft. This random variable has
been modeled as a uniformly distributed random variable.
In [16], a stochastic optimal control method based on gPC
is developed for determining conflict-free aircraft trajectories
under wind uncertainty. The random processes that represent
the components of the wind speed are approximated as
a linear combination of deterministic functions multiplied
by independent random variables using the Karhunen-Loève
expansion.

In [1], a deterministic switched optimal control method
is employed to solve the formation mission design problem.
An additional analysis has been conducted to determine how
departure delays and fuel burn savings affect the formation
flight, in terms of routes, rendezvous and splitting locations
and times, and flight times. In [17], the impact of ground
delays on formation flight is studied using stochastic dynamic
programming.

B. Contributions of the paper

This paper proposes a methodology for the solution
of the formation mission design problem in the presence
of uncertainties in some of the parameters and boundary
conditions of the problem. These uncertainties are represented
by random variables characterized by probability density
functions. The formation mission design problem in the
presence of uncertainties is formulated as an optimal control
problem of a stochastic switched system. This problem is
solved using an approach based on gPC, in which the
stochastic switched optimal control problem is transformed
into an equivalent deterministic switched optimal control
problems in a higher dimensional state space and solved
using a numerical method developed by the same authors
[1]. The formulation of the problem based on switched
optimal control allows accurate dynamic models of the aircraft
and meteorological forecast to be included in the problem
formulation. This technique permits statistical and global
sensitivity analysis of the stochastic solution to be conducted
at a low computational cost.

C. Organization of the paper

The paper is organized as follows. The model of the
switched dynamical system that represents the formation
mission is introduced in Sec. II. The deterministic and the
stochastic switched optimal control problems are stated in

sections III and IV, respectively. The generalized polynomial
chaos expansion technique and the method to solve the
stochastic switched optimal control problem are described in
Sec.V. The results of the numerical experiments are reported
and analyzed in Sec. VI. The outcomes of the sensitivity
analysis of the solutions are discussed and interpreted in
Sec.VII, Finally, conclusions are drawn in Sec. VIII.

II. MODEL OF THE SYSTEM

This section outlines the model of the switched dynamical
system that represents the formation mission. Further details
on the aircraft equations of motions, flight envelope, and wind
model employed can be found in [1, Sect. II].

The mission design problem is studied only in the cruise
phase of the flight. Thus, a simplified two-degrees-of-freedom
point variable-mass dynamic model is considered assuming
that all aircraft are in the cruise phase. The motion is
restricted to the horizontal plane at cruise altitude over a
spherical Earth model. A symmetric flight without sideslip
is considered and all the aircraft forces are supposed to be
in the plane of symmetry of the aircraft. Wind effects are
also considered. All aspects associated with the rotational
dynamics are neglected. The set of kinematic and dynamic
differential-algebraic equations (DAE) that describe the motion
of each aircraft of the formation mission are

φ̇(t) =
V (t) · cosχ(t) + VWN

(t)

RE + h
,

λ̇(t) =
V (t) · sinχ(t) + VWE

(t)

cosφ(t) · (RE + h)
, (1)

χ̇(t) =
L(t) · sinµ(t)

V (t) ·m(t)
,

V̇ (t) =
T (t)−D(t)

m(t)
,

where the state vector has five components: the two
dimensional position variables, latitude and longitude, denoted
by φ and λ, respectively, the heading angle χ, the true airspeed
V , and the mass of the aircraft m. In this set of equations, the
control vector has three components: the thrust force T , the lift
coefficient CL, and the bank angle µ. The normalized version
of the DAE system (1) is used in this paper. L = qSCL is
the lift force, where q = 1

2ρV
2 is the dynamic pressure, ρ

is the air density, and S is the reference wing surface area.
The aerodynamic drag force is D = qSCD, where CD is the
drag coefficient. h is the cruise altitude and VWE

and VWN
are

the components of the wind velocity vector in eastward and
northward directions, respectively. The mass flow rate equation
is

ṁ(t) = −T (t) · η(t), (2)

where η is the thrust specific fuel consumption. The
Eurocontrol’ s Base of Aircraft Data (BADA), version 3.6
[18], has been used to determine this. Thus, for aircraft
p, the state vector is xp(t) = (φp(t), λp(t), χp(t), Vp(t),
mp(t)) ,∀p ∈ {1, . . . , Na}, and the control vector is up(t) =(
Tp(t), CLp(t), µp(t)) ,∀p ∈ {1, . . . , Na}, with Na the

number of aircraft involved in the mission design problem.
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Flight envelope constraints model aircraft performance
limitations. These constraints are algebraic constraints usually
expressed as simple bound constraints that involve, for
instance, flight altitude, load factor, and airspeed. BADA 3.6
is used to model the upper and lower bounds of the flight
envelope constraints. These constraints are included in the set
of path constraints of optimal control problems.

Wind information from ERA-Interim [19], provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) is used to compute the VWE

and VWN
components

of the wind speed in Eqs. (1). Since this information is
given as grid data, analytic functions that approximate the
grid data must be determined to include wind information in
the stochastic switched optimal control problem used to solve
the mission design problem. Radial basis functions [20] are
employed for this purpose. Wind data from April 30, 2019, at
12:00 are used.

The DAE system consisting of Eqs. (1) and Eq. (2) is
applicable to any aircraft in the cruise phase of solo flights.
In formation flights, it is necessary to include a modification
in the mass flow rate equation (2) for the trailing aircraft. It is
assumed that the reduction in the induced drag of the trailing
and intermediate aircraft can be modeled as a percentage of
the reduction in fuel consumption, Rfuel. In this way, the fuel
saving factor can be directly incorporated into Eq. (2) to obtain
the mass flow rate equation for the trailing aircraft during
formation flight

ṁ(t) = −[1−Rfuel] · T (t) · η(t). (3)

In a two-aircraft formation, this reduction is applied to the
trailing aircraft when the distance to the leader aircraft is
shorter than 20 wingspans. In a three-aircraft formation, this
reduction is applied to the trailing and intermediate aircraft
when the distances between the leader and intermediate
aircraft and between the intermediate and the trailing aircraft
are shorter than 20 wingspans. Notice that the distance of 20
wingspans is used for checking if aircraft achieve benefits from
the formation flight and not for providing flight trajectories
strictly accounting for this distance.

III. THE DETERMINISTIC SWITCHED OPTIMAL CONTROL
PROBLEM

Since each aircraft can fly solo or in different positions
within a formation, the mission is modeled as a switched
dynamical system, in which the discrete state describes the
combination of flight modes of the individual aircraft.

In this section, following [1, Sect. III], the formulation of
the SOCP is introduced for a two-switched dynamical system.
The dynamical model of a two-switched dynamical system is

ẋS(t) = fvS(t)(t, xS(t), uS(t)),

xS(tI) = xI ∈ Rn, (4)
xS(tF ) = xF ∈ Rn,

vS(t) ∈ {0, 1}, tI ≤ t ≤ tF ,

where the continuously differentiable vector fields, f0, f1 :
R×Rn×Rm → Rn, describe the dynamics of the two possible

modes of the system. The control input uS(t) ∈ Ω ⊂ Rm is
constrained to belong, at each time instant, to the bounded
and convex set Ω. The binary variable vS(t) is the mode
selection variable that specifies which of the two possible
system modes, f0 or f1, is active. Thus, both uS(t) and vS(t)
can be regarded as control variables. The initial time tI , the
final time tF , the initial state xS(tI), and the final state xS(tF )
are assumed to be restricted to a boundary set B, namely,
(tI , xS(tI), tF , xS(tF )) ∈ B = TI×BI×TF ×BF ⊂ R2n+2.
The objective functional of the SOCP is

JS (t, xS(t), uS(t), vS(t)) = (5)

= g(tF , xF ) +

∫ tF

tI

FvS(t)(t, xS(t), uS(t))dt, (6)

where g is the endpoint cost function defined on a
neighborhood of B and F0 and F1 are real-valued continuously
differentiable functions that represent the running cost of the
system in each mode. In general, other constraints are included
in the formulation of the problem, such as the path constraints,
which apply over the whole path or at intermediate points and
not only at the end points, and the logical constraints, which
establish the switching logic among the discrete states of the
system.

The SOCP is stated as follows

min
uS∈Ω,vS∈{0,1}

JS (t, xS(t), uS(t), vS(t)) , (7)

subject to Eq. (4), endpoint constraints
(tI , xS(tI), tF , xS(tF )) ∈ B, path constraints, and logical
constraints.

In the formation mission design problem studied in this
paper, not all the dynamic equations are subject to switches.
More specifically, the equations of motion associated with the
state variables φ, λ, χ, and V do not switch, whereas the
aircraft’ s mass flow rate equation does when the aircraft joins
or leaves a formation as a trailing or an intermediate aircraft.
When an aircraft is flying solo or as a leader in the formation
it obtains no benefits from the formation flight in terms of fuel
savings and Eq. (2) describes its mass flow. On the contrary,
when an aircraft is flying as the intermediate or trailing aircraft
in the formation it obtains benefits from the formation flight
and its mass flow is described by Eq. (3). Thus, f0 represents
Equations (1) and (2), whereas f1 represents Equations (1) and
(3). The functions F0 and F1, which appear in the running cost
of Eq. (6), are not present in the formulation of the problem.
The objective functional JS of the switched optimal problem
that models the formation mission design problem is

JS = αt

Na∑
p=1

tflightp + αf

Na∑
p=1

mfp , (8)

where αt and αf are the time and the fuel
consumption weighting parameters, respectively,
tflightp ,∀p ∈ {1, . . . , Na}, is the total flight time for aircraft
p, and mfp ,∀p ∈ {1, . . . , Na}, is the fuel consumption for
aircraft p.

The switching logic among the discrete states of the system
is defined by the logical constraints. They express the fact
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that not all transitions between discrete states are possible at
any time. For example, in a three-aircraft formation mission,
the transition between the discrete state in which the three
aircraft are flying solo and that in which they are flying
in a three-aircraft formation is not permitted. In this case,
passing through an intermediate discrete state in which two
aircraft are flying in formation and the third is still flying
solo is mandatory. Any logic expression can be transformed
to conjunctive normal form, i.e., it can be expressed as a
conjunction (sequence of ANDs) of one or more clauses,
where a clause is a disjunction (OR) of literals, which
represent statements or negations of statements. To incorporate
the logical constraints in the SOCP, they must be converted
into a set of equality or inequality constraints.

Therefore, the formation mission design problem is
formulated as an optimal control problem of a switched
dynamical system with logical constraints and solved using the
techniques described in [1, Sect. IV] and [1, Sect. V], in which
binary variables are not used. The result is a smooth optimal
control problem without binary variables, which reduces the
computational complexity of finding a solution. This problem
is solved using a knotting pseudospectral method as described
in [1, Sect. VI]. The solution of the deterministic optimal
control problem is denoted by z(t). It includes the control and
state variables and their timing, from which the rendezvous,
splitting, and final times can be read off.

IV. THE STOCHASTIC SWITCHED OPTIMAL CONTROL
PROBLEM

Let θ = (θ1, θ2, . . . , θM ) be the vector of random variables
that represent the random parameters of the SOCP. The
presence of random variables in the SOCP converts it into
an SSOCP. In the formation mission design problem studied
in this paper, not all the elements of the SOCP contain
random variables. Specifically, the fuel consumption reduction
factor Rfuel in the mass flow rate equation (3) of the aircraft
flying in formation as a trailing or an intermediate aircraft
is a random variable. In contrast, the equations of motion
associated with the state variables φ, λ, χ, and V do not
contain random variables. The departure times of the aircraft
are also assumed to be random variables of the SOCP. One
of these departure times coincides with tI , the initial time of
the formation mission. These random variables are assumed
to be independent and characterized by probability density
functions.

The solution of the SSOCP includes both the state and
control variables of the system that represents the formation
mission. Due to the presence of the vector random variable
θ in the SSOCP, the solution is stochastic, i.e., it depends
on the actual realization of the vector random variable. In
particular, it is a random function of state or time. Therefore,
the solution is actually a random process, characterized by
the mean function and the corresponding 95% confidence
envelope. Specifically, the observed values of a state variable
at a given time t is a random variable. In this case, the random
process is a random function of time. Likewise, the time at
which a given value of the state variable is reached is a

random variable. This means that the timing of the trajectories,
which is defined as the time at which a state is reached, is
also a random process. In this case, the random process is
a random function of the state. In this paper, the timing of
the trajectories is represented as a random function of the
orthodromic distance from the departure location. For the sake
of ease of exposition, the stochastic solution of the SSOCP is
denoted in the following sections as a random function of time.
All the random variables observed at specific time instants or
states are characterized by their expected values and by the
corresponding 95% confidence intervals, including the arrival
times and the fuel consumptions of the aircraft of the formation
mission.

The objective functional of the SSOCP is the expected
value of the objective functional (6) of the SOCP. In the
formulation of the SSOCP, the dynamic equations, the path
constraints, and the boundary conditions formally depend on
the vector random variable θ and must be satisfied almost
surely.

V. THE GENERALIZED POLYNOMIAL CHAOS EXPANSION

In this section, following [16], the gPC expansion is
introduced and the method for determining the stochastic
solution of the SSOCP and computing its statistical
information is described.

Let z(t, θ) denote the stochastic solution of the SSOCP,
which includes x(t, θ) and u(t, θ). The P-th order gPC
approximation of z(t, θ) can be expressed as:

zP (t, θ) =

M∑
m=1

Cm(t)Φm(θ), (9)

where θ = (θ1, θ2, . . . , θN ) is a vector of independent
random variables, Cm(t) are the coefficients of the expansion,
which can be obtained using either a nonintrusive or an
intrusive approach, and Φm(θ) are the multivariate orthogonal
polynomial basis functions, which are calculated from the li-th
order one-dimensional polynomial basis function φ(li)(θi) of
the random variable θi by means of the tensor product rule as
follows:

Φm(θ) =

N∏
i=1

φ
(li)
i (θi). (10)

Notice that, in Eq. (10), a unique combination of li, i =
1, 2, . . . , N , corresponds to each subscript m, which satisfy the
condition

∑N
i=1 li ≤ P , where P is the maximum degree of

the multivariate polynomial Φm. The number of tensor product
basis functions is M =

(
N+P
N

)
. The orthonormal polynomials

in Eq. (10) satisfy the following orthogonality condition

E[φ
(j)
i (θi)φ

(k)
i (θi)] =

∫
φ

(j)
i (θi)φ

(k)
i (θi)ρi(θi)dθi = δjk,

where E is the expected value operator, ρi(θi) is the
probability density function of the random variable θi, and
δjk is the Kronecker delta function.

To improve convergence, the choice of the orthonormal
polynomials should be made on the basis of the probability
density function ρi(θi). For instance, the Legendre
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polynomials are the best choice for uniform random
variables, whereas Hermite polynomials are the best option
for Gaussian random variables. In this paper, the coefficients
Cm of the expansion (9) are calculated using a nonintrusive
gPC based stochastic collocation method as follows

Cm = E[z(t, θ)Φ(θ)] =

∫
z(t, θ)Φm(θ)ρ(θ)dθ, (11)

where ρ(θ) =
∏N

i=1 ρi(θi) is the joint probability density
function of the vector random variable θ. A Gaussian
quadrature can be used to approximate the integral in Eq. (11).
The univariate quadrature rule approximates the polynomial
φ

(li)
i (θi), i = 1, 2, . . . , N , using a set of q collocation

points θ(j)
i and calculating the corresponding set of quadrature

weights α(j), j = 1, 2, . . . , q. Higher precision in the
quadrature can be achieved by increasing the number of
collocation points q. Using the tensor product rule, the total
number of collocation points is qN . This number, which could
become large when N , the number of random variables in θ,
grows, can be reduced using the sparse grid quadrature based
on the Smolyak rule [10].

Let θ(j) be the collocation points and α(j), j = 1, . . . , Q, the
corresponding weights. Then, the coefficients of the expansion
Cm in Eq. (11) are approximated by:

Cm ≈
Q∑

j=1

z(t, θ(j))Φm(θ(j))α(j), (12)

where z(t, θ(j)) denotes the solution of the augmented SOCP
obtained using the j-th collocation point θ(j) and Φm(θ(j))
represents the multivariate orthogonal polynomial basis
function evaluated at the j-th collocation point θ(j). Thus,
the SSOCP is converted into an augmented deterministic
SOCP, in which particular instances of the SSOCP, which
correspond to the collocation points of the random variables,
are combined into a single optimal control problem. The
resulting augmented SOCP is solved by means of the
numerical method described in Sec. III. The expected value
and variance of the stochastic solution zP (t, θ) are calculated
using the coefficients of the expansion as follows:

E[zP (t, θ)] = C1(t), (13)

VAR[zP (t, θ)] =

M∑
m=2

C2
m(t). (14)

A complete treatment of the gPC expansion can be found
in the monography [10], whereas the procedure followed
to determine the stochastic solution of the SSOCP and to
compute its statistical information is schematically represented
in Figure 1. Further details can be found in [15] and [16].

VI. NUMERICAL RESULTS

In this section, the results of the following numerical
experiments are reported to show the effectiveness of the
proposed methodology to solve the stochastic formation
mission design problem:
• Experiment A: Three-aircraft transoceanic mission design

with uncertainty in the fuel burn savings.

• Experiment B: Two-aircraft transoceanic mission design
with uncertainty in departure times of the flights.

All the experiments involve transoceanic eastbound flights.
Wind data from the ERA-Interim reanalysis database of the
ECMWF are used. As mentioned above, in this paper only
the cruise phase is modeled; the rest of the flight phases
are neglected. Thus, the initial and final locations of the
cruise phase of the flights are assumed to be the latitudes and
longitudes of the departure and arrival airports of each flight
at cruise altitude. Airbus A330-200 aircraft BADA models are
considered for each flight. The initial masses of the aircraft are
assigned, as are the initial and final velocities, which are set
at typical cruise values for the selected aircraft models. The
initial heading angles are set to the initial heading angles of
the orthodromic paths between the initial and final locations
of each flight. The time and fuel burn weighting parameters,
αt and αf , in the objective functional (8) are set to 0.3 and
0.7, respectively, based on [21], an Eurocontrol study on the
delays-related costs.

The numerical experiments have been conducted on a
3.6 GHz Intel Core i9 computer with 32 GB RAM. The
computational times reported in this section include both the
time required to generate the warm-start solution and the time
to find the optimal solution of the problem. The warm-start
solution is a feasible solution of the problem generated by the
NLP solver from an initial guess of the solution.

As previously mentioned, the gPC method converts the
SSOCP into an augmented deterministic SOCP, which is
solved using a knotting pseudospectral method. This method
transforms the deterministic SOCP into an NLP problem,
which is modeled using Pyomo [22], a Python-based software
package designed to model complex optimization problems,
and solved using the Interior Point OPTimizer (IPOPT) solver.
In this paper, the initial guesses for the latitude, the longitude,
and the heading angle are generated using the orthodromic
paths between the departure and arrival locations of each flight.
Typical cruise velocity and fuel consumption of the aircraft
model selected are used to generate the initial guesses of
the velocity and the mass of each aircraft during the flight,
respectively.

A. Experiment A: Three-aircraft transoceanic mission design
with uncertainty in the fuel burn savings.

Experiment A involves three transoceanic eastbound flights,
Flight 1, Flight 2, and Flight 3, with uncertainty in the
fuel burn savings for the trailing aircraft. The three flights
considered in this experiment have the following departure
and arrival locations:

• Flight 1: New York (JFK) - Paris (CDG).
• Flight 2: Boston (BOS) - Madrid (MAD).
• Flight 3: Montreal (YUL) - London (LHR).

The departure times of Flight 1, Flight 2, and Flight 3 are set to
10:15, 10:30, and 10:50, respectively. The boundary conditions
for the state variables of the three aircraft are given in Table
I. Flight 1, Flight 2, and Flight 3 are operated by Aircraft 1,
Aircraft 2, and Aircraft 3, respectively.
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Determine the set of collocation points θ(j)

and compute the associated weights α(j),
j = 1, . . . , Q, for the vector random variable θ.

Vector random
variable θ

Calculate the value of the orthonormal
polynomial Φm(θ(j)) at each collocation

point θ(j), j = 1, . . . , Q,m = 1, . . . ,M .

Solve the augmented SOCP for computing the
deterministic solutions z(t, θ(j)) of the SSOCP at

each collocation point θ(j), j = 1, . . . , Q, using the
deterministic numerical method described in Sec. III.

Aircraft model,
wind forecast,

flight data

Determine the approximated values
of the coefficients of the expansion

Cm(t),m = 1, ...,M , using Eq. (12).

Calculate the approximate stochastic solution
zP (t, θ) of the SSOCP using Eq. (9).

Compute the mean and variance functions
of the approximate stochastic solution
zP (t, θ) using Eqs. (13) and (14).

Fig. 1. Schematic diagram of the procedure for determining the stochastic solution of the SSOCP and computing its statistical information.

The formation configuration is selected in advance. In the
case of a two-aircraft formation that includes Aircraft 2,
Aircraft 2 is the leader and Aircraft 1 or Aircraft 3 is the
follower. In the case of a two-aircraft formation that does not
include Aircraft 2, Aircraft 3 is the leader and, accordingly,
Aircraft 1 is the follower. The only three-aircraft formation
allowed is the in-line formation, where Aircraft 2 is the leader,
Aircraft 3 is the intermediate, and Aircraft 1 is the follower.

The random variable that represents the fuel burn savings
for the trailing aircraft is denoted by θ. This random variable
is modeled as a Gaussian random variable with mean 0.1
and standard deviation 0.02, i.e., θ ∼ N (0.1, 0.02), based on
several aerodynamic models and flight tests reported in [23].
The departure times are fixed.

Solving this problem entails deciding which mode of flight,
i.e., formation or solo flight, is optimal, the expected values
and standard deviations of the latitude and longitude of the
optimal trajectories of each aircraft as functions of time, and
the expected values and standard deviation of the timing of
the trajectory as functions of the orthodromic distance from
the departure locations. They include the expected values
and the standard deviations of the arrival times and, in
the case of formation flight, the expected values and the
standard deviations of the latitude, longitude, and time of the
rendezvous and splitting locations.

The sequence of discrete states obtained in the solution is
the following:

• State 1: All the aircraft fly solo.
• State 2: Aircraft 1 and Aircraft 2 fly in a two-aircraft

formation and Aircraft 3 flies solo.
• State 3: All the aircraft fly in a three-aircraft formation.
• State 4: Aircraft 1 and Aircraft 3 fly in a two-aircraft

formation and Aircraft 2 flies solo.
• State 5: All the aircraft fly solo.

TABLE I
EXPERIMENT A: BOUNDARY CONDITIONS OF THE THREE FLIGHTS.

Symbol Units Flight 1 Flight 2 Flight 3
φI [deg] 40.64 42.36 45.47
φF [deg] 48.85 40.48 51.47
λI [deg] -73.78 -71.06 -73.74
λF [deg] 2.35 -3.57 -0.12
χI [deg] +54.26 69.25 +55.53
VI [m/s] 240 240 240
VF [m/s] 220 220 220
mI [kg] 215 000 210 000 220 000

The expected values of the longitude and latitude of the
optimal routes obtained in the solution together with the
corresponding 95% confidence envelopes are represented on
the relevant map together with the wind field in Fig. 2 and as
functions of time in Fig. 3.a and Fig. 3.b, respectively. The
expected values of the rest of the state variables, namely, the
mass, the heading angle, and the Mach number, together with
the corresponding 95% confidence envelopes are represented
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Fig. 2. Experiment A: Expected values of the latitude and longitude of the optimal trajectories of each aircraft together with the corresponding 95% confidence
envelopes represented on the relevant map together with the wind field.

as functions of time in Fig. 3.c, Fig. 3.d, and Fig. 3.e,
respectively. The expected values of the control variables
are represented for the three flights in Fig. 4. Green, blue,
and red lines correspond to Flight 1, Flight 2, and Flight
3, respectively. For a better understanding of these figures,
the portions of the plots of the variables that correspond
to formation flight are represented on a gray background.
In particular, the portions of the plots that correspond to
State 2 and State 4, which includes a two-aircraft formation,
are represented on a light gray background, whereas the
portion of the plots that correspond to State 3, which includes
a three-aircraft formation, is represented on a dark gray
background.

It is important to note that all the optimal solutions obtained
considering the fuel burn savings that correspond to the nodes
of the gPC expansion of the random variable θ ∼ N (0.1, 0.02)
are formation missions with the same structure.

The expected values of the rendezvous and splitting times
are reported in Table II together with the corresponding 95%
confidence interval. State 2, in which Aircraft 1 and Aircraft
2 fly in formation and Aircraft 3 flies solo, has the shortest
duration. The control variables vary in a quite smooth way.

Regarding the spatial variability of the solution, it can
be observed in Fig. 2, Fig. 3.a, and Fig. 3.b, that both
geographical coordinates have a similar behavior. In the first
two discrete states, the spatial variability is rather low, and in
State 3, it is almost negligible. Then, near the first splitting
location, the spatial variability starts increasing for all the
flights. Finally, it decreases when the aircraft are approaching
the final locations. Hence, the second splitting location has
a significant dependency on the random variable θ and,
consequently, both the duration and the traveled distance in
State 3 have a significant dependency on it. Flight 2 has the
greatest spatial variability.

In addition to the spatial variability, the temporal variability
is also quantified in order to have complete information
regarding the spatio-temporal variability of the solution. The
expected values of the timing of the solution together with
the corresponding 95% confidence envelopes are represented

in Fig. 5 as functions of the orthodromic distance from the
departure location of each flight. It can be observed in this
figure that the temporal variability is very low in all the flights.
In particular, in Flight 1 and Flight 3, the temporal variability
is almost negligible during the whole flight time, whereas, in
Flight 2, it starts increasing after the first splitting location.
However, despite this increase, it is very low in Flight 2 as
well, leading to the conclusion that the temporal variability of
all the flights slightly depends on the random variable θ.

It can be observed in Table II, in which the expected
values and the 95% confidence intervals of the rendezvous
and splitting times are reported, that the amplitudes of these
intervals are lower for the rendezvous times than for the
splitting times, but remains fairly small for both of them.

TABLE II
EXPERIMENT A: EXPECTED VALUES AND 95% CONFIDENCE INTERVALS

OF THE RENDEZVOUS AND SPLITTING TIMES.

Expected 95% confidence
value interval

First rendezvous time [h] 0.88 [0.87, 0.89]
Second rendezvous time [h] 1.32 [1.32, 1.32]
First splitting time [h] 4.19 [4.17, 4.21]
Second splitting time [h] 5.95 [5.92, 5.98]

The expected values and the 95% confidence intervals for
both the flight time, expressed in hours, and the fuel burn,
expressed in tonnes, for each flight are listed in Table III. From
the amplitudes of the 95% confidence intervals, it is easy to
see that, as already mentioned, the flight time variability is
rather low. In contrast, as expected, the uncertainty in the fuel
burn savings has a significant impact on the variability of the
fuel consumption.

To quantify the benefits of formation flight with respect
to solo flight, the expected values of the flight time and
the fuel consumption, along with the expected value of the
corresponding DOC expressed in monetary units, mu, are
estimated assuming that the three flights are performed as
solo flights. The obtained results are reported in Table IV.
For the sake of comparison, the expected values of the DOC
obtained in both formation and solo flights of the three aircraft
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Fig. 3. Experiment A: Expected values of the state variables of the optimal trajectories of each aircraft together with the corresponding 95% confidence
envelopes.

TABLE III
EXPERIMENT A: EXPECTED VALUES AND 95% CONFIDENCE INTERVALS OF FLIGHT TIMES AND FUEL CONSUMPTIONS OF EACH FLIGHT.

Flight time [h] Fuel burn [t]
Expected value 95% confidence interval Expected value 95% confidence interval

Flight 1 7.13 [7.12, 7.15] 42.47 [41.19, 43.74]
Flight 2 7.47 [7.43, 7.52] 46.24 [45.90, 46.58]
Flight 3 6.16 [6.15, 6.18] 38.00 [36.58, 39.42]

are reported in Table V. It is remarkable that, in spite of
the uncertainties considered in the fuel burn savings for the

trailing aircraft, the reduction in the total DOC achieved with
formation flight amounts to 2.16%.
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Fig. 4. Experiment A: Expected values of the control variables of each aircraft.

TABLE IV
EXPERIMENT A: EXPECTED VALUES OF FLIGHT TIMES, FUEL

CONSUMPTIONS, AND DOC IN SOLO FLIGHT OF THE THREE AIRCRAFT.

Flight time [h] Fuel burn [t] DOC [mu]
Flight 1 7.06 45.73 39635.79
Flight 2 7.32 45.44 39713.60
Flight 3 6.02 39.52 34165.60

To quantify the effects of the uncertainty in the fuel
burn savings for the trailing aircraft on the DOC, the
same formation mission is designed in the absence of
uncertainty, in which the fuel burn savings for both the
trailing and intermediate aircraft are set to 10%. For the sake
of comparison, the obtained results in terms of the DOC
for the deterministic and stochastic formation missions are
summarized in Table VI. It can be seen that the increment of
the total DOC due to the presence of uncertainties amounts
to 1.60%.

B. Experiment B: Two-aircraft transoceanic mission design
with uncertainty in the departure times of the flights.

Experiment B involves two transoceanic eastbound flights,
Flight 1 and Flight 2, with uncertainty in the departure times of
the flights. The flights considered in this experiment have the
same departure and arrival locations and the same boundary

values for the state variables as Flight 1 and Flight 2 in
Experiment A. They have the following departure and arrival
locations:
• Flight 1: New York (JFK) - Paris (CDG).
• Flight 2: Boston (BOS) - Madrid (MAD).

The departure times of Flight 1 and Flight 2 are set to 10:15
and 10:30, respectively. The boundary conditions for the state
variables of the two aircraft are given in Table I. Flight 1 and
Flight 2 are operated by Aircraft 1 and Aircraft 2, respectively.

As in Experiment A, the formation configuration is selected
in advance. In the case of formation flight, Aircraft 1 is the
trailing aircraft and Aircraft 2 is the leader. In this experiment,
the fuel burn savings for the trailing aircraft are set to 10%.

The random variables that represent the delays with respect
to the scheduled departure times of Flight 1 and Flight 2 from
JFK and BOS airports are denoted by θ1 and θ2, respectively.
These random variables have been modeled using a Gaussian
mixture distribution, the parameters of which are estimated
from real delay data obtained from the Transtats online
database2 of the U.S. Bureau of Transportation Statistics.
This database provides detailed information on the U.S.
transportation systems, including data on departure delays by
airport and airline. The expectation-maximization algorithm
for fitting mixture-of-Gaussian models to data is employed

2https://www.transtats.bts.gov/

https://www.transtats.bts.gov/ 
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Fig. 5. Experiment A: Expected values of the timing of the optimal trajectories of each aircraft together with the corresponding 95% envelopes.

TABLE V
EXPERIMENT A: EXPECTED VALUES OF THE DOC IN SOLO AND FORMATION FLIGHTS OF THE THREE AIRCRAFT.

Flight 1 Flight 2 Flight 3 Total
DOC solo flight [mu] 39635.79 39713.60 34165.60 113514.99
DOC formation flight [mu] 37429.40 40435.59 33252.80 111117.79
∆DOC [%] -5.89 +1.79 -2.75 -2.16

TABLE VI
EXPERIMENT A: VALUES OF THE DOC IN DETERMINISTIC AND STOCHASTIC FORMATION MISSIONS OF THE THREE AIRCRAFT.

Flight 1 Flight 2 Flight 3 Total
DOC deterministic formation mission [mu] 36178.9 40205.67 32980.96 109365.53
DOC stochastic formation mission [mu] (expected values) 37429.40 40435.59 33252.80 111117.79
∆DOC [%] +3.45 +0.57 +0.82 +1.60

for this purpose [24]. Departure delay data corresponding to
January 2020 are used.

The resulting Gaussian mixture probability density
functions that model the random variables θ1 and θ2 that
represent the departure delays at JFK and BOS airports both
have 4 components. The values of the parameters of the
Gaussian mixture probability density functions are given in
Table VII, where pi,j , i = 1, 2, j = 1, 2, 3, 4 are the weights
of the Gaussian component probability density functions
of θi, which are probabilities that sum to 1, and µi,j and
σi,j are their means and standard deviations, respectively.

This result is consistent with previous studies on estimation
of flight departure delay distributions [25]. Fig. 6 shows
in black the obtained Gaussian mixture distribution of the
departure delays of Flight 1 and Flight 2 from JFK and
BOS airports, respectively, together with the histogram of the
data. A bin width of 2 minutes is used for the histograms.
The components of the Gaussian mixture distribution are
represented by dotted lines. The mean and the standard
deviation of the random variable θ1 are -1.67 [min] and 7.69
[min], respectively. The mean and the standard deviation of
the random variable θ2 are -0.88 [min] and 10.37 [min],
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respectively.

As in Experiment A, solving this problem entails deciding
which mode of flight is optimal, the expected values and
standard deviations of the latitude and longitude of the optimal
trajectories of each aircraft as functions of time, and the
expected values and standard deviation of the timing of the
trajectory as functions of the distance.

The sequence of discrete states obtained in the solution is
the following:
• State 1: Both aircraft fly solo.
• State 2: The aircraft fly in formation.
• State 3: Both aircraft fly solo.
The expected values of the longitude and latitude of the

optimal routes obtained in the solution together with the
corresponding 95% confidence envelopes are represented on
the relevant map together with the wind field in Fig. 7 and as
functions of time in Fig. 8.a and Fig. 8.b, respectively. The
expected values of the rest of the state variables, namely, the
mass, the heading angle, and the Mach number, together with
the corresponding 95% confidence envelopes are represented
as functions of time in Fig. 8.c, Fig. 8.d, and Fig. 8.e,
respectively. The expected values of the control variables are
represented for the two flights in Fig. 9. Green and blue
lines correspond to Flight 1 and Flight 2, respectively. As in
Experiment A, the portions of the plots of the variables that
correspond to State 2, in which the aircraft fly in formation,
are represented on a gray background.

It is important to note that all the optimal solutions obtained
considering the fuel burn savings that correspond to the
nodes of the gPC expansion of the two random variables are
formation missions with the same structure.

The expected values of the rendezvous and splitting times
are reported in Table VIII together with the corresponding
95% confidence intervals. State 2, in which the aircraft fly in
formation, has the longest duration.

The control variables vary in a quite smooth way.
Comparing the expected values of the state variables and
the corresponding 95% confidence envelopes represented as
functions of time in Fig. 8 with the corresponding ones of
Experiment A given in Fig. 3, the high variability in every
state variable of each flight is striking. In particular, the Mach
number variability in the early part of the flight is especially
worthy of note. This is due to the fact that anticipations and
delays in the departure times of the flights are compensated
by increments and reductions of their velocities.

Regarding the spatial variability of the solution, it can be
observed in Fig. 7, Fig. 8.a, and Fig. 8.b that the longitude
variability is greater in State 2, in which the aircraft fly in
formation. In contrast, the latitude variability has a minimum
in State 2, which is located around the maximum value of this
geographical coordinate. Aircraft 2, the leading aircraft, has
the greatest spatial variability.

As in Experiment A, in addition to the spatial variability, the
temporal variability is also quantified in order to have complete
information regarding the spatio-temporal variability of the
solution. The expected values of the timing of the solution

together with the corresponding 95% confidence envelopes
are represented in Fig. 10, as functions of the orthodromic
distance from the departure locations of each flight. It can
be observed in this figure that the temporal variability has a
similar behavior for both flights, remaining nearly constant
throughout the flight. As in the case of spatial variability,
the temporal variability of the flights in Experiment B is
considerably greater than the temporal variability of the flights
in Experiment A. As expected, uncertainty in the departure
times of the flights has a significant impact on the temporal
variability of the trajectories, more than the uncertainty in the
fuel burn savings for the trailing aircraft.

It can be observed in Table VIII, in which the expected
values and the 95% confidence intervals of the rendezvous
and splitting times are reported, that the amplitudes of these
intervals are similar for the rendezvous and splitting times,
being, in both cases, considerably greater than the amplitudes
of the 95% confidence intervals of the rendezvous and splitting
times obtained in Experiment A.

The expected values and the 95% confidence intervals for
both the flight time, expressed in hours, and the fuel burn,
expressed in tonnes, for each flight are listed in Table IX.
From the amplitudes of the 95% confidence intervals, it is easy
to see that, as already mentioned, the flight time variability
is rather high. Additionally, the uncertainty in the departure
times also has a significant impact on the variability of the
fuel consumption.

To quantify the benefits of formation flight with respect
to solo flight, the expected values of the flight time and
the fuel consumption along with the expected value of the
corresponding DOC expressed in monetary units, mu, for the
two solo flights, given in the first two rows of Table IV, are
compared to the expected values of the DOC obtained in
formation flight. The obtained results are reported in Table
X. It can be observed that, in the presence of uncertainties
in the departure times of the flights, the probability density
funcion of which is estimated from real departure delay data,
small benefits are expected in terms of the reduction of the
total DOC, which amount to only 0.11%. However, in real-life
scenarios, some mitigation measures could be implemented to
reduce the negative impact of flight delays on the benefits
of formation flight, such as adjusting the flight plan of the
formation mission before departure when one of the flights of
a formation is delayed.

To quantify the effects of the uncertainty in the departure
delays on the DOC, the same formation mission is designed in
the absence of uncertainty, in which no delays are considered.
For the sake of comparison, the obtained results in terms of the
DOC for the deterministic and stochastic formation missions
are summarized in Table XI. It can be seen that the increment
of the total DOC due to the presence of uncertainties amounts
to 3.76%.

Based on the results of the two experiments, it is possible
to conclude that uncertainties have a significant impact on the
formation flight benefits in terms of the reduction of the DOC.
In particular, the uncertainties in the departure times have a far
greater impact on the DOC than the uncertainties in the fuel
burn savings. These results demonstrate that formation flight
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TABLE VII
EXPERIMENT B: ESTIMATED PARAMETERS OF THE GAUSSIAN MIXTURE PROBABILITY DENSITY FUNCTIONS THAT MODEL THE DEPARTURE DELAYS OF

THE FLIGHTS.

Departure airport Random variable pi,1, pi,2, pi,3, pi,4 µi,1, µi,2, µi,3, µi,4 σi,1, σi,2, σi,3, σi,4

Flight 1 JFK θ1 0.39, 0.17, 0.27, 0.17 -4.94, 11.94, -0.99, -8.91 2.20, 7.17, 2.93, 2.89
Flight 2 BOS θ2 0.24, 0.56, 0.06, 0.14 -1.76, -6.61, 28.67, 10.92 3.39, 3.70, 5.68, 5.78

(a) θ2, departure delay of Flight 1 from JFK airport (b) θ2, departure delay of Flight 2 from BOS airport

Fig. 6. Experiment B: Estimated probability density functions of the random variables θ1 and θ2 that represent the departure delays of each flight.
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Fig. 7. Experiment B: Expected values of the longitude and latitude of the optimal trajectories of each aircraft together with the corresponding 95% confidence
envelopes represented on the relevant map together with the wind field.

TABLE VIII
EXPERIMENT B: EXPECTED VALUES AND 95% CONFIDENCE INTERVALS

OF THE RENDEZVOUS AND SPLITTING TIMES.

Expected value 95% confidence interval
Rendezvous time [h] 1.61 [1.29, 1.94]
Splitting time [h] 5.03 [4.71, 5.34]

is economically beneficial in the presence of uncertainties in
the fuel savings for the trailing aircraft and in the departure
times of the aircraft.

In the next section, a sensitivity analysis of the solution
of this experiment to the random variables that represent the
departure times of the flights is carried out. The purpose of
this analysis is to quantify how much uncertainty in each

component of the solution is due to the different sources of
uncertainty considered in the experiment.

VII. SENSITIVITY ANALYSIS

In this section, a variance-based sensitivity analysis of the
results obtained in Experiment B is conducted. The aim of
the variance-based sensitivity analysis is to quantify what
proportion of the variance of the latitude and the longitude
of flight k of the solution of the formation mission design
problem, λk(t, θ) and φk(t, θ), respectively, is due to the
variance of each departure delays of Flight 1 and Flight 2,
θ1 and θ2, respectively.

In this paper, this analysis relies on the computation of
the so-called Sobol’ indices, under the assumption that the
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Fig. 8. Experiment B: Expected values of the state variables of the optimal trajectories of each aircraft together with the corresponding 95% confidence
envelopes.

TABLE IX
EXPERIMENT B: EXPECTED VALUES AND 95% CONFIDENCE INTERVALS OF FLIGHT TIMES AND FUEL CONSUMPTIONS OF EACH FLIGHT.

Flight time [h] Fuel burn [t]
Expected value 95% confidence interval Expected value 95% confidence interval

Flight 1 7.18 [6.86, 7.50] 43.58 [42.52, 44.63]
Flight 2 7.70 [7.37, 8.02] 46.69 [46.27, 47.11]

random variables in θ are independent [11]. Sobol’ indices
can be directly derived from the coefficients Cm(t) of the
gPC expansion (9) as explained in [26].

The analysis of the sensitivity of the components of the
solution obtained in Experiment B to the two random variables
θ1 and θ2 that represent the departure delays of Flight 1 and
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Fig. 9. Experiment B: Expected values of the control variables of each aircraft.
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Fig. 10. Experiment B: Expected values of the timing of the optimal trajectories of each aircraft together with the corresponding 95% envelopes.

TABLE X
EXPERIMENT B: EXPECTED VALUES OF THE DOC IN SOLO AND

FORMATION FLIGHTS OF THE TWO AIRCRAFT.

Flight 1 Flight 2 Total
DOC solo flight [mu] 39635.79 39713.60 79349.39
DOC formation flight [mu] 38260.39 40999.01 79259.39
∆DOC [%] -3.59 +3.14% -0.11

Flight 2, respectively, is carried out employing this approach.
The Sobol’ indices of the latitude and longitude of Flight
k, k = 1, 2 with respect to the random variable θj , j = 1, 2
are denoted by Slat

k,j and Slon
k,j , respectively. They represent the

proportions of the variance of the geographical coordinates of
the optimal route of Flight k that is due to the variance of the
departure time of Flight j. The Sobol’ indices of the longitude
and latitude of the optimal routes obtained in the solution of
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TABLE XI
EXPERIMENT B: VALUES OF THE DOC IN DETERMINISTIC AND STOCHASTIC FORMATION MISSIONS OF THE TWO AIRCRAFT.

Flight 1 Flight 2 Total
DOC deterministic formation flight [mu] 36178.90 40205.67 76384.57
DOC stochastic formation flight [mu] (expected values) 38260.39 40999.01 79259.39
∆DOC [%] +5.75 +1.97 +3.76
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Fig. 11. Experiment B: Sobol’ indices of the geographical coordinates of the optimal trajectories of each flight. Gray and black lines correspond to the
random variables θ1 and θ2, respectively.

Experiment B are represented as functions of time in Fig. 11,
in which Sobol’ indices associated with θ1 and θ2 are plotted
in gray and black, respectively.

It can be seen in Fig. 11.a and Fig. 11.b that during
the whole flight, most of the variance of both geographical
coordinates of the optimal route of Flight 1 is due to
the variance of the random variable θ1. In particular, the
percentage of the variance of the longitude of Flight 1 due
to the variance of θ1 is around 90%, while the percentage of
the variance of the latitude of Flight 1 due to the variance of
the same random variable is between 60% and 90% during
the whole flight time.

It can be seen in Fig. 11.c and Fig. 11.d that during the
whole flight, most of the variance of the longitude of the
optimal route of Flight 2 is due to the variance of the random
variable θ1. In contrast, the relative influence of the variance of
the random variables θ1 and θ2 on the variance of the latitude

of the optimal route of Flight 2 changes along the flight. In
particular, in the first part of Flight 2, up to 8000 seconds,
approximately, the variance of the random variable θ2 has the
most influence on the variance of the latitude of Flight 2. After
that, there is an intermediate part of Flight 2, between 8000 and
14000 seconds, approximately, in which the variances of θ1

and θ2 have a similar influence on the variance of the latitude
of Flight 2. Finally, in the last part of Flight 2, the influence
of the variance of θ1 on the variance of the latitude of Flight
2 becomes predominant, reaching a percentage of 90%.

The Sobol’ indices of the timing of Flight k, k = 1, 2 with
respect to the random variable θj , j = 1, 2 are denoted by
Stiming
k,j (dk), where dk is the orthodromic distance of flight k

from the departure location. They numerically quantify the
proportion of the variance of the timing of the optimal route
of flight k that is due to the variance of θj . The Sobol’ indices
of the timing of the optimal routes obtained in the solution of
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Experiment B are represented as functions of the orthodromic
distance in Fig. 12, in which Sobol’ indices associated with
θ1 and θ2 are plotted in gray and black, respectively. It can be
seen in this figure that, during the whole flight, most of the
variance of the timing of the optimal route of Flight 1 is due
to the variance of the random variable θ1, with a percentage
of about 80%. On the contrary, the relative influence of the
variance of the random variables θ1 and θ2 on the variance
of the timing of the optimal route of Flight 2 changes along
the flight. In particular, in the first part of Flight 2, up to the
distance of 1000 km, approximately, the variance of θ2 has the
most influence on the variance of the timing of the optimal
route of Flight 2. After that, the influence of the variance of
θ1 on the variance of the timing of the optimal route of Flight
2 becomes predominant, reaching a percentage of 80%.
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Fig. 12. Experiment B: Sobol’ indices of the timing of the optimal trajectories
of each flight. Gray and black lines correspond to the random variables θ1
and θ2, respectively.

VIII. CONCLUSIONS

This paper has presented a methodology for solving the
formation mission design problem for commercial aircraft
in the presence of uncertainties in the fuel burn savings
of the trailing aircraft and in the departure times of the
aircraft. The solution of the problem is stochastic and the
optimal aircraft trajectories are given in terms of the expected
values and standard deviations of their latitude, longitude,

and timing. The expected value of the direct operating costs
of the formation mission is also estimated. Moreover, the
proposed technique permits the relative contribution of each
random variable to the variability of the components of
the solution to be estimated. This methodology has been
applied to plan two- and three-aircraft formation missions
with uncertainties. Specifically, uncertainty in the fuel burn
savings is considered in Experiment A, whereas uncertainty
in the departure times of the flights is included in Experiment
B. The results of the numerical experiments indicate that
uncertainties have a significant impact on the potential benefits
of a formation mission. In particular, uncertainties in the
departure times have a greater impact on the direct operating
costs than the uncertainties in the fuel burn savings. They
reveal that the increment of the direct operating costs due to
the presence of uncertainties amounts to 1.60% and 3.76%
in Experiment A and Experiment B, respectively. However,
even in the presence of uncertainties, expected reductions of
the direct operating costs amounting to 2.16% and 0.11%
are achieved with formation flight compared to solo flight
in Experiment A and Experiment B, respectively. The results
give interesting additional information, revealing, for instance,
that one random variable may have predominant influence on
the variability of a component of the solution. This occurs
in Experiment B for the variability of the longitude of the
optimal routes of both flights, the variance of which is mostly
due to the variance of the random variable that represents
the departure time of Flight 1. They also indicate that the
relative influence of the random variables on the variability
of a component of the solution may change during the flight.
This happens in Experiment B for the variances of both the
latitude and timing of Flight 2. The results of the numerical
experiments demonstrate that formation flight is economically
beneficial in the presence of realistic levels of uncertainty in
the fuel savings for the trailing aircraft and in the departure
times of the aircraft and that the proposed methodology is an
effective tool for solving the formation mission design problem
for commercial aircraft in the presence of uncertainties.
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Katholieke Universiteit Leuven, the Spanish Consejo
Superior de Investigaciones Cientı́ficas, and with
the University of North Carolina at Charlotte. His

research interests include stochastic hybrid optimal control, iterative learning
control and model predictive control with applications to robotics, aeronautics
and astronautics.


	Introduction
	Previous approaches
	Contributions of the paper
	Organization of the paper

	Model of the system
	The Deterministic Switched Optimal Control Problem
	The Stochastic Switched Optimal Control Problem
	The Generalized Polynomial Chaos Expansion
	Numerical Results
	Experiment A: Three-aircraft transoceanic mission design with uncertainty in the fuel burn savings.
	Experiment B: Two-aircraft transoceanic mission design with uncertainty in the departure times of the flights.

	Sensitivity Analysis
	Conclusions
	Acknowledgments
	References
	Biographies
	María Cerezo-Magaña
	Alberto Olivares
	Ernesto Staffetti


