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A B S T R A C T

In the area of Search-Based Software Engineering, software engineering issues are formulated and tackled
as optimization problems. Among the problems within this area, the Software Module Clustering Problem
(SMCP) consists of finding an organization of a software project that minimizes coupling and maximizes
cohesion. Since modular code is easier to understand, the objective of this problem is to increase the quality
of software projects, thus increasing their maintainability and reducing the associated costs. In this work
we study a recently proposed objective function named Function of Complexity Balance (FCB). Since this
problem has been demonstrated to be -hard, we propose a new heuristic algorithm based on the General
Variable Neighborhood Search (GVNS) schema to tackle the problem. For the GVNS, we propose six different
neighborhood structures and categorize them into three different groups. Then, we analyze their contribution to
the results obtained by the algorithm. In order to improve the efficiency of the proposed approach, we leverage
domain-specific information to perform incremental evaluations of the objective function and to explore only
areas of interest in the search space. The proposed algorithm has been tested over a set of real world software
repositories, achieving better results than the previous state-of-the-art method, a Hybrid Genetic Algorithm, in
terms of both quality and computing times. Furthermore, the relevance of the improvement produced by our
proposal has been corroborated by non-parametric statistical tests.
1. Introduction

Search-Based Software Engineering (SBSE) is a research area where
software engineering tasks are formulated and tackled as optimization
problems. In this area, there exists a wide array of problems of different
nature, including both technical and non-technical tasks (Catal et al.,
2016), such as reducing the cognitive complexity of software sys-
tems (Saborido et al., 2022), identifying modules that are faulty (Thiru-
moorthy et al., 2022; Manchala and Bisi, 2022), building automated
tests (Sahin and Akay, 2016), or scheduling software updates for con-
nected cars (Andrade et al., 2019). Nevertheless, in spite of the afore-
mentioned variety of tackled issues, the intention of the research in
SBSE is to raise the quality of software projects and reduce their
associated costs (Colanzi et al., 2020).

In the context of SBSE research, the optimization problem known
as the Software Module Clustering Problem (SMCP) consists of maxi-
mizing the modularity of software systems. As specified by the Inter-
national Organization for Standardization (ISO, 2017), the modularity
of a system is the set of ‘‘software attributes that provide a structure of
highly independent components’’. In software engineering, modularity has
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traditionally been measured as a balance between cohesion (dependen-
cies between artifacts that belong to the same module) and coupling
(dependencies between artifacts in different modules). In particular, a
system is often considered well organized/modularized if it presents
high cohesion and low coupling. In this work, we use the term ‘‘artifact’’
referring to atomic units and the term ‘‘module’’ referring to sets of
artifacts.

In software systems, a good modular organization facilitates the
comprehension of the code. During the lifecycle of software projects,
most of the efforts made by developers are dedicated to understand-
ing the existent software. Moreover, modularization has truly interest
in large projects, which is usually the case of real software, where
the size of the project makes the process of understanding the code
much harder. By maximizing the modularity of software systems, the
SMCP aims to enhance the overall quality of the code, facilitate the
understanding of the system, and reduce the costs associated with
its development and maintenance (Briand et al., 1999; Gibbs et al.,
1990; Larman, 2012). However, decomposing a system into modules
is not a trivial task (Fakhoury et al., 2019; Mkaouer et al., 2014), and
there exist previous works that have tackled this problem (Mancoridis
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et al., 1998; Mitchell and Mancoridis, 2006). Indeed, the optimization
of software modularity is being used as a tool to refine and improve
the concept of modularity (de Oliveira Barros and de Almeida Farzat,
2013; de Oliveira Barros et al., 2015). Furthermore, given the -
ard nature of the problem and the size of large projects, it is almost
umanly impossible to easily enhance a given organization. Therefore,
he goal of the approach proposed in this paper is to help software
evelopers to enhance the quality of their software, by automatizing
he identification of more suitable organizations of their code.

In this work, we propose a General Variable Neighborhood Search
GVNS) (Mladenović and Hansen, 1997) to tackle the SMCP studying
he Function of Complexity Balance (FCB), a novel objective function
ntroduced by Mu et al. (2020). Our approach is compared with the
esults obtained by the Hybrid Genetic Algorithm (HGA) proposed by
he same authors (Mu et al., 2020), which is, as far as we know,
he current state-of-the-art algorithm for the problem. To compare the
lgorithms, we use a set of 124 real-world software systems, which
ere published by Monçores et al. (2018). Finally, we showcase that

he proposed approach finds the best known solutions for 124 out of
he 124 instances in the dataset. Moreover, the results are shown to be
tatistically significant, with a 𝑝-value lower than 0.00001, according
o the Wilcoxon Signed-Rank test.

The remainder of this work is structured as follows. In Section 2,
e present a literature review of the SMCP, followed by its definition

n Section 3. Then, in Section 4, we detail the proposed algorithm.
n Section 4.1, we describe the neighborhoods proposed. Next, in Sec-
ion 5, we describe two advanced strategies to enhance the efficiency
f our algorithm. In Section 6, we detail the performed experiments
nd discuss the obtained results. Finally, in Section 7, we present our
onclusions.

. Literature review

As far as we know, the first to study the SMCP were Mancoridis
t al. (1998). They introduced an objective function known as Mod-
larization Quality (MQ), which computes the quality of a solution
aking into account the cohesion and coupling of the architecture. In
ddition, only considering cohesion and coupling would result in a
rivial, useless solution where every artifact is located in the same
odule. For this reason, MQ implicitly takes into account the number

f modules. Two variants of MQ, named BasicMQ and TurboMQ, were
ater formulated by the same authors to accelerate the evaluation of the
bjective function (Mitchell and Mancoridis, 2002a,b). These metrics
ave been widely used in the literature to address the SMCP from its
riginal appearance (Huang et al., 2017; Praditwong, 2011; Prajapati
nd Chhabra, 2018).

Although MQ and its associated variants have been widely used in
he area, some authors highlight the existence of several concerns in the
ohesion-coupling paradigm with respect to the MQ metric (Mancoridis
t al., 1998; de Oliveira Barros et al., 2015). Due to these concerns,
ome alternatives have been proposed in the literature. In this sense,
he Function of Complexity Balance (FCB) was recently proposed (Mu
t al., 2020), which tries to overcome some of the issues highlighted in
Q. As reported by the authors (Mu et al., 2020), traditional metrics

mpose a restriction on extreme coupling, but not on extreme cohe-
ion. Since high cohesion has traditionally been regarded as desirable,
revious state-of-the-art metrics have not limited its value. This has
ed optimization algorithms to obtain unreasonable solutions, where
here exist very complex modules. One of the main objectives of FCB
s to avoid the issue of over-cohesiveness, benefiting the distribution of
omponents from very complex modules to other modules. At the same
ime, indirectly, the goal of FCB is to reduce the number of isolated
odules within the solution. Unlike optimizing architectural quality

s a whole, indirectly minimizing the maximal cohesion of individual
2

odules forces components to be distributed to isolated clusters. d
In contrast to traditional metrics, some authors have proposed a
ulti-objective approach, analyzing different desirable and conflicting
roperties of good modular organizations. In this sense, Praditwong
t al. (2010) introduced two different approaches, the Equal-size Clus-
er Approach (ECA) and the Maximizing Cluster Approach (MCA), each
ne including five conflicting objectives. Interestingly enough, both ap-
roaches considered MQ as one of the objectives. Later, Barros (2012)
roposed replacing MQ in ECA and MCA with a previously known
etric named Evaluation Metric Function. Another related proposal
as introduced by Mkaouer et al. (2015), where the authors considered
problem with seven different objectives.

Other strategies found in the literature include works based on semi-
upervised approaches, where some constraints are imposed on top of
lustering algorithms for the SMCP. For instance, Bavota et al. (2012)
onsidered introducing the expertise of a software engineer for the eval-
ation of the solutions, while Chong and Lee (2017) leveraged graph
heory to analyze the software and construct clustering constraints.

Regardless of the objective function used, as the tackled projects
row in size, evaluating all the possible solutions becomes imprac-
ical. Indeed, the SMCP has been proven to be -hard (Brandes
t al., 2007). Consequently, in general, exact methods are not suit-
ble for tackling the SMCP in real contexts, since the exploration
f all possible solutions might be very time consuming. On the con-
rary, search-based algorithms, which usually achieve solutions of high
uality (not necessarily optimal) in short times, seem to be more suit-
ble (Harman et al., 2012). In this context, evolutionary approaches,
subset of bioinspired search-based algorithms, have been promi-

ently popularized for tackling the SMCP (Ramirez et al., 2019). Pra-
itwong (2011) compared two encoding representations for Genetic
lgorithms (GAs). Chhabra (2017) and Prajapati and Chhabra (2019)
xtended the Harmony Search framework to design two algorithms.
dditional works studied the application of algorithms based on swarm

ntelligence to the SMCP, proposing an algorithm based on Artificial
ee Colony (Chhabra, 2018) and a Particle Swarm Optimization algo-
ithm (Prajapati and Chhabra, 2018). Similarly, Gee Varghese et al.
2019) designed a method based on the Ant Colony Optimization
ramework. In a recent work, Mu et al. (2020) proposed the use of
n HGA, which leverages domain-specific heuristics to improve the
fficacy of GAs for the remodularization of software architectures. As an
lternative to population-based strategies, some researchers have stud-
ed algorithms which progressively improve a single solution through
mall modifications until a local optimum is found. In this regard, Pinto
t al. (2014) proposed an Iterated Local Search algorithm and Monçores
t al. (2018) proposed another one based on Large Neighborhood
earch (LNS) to study the MQ objective function. The LNS approach
sed an agglomerative constructive method to build high-quality initial
olutions. Then, the initial solutions were improved using destroy and
epair procedures. Recently, a method for the SMCP based on a Greedy
andomized Adaptive Search Procedure (GRASP) combined with a
ariable Neighborhood Search (VNS) was introduced and compared
ith the previous LNS approach for the MQ metric (Yuste et al., 2022).

n this case, the GRASP approach used a semi-greedy constructive
pproach, followed by a VNS procedure to improve the initial solutions.
n both cases, the LNS and GRASP methods relied on a constructive
rocedure to build high-quality initial solutions considering the MQ
bjective function.

. Software module clustering problem

The goal of the SMCP is to organize a software project such that
ts modularity is maximized. To achieve this objective, a method is
eeded to compare solutions and find the best one. Moreover, in order
o enable comparisons, there needs to be a common representation
f the solutions. In this problem, software is frequently modeled in a
raph structure, where vertices represent artifacts and edges represent

ependencies between artifacts. Furthermore, software artifacts are
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usually grouped into packages or modules which, in this case, would
be represented as a group of vertices. More formally, a software is
modeled by an undirected weighted graph 𝐺 = (𝑉 ,𝐸,𝑊 ), where 𝑉
is the set of vertices, 𝐸 is the set of edges between vertices, and 𝑊 is
the set of weights associated to the edges in 𝐸. Specifically, each edge
is defined as a 2-tuple (𝑢, 𝑣) ∈ 𝐸, with 𝑢, 𝑣 ∈ 𝑉 , and it receives a weight
𝑤𝑢,𝑣 ∈ 𝑊 . In the case of unweighted graphs, it is assumed that edges
have associated a weight equal to 1.

In the SMCP literature, this structure is commonly known as a
Module Dependency Graph (MDG). Then, a solution for this problem
is a clustering of the MDG that represents the software architecture.
That is, a solution consists of a set 𝑀 of disjoint subsets of 𝑉 , such
that 𝑀 = {𝑚1, 𝑚2,… , 𝑚𝑘}, where 𝑘 represents the number of modules
(1 ≤ 𝑘 ≤ |𝑉 |) and each 𝑚𝑖, with 1 ≤ 𝑖 ≤ 𝑘, is a disjoint subset of
𝑉 . Notice that there exist two trivial solutions for the problem: (i) a
solution where every vertex is assigned to the same module (𝑘 = 1) and
(ii) a solution where each vertex forms an isolated module (𝑘 = |𝑉 |).

In this work, we study the SMCP based on the FCB objective
function, which was proposed by Mu et al. (2020). For a given solution
𝑥, this function is defined as:

𝐹𝐶𝐵(𝑥) =
𝐶 + max

𝑚𝑖∈𝑀
(𝑑𝑚𝑖

)

𝑇
, (1)

where 𝐶 refers to the coupling of the project, measured as the sum
of the weights of the edges that connect different modules. Notice
that the weight between any pair of non-adjacent vertices is zero.
Mathematically,

𝐶 =
𝑘−1
∑

𝑖=1

𝑘
∑

𝑗=𝑖+1

∑

𝑢∈𝑚𝑖
∧𝑣∈𝑚𝑗

𝑤𝑢,𝑣. (2)

𝑑𝑚𝑖
is the cohesion of module 𝑚𝑖, measured as the sum of the weights

of the edges between artifacts within module 𝑚𝑖. Mathematically,

𝑑𝑚𝑖
=

∑

𝑢,𝑣∈𝑚𝑖

𝑤𝑢,𝑣. (3)

Finally, 𝑇 is the sum of the weights of all edges of the entire archi-
tecture. As can be observed, 𝑇 is a constant value that is independent
of the particular clustering. Mathematically,

𝑇 =
∑

𝑒=(𝑢,𝑣)∈𝐸
𝑤𝑢,𝑣. (4)

Therefore, the objective of this problem is to find a solution 𝑥⋆ from
the set of all feasible solutions 𝑋 that minimizes Eq. (1), such that:

𝑥⋆ = argmin
𝑥∈𝑋

(𝐹𝐶𝐵(𝑥)). (5)

Finally, let us exemplify the evaluation of the FCB value with the
small synthetic MDG in Fig. 1. In that figure, we present the modular
organization of a software project (i.e., a solution 𝑥) with 11 artifacts
(𝑣1, 𝑣2,… , 𝑣11) and 3 modules (𝑚1, 𝑚2, 𝑚3). As aforementioned, vertices
of the graph represent artifacts of the system and edges represent
dependencies between artifacts. In this representation, we can also
observe that some connections are produced between pairs of artifacts
assigned to the same module, but others between pairs of artifacts
belonging to different modules. Let us assume that the weight of each
edge is equal to one. In order to evaluate FCB, we first compute the
value of the coupling of the architecture. In this case, 𝐶 = 4, since there
exist four different edges in the solution that connect vertices belonging
to different modules. Then, we proceed to compute the cohesion of each
module in the example. Regarding module 𝑚1, its cohesion is 𝑑1 = 2,
ince there exist two pairs of vertices that are connected inside 𝑚1. In
similar fashion, we can obtain the cohesion values for the rest of the
odules: 𝑑2 = 3 and 𝑑3 = 4. Therefore, the maximum cohesion of any
odule is 𝑑3 = 4. Next, we can calculate the value of the constant 𝑇 as

he sum of all edges in the solution, which results in 𝑇 = 13. Finally,
e can compute the quality of the solution 𝑥 as depicted in the figure,
3

esulting in 𝐹𝐶𝐵(𝑥) = 0.62.
Fig. 1. Representation of a solution 𝑥 for a software project and evaluation of its FCB
value.

4. Algorithmic proposal

In order to tackle the SMCP, we propose an algorithm based on the
Variable Neighborhood Search (VNS) methodology, a general frame-
work for solving optimization problems. This framework was first
introduced by Mladenović and Hansen (1997) and it is based on the
idea of performing systematic/stochastic changes in the neighborhood
structure of a search algorithm. Here, a neighborhood 𝑁(𝑥) is conceived
as the set of alternative solutions that can be obtained by performing
a specified move to a starting point 𝑥. A move can be defined as an
operation that, applied to a feasible solution, results in another feasible
solution. Neighborhood structures are usually explored with a local
search, a procedure that performs moves upon the incumbent solution
to find better solutions. If none of the solutions in the neighborhood is
better than a solution 𝑥, then 𝑥 is said to be a local optimum.

Derived from the main ideas within the VNS framework, there
exist several schemes. Among the classic and best-known ones, we can
find Basic VNS, Reduced VNS, General VNS or Variable Neighborhood
Descent, among others. These variants together with the main ideas
behind the VNS framework can be found in Hansen et al. (2010, 2017).
Even though it was originally thought for single-objective optimization
problems using a single thread, it has been extended and it is possible
to find parallel (Duarte et al., 2016) and multi-objective (Duarte et al.,
2015) implementations of VNS, among other extensions (Brimberg
et al., 2023; Granata and Sgalambro, 2023; Mladenović et al., 2022;
Nadar et al., 2023).

To select the most suitable variant of VNS for the SMCP, we an-
alyzed the most common strategies. Although all of them are based
on the same ideas, they differ in the way they perform the changes
in the neighborhood structure (i.e., stochastic, deterministic, or both).
Reduced VNS implements the ideas of VNS in a shake procedure,
which has a stochastic behavior. On the contrary, VND explores several
neighborhoods in a deterministic way. Basic VNS extends Reduced VNS
by performing an exhaustive exploration of a neighborhood within
a local search procedure, in addition to the stochastic exploration
performed by the shake procedure. Finally, GVNS extends VND by
introducing a shake procedure which introduces diversification in the

search through a stochastic exploration. In this paper, we have selected
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the GVNS scheme to tackle the SMCP since, as it will be discussed in
Section 4.1, we need to explore several neighborhoods belonging to
different categories that complement each other.

The pseudocode of the GVNS procedure proposed in this paper
is presented in Algorithm 1. This method receives three variables:
an initial solution (𝑥), the maximum size of the perturbation to be
performed by the shake procedure (𝑘𝑚𝑎𝑥), and the maximum allowed
time for the algorithm to run (𝑡𝑚𝑎𝑥). In this case, the starting solution is
built by a random constructive procedure. Initially, the algorithm enters
an outer loop (steps 3–16) until the maximum time 𝑡𝑚𝑎𝑥 is reached.
At each iteration of the loop, 𝑘, which determines the size of the
perturbation performed by the shake procedure, is set to 1 (step 4).
Then, the procedure enters into an inner loop (steps 5–14) where the
solution is first shaken (step 6) and then improved by a VND procedure
(step 7). The shake procedure randomly performs a set of moves within
a given neighborhood (i.e., it performs a random exploration of the
neighborhood). The amount of moves is dictated by the value of 𝑘.
Then, the VND explores two or more neighborhoods with a local
search procedure (i.e., it performs a deterministic exploration of the
neighborhoods) and returns the best solution found with respect to all
neighborhoods explored. Finally, the neighborhood change operation is
applied (steps 8 to 13). If the new solution found (𝑥′′) is better than the
previous best one (𝑥), then the new solution becomes the best overall
solution (step 9) and 𝑘 is reset to 1 (step 10). Notice that the quality
of both solutions is evaluated with the function 𝙵𝙲𝙱 (step 8), which
evaluates a solution as defined in Eq. (1). If that is not the case, then
variable 𝑘 is incremented (step 12). Once the maximum allowed time
is reached, the best overall solution found is returned (step 17).

Algorithm 1 Algorithmic proposal
1: GVNS (𝑥, 𝑘𝑚𝑎𝑥, 𝑡𝑚𝑎𝑥)
2: 𝑡 = CPUTime();
3: while (𝑡 < 𝑡𝑚𝑎𝑥) do
4: 𝑘 = 1;
5: while (𝑘 ≤ 𝑘𝑚𝑎𝑥) do
6: 𝑥′ = Shake(𝑥, 𝑘);
7: 𝑥′′ = VND(𝑥′);
8: if (FCB(𝑥′′) < FCB(𝑥)) then
9: 𝑥 = 𝑥′′;

10: 𝑘 = 1;
11: else
12: 𝑘 = 𝑘 + 1;
13: end if
14: end while
15: 𝑡 = CPUTime();
16: end while
17: return 𝑥;

As mentioned above, the initial solution for the GVNS procedure is
uilt at random. In particular, the construction is performed as follows.
irst, |𝑉 | different empty modules are created. That is, we create one

empty module per vertex in the MDG. Then, we assign each vertex in
the solution to a random module 𝑚𝑖. The module is chosen following
a uniform distribution from the set of existing modules. Finally, once
every vertex belongs to a module in the solution, the modules that do
not contain any vertices are removed from the solution. The resulting
initial solution is then improved by the GVNS procedure.

The general design of a GVNS procedure has to be particularized
for the specific problem tackled by defining the set of neighborhood
structures that will be used either in the deterministic exploration per-
formed by the VND component or in the stochastic exploration within
the shake method. In the following section, we proceed to describe the
neighborhood structures proposed for the GVNS procedure.
4

4.1. Neighborhood structures

In this work, we study six distinct neighborhoods for the SMCP
following the categorization presented in a previous work (Yuste et al.,
2022), where three categories were proposed. It is important to no-
tice that many neighborhoods have been previously proposed for re-
lated optimization problems. Particularly, in Yuste et al. (2022), four
neighborhoods were explored for the MQ objective function, while
in Monçores et al. (2018) three destroy and four repair methods were
proposed for the same objective function. In this paper, among the
six neighborhood structures studied, two can be considered as classi-
cal neighborhood structures for combinatorial optimization problems,
two neighborhoods were previously proposed for the MQ objective
function, and two are novel neighborhoods designed for the FCB. The
proposed neighborhoods are classified in one of the tree categories,
according to the impact that the move that defines them has on the
number of modules. The first category contains those neighborhoods
defined by moves that are not designed to modify the number of
modules. The second set of neighborhoods contains neighborhoods de-
fined by moves that increment the number of modules of the solution.
Finally, the neighborhoods defined by moves that decrease the number
of modules fall in the third category. Specifically, among the six neigh-
borhoods proposed, 𝑁1 and 𝑁2 belong to the first category, 𝑁3 and
𝑁4 belong to the second category, and 𝑁5 and 𝑁6 belong to the third
category. The proposed neighborhoods will be empirically analyzed to
consider its inclusion in the deterministic or in the random exploration.
Particularly, in Section 6.2.1, we study the contribution of the neigh-
borhoods and select some of them to be included in the VND procedure.
Furthermore, in Section 6.2.2 we empirically determine the order in
which the selected neighborhoods are explored. It is worth mentioning
that the deterministic exploration of the selected neighborhoods will be
performed using a local search procedure based on a first improvement
strategy. In Section 6.2.3 we determine which neighborhood is more
suitable to be explored within the shake procedure to complement
the neighborhoods selected for the VND. Notice that the neighborhood
explored within the shake procedure is stochastically traversed. Next,
we describe each of the neighborhoods in detail.

4.1.1. 𝑁1: Insertions
The first neighborhood proposed (𝑁1) is defined by an insertion

operator, which is a classic move in heuristic optimization (Cavero
et al., 2022; Yuste et al., 2022). This operator involves relocating a
vertex from its current module to a different one. This operator is
defined as 𝑥′ ← 𝙸𝚗𝚜𝚎𝚛𝚝(𝑥, 𝑣, 𝑚, 𝑚𝑖), where 𝑥 is the incumbent solution
efore applying the move, 𝑥′ denotes the resulting solution, 𝑚 is the
odule that contains 𝑣 originally, and 𝑚𝑖 is the module that contains 𝑣

fter the move. More formally:

1(𝑥) = {𝑥′ ← 𝙸𝚗𝚜𝚎𝚛𝚝(𝑥, 𝑣, 𝑚, 𝑚𝑖) ∶ ∀ 𝑣 ∈ 𝑉 , ∀ 𝑚𝑖 ∈ 𝑀 ∕ 𝑣 ∈ 𝑚, 𝑚 ≠ 𝑚𝑖},

here 𝑀 represents the set of modules in 𝑥 and 1 ≤ 𝑖 ≤ |𝑀|. Therefore,
he number of possible moves to consider for a given solution is equal
o |𝑉 | ⋅ (|𝑀| − 1).

.1.2. 𝑁2: Swaps
The second neighborhood (𝑁2) is characterized by a swap operator,

hich is also a classic move in heuristic optimization (Gil-Borrás et al.,
021; Yuste et al., 2022). This operator consists of interchanging two
ertices located in two different modules. This operator is defined as
′ ← 𝚂𝚠𝚊𝚙(𝑥, 𝑣𝑖, 𝑣𝑗 , 𝑚𝑘, 𝑚𝑙), where 𝑥 is the incumbent solution, 𝑥′ is the
esulting solution, 𝑣𝑖 is a vertex located in module 𝑚𝑘, and 𝑣𝑗 is a vertex
ocated in module 𝑚𝑙. More formally:

2(𝑥) = {𝑥′ ← 𝚂𝚠𝚊𝚙(𝑥, 𝑣𝑖, 𝑣𝑗 , 𝑚𝑘, 𝑚𝑙) ∶ ∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉

∕ 𝑣𝑖 ∈ 𝑚𝑘 ∧ 𝑣𝑗 ∈ 𝑚𝑙 ∧ 𝑚𝑘, 𝑚𝑙 ∈ 𝑀 ∧ 𝑚𝑘 ≠ 𝑚𝑙},

here 𝑀 represents the set of modules in 𝑥, 1 ≤ 𝑘, 𝑙 ≤ |𝑀|, and
≤ 𝑖, 𝑗 ≤ |𝑉 |. Thus, the number of moves to consider for a given

olution is less than |𝑉 | ⋅ (|𝑉 |−1)
2 , since vertices in the same module

cannot be swapped.
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4.1.3. 𝑁3: Splits
The third neighborhood (𝑁3) is characterized by a split operator,

hich consists of dividing a module into halves. This operator is
enoted as 𝑥′ ← 𝚂𝚙𝚕𝚒𝚝(𝑥, 𝑚,𝑚1, 𝑚2), where 𝑥 is the solution before

applying the move that contains the module 𝑚 and 𝑥′ is the solution
hat results after the move that contains the new modules 𝑚1 and 𝑚2
nstead of 𝑚. Furthermore, 𝑚1 contains half of the vertices that belonged
o 𝑚, and 𝑚2 contains the other half. More formally:

3(𝑥) = {𝑥′ ← 𝚂𝚙𝚕𝚒𝚝(𝑥, 𝑚,𝑚1, 𝑚2) ∶ ∀ 𝑚 ∈ 𝑀

∕ 𝑚1 ∪ 𝑚2 = 𝑚, |𝑚1| = ⌊

|𝑚|
2

⌋ ∧ |𝑚2| = ⌈

|𝑚|
2

⌉},

here 𝑀 represents the set of modules in the solution 𝑥. Notice that
ll the possible distributions of the vertices into the resulting modules
1 and 𝑚2 are considered within the neighborhood structure, as long
s both modules are equal in size (or almost equal in the case of an odd
umber of vertices). Therefore, the size of the entire neighborhood is
|𝑀|

𝑖=1
|𝑚𝑖|!

⌊|𝑚𝑖|∕2⌋!(|𝑚𝑖|−⌊|𝑚𝑖|∕2⌋)!
.

4.1.4. 𝑁4: Extractions
The fourth neighborhood (𝑁4) is defined by an extraction operator.

As defined in Yuste et al. (2022), this operator selects a combination of
vertices from one or more modules and inserts them into a new empty
module. This operator is denoted as 𝑥′ ← 𝙴𝚡𝚝𝚛𝚊𝚌𝚝(𝑥, 𝑙, 𝑢, 𝐿), where 𝑥 is
the original solution, 𝑥′ is the solution that results from the application
of the operator, and 𝐿 is any possible set of vertices. The size |𝐿| of the
set ranges between 𝑙 and 𝑢, which indicate the minimum and maximum
possible size of the new empty module. As a result, the solution 𝑥′ will
have a new module that contains all the vertices of 𝐿. More formally:

𝑁4(𝑥) = {𝑥′ ← 𝙴𝚡𝚝𝚛𝚊𝚌𝚝(𝑥, 𝑙, 𝑢, 𝐿) ∶ ∀ 𝐿 ⊆ 𝑉 ∕ 1 ≤ 𝑙 ≤ |𝐿| ≤ 𝑢 ≤ |𝑉 |}.

Notice that all possible combinations of |𝐿| vertices are considered,
or any number of vertices as long as 𝑙 ≤ |𝐿| ≤ 𝑢. Therefore, the size of
his neighborhood is ∑𝑢

𝑛=𝑙
|𝑉 |!

𝑛!(|𝑉 |−𝑛)! .

.1.5. 𝑁5: Merges
The fifth neighborhood (𝑁5) is defined by a merge operator, where

wo modules are combined into one. We define this operator as 𝑥′ ←
𝚎𝚛𝚐𝚎(𝑥, 𝑚𝑖, 𝑚𝑗 ), where 𝑥 is the incumbent solution, 𝑥′ is the resulting
olution, and 𝑚𝑗 is the module that will be merged into module 𝑚𝑖. That
s, 𝑚𝑖 will contain all the vertices in 𝑚𝑖 ∪ 𝑚𝑗 . More formally:

5(𝑥) = {𝑥′ ← 𝙼𝚎𝚛𝚐𝚎(𝑥, 𝑚𝑖, 𝑚𝑗 ) ∶ ∀ 𝑚𝑖, 𝑚𝑗 ∈ 𝑀 ∕ 𝑖 ≠ 𝑗},

here 𝑀 represents the set of modules in 𝑥. Then, the size of the entire
eighborhood is |𝑀| ⋅ |𝑀|−1

2 .

.1.6. 𝑁6: Destructions
The last neighborhood (𝑁6) is defined by a destruction operator,

s defined in Yuste et al. (2022). This operator removes one module,
nd the affected vertices are relocated into other existing modules.
e define this operator as 𝑥′ ← 𝙳𝚎𝚜𝚝𝚛𝚘𝚢(𝑥, 𝑚,𝑂,𝐷), where 𝑥 is the

incumbent solution, 𝑥′ is the resulting modularization, 𝑚 is the module
that will be destroyed, 𝑂 is an array of the vertices that are contained
in 𝑚, and 𝐷 is an array of modules. Both 𝑂 and 𝐷 are ordered, and
there exists a correspondence between the two lists such that the 𝑖th
vertex in 𝑂 will be placed in the 𝑖th module in 𝐷. More formally:

𝑁6(𝑥) = {𝑥′ ← 𝙳𝚎𝚜𝚝𝚛𝚘𝚢(𝑥, 𝑚,𝑂,𝐷) ∶ ∀ 𝑚 ∈ 𝑀∕ 𝑚 ∉ 𝐷, |𝑂| = |𝐷| = |𝑚|},

where 𝑀 represents the set of modules in 𝑥. Notice that all modules
are considered to be destroyed. Moreover, for each module, all possi-
ble distributions of their vertices into other modules are considered.
Therefore, the size of the neighborhood is (|𝑀| − 1)|𝐷| ⋅ |𝑀|, with
|𝐷| ≤ |𝑉 |.
5

5. Advanced strategies

Here, we describe two strategies to enhance the performance of the
most time-consuming subroutines of the proposed algorithm: the local
search procedures within the VND. Local search procedures need to
perform many moves in the search space and evaluate the solution that
results after each move. Therefore, to enhance their performance, we
first introduce an efficient computation of the quality of the solution
(see Section 5.1). Then, we detail a strategy to explore only promising
areas of the search space (see Section 5.2).

5.1. Efficient computation of the objective function

The FCB objective function (see Eq. (1)) is calculated as the sum of
the coupling and the maximum cohesion of the solution, divided by a
constant value. Therefore, an initial naive idea is to calculate this value
only once, as has been proposed for other metrics (Yuste et al., 2022).
Furthermore, analyzing the purpose of the division, we noticed that
it is devoted to normalize the value of the function in (0, 1], allowing
comparison of the modularity of different software projects. However,
different solutions for the same project (as is the case with the search
procedure) can be successfully compared without performing this divi-
sion. Therefore, we can compare the quality of different solutions for a
given MDG with the following simplified function:

𝐹𝐶𝐵(𝑥) = 𝐶 + max
𝑚𝑖∈𝑀

(𝑑𝑚𝑖
). (6)

The resulting objective function is computed as the sum of the
coupling between the modules of the architecture and the maximum
cohesion of any module. However, these values do not need to be
calculated from scratch each time a move operation is performed.
Instead, if the values of the cohesion of each module and the coupling
between each pair of modules of the starting solution are stored, we will
only need to update the cohesion and coupling values of the affected
modules after a move operation.

In Fig. 2, we represent an example of the use of these strategies. On
the left side, we represent a solution 𝑥 that has already been evaluated.
Therefore, the cohesion of each module and the coupling between each
pair of modules are already known. Specifically, let 𝑑1 = 2 be the
cohesion of module 𝑚1 (similarly, 𝑑2 = 3, 𝑑3 = 1, and 𝑑4 = 1).
urthermore, let 𝑐1,2 = 1 be the coupling between modules 𝑚1 and

𝑚2 (similarly, 𝑐1,3 = 1, 𝑐1,4 = 0, 𝑐2,3 = 1, 𝑐2,4 = 1, and 𝑐3,4 = 2).
We also represent, under the solution, the detailed evaluation of the
objective function. On the right part, we represent a modified solution
𝑥′, obtained by moving the vertex 𝑣5 to module 𝑚4. In this case, we
also represent the detailed evaluation of the FCB objective function,
but highlighting in bold type font only the affected values after the
move. As it can be observed the cohesion of modules 𝑚1 and 𝑚3 has
not changed. Therefore, we only need to update the cohesion of the
affected modules: 𝑚2 and 𝑚4. Similarly, we can avoid recalculating the
coupling of the whole architecture from scratch, since only the coupling
between modules 𝑚2 and 𝑚4 and 𝑚3 and 𝑚4 is affected.

5.2. Reduction of neighborhoods

Here, we extend a strategy presented in Yuste et al. (2022) to
explore only promising solutions, thus reducing the size of the search
space explored. This strategy is built on top of a theorem introduced
by Köhler et al. (2013). There, the authors state that in the best solution
for this problem, all vertices will be connected to at least one vertex
within the same module. That is, for each vertex, there will be at least
one adjacent vertex located in the same module. Thus, we can focus
on exploring only promising solutions, obtained by performing move
operations that place a vertex in a module where there is at least one
adjacent vertex.
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. Experimental results

Here, we present some experimental results performed to configure
he proposed approach. First, we outline the dataset used for the
xperimentation in Section 6.1. Then, we present some preliminary
xperiments needed to configure the search parameters of our proposal
n Section 6.2. Finally, in Section 6.3, we perform a comparison of
he results obtained by our proposal with the results obtained by the
tate-of-the-art method.

.1. Dataset

In order to evaluate the performance of the proposed method, we
mploy a set of 124 previously published instances (Monçores et al.,
018). This dataset is made up of real-life software projects of varying
izes, comprising projects with up to 1161 artifacts and 11 722 depen-
encies. For the preliminary experiments, we selected 14 instances at
andom to form a reduced dataset. Particularly, the instances contained
n the preliminary experiments are: apache_ant_taskdef, gae_plugin_core,
avacc, joe, jscatterplot, jtreeview, jxlsreader, lwjgl-2.8.4, mod_ssl, net-
ools, nmh, regexp, star, and wu-ftpd-1.

.2. Preliminary experiments

In this section, we perform some preliminary experiments to adjust
he search parameters of our approach or to illustrate the behavior of
he proposed strategies. The objective is to configure the best possible
ariant of our algorithm to tackle the problem studied in this paper.
ach configuration of the tested algorithms is executed just once.
owever, since the initial solutions are built at random, in order to
erform a fair comparison, we ensure that all the configurations tested
n each experiment start from the same initial solution.

.2.1. Contribution of each neighborhood
In Section 4, we proposed six neighborhoods for the SMCP. In

articular, we identified three different categories of neighborhoods
6

nd proposed two neighborhoods per category. However, including all
he neighborhoods in a VND procedure might result in a very heavy
ethod. Furthermore, some of the neighborhoods previously defined

re very large and should be bounded in order to find a balance
etween performance and time consumption. In particular, we have
ounded 𝑁3, 𝑁4 and 𝑁6. In the case of 𝑁3 we only explore |𝑉 | solu-

tions. Each of them is constructed by dividing the vertices of a module
considering their adjacency. In particular, for each module, we consider
the vertices in the module one by one as a candidate seed. The seed is
inserted into a new empty module together with half of the vertices
from the same module that have the strongest dependencies towards
the seed in terms of adjacency. The remaining vertices are inserted into
another new empty module. Since all vertices are considered as possible
seeds, the size of this neighborhood is |𝑉 |. Similarly, we bound 𝑁4 by
fixing the parameters 𝑙 and 𝑢 to 2 and 3 vertices, respectively. Finally,
we also bound the size of 𝑁6. This neighborhood structure considers
the destruction of every module in the solution and the insertion of
its vertices into other modules. However, we do not consider all the
possible insertions when a module is destroyed. Instead, each vertex is
inserted only in the module that has the most dependencies towards
that vertex. Therefore, the size of 𝑁6 in practice is equal to the number
of modules |𝑀|.

Here, we analyze the benefits of exploring each neighborhood struc-
ture in isolation. The aim is to identify the most promising neighbor-
hoods in each category. To this end, we explore each neighborhood
in isolation using a local search procedure. In the local search, a first
improvement strategy is followed. To execute a reasonable comparison,
we constructed a random solution for each of the tested instances and
provided the same solution to each of the six local search procedures.
Each method stopped its execution when no further improvements were
found in the explored neighborhood, reporting the CPU time and the
quality of the solution found in terms of FCB.

In Table 1, we summarize the results obtained by each local search
method, together with the results provided by the random initial con-
structions. In particular, we report the category of the neighborhood
structure (Category), the average value of the objective function (O.F.),
the deviation towards the objective value of the best solution (Dev.
(%)), the number of instances for which the best solution is obtained

(# Best), the duration of the search process (CPUt (s)), and the average
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Table 1
Comparison of the results obtained by exploring different neighborhoods in isolation.

Category Method O.F. Dev. (%) # Best CPUt (s) Avg. Improv.

– Constructions 0.9524 53.90% 0 0.04 –

1 Insertions (𝑁1) 0.6753 7.58% 7 3.33 204.07
1 Swaps (𝑁2) 0.8425 36.67% 0 0.36 54.07

2 Splits (𝑁3) 0.9494 53.44% 0 0.06 0.71
2 Extractions (𝑁4) 0.8862 43.47% 0 0.94 39.21

3 Merges (𝑁5) 0.8059 29.31% 0 0.06 15.64
3 Destructions (𝑁6) 0.6824 8.29% 7 0.11 26.07
f
𝑜
f
𝑜

o
a
t
(
w
C
w
a
𝑘
o
o
n
t
b

number of improving moves that have been performed during the
exploration of the neighborhood structure (Avg. Improv.). As it is illus-
trated, the neighborhoods 𝑁1 and 𝑁6 achieved the best results, with a
quality of 0.6753 and 0.6824 on average, respectively. Moreover, these
neighborhoods obtained the best results for 7 instances. Furthermore,
in both cases, the exploration of the neighborhood structures resulted
in a higher number of improvements than the exploration of the other
neighborhood tested in the same category. However, 𝑁1 was also
one of the most time-consuming neighborhood structures to explore.
Therefore, we selected both neighborhoods, 𝑁1 and 𝑁6, to be part of
he algorithm.

Finally, to complement the previous neighborhoods, we selected the
est neighborhood in the second category: 𝑁4. One of the main ideas of
NS is to explore multiple neighborhood structures, and it is desirable

hat neighborhoods included in the method complement each other.
n this case, exploring at least one neighborhood structure from each
ategory gives flexibility to the algorithm. Despite neighborhoods from
he second category perform poorly in isolation, without neighborhood
tructures of the second category, the algorithm would not be able to
ncrease the number of modules, but only to maintain or reduce it.
hus, we configured the VND procedure with three neighborhoods: 𝑁1,
4, and 𝑁6.

.2.2. Order of the neighborhoods
Within the VNS methodology, the VND variant is characterized

y its exploration of the neighborhoods in a deterministic way. If an
mprovement is made while exploring a neighborhood, the procedure
s reset to explore the list of neighborhoods from the beginning once
gain. Otherwise, if no improving solution is found in the current
eighborhood, the VND continues exploring the next neighborhood in
he list. This procedure is performed repeatedly until it is unable to
mprove the current solution. Therefore, as each neighborhood is often
xplored more times than the following ones, the order in which they
re structured might be impactful on the performance of the algorithm
n either time or quality.

Here, we investigate all possible combinations of the three neighbor-
oods that were selected in Section 6.2.1 to be part of the algorithm:
1, 𝑁4, and 𝑁6. We have explored the three neighborhoods in a VND
rocedure, in different orders, but ensuring that each of the six methods
egan its exploration from the same set of starting solutions, which
ere built at random.

In Table 2, we report the results obtained for each ordering of the
onsidered neighborhoods (i.e., for each VND configuration). As illus-
rated, each VND method performed differently. Furthermore, in some
ases, the differences among the methods in CPU time or deviation are
emarkable. In particular, we observed that the combinations that start
y exploring 𝑁6 are faster, whereas those that explore 𝑁1 before 𝑁6
re slower. Taking into account the quality of the solutions obtained,
he last ordering (𝑁6, 𝑁4, 𝑁1) performed the best, with an average score
f 0.5971. Moreover, by exploring the neighborhoods in this order, the
ethod obtained the best results for 7 out of 14 instances in a very short

omputing time. Correspondingly, we configured the VND component
f the proposed GVNS to explore neighborhoods 𝑁6, 𝑁4, and 𝑁1, in that

order.
7

o

Table 2
Comparison of the results obtained by a VND procedure when exploring the selected
neighborhoods in all possible orders.

Order Avg. O.F. Avg. dev. (%) # Best Avg. CPUt (s)

𝑁1 , 𝑁4 , 𝑁6 0.6055 6.93% 3 1.94
𝑁1 , 𝑁6 , 𝑁4 0.6053 6.89% 3 2.85
𝑁4 , 𝑁1 , 𝑁6 0.6163 8.40% 3 2.29
𝑁4 , 𝑁6 , 𝑁1 0.6045 5.96% 4 0.89
𝑁6 , 𝑁1 , 𝑁4 0.6093 7.53% 4 0.15
𝑁6 , 𝑁4 , 𝑁1 0.5971 4.88% 7 0.18

6.2.3. Comparison of shake procedures
The shake procedure is used by the GVNS method to diversify the

search by choosing a random solution after performing 𝑘 moves in a
predefined neighborhood. Therefore, this method is highly dependent
on the neighborhood chosen, but also on the neighborhoods included
in the VND method within the GVNS. In this paper, we study three
different shake procedures, one for each of the three categories of
neighborhoods introduced in Section 4. Particularly, we have selected
the neighborhoods that were discarded in Section 6.2.1 to configure
the three shake procedures: 𝑆ℎ𝑎𝑘𝑒1 uses 𝑁2, 𝑆ℎ𝑎𝑘𝑒2 uses 𝑁3, and
𝑆ℎ𝑎𝑘𝑒3 uses 𝑁5. To perform a fair comparison, we executed three GVNS
algorithms configured with the VND selected in Section 6.2.2 and each
of the shake procedures proposed. We also tried different values of 𝑘𝑚𝑎𝑥
(10, 20, and 30) and 𝑘-step was set to one (i.e., 𝑘 is increased in one
unit per iteration).

Since the neighborhoods considered for the shake procedures are
considerably different (an operation in 𝑁2 affects two vertices, an
operation in 𝑁3 affects half of the vertices of a module, and an
operation in 𝑁5 affects all the vertices of two modules), the magni-
tude of the perturbation performed in the solution, given the same
value of 𝑘, might also be different. Taking this into account, at each
step of the algorithm, the number of Swap moves performed by
𝑆ℎ𝑎𝑘𝑒1 is max(𝑘, (|𝑉 | ∗ 𝑘)∕100). The number of Split moves per-
ormed by 𝑆ℎ𝑎𝑘𝑒2 is min(max(𝑘, (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑀𝑜𝑑𝑢𝑙𝑒𝑠 ∗ 𝑘)∕100),
𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑀𝑜𝑑𝑢𝑙𝑒𝑠). Finally, the number of Merge moves per-
ormed by 𝑆ℎ𝑎𝑘𝑒3 is min(max(𝑘, (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑀𝑜𝑑𝑢𝑙𝑒𝑠 ∗ 𝑘)∕100),
𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑀𝑜𝑑𝑢𝑙𝑒𝑠).

In Table 3, we present, for each configuration and maximum value
f 𝑘: the neighborhood used in the shake procedure (Shake), the aver-
ge quality of the best solution obtained for each instance (Avg. O.F.),
he average deviation from the best solution found in the experiment
Avg. dev. (%)), the number of instances for which the best solution
as obtained (# Best), and the average execution time consumed (Avg.
PUt (s)). Notice that the comparisons between the shake procedures
ere made independently for each maximum value of 𝑘 (i.e., deviation
nd best solutions were calculated separately for 𝑘 = 10, 𝑘 = 20, and
= 30). As it can be observed, the configuration with the shake based
n swap moves was the one that obtained the best results, beating the
ther configurations in terms of average quality, average deviation, and
umber of best solutions found for any of the maximum values of 𝑘
ried in the experiment. Therefore, we select the 𝑆ℎ𝑎𝑘𝑒1 procedure,
ased on the 𝑁2 (Swap operator) to configure the shake component

f our GVNS.
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Fig. 3. Comparison of the average quality of the best solution found for the instances in the reduced dataset over time with different values of 𝑘𝑚𝑎𝑥.
Table 3
Comparison of a GVNS algorithm with different shake procedures and different values of 𝑘𝑚𝑎𝑥. Each configuration was executed for one iteration
and started from the same initial solutions.
𝑘𝑚𝑎𝑥 Avg. O.F. Avg. dev. (%) # Best Avg. CPUt (s)

10 20 30 10 20 30 10 20 30 10 20 30

𝑆ℎ𝑎𝑘𝑒1 0.57 0.56 0.56 0.37 0.15 0.15 12 13 13 3.79 4.86 6.31
𝑆ℎ𝑎𝑘𝑒2 0.59 0.59 0.59 5.31 5.63 5.63 3 2 2 1.92 1.72 2.04
𝑆ℎ𝑎𝑘𝑒3 0.57 0.57 0.57 1.41 1.73 1.73 5 3 3 8.29 18.56 31.46
6.2.4. Maximum value of k
In order to tune the 𝑘𝑚𝑎𝑥 parameter of GVNS, we performed an

experiment to analyze the performance of the method for different
values of 𝑘𝑚𝑎𝑥 over time. In particular, we configured the GVNS to use
the shake procedure based on swap moves and explore neighborhoods
𝑁6, 𝑁4, and 𝑁1 within the VND component in the specified order,
setting the maximum running time to 300 s per configuration. Notice
that, at each iteration of the algorithm, the number of moves performed
by the shake procedure is equal to max(𝑘, (|𝑉 | ∗ 𝑘)∕100). Therefore, the
size of the perturbation is related to the size of the graph. In Fig. 3,
we represent the average quality of the best solutions obtained for each
instance at any instant during a time period of 300 s, for different values
of 𝑘𝑚𝑎𝑥: 10, 20, 30, 40, 50, and 60. As it can be observed, depending
on the time horizon considered, different values of 𝑘𝑚𝑎𝑥 were the most
beneficial. For instance, the method configured with 𝑘𝑚𝑎𝑥 = 10 achieved
the best results in the first 50 s, while the method configured with
𝑘𝑚𝑎𝑥 = 20 was the best configuration in the time interval between 50
and 100 s. Finally, the method configured with 𝑘𝑚𝑎𝑥 = 30 was the best
one after 120 s. In this sense, the configuration of the algorithm should
be set depending on the particular running context. Although 𝑘𝑚𝑎𝑥 =
10 allowed the algorithm to improve the solutions faster than other
values, 𝑘𝑚𝑎𝑥 = 30 achieved better long-term performance. Therefore,
we decided to set the value of 𝑘𝑚𝑎𝑥 to 30 for the configuration of the
approach.

6.2.5. Stopping criterion
In search-based optimization strategies, the stopping criterion is

often related to a maximum number of iterations, a maximum execution
time, a maximum number of iterations without improvement, or a com-
bination of them. In this work, we propose a stopping criterion based
on a maximum number of consecutive iterations without improvement,
allowing the algorithm to avoid further processing when the procedure
stagnates. Here, we configure the algorithm to stop the execution after
5, 10, 15, and 20 iterations without improving the solution. The rest
of the algorithm is configured with the parameters selected in previous
experiments: a swap shake procedure, 𝑘𝑚𝑎𝑥 = 30, and a VND approach
that explores neighborhoods 𝑁 , 𝑁 , and 𝑁 , in that order.
8
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Table 4
Comparison of the results obtained with different configurations of the stopping
criterion. In particular, the algorithm has been set to stop after 5, 10, 15, or 20
iterations without improvement.

Iterations without
improvement

Avg. O.F. Avg. dev. (%) # Best Avg. CPUt (s)

5 0.5509 0.27% 10 30.42
10 0.5501 0.09% 12 54.57
15 0.5496 0.00% 14 87.07
20 0.5496 0.00% 14 99.95

We present the obtained results for each configuration of the stop-
ping criterion (Iterations without improvement) in Table 4. As ex-
pected, increasing the number of maximum consecutive iterations with-
out improvement allows the algorithm to further explore the search
space, resulting in solutions of better quality at the expense of ad-
ditional time. However, the relative improvement obtained between
consecutive configurations decreases as the number of maximum iter-
ations increases. In fact, we barely observe an improvement in terms
of quality by increasing the number of maximum iterations without
improving from 10 to 15, and the improvement is non-existent after
increasing this number from 15 to 20. Therefore, we decided to config-
ure the stopping criterion of the proposed algorithm to halt the search
after 15 consecutive iterations without improving the solution.

6.2.6. Influence of the advanced strategies
In this section, we test the influence of the advanced strategies on

the overall performance of the proposed procedure. The results of this
experiment are summarized in Table 5. All the results reported in the
table are obtained with the configuration of our GVNS obtained from
previous experiments. That is, the shake procedure utilizes the swap
neighborhood, 𝑘𝑚𝑎𝑥 = 30, and the VND is configured to explore the
neighborhoods 𝑁6, 𝑁4, and 𝑁1, in that order. The halting criterion is set
to stop after 15 consecutive iterations without improving the solution.

Particularly, in Table 5, we report four different rows depending on
the advanced strategies used by the algorithm. In the first row, denoted
as None, we report the results obtained by the algorithm without any
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Table 5
Comparison of the outcomes obtained with different advanced strategies: None, efficient
evaluation (EE), and reduction of the size of neighborhoods (RN).

Advanced strategies Avg. O.F. Avg. CPUt (s)

None 0.5762 89 479.66
EE 0.5762 509.63
RN 0.5703 250.59
EE+RN 0.5703 6.56

of the advanced strategies. In the second row, denoted as EE (Efficient
Evaluation) we report the results obtained by using the strategy in-
troduced in Section 5.1. In the third row, denoted as RN (Reduction
of the size of Neighborhoods), we report the results obtained by the
algorithm using the strategy introduced in Section 5.2. Finally, in the
fourth row, denoted as EE+RN, we report the results obtained by the
algorithm using the two previous strategies simultaneously. As it can
be observed, each advanced strategy, EE and RN, used in isolation, is
able to reduce the time consumption of the algorithm in two orders of
magnitude, from an average time per instance of 89479.66 s to 509.63
and 250.59 s, respectively. In addition, when combining both of them,
the time consumption of the algorithm is further reduced to an average
running time per instance of 6.56 s, i.e., four orders of magnitude less
than the time needed by the algorithm without any of the proposed
strategies.

In the results reported in Table 5 it is also noticeable that there are
variations in the average FCB value between the two first configura-
tions of the table and the other two. This is due to the addition of the
strategy which reduces the size of the neighborhoods. Since we are ex-
ploring the neighborhoods with a first improvement approach (i.e., the
first neighbor found that is better than the current solution is selected),
reducing the size of the neighborhoods often results in a different search
pattern. Thus, the solutions obtained can be different. This pattern has
also been reported in previously related research (Yuste et al., 2022).

Finally, we would like to note that for this experiment we only used
the ten smallest instances from the reduced dataset. This is due to the
fact that the time needed by the version of the method without any
of the advanced strategies for the largest instances was inacceptable
for practical purposes. However, the larger the size of the instance
considered, the greater the benefits of the proposed strategies.

6.3. Final experiments

Finally, once we have configured the search parameters of the pro-
posed algorithm, we perform an experiment to compare our proposal
with the best algorithm known in the literature (i.e., the HGA proposed
by Mu et al. (2020)) on a set of 124 real software projects published
in the literature (Monçores et al., 2018). The outline of the final
configuration of our GVNS method is the following: the algorithm runs
until 15 consecutive iterations are completed without improving the
solution; the shake procedure utilizes the swap neighborhood; 𝑘𝑚𝑎𝑥 =
30; the VND is configured to explore neighborhoods 𝑁6, 𝑁4, and 𝑁1, in
that order; and the algorithm incorporates the strategies introduced in
Section 5.

All experiments were run on a Microsoft Windows 10 Pro
10.0.19042 x64 operating system, with an AMD EPYC 7282 @ 2795
Mhz CPU with 8 cores and 8 GB RAM. The proposed method was
implemented in Java 17.0.1. In addition, we implemented it using
the Metaheuristic Optimization framewoRK (MORK) project (Martín-
Santamaría et al., 2022). Unfortunately, the original implementation of
the HGA algorithm is not public. Therefore, we implemented the HGA
algorithm as described by Mu et al. (2020) in both Java and Matlab
(R2021b Update 1). Nevertheless, we found that our implementation
in Matlab (as originally proposed by the authors) was more efficient
than our implementation in Java, since it took advantage of the fast
9

calculation of matrix operations available in the platform, which is
Table 6
Comparison of the results obtained with the method proposed in this research, GVNS,
and the best known algorithm, HGA (Mu et al., 2020).

Size of instances Method O.F. Dev. # Best CPUt (s) 𝑝-value

Small (64) GVNS 0.6448 <0.01% 64 4.29
HGA 0.7234 14.10% 12 27.56 <0.001

Medium (29) GVNS 0.5312 <0.01% 29 23.89
HGA 0.7215 46.67% 0 538.31 <0.001

Large (18) GVNS 0.5075 <0.01% 18 103.73
HGA 0.7555 54.05% 0 7,629.85 <0.001

Very large (13) GVNS 0.4901 <0.01% 13 1084.09
HGA 0.7842 65.97% 0 254,173.61 0.001

All (124) GVNS 0.5821 <0.01% 124 136.51
HGA 0.7340 32.96% 12 27,894.91 <0.001

an important issue in the design of the algorithm. Therefore, in the
comparison, we used the implementation made in Matlab.

In Table 6, we present the outcomes obtained by the two algorithms,
HGA and GVNS, for all instances, divided in four different groups,
following the same distribution given by Monçores et al. (2018): in-
stances with less than 79 vertices (Small), instances with less than
190 vertices (Medium), instances with less than 400 vertices (Large),
and instances with more than 400 vertices (Very large). Specifically,
we outline the average FCB value (O.F.), the average deviation from
the best solution found in this experiment for each instance by any of
the methods compared (Dev.), the number of instances for which the
obtained solution was better or equal to the solution obtained by the
other method (# Best), the average execution time consumed (CPUt
(s)), and the 𝑝-value obtained for each group of instances according
to the Wilcoxon’s Signed Rank Test (𝑝-value). As can be noticed, the
solutions obtained by the GVNS approach present a better quality on
average than the solutions obtained by the HGA method. Moreover,
GVNS obtained solutions that were closer to the best ones found (with
less than a 0.01% of deviation) than HGA (with a deviation of 32.96%
on average). Furthermore, GVNS obtained the best results for 124 out
of 124 instances, whereas HGA obtained the best results for 12 of the
smallest instances in the dataset. Finally, it can be seen that GVNS was
three orders of magnitude faster than HGA. In addition, the results are
statistically significant, according to the Wilcoxon’s signed rank test,
with 𝑝 < 0.001. In Table B.8 of Appendix B, we report the detailed
results of the Wilcoxon’s signed rank test.

7. Conclusions and future research

In this work, we have presented an algorithm based on the GVNS
methodology for the SMCP. The proposed algorithm includes both a
diversification phase and an intensification phase. In the diversification
phase, a shake procedure perturbs the solution to escape from local
optima. In the intensification phase, a VND procedure finds a local
optimum within several neighborhood structures. Since the diversi-
fication phase is performed by a shake procedure, the method does
not need to rely on a randomized constructive procedure to introduce
diversification into the search process, in contrast to other methods in
the literature (Yuste et al., 2022). For this reason, the initial solutions
for the GVNS approach are built at random. Moreover, the proposed
GVNS schema introduces some adaptiveness in the shake procedure,
by adapting the size of the perturbation depending on the size of the
instance at hand.

The proposed algorithm has been used to study a novel quality
metric for software modularization: FCB. To improve the efficiency of
the proposed approach for the FCB objective function, two advanced
strategies have been included in the proposal: (i) an efficient compu-
tation of the quality of the solutions and (ii) a reduction of the size of

the explored neighborhoods.
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Table A.7
Best solutions found by each algorithm for all instances in the dataset.

Instance |𝑉 | |𝐸| GVNS HGA (Mu et al., 2020)

FCB CPUt (s) FCB CPUt (s)

squid 2 2 1.0000 0.09 1.0000 5.42
small 6 5 0.6000 0.08 0.6000 5.45
random 13 30 0.6400 0.22 0.6400 19.27
compiler 13 32 0.6875 0.38 0.7813 5.32
regexp 14 20 0.6892 0.25 0.6892 35.73
netkit-ping 15 15 1.0000 0.15 1.0000 15.43
nss_ldap 15 16 0.9957 0.18 0.9957 18.37
lab4 15 18 0.5000 0.19 0.5000 6.81
jstl 15 20 0.3333 0.16 0.3333 8.94
nos 16 52 0.6600 0.49 0.7000 21.07
lslayout 17 43 0.6977 0.48 0.7442 21.92
netkit-tftpd 18 23 0.8824 0.36 0.8824 29.08
boxer 18 29 0.6552 2.19 0.7931 6.00
sharutils 19 36 0.6250 0.45 0.6827 13.22
mtunis 20 57 0.6140 0.65 0.6140 25.53
spdb 21 17 0.5000 0.21 0.5000 20.34
xtell 22 57 0.6309 0.68 0.6779 12.93
bunch 23 62 0.6400 3.06 0.7600 7.88
netkit-inetd 24 25 0.9588 0.25 0.9588 27.39
ispell 24 103 0.7010 2.21 0.7526 13.36
nanoxml 25 64 0.5968 1.52 0.6452 28.46
ciald 26 64 0.6250 1.85 0.6563 7.62
Modulizer 26 66 0.6032 3.14 0.6825 30.06
jodamoney 26 102 0.6000 1.12 0.6824 19.95
jxlsreader 27 73 0.5890 1.06 0.6986 15.82
bootp 27 75 0.6780 3.77 0.7186 14.44
sysklogd-1 28 74 0.6914 1.34 0.7543 30.20
telnetd 28 81 0.6908 1.27 0.7127 40.04
netkit-ftp 29 95 0.7058 1.73 0.7394 59.01
crond 29 112 0.6815 2.44 0.7124 16.55
rcs 29 163 0.7097 3.09 0.7613 33.53
seemp 30 61 0.4800 0.60 0.6600 17.27
dhcpd-2 31 122 0.6174 1.97 0.6946 18.34
cyrus-sasl 32 100 0.6104 2.08 0.6835 15.35
tcsh 32 105 0.8240 2.62 0.8522 28.55
micq 33 156 0.6799 3.55 0.6933 42.58
apache_zip 36 86 0.5135 3.68 0.7703 22.78
star 36 89 0.5393 1.10 0.6404 20.53
bison 37 179 0.6527 5.54 0.7784 11.45
stunnel 38 97 0.6532 2.48 0.6937 76.60
cia 38 185 0.5717 3.86 0.6550 22.63
minicom 40 257 0.6903 5.35 0.7424 63.58
mailx 41 331 0.6540 7.25 0.7473 47.91
dot 42 255 0.6935 6.83 0.7661 13.18
screen 42 292 0.7092 9.84 0.7465 49.33
slang 45 242 0.6659 4.76 0.7474 35.01
slrn 45 323 0.6957 7.97 0.7740 36.81
net-tools 48 183 0.6000 3.65 0.7582 58.62
graph10up49 49 1 650 0.7410 49.89 0.7467 18.97
wu-ftpd-1 50 230 0.7161 16.51 0.8086 29.04
joe 51 540 0.6182 9.33 0.7640 32.22
hw 53 51 0.4188 0.55 0.7145 19.23
imapd-1 53 298 0.6567 9.29 0.7424 25.32
wu-ftpd-3 54 278 0.7038 12.56 0.7418 35.61
udt-java 56 227 0.5762 4.16 0.7143 35.04
javaocr 58 155 0.5420 1.67 0.5573 38.80
dhcpd-1 59 571 0.6315 13.67 0.7370 41.84
pfcda_base 60 197 0.5680 5.42 0.7456 54.93
icecast 60 650 0.6887 25.06 0.7764 19.33
servletapi 61 131 0.4173 1.88 0.6378 39.56
php 62 191 0.5679 4.16 0.7475 57.25
bunch2 65 151 0.4531 2.53 0.7031 38.12
forms 68 270 0.5378 6.65 0.7200 27.05
jscatterplot 74 232 0.3988 2.91 0.6705 56.04
jxlscore 79 330 0.5728 6.80 0.6731 43.51

(continued on next page)

This method has been favorably compared with the best known
ethod that tackles the FCB metric, an HGA presented by Mu et al.

2020). The comparison has been made on a set of 124 instances ob-
ained from real-world software projects, published by Monçores et al.
2018). The results showed that the proposed algorithm outperformed
10
Table A.7 (continued).
Instance |𝑉 | |𝐸| GVNS HGA (Mu et al., 2020)

FCB CPUt (s) FCB CPUt (s)

jfluid 81 315 0.6129 9.43 0.7384 60.46
elm-2 81 683 0.6801 20.17 0.7665 38.39
grappa 86 295 0.5198 5.26 0.5952 33.93
gnupg 88 601 0.5246 6.83 0.7550 51.10
elm-1 88 941 0.6466 34.97 0.7768 48.09
inn 90 624 0.6664 22.31 0.7474 63.58
bash 92 901 0.6633 57.03 0.7641 385.52
jpassword 96 361 0.5479 7.73 0.7126 157.63
bitchx 97 1 653 0.6792 61.49 0.7449 394.22
junit 99 276 0.4798 7.33 0.7309 296.47
xntp 111 729 0.5793 34.08 0.7876 197.56
acqCIGNA 114 179 0.4255 5.61 0.7500 365.20
bunch_2 116 364 0.4944 10.58 0.7346 640.21
xmldom 118 209 0.4322 4.12 0.5678 221.17
exim 118 1 255 0.6786 42.52 0.7645 294.76
cia++ 124 369 0.5629 21.99 0.7635 440.95
tinytim 129 564 0.4671 12.79 0.7605 737.20
mod_ssl 135 1 095 0.5782 42.71 0.7487 510.18
jkaryoscope 136 460 0.3937 8.04 0.7615 457.68
ncurses 138 682 0.5397 29.31 0.7515 2 170.12
gae_plugin_core 139 375 0.4966 8.40 0.7905 320.07
lynx 148 1 745 0.6599 93.02 0.7598 863.54
lucent 153 103 0.1515 1.21 0.7071 2 365.04
javacc 153 722 0.4766 39.44 0.7421 547.10
JavaGeom 171 1 445 0.6006 62.34 0.7519 916.86
incl 174 360 0.4306 12.31 0.5083 640.17
jdendogram 177 583 0.4326 17.91 0.7696 1 482.01
xmlapi 182 413 0.4121 7.11 0.5000 868.31
jmetal 190 1 137 0.6280 43.31 0.7520 1 885.94
graph10up193 193 9 190 0.7381 681.49 0.7484 1 589.80
dom4j 195 930 0.5597 67.89 0.7452 1 409.25
nmh 198 3 262 0.6099 151.77 0.7662 4 452.61
pdf_renderer 199 629 0.3499 28.99 0.7117 4 259.32
Jung_graph_model 207 603 0.4262 29.38 0.7327 3 227.33
jung_visualization 208 919 0.4589 77.92 0.7533 2 163.71
jconsole 220 859 0.5378 22.49 0.7467 3 451.13
pfcda_swing 248 885 0.3720 41.29 0.7516 6 203.74
jml-1.0b4 267 1 745 0.5583 202.57 0.7684 4 977.25
jpassword2 269 1 348 0.6197 58.32 0.7589 9 372.19
notelab-full 293 1 349 0.4503 71.27 0.7583 9 827.90
Poormans_CMS 301 1 118 0.4961 61.43 0.7636 10 991.71
log4j 305 1 078 0.4182 52.35 0.7402 18 238.81
jtreeview 320 1 057 0.4350 58.28 0.7719 13 297.17
bunchall 324 1 339 0.5153 76.08 0.7661 5 652.04
JACE 338 1 524 0.4375 51.05 0.7621 12 743.43
javaws 377 1 403 0.5245 91.32 0.8026 23 593.95
swing 413 1 513 0.4677 101.84 0.7500 32 474.25
lwjgl-2.8.4 453 1 976 0.4374 256.97 0.7547 49 643.19
res_cobol 470 7 163 0.7017 3364.78 0.7539 29 593.82
ping_libc 481 2 854 0.4200 590.50 0.7960 12 184.89
y_base 556 2 510 0.4508 230.70 0.7755 75 474.69
krb5 558 3 793 0.4304 1179.04 0.7535 124 381.28
apache_ant_taskdef 626 2 421 0.5100 940.36 0.7872 222 383.90
itextpdf 650 3 898 0.5705 463.67 0.8334 126 596.26
apache_lucene_core 738 3 726 0.3633 277.59 0.7546 247 894.46
eclipse_jgit 909 5 452 0.5594 782.56 0.8131 546 848.53
linux 916 11 722 0.5912 3818.92 0.6988 292 383.92
apache_ant 1085 5 329 0.5101 1280.62 0.8686 891 821.18
ylayout 1161 5 770 0.3585 805.64 0.8557 652 576.52

the state-of-the-art algorithm in 112 instances. Moreover, according to
the Wilcoxon’s signed rank test, these results are statistically significant.

As it has been illustrated in this work, optimization algorithms can
largely benefit from an efficient implementation of frequent functions,
such as the computation of the objective function. In particular, we
believe that trajectory-based metaheuristics present the advantage of
partially reevaluating solutions after a move, avoiding unnecessary re-
calculations. Furthermore, we would like to point out the usefulness of
identifying promising areas in the search space, consequently reducing
the size of the neighborhoods and shortening the time necessary for
their exploration. In this context, the combination of these strategies

reduced the time consumption of the search process by four orders of
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magnitude. This finding highlights the relevance of bringing domain-
specific knowledge of the tackled problem into the design of the
optimization algorithms.

In the context of software engineering, the proposed method can
help software developers to enhance the quality of their code, either
by incorporating this tool in Integrated Development Environments to
receive suggestions in real time or by incorporating the method in soft-
ware repositories to enforce a minimum modularization quality of the
contributed software. Therefore, in order to be interesting for practical
use, there is no doubt that the method must be able to provide high-
quality solutions in a short computing time. In this regard, the proposed
method is fast enough to be integrated in the software development
lifecycle. Moreover, it can be configured to meet the particular needs
of software developers by adjusting the stopping criterion.

Finally, following the directions given by de Oliveira Barros et al.
(2015), we believe that Search-Based Software Engineering can be
effectively used as a learning tool to investigate common concepts
in software engineering. Accordingly, we consider that the proposed
method, by providing better solutions than the best available algorithm
in the state of the art in terms of the FCB objective function, can
allow software practitioners and researchers to thoughtfully inspect the
concept of modularity and the FCB metric.

In future work, it would be interesting to analyze and compare
the performance of state-of-the-art algorithms for different objective
functions in the SMCP literature. This analysis could help identify
common parts and differences between the proposed quality metrics,
in addition to possible unexplored transference of search strategies
between different variants of the SMCP.
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ppendix A. Detailed results for each instance.

In Table A.7, we present the results obtained in the comparison
ith the state of the art described in Section 6.3. We include, for
ach instance used, the number of vertices (|𝑉 |), the number of edges
|𝐸|), and the quality (FCB) and computation time (CPUt (s)) of each
lgorithm. To facilitate comparisons, we have ordered the instances
11

rom smallest to largest, depending on the number of nodes.
Table B.8
Detailed results of the Wilcoxon’s signed rank test for each group of instances and for
all the instances in the dataset.

Size of instances Ranks Avg. rank Z 𝑝-value

Small (64)
GVNS < HGA: 52 26.50

−6.275 <0.001GVNS > HGA: 0 0.00
GVNS = HGA: 12 –

Medium (29)
GVNS < HGA: 29 15.00

−4.703 <0.001GVNS > HGA: 0 0.00
GVNS = HGA: 0 –

Large (18)
GVNS < HGA: 18 9.50

−3.724 <0.001GVNS > HGA: 0 0.00
GVNS = HGA: 0 –

Very large (13)
GVNS < HGA: 13 7.00

−3.180 0.001GVNS > HGA: 0 0.00
GVNS = HGA: 0 –

All (124)
GVNS < HGA: 112 56.50

−9.186 <0.001GVNS > HGA: 0 0.00
GVNS = HGA: 12 –

Appendix B. Detailed results of the Wilcoxon’s signed rank test.

In Table B.8, we present the detailed results of the Wilcoxon’s signed
rank test, for each group of instances and for all the instances in the
dataset. Note that the objective of the studied problem is to minimize
the value of the objective function. Therefore, GVNS < HGA indicates
instances for which the solution found by GVNS was better than the
solution found by the HGA approach.
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