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A B S T R A C T   

We address an optimization problem related to the minimization of the distribution costs associated with product 
delivery in the oil industry. Particularly, the problem consists of determining a schedule of shipments from 
production ports to satisfy demand and desired inventory limits at consumptions ports. Products are transported 
in vessels, which can be viewed as a set of shared resources. The complexity of the problem derives from the 
problem structure and the number of decisions that need to be made throughout a planning horizon. The context 
that we studied belongs to the family of short sea inventory routing problems for which the ports are in the same 
geographical area. We formulate a mixed-integer programming model that captures the most relevant features of 
the real system. The main decisions include the selection of the vessels that will be used, the paths that each 
vessel will follow, and the quantities of each product loaded and unloaded at each port visited during the 
planning horizon. We test the limits of our mathematical programming formulation and develop a heuristic 
approach for tackling problem sizes that exceed the capabilities of a commercial solver.   

1. Introduction 

Oil companies, like many vertically integrated organizations, move 
bulk and semi-bulk products among their facilities via waterways. 
Specifically, they ship crude oil from oil fields to refineries and ship 
refined products from refineries to storage facilities (i.e., tank farms that 
act as distribution centers). The relevant decisions in this setting consist 
of determining the amounts of each product to ship from each origin to 
each destination, when to deliver these amounts, and what route to 
follow to make these deliveries. This situation falls within the decision- 
making problems known in the literature as inventory routing. The main 
difference between inventory routing and vehicle routing problems, 
which have been extensively studied in the literature, is that in vehicle 
routing the amounts to be delivered are known and therefore the focus is 
on finding a set of routes to make the deliveries at a minimum cost. In 
inventory routing, on the other hand, quantities must be determined to 
satisfy demand while keeping stock within desired levels. 

As pointed out by Ronen (2002), there are also some major differ-
ences between maritime inventory routing problems and inventory 
routing in trucks. For instance, vessels, as opposed to trucks, are usually 
different from each other with respect to capacity, compartmentaliza-
tion, and port accessibility. In addition, products (such as fuel) must be 
carried in different compartments of the vessel as opposed to packaged 

products that can be stored in the same compartment of a truck. 
We engaged in a project with a major oil producer to create a 

scheduling tool for its inventory routing problem in the Gulf of Mexico. 
The ports in this study are on the coast of Texas, Louisiana, and Florida. 
Because the ports are in a single geographical area, the problem belongs 
to the family known as short sea inventory routing problems (SSIRP), 
also referred to in the literature as the inventory constrained maritime 
routing problem (ICMRP) (Stanzani et al., 2018; Diz, Oliveira, & 
Hamacher, 2017). In contrast, deep sea inventory routing involves 
transportation across continents. The literature in the last twenty years 
reflects the general interest in these maritime inventory routing prob-
lems (MIRP). Comprehensive reviews of this literature can be found in 
(Christiansen, Fagerholt, & Ronen, 2004, 2007, 2013). 

Although MIRPs have several common elements, they also include 
features and characteristics that make each situation unique. The gen-
eral approach that researchers and practitioners have followed is to 
model these problems as mathematical programs to determine the 
boundary of what is solvable within practical time limits. Advances in 
commercial mathematical programming software and the availability of 
cloud computing have enabled the solution of problem instances of 
significant size. In addition, the use of valid inequalities to strengthen 
mathematical formulations of MIRPs has increased the range of practical 
problems that can be tackled by means of commercial solvers (Agra, 
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Andersson, Christiansen, & Wolsey, 2013; Agra, Christiansen, & Del-
gado, 2013; Eide, Håhjem Årdal, Evsikova, Hvattum, & Urrutia, 2020; 
Engineer, Furman, Nemhauser, Savelsbergh, & Song, 2012; Grønhaug, 
Christiansen, Desaulniers, & Desrosiers, 2010; Sherali, Al-Yakoob, & 
Hassan, 1999). To incorporate characteristics that are specific to each 
setting, the literature includes custom solution methods. These proced-
ures are based on heuristic approaches and decomposition techniques 
(Agra, Christiansen, Delgado, & Simonetti, 2014; Christiansen, 1999; 
Siswanto, Essam, & Sarker, 2011; Hiassat, Diabat, & Rahwan, 2017; 
Wang, Nuo, & Han, 2023). 

Some of the features in the SSIRP that we address are captured in 
mathematical formulations that have appeared in the literature. For 
instance, Agra, Christiansen, and Delgado (2017) introduce two arc- 
based formulations where the time is discretized into periods. One 
formulation addresses the problem of variable consumption and the 
other one focuses on constant consumption rates in which inventory 
levels must be within specified bounds during the entire planning ho-
rizon. The time discretization in (Agra et al., 2017) deviates from the 
discrete time formulation in (Agra et al., 2013), where the mathematical 
formulation allows a ship to stay in a port for several time periods. It also 
deviates from the formulation in (Grønhaug & Christiansen, 2009), 
where each port operation is assumed to be completed within one period 
and sailing is modeled as an integer number of periods. Agra et al. 
(2017), in contrast, use periods that accommodate the maximum time 
for a full ship operation (e.g., loading and unloading) and may also 
include several port visits and sailing time. The length of the period must 
be chosen judiciously because restrictions such as port capacity are 
enforced during the entire period and inventory constraints are checked 
only at the end of the period. 

The discrete time formulation in (Agra et al., 2013) models port 
operations in more detail than other formulations in the literature. In 
each period, a ship can either be waiting, performing a port operation 
(loading or unloading), or sailing. In this formulation, the time required 
for a port operation depends on the amount of product to load or unload. 
While there is no question that the level of detail goes beyond anything 
anyone else has proposed, the formulation is limited to a single product, 
which is unrealistic for most applications. It is worth mentioning that the 
literature also includes studies that address short sea inventory routing 
problems by considering a continuous-time planning horizon (Stanzani 
et al., 2018; Diz et al., 2017). 

As mentioned above, a MIRP in a specific industry and company 
represents a unique challenge. In our case, we were confronted by the 
need to include heterogeneous vessels, multiple ports, a discrete-time 
planning horizon, and costs associated with port operations, vessels, 
and travel. These characteristics are relevant in the project that origi-
nated this research effort. In our review of the literature, we could not 
find models that consider the relevant features in combination with 
long-term planning horizons. This motivated the work presented here, 
contributing with another SSIRP version to the literature. 

We introduce a path-based mathematical programming formulation 
specifically tailored to address the complexities of the SSIRP that we 
studied in the oil company. The formulation encompasses critical real- 
world aspects, such as managing varied and restricted supply chains, 
addressing multiple incompatible product types, and navigating the 
intricate dynamics of port operations. The path-based approach that we 
took reduces the complexity of the problem, offering a manageable 
methodology to obtain solutions to instances found in practice. We also 
created a matheuristic by combining heuristic strategies with a reduced 
mixed integer programming model. The matheuristic decomposes the 
problem into smaller subproblems, enabling separate optimization de-
cisions associated with resource allocation and routing. This combina-
tion results in a procedure capable of handling problem instances that 
are larger than those that a commercial mixed-integer programming 
solver can tackle in a reasonable amount of computer time. The devel-
opment of the matheuristic for the SSIRP that we faced is one of the main 
contributions of this work. 

2. Problem description 

The problem consists of creating a plan to transport clean oil prod-
ucts of a large company. The main decisions are vessel selection and 
assignment, and the amount of product to load/unload at each port in 
each period of a planning horizon. A subset of vessels must be selected to 
perform operations during a planning horizon. Each selected vessel is 
assigned to a sequence of segments (i.e., ordered sets of ports) to 
configure a path that the vessel will follow during the planning horizon. 
The amount of each product to load and/or unload at each port visited 
by the vessels must also be determined. 

The primary objective of the problem is to formulate a cost-effective 
plan that minimizes the distribution costs. Particularly, the total cost of a 
schedule is calculated as the sum of several components:  

• Fixed Cost: This is the cost associated with the utilization of a vessel. 
It is charged only if the resource is assigned to a path.  

• Travel Cost: This cost depends on the path that a vessel follows. The 
cost considers the capacity and speed of the vessel, as well as the 
distance and duration of the path.  

• Loading and Unloading Costs: These costs are associated with the 
amount of product to load and unload at supply and demand ports.  

• Inventory Shortage Cost: This cost arises when there is insufficient 
inventory to meet the demand at a demand port. It is reflective of the 
spot price of the product, which is assumed to be significantly higher 
than the production cost. 

The challenge of the problem lies in configuring a distribution plan 
that deals with fluctuating demand while maintaining specified in-
ventory levels throughout a predetermined planning period. It is 
important to note that there is no need to treat this situation as a multi- 
objective problem given that the primary objective is total cost 
minimization. 

The problem is modeled on a network of supply and demand ports. 
For all practical purposes, supply ports are considered to have unlimited 
capacity to produce a subset of the products. That is, supply ports are not 
able to produce all products, but they can supply unlimited amounts of 
the ones they produce. Vessels (also referred to as resources) with 
several compartments of various capacities transport products. Products 
consist of several types of fuels (e.g., blend grade, premium, ethanol, or 
jet fuel) that cannot be mixed. Resources travel from port to port, 
loading and unloading products, during a planning horizon. 

Additional complexities associated with the real setting include draft 
restrictions at the ports and the transportation of dirty products with the 
corresponding cleaning decisions. While we addressed the draft re-
strictions by adjusting vessel capacities, the handling of dirty products 
was left for a subsequent phase of the project. We addressed the draft 
restrictions by adjusting vessel capacities according to the draft limita-
tion of the ports that they visit. This ensures that the vessels can access 
all the ports in their paths without violating the draft constraints. In the 
case of dirty products, we note that this can be handled in a post- 
processing of a proposed solution, by adding cleaning operations and 
costs whenever a vessel switches from a dirty product to a clean product, 
or vice versa. Finally, we assumed that the compartments in each 
resource are such that any load is feasible, in the sense that all products 
can be separated in the quantities prescribed by the model. In other 
words, we modeled capacity at the resource level instead of the tank (i. 
e., compartment) level. This is an important consideration, given that 
products cannot be mixed, which means that without compartment 
flexibility a model with a higher level of specificity would be required. 

A complete solution must stipulate the quantity of each product that 
will be delivered to each demand node in the path of a resource. The 
fleet is heterogeneous (in terms of capacity and speed) and therefore the 
cost of delivering products depends on both the route and the resource. 
In addition to resource capacity, a solution must meet minimum and 
maximum inventory levels for each product, at each demand port, as 
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well as dock capacity at all ports. As mentioned above, in the context 
that we examined, the relevant costs include production, purchasing, 
port visit, sailing, loading/unloading, and inventory shortages. 

3. Mathematical programming formulation 

Our short-sea inventory routing problem formulation uses the 
concept of path segments. A segment is an ordered sequence of ports that 
represents a subset of the ports that a resource will visit during the 
planning horizon. A path is an ordered set of segments. The first port in 
the path is the resource’s current port. A path may terminate before the 
planning horizon is over, indicating that the resource is not sailing 
during the entire horizon. Nodes in the network may be demand ports, 
supply ports, or bifunctional (i.e., both demand and supply). Fig. 1 
shows and example with two segments in a planning horizon of 10 
periods. 

The first segment (blue arcs) consists of a sequence from the origin to 
node 1 and then node 2. This is followed by a sequence shown with red 
arcs that visits nodes 3, 4, 5, where the path terminates. Our approach to 
the short-sea inventory routing problem consists of concatenating seg-
ments to form a path for each resource that has been chosen to sail. The 
use of segments gives an analyst full flexibility. For example, the set of 
segments may include all pairs of ports (i.e., a fully connected network). 
However, in practice it is not necessary to include all port pairs because 
vessels tend to travel in a specific direction (e.g., following ports along 
the Florida peninsula). A carefully curated list of segments to include in 
the model is an important decision left to the analyst. 

In addition, the formulation includes loading and unloading de-
cisions. The main constraints enforce resource and port capacity as well 
as inventory flows, both within each resource and at the ports. The 
objective is to minimize total cost, which includes fixed costs for using 
resources during the planning horizon, travel costs, loading and 
unloading costs, and inventory shortage costs. 

The following mixed-integer programming formulation of the prob-
lem assumes that a preprocessing step has been performed to create a list 
of path segments with their associated cost.  

Sets 
I: set of products (indexed by i). 
J: set of ports (indexed by j). 
Jl

i: set of supply ports for product i ∈ I, i.e., all ports where product i can be 
loaded. 

Ju
i : set of demand ports for product i ∈ I i.e., all ports where product i can be 

unloaded. Port j is bifunctional if j ∈ Jl
i ∩ Ju

i . 
Jp: set of ports in segment p ∈ P. 
P: set of segments, where segment p ∈ P is an ordered list of ports with pfirst 

representing the index of the port in the first position of the segment and plast 
is the index of the port at the end of the segment. 

PQ: set of compatible segment pairs (p, q), where p and q are compatible if plast =

qfirst .

R: set of resources (index by r). 
T: set of periods in the planning horizon, where the first period is 1 and the last 

is |T|.  

Parameters 
br: total capacity of resource r ∈ R. It is estimated as the sum of the capacities of 

all compartments of a vessel. 
ca

rp: cost of assigning resource r ∈ R to segment p ∈ P. This cost includes travel and 
port costs. 

cf
r : fixed cost of using resource r ∈ R in the planning horizon. 

(continued on next column)  

(continued ) 

cl
ijrt : cost of loading a barrel of product i ∈ I at port j ∈ Jl

i on resource r ∈ R in 
period t ∈ T. This parameter includes the cost of producing a barrel of product 
i ∈ I, which depends on the period t ∈ T when the product is loaded. 

cu
ijr: cost of unloading a barrel of product i ∈ I at port j ∈ Ju

i from resource r ∈ R. 
This parameter, unlike the cost of loading, does not depend on the period. 

c−ijt : per barrel cost of inventory shortage of product i ∈ I at port j ∈ Ju
i in period 

t ∈ T. This parameter is indexed by period because these values reflect the 
spot price (per barrel) to satisfy inventory shortages. We assume that the spot 
price is significantly larger than the production cost. 

dijt : demand for product i ∈ I at port j ∈ Ju
i in period.t ∈ T 

Dj: number of available docks in port.j ∈ J 
pr: segment representing the node where resource r ∈ R is at the beginning of the 

planning horizon. This may be interpreted as the “source” path for r. 
smin
ij : minimum stock level of product i ∈ I at port.j ∈ Ju

i 

smax
ij : maximum stock level of product i ∈ I at port.j ∈ Ju

i 

Sijt : supply limit of product i ∈ I at port j ∈ Jl
i in period.t ∈ T 

τjrp: time required by resource r ∈ R to reach port j ∈ J when following 
segment.p ∈ P  

Continuous variables 
lijrt : amount of product i ∈ I loaded to resource r ∈ R at port j ∈ Jl

i in period t ∈ T. 
uijrt : amount of product i ∈ I unloaded from resource r ∈ R at port j ∈ Ju

i in period 
t ∈ T. 

xirt : amount of product i ∈ I in resource r ∈ R in period t ∈ T. 
sijt : amount of product i ∈ I in stock at port j ∈ Ju

i in period t ∈ T. 
s−ijt : shortage of product i ∈ I at port j ∈ Ju

i in period t ∈ T.  

Binary variables 
yrpqt : equals 1 if resource r ∈ R transitions from segment p ∈ P to segment q ∈ P in 

period t ∈ T. These variables are defined for (p, q) ∈ PQ only.   

Formulation 
Minimize ∑

r∈R
∑

q:(pr ,q)∈PQcf
ryrprq1 + (1)  

∑
r∈R

∑
(p,q)∈PQ

∑
t∈Tca

rqyrpqt + (2)  
∑

i∈I
∑

j∈Jl
i

∑
r∈R

∑
t∈Tcl

ijrlijrt + (3)  
∑

i∈I
∑

j∈Ju
i

∑
r∈R

∑
t∈Tcu

ijruijrt + (4)  
∑

i∈I
∑

j∈Ju
i

∑
t∈Tc−ijt s−ijt (5)   

Subject to 
Port activity constraints 
xirt = xirt− 1 +

∑
j∈Jl

i
lijrt −

∑
j∈Ju

i
uijrt ∀i ∈ I, r ∈ R, t ∈ T (6) 

∑
j∈Ju

i
uijrt − xirt− 1 ≤ 0 ∀i ∈ I, r ∈ R, t ∈ T (7) 

∑
i:j∈Jl

i
lijrt ≤ br

∑
(p,q)∈PQ

∑
t′:t=t′+τjrp

yrpqt′ ∀j ∈ Jl
i, r ∈ R,t ∈ T (8) 

∑
i:j∈Ju

i
uijrt ≤ br

∑
(p,q)∈PQ

∑
t′:t=t′+τjrp

yrpqt′ ∀j ∈ Ju
i , r ∈ R, t ∈ T (9)  

Path flow and dock capacity constraints 
∑

q:(pr ,q)∈PQyrprq1 ≤ 1 ∀r ∈ R (10) 
∑

q:(q,p)∈PQyrqp,t− τplast rp ≥
∑

q:(p,q)∈PQyrpqt ∀p ∈ P, r ∈ R, t ∈ T (11) 
∑

r∈R
∑

(p,q)∈PQ⋀j∈Jq

∑
t′:t=t′+τjrp

yrpqt′ ≤ Dj ∀j ∈ J, t ∈ T (12)  

Inventory and resource capacity constraints   
sijt = sijt− 1 + s−ijt +

∑
r∈Ruijrt −

∑
r∈Rlijrt − dijt ∀i ∈ I, j ∈ Ju

i , t ∈ T (13) 
smin
ij ≤ sijt ≤ smax

ij ∀i ∈ I, j ∈ Ju
i , t ∈ T (14) 

∑
i∈Ixirt ≤ br ∀r ∈ R, t ∈ T (15)  

Nonnegativity and binary restrictions 
lijrt ≥ 0 ∀i ∈ I, j ∈ Jl

i,t ∈ T (16) 
uijrt ≥ 0 ∀i ∈ I, j ∈ Ju

i ,t ∈ T (17) 
xirt ≥ 0 ∀i ∈ I,t ∈ T (18) 
sijt ≥ 0 ∀i ∈ I, j ∈ Ju

i ,t ∈ T (19) 
s−ijt ≥ 0 ∀i ∈ I, j ∈ Ju

i ,t ∈ T (20) 
yrpqt = {0,1} ∀r ∈ R, (p,q) ∈ PQ, t ∈ T (21)  

Interpretation of the model  

(1) Total resource fixed cost. If resource r is assigned to segment q in 
period 1 then yrprq1 = 1 and the fixed cost cf

r is charged. Fig. 1. Path with two-segments in a 10-period planning horizon.  
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(2) Total segment assignment cost. If resource r transitions from 
segment p to q in period t (yrpqt = 1), then the cost ca

rq of resource r 
traversing segment q is charged.  

(3) Total loading cost. The loading cost cl
ijr is charged to the lijrt 

barrels of product i loaded at port j onto resource r in period t.  
(4) Total unloading cost. The unloading cost cu

ijr is charged to the uijrt 

barrels of product i unloaded at port j from resource r in period t.  
(5) Total inventory shortage cost. Inventory shortages occur when 

the demand exceeds the supply in a period. The shortage amount 
is given by s−ijt and the unit shortage cots is c−ijt.  

(6) The amount of product i on resource r after visiting port j in 
period t is equal to the amount in the previous period plus the 
amount loaded minus the amount unloaded at port j. This 
constraint set may be interpreted as an inventory flow equation 
for each product on each resource.  

(7) The amount of product i that can be unloaded at port j from 
resource r in period t cannot exceed the amount of that product 
that is on the resource in the previous period.  

(8) Loading of any product onto resource r at port j in period t can 
only occur if resource r is at port j in period t. That means that 
resource r must be assigned to segment p in period t − τjrp, where 
τjrp is the number of periods that resource r needs to reach port j 
when following segment p.  

(9) Same as (8) for unloading activities.  
(10) Each resource r may make the transition from its current port pr 

to a compatible segment q in the first period of the planning 
horizon. If that transition is not made, then the resource is not 
sailing, and the fixed cost is not charged (see (1) in the objective 
function).  

(11) This a conservation of flow constraint, where a resource r that 
finishes segment p in period t within the planning horizon must 
transition to a segment q. 

(12) This set of constraints enforce docking capacity at port j. All re-
sources that made the transition from segment p to a segment q 
(that includes port j) in period t − τjrq will arrive at port j in period 
t. There cannot be more than Dj resources arriving at port j in any 
period. 

(13) Inventory flow constraints for all products at all ports. The in-
ventory in period t is equal to the inventory in the previous period 
plus any unloaded amounts minus any amounts loaded minus the 
demand plus any shortages.  

(14) Inventory of any product at any port should be within desired 
limits during the entire planning horizon.  

(15) The total amount of product on a resource cannot exceed the 
resource capacity. 

Segments and paths play a key role in our model. The solution pro-
cess includes a pre-processing step that generates PQ, the set of 
compatible segments (i.e., (p, q) pair where the final port in p is the first 
port in q). The model uses the binary variables y to represent whether a 
resource makes the transition from one segment to another in each 
period. If a y variable is set to one, it indicates that the resource will 
commence its journey from the current segment to the next within the 
specified period. Once a resource completes a segment, the model must 
decide whether the resource should transition to another segment or not, 
and which segment will be the next one. It is important to note that a 
resource cannot remain idle at a port unless it is the last port of a 
segment. Therefore, the path of resource is given by the y variables that 
are set to one in the solution of the model. 

In brief, our model tackles the SSIRP by selecting vessels from a list 
and assigning them to compatible port segments with the objective of 
minimizing the total cost. It takes into consideration the fixed costs of 
each vessel as well as the costs of travelling, loading, unloading, and 
inventory shortage. The shared resources of vessels are constrained by 
their capacity and availability, and the model ensures that the dock 

capacity at each port is not exceeded. The solution of the proposed 
model must deal with several challenges, namely, 1) handling many 
variables and constraints when considering long planning horizons and 
a large network of ports and multiple vessels, 2) combining discrete and 
continuous decision variables, and 3) meeting variable demand and 
inventory limits. All these considerations play a significant role in the 
ability of a commercial solver to find feasible solutions and confirm 
optimality of the solutions that it finds. 

4. Matheuristic approach 

The idea behind our matheuristic is to decompose the model into two 
sets of decisions. The first set deals with the selection of resources and 
their assignment to segments to build complete paths. The second set 
determines, for each resource, the amounts of each product to load and 
unload at the ports that the resource visits. The order and timing of the 
port visits are determined by the segment assignments. A solution is 
represented as a list of compatible segments for each resource: 

Π = {π(1),…, π(|R|) }

Where π(r) is the path for resource r, which consists of an ordered list of 
nr compatible segments that starts at pr: 

π(r) = (pr , qr(1),…, qr(nr) )

Where qr(k) is the kth segment in the path of resource r such that (pr,

qr(1) ) ∈ PQ and (qr(k − 1), qr(k) ) ∈ PQ for k = 2,…,nr. A value of nr =

0 indicates that resource r is not being used during the current planning 
horizon. Therefore, the fixed costs associate with a solution Π are: 

fixed cost(Π) =
∑

r:nr>0
cf

r 

The travel costs depend on the segment assignments and can be 
calculated as follows: 

travel cost(Π) =
∑k=nr

k=1
ca

rqr (k)

For a solution Π, it is possible to determine where each resource is 
going to be in each period of the planning horizon. Let Hj

t(Π) be the set of 
resources at port j in period t for the set of paths Π. Solution Π must be 
feasible with respect to (12), the dock capacity at all ports. Port capac-
ities are observed if the number of resources at a port in each period does 
not exceed the dock capacity of the port, that is: 
⃒
⃒Hj

t(Π)
⃒
⃒ ≤ Dj∀j ∈ J, t ∈ T  

The operational costs of loading and unloading product as well as in-
ventory shortages associated with a solution Π are calculated by the 
solution of the following linear program: 

Minimize operational_cost(Π) = (3) + (4) + (5). 
Subject to (6), (7), and (13)–(20) 

∑

i:j∈Jl
i

lijrt ≤

{
br ifr ∈ Hj

t(Π)

0 otherwise
∀j ∈ Jl

i , r ∈ R, t ∈ T (22)  

∑

i:j∈Ju
i

uijrt ≤

{
br ifr ∈ Hj

t(Π)

0 otherwise
∀j ∈ Ju

i , r ∈ R, t ∈ T (23)  

The linear program decides how much to load and unload of each 
product to minimize the operational cost associated with the set of paths 
Π. Note that only the right-hand-side (RHS) values of constraints (22) 
and (23) must be changed to find the operational cost of Π. Therefore, 
after solving the linear program the first time, the evaluation of addi-
tional solutions can be achieved by changing the RHS values of (22) and 
(23) and resolving starting from the current solution. This is a fast 
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process for commercial mathematical programming solvers such as 
Gurobi. The total cost of solution Π is given by: 

total cost(Π) = fixed cost(Π)+ travel cost(Π)+ operational cost(Π) (24) 

Our matheuristic searches the space of segment assignments to find 
the set of paths Π* with the minimum total cost. 

4.1. Construction 

A solution Π may be constructed by adding one segment at a time 
starting from an empty solution for which nr = 0 for all r ∈ R. An empty 
solution (that is, a solution with no paths) has zero fixed and travel costs. 
The operational cost for such a solution is given by the inventory 
shortages. The most attractive segments to add are those that provide 
the best tradeoff between reducing inventory shortage costs versus 
adding travel and loading/unloading costs. Considering the cost of the 
solution after assigning a resource to a segment, a greedy criterion can 
be defined for the selection of segments. Specifically, at each iteration, 
the procedure determines which segment minimizes the solution cost 
and adds it to the partial solution. The evaluation of the solution cost 
implies the computation of the simplified MIP to calculate the total cost 
(24). This construction can be fully deterministic or based on a semi- 
greedy approach as typically done in GRASP (Feo & Resende, 1995). 
The construction process stops when adding more segments does not 
reduce the total cost of the current solution. At that point, those re-
sources that have been assigned to any path are considered as selected. 

Algorithm 1 is the general scheme of the proposed construction 
process. The constructive procedure operates on the input data (D) and 
uses the value of the α parameter to control the randomness/greediness 
of the construction. The procedure starts with an empty solution (line 1) 
and a candidate list of segments (line 2). The resources are sorted (line 3) 
and a path is generated for each resource (lines 4–20). While the solution 
improves (line 7), the procedure evaluates the potential addition of a 
segment to the solution. The operational cost of the solution is calculated 
by solving the linear programming model (line 9) while total cost(Π)

corresponds to equation (24). The maximum and minimum values of the 
current objective function value are recorded (lines 8 and 9). These 
values are used to establish a threshold for generating a Restricted 
Candidate List (RCL). A candidate from the RCL is randomly selected 
and added to the path. If the addition of a segment deteriorates the 
current solution (lines 18 and 19), the construction ends (line 21). A 
resource with an empty path indicates that the resource has not been 
selected. 

Algorithm 1. General scheme of GRASP constructive procedure.  
Procedure Construction (D, α) 
1. Π←∅ 
2. CL←PQ 
3. R′←sort(R)
4. For r ∈ R: 

5. improvement←True 
6. While improvement :

7. improvement←False 
8. gmin← min

s ∈ CL
g(Π, r, s)

9. gmax←max
s ∈ CL

g(Π, r, s)

10. μ←gmin + α
(
gmax − gmin

)

11. RCL←
{

s ∈ CL : g(Π, r, s) ≤ totalcost(Π) ≤ μ
}

/* total cost(Π) calls the MIP model to evaluate the solution */ 
12. If RCL ∕= ∅: 

13. s←random(RCL)
14. add(Π, r, s)
15. improvement←True 

16. End If 
17. End While 
18. If π(r) is empty 

19. Break 
20. End For 
21. Return Π  

An important aspect to consider in the design of the constructive 
procedure is the time required to build a solution. Determining the 
benefit of adding a segment entails a full evaluation of the partial so-
lution. If we want to determine the best segment to add to the current set 
of paths, the calculation must consider all segments and all possible 
resources. Preliminary experimentation revealed that the time associ-
ated with such an exact calculation of benefit at each step of the con-
struction process is prohibitively long. This is why in Algorithm 1 we 
ranked the resources according to a criterion that considers the rela-
tionship between vessel cost and capacity. The procedure selects re-
sources one at a time to determine complete paths. As shown above, the 
construction ends when no segment is assigned to the selected resource. 

4.2. Neighborhood search 

We developed five neighborhood searches to be used in the solution 
improvement phase of GRASP. At each iteration of a neighborhood 
search, the current solution is replaced by a neighbor solution. The set of 
neighbor solutions is referred to as the “neighborhood”, and the 
replacement of the solution is denoted as a “move”. Out of the five 
neighborhoods, four utilize segments as the basic elements for the move 
operator, with one focusing on operations involving resources. 

The segment-based neighborhoods in our procedure are insert, swap, 
replace, and remove. The fundamental moves behind these neighbor-
hoods are add and drop. 

An add move adds a segment to the existing path of a resource. 
Formally, we denoted the operator as add(r,p,ρ), where p is the segment 
to be added in position ρ of an existing path π(r) = (pr, qr(1),…, qr(nr) ). 
Then, the path π’(r) = (pr, q’

r(1),…, q’
r
(
n’

r
)
) after the addition is such 

that: 

q’
r(k) = qr(k) for k = 1,…, ρ − 1  

q′
r(ρ) = p  

q’
r(k + 1) = qr(k) for k = ρ,…, nr  

n′
r = nr + 1  

A feasible add move is such that (qr(ρ − 1), p ) ∈ PQ and (p, qr(ρ) ) ∈ PQ. 
A drop move eliminates a segment from the existing path of a 

resource. Let, drop(r, ρ) be the operator that deletes the segment in po-
sition ρ of an existing path π(r) = (pr, qr(1),…, qr(nr) ). Then the path 
π’(r) = (pr, q’

r(1),…, q’
r
(
n’

r
)
) after the deletion is such that: 

q′
r(k) = qr(k) for.k = 1,…,ρ − 1 

q′
r(k) = qr(k+1) for k = ρ,…,nr − 1 

n′
r = nr − 1  

A feasible drop is such that (qr(ρ − 1), qr(ρ + 1) ) ∈ PQ. Deleting a path is 
particularly attractive for reducing operational and travel costs. Of 
particular benefit is the removal of segments with no load or unload 
operations in the ports that it visits, or when these operations could be 
done by other resources. 

We use add/drop moves to create the insert, swap, replace, and remove 
neighborhoods. The insert neighborhood consists of all solutions ob-
tained by removing a segment from its current position and adding it to a 
different position in the path. Similarly, the swap neighborhood consists 
of exchanging the positions of two segments in a path. This is achieved 
by removing the segments and then adding them to their swapped po-
sitions. The replace neighborhood consists of all solutions obtained by 
exchanging a segment in a current path with a segment that is not 
currently in the solution. The difference between the swap and replace 
neighborhoods is that the swap neighborhood modifies the positions of 
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two segments of the path while the replace neighborhood modifies just 
one. Finally, the remove neighborhood consists of all solutions obtained 
by dropping one segment from a path. 

Fig. 2 illustrates the four moves that we use in our search. Fig. 2a 
shows an insert move where segment 4 (denoted as p4), which starts at 
t = 8, is inserted at t = 3. Fig. 2b illustrates a swap move where seg-
ments 2 (denoted as p2) and 4 are swapped. Fig. 2c provides an example 
of a replace move where segment 2 is replaced by segment 4. Lastly, 
Fig. 2d shows a remove move where segment 3 (denoted as p3) is 
removed from the route. 

So far, we have described four neighborhoods that are based on 
segment operations. We now introduce a move that focuses on resources 
with the goal of reducing the fixed cost of the solution. We refer to this 
operation, which involves exchanging the paths of two resources, as a 
substitute move. Let π(r) = (pr, qr(1),…, qr(nr) ) be the path of resource r, 
and let π(r’) = (pr’

, qr’ (1),…, qr’ (nr’ ) ) be the path of resource r′. Then, 
the paths for r and r′ after the substitute move are such that π(r) = (pr’

,

qr’ (1),…, qr’ (nr’ ) ) and π(r’) = (pr, qr(1),…, qr(nr) ). In this case, a 
feasible substitution is such resources r and r′ share the starting point of 
the route, i.e., pr = pr′. It is important to note that the substitute move 
allows π(r) ∕= ∅ or π(r′) = ∅. This means that a resource currently in the 
solution can be replaced by another resource that is not currently in the 
solution. 

The proposed neighborhoods could result in a path that extends 
beyond the end of the planning horizon, i.e., beyond period |T|. How-
ever, generally, those paths will not be attractive due to their cost and 
the lack of benefit for covering demand that may occur after the plan-
ning horizon ends. The local search could start from a solution with 
shortages. However, because shortages are heavily penalized, moves 
from solutions with shortages will favor search directions where short-
ages decrease. Once a solution without shortages is reached, the search 
does not consider moves that would result in shortages. 

We consider two neighborhood exploration strategies:  

11. Complete neighborhood exploration. This means that all possible 
moves are explored to find the best in terms of improving (in the 
local sense) the objective function value.  

21. Frist-improving sampling. This strategy systematically explores a 
neighborhood and terminates as soon as an improving move is 
found or when the entire neighborhood is explored without 
finding an improving direction. 

We tested both strategies within a local search scheme in our 

preliminary experimentation. 

4.3. General procedure 

We combined the solution construction process in Section 4.1 and 
the neighborhood searches in Section 4.2 to configure a Greedy Ran-
domized Adaptive Search Procedure (GRASP). We assembled the 
neighborhood searches in the framework of a Variable Neighborhood 
Descent (VND) (Duarte, Sánchez-Oro, Mladenović, & Todosijević, 
2018). VND is a search procedure that performs a systematic exploration 
of different neighborhoods around the current solution, seeking to 
improve the objective function value of the current solution. VND moves 
from the current solution to a neighbor solution if the objective function 
value is improved and the search process continues from the new solu-
tion. If no such a solution is found, the search moves to a different 
neighborhood and repeats the process until no further improvement can 
be found. Our basic VND sequentially explores all neighborhoods in an 
order that was determined using an automated fine-tuning platform, as 
described in the following section. Both GRASP and VND, whether used 
in combination or in isolation, have been reported to perform well in 
combinatorial optimization problems that are similar to ours (Ronconi & 
Manguino, 2022; Sanghikian, Martinelli, & Abu-Marrul, 2021; Diz, 
Hamacher, & Oliveira, 2021). Their efficiency and robustness make 
them suitable frameworks for our problem setting. 

Algorithm 2 shows the pseudocode of our GRASP-VND imple-
mentation. The iterative procedure operates on the input data for a 
maximum amount of computer time (max time) and uses α to control the 
semi-greedy nature of the GRASP construction. 

Algorithm 2. General scheme of GRASP constructive procedure.  
Procedure GRASP-VND(D, max time, α) 
1. Π*←∅ 
2. While elapsed time < max time: 

3. Π←Construction(D, α)
4. Π′←VND(Π)

5. If totalcost(Π′) ≤ totalcost(Π*)

/* total cost calls the MIP model to evaluate the solution */ 
6. Π*← Π′ 

7. End While 
8. Return Π  

The procedure starts by initializing the best solution as empty (line 
1). At each iteration, a new solution Π is generated using the Con-
struction procedure with the input data D and the value of α (line 3). 
This solution is then subjected to the improvement process of the VND 
procedure, resulting in a potentially improved solution Π′ (line 4). If the 

Fig. 2. Example of the moves based on segments: a) insert move, b) swap move, c) replace move, and d) remove move.  
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total cost of Π′, calculated by solving the simplified linear program (24), 
is lower than the total cost of the current best solution Π* (line 5), then Π′ 
becomes the new best solution (line 6). The process repeats until the 
maximum time allowed for execution is reached (line 7). The algorithm 
returns the best solution found (line 8). 

5. Computational experiments 

This section presents the results of our computational experiments 
designed to evaluate the effectiveness of our proposed solution pro-
cedure. Section 5.1 details the preliminary experiments that calibrate 
the parameters of our matheuristic and in Section 5.2 we compare and 
discuss the results obtained by both the mathematical model and the 
matheuristic. 

Before delving into the experimentation, it is important to describe 
the data set used in our research. We utilized real-world instances pro-
vided by the company for which we did this work and generated arti-
ficial instances by modifying certain parameters according to specific 
research needs. The data set considers 4 products, 12 resources, 6, 9 and 
12 ports and a planning horizon of either 25, 50 or 75 days. Demand is 
varied by setting a demand factor δ to either 1, which represents the base 
case provided by the company, or 1.15, which represents an increase of 
15% in demand at each port. These parameters were combined to create 
10 instances for each combination of number of ports, length of planning 
horizon, and demand factor. This results in 180 instances. We selected 6 
representative instances to configure a training set for the preliminary 
experimentation. 

All experiments were conducted on an AMD EPYC 7282 8-core vir-
tual CPU with 16 GB of RAM, running Ubuntu 20.04.2 64-bit LTS. Our 
algorithms were implemented using Python 3 and Gurobi 10. It is 
important to note that while Gurobi is designed to utilize all available 
cores, Python is single-threaded and therefore does not fully utilize the 
computational capacity of our system when running the matheuristic 
approach. 

5.1. Preliminary experiments 

To test the various configurations of the components of the math-
euristic procedure and to illustrate the proposed strategies, we con-
ducted several preliminary experiments over the training set. We first 
tested different values of the parameter (α) used to control the greedi-
ness and randomness of the constructive procedure. Then, we examined 
the improvement in solution quality provided by each local search 
separately. Finally, we compared those results with the improvement 
provided by combination of all local searches within the VND frame-
work. 

The results of the first experiment, which tests the α values, are 
presented in Table 1. The table shows the average cost of the solutions, 
the CPU time, and number of best solutions obtained for different values 
of α (i.e., 0.1, 0.2, 0.3, 0.4, 0.5 and a random value in the range [0.1, 
0.3]) and for constructing 1, 5, and 10 solutions. When using a range 
instead of a fixed value, the α value is sampled from the given range at 
each step of the construction process (see step 10 in Algorithm). The best 
solution for each instance is the one found over all the runs associated 
with this experiment. 

The values in Table 1 reveal that a random value of α between 0.1 
and 0.3 results in the lowest cost when constructing 5 and 10 solutions. 
This suggests that introducing some randomness in the selection of α 
seems to lead to better solutions. As expected, we can observe the 
sampling effect of GRASP constructions. That is, the cost generally de-
creases as the number of constructions increases. We also observe that 
the increase in CPU time is linear with respect to the number of con-
structions and that it does not seem to depend on the value of α. The 
increase in computational effort is worth noting to limit the number of 
constructions when dealing with large instances. 

In our second experiment, we aimed to evaluate the effectiveness of 
the local search procedures and the VND framework both in terms of 
cost and computational time. The results of this comparison are pre-
sented in Table 2. For each local search, the table shows the cost com-
ponents of the objective function as a percentage of the cost in the initial 
solution. For instance, the total cost of the VND solution is 27.4% of the 
total cost of the initial solution. The table also shows the computational 
effort expressed in CPU seconds. 

As expected, the local searches that focus on path segments can 
reduce the assignment and shortage costs but have a difficult time 
reducing the fixed costs. The local search based on substitute moves 
reduces the fixed cost by either replacing or reducing resources. The 
effectiveness of combining the various neighborhood searches is shown 
by the results under the VND framework. Note that VND achieves the 
largest cost reduction in all categories and is the only procedure that 
eliminates shortages. The computational time of VND is significantly 
higher than the basic local searches. However, in our judgment, the 
quality of the VND solutions justifies the increased computational effort. 

As part of our preliminary experiments, we used the irace software 
(López-Ibáñez, 2016) and the training set of instances to find the most 
effective configuration of our procedure. Iterated Racing for Automatic 
Algorithm Configuration (irace) is a software tool for automatically 
tuning the parameters of optimization algorithms. It is based on the idea 
of iterated racing, where a set of configurations (parameter settings) for 
an algorithm are repeatedly evaluated on a small subset of instances, 
and the best-performing configurations are selected for further 

Table 1 
Performance of alpha values in the constructive procedure for 1, 5, and 10 
solutions.  

α Metric 1 solution 5 solutions 10 solutions 

[0.1, 0.3] Total cost 9.02E+07 1.47E+07 1.35E+07 
CPU time (s) 43.10 215.73 424.30 
# Best 0 2 4  

0.1 Total cost 1.31E+08 1.47E+07 1.43E+07 
CPU time (s) 42.68 217.55 431.50 
# Best 2 1 0  

0.2 Total cost 1.32E+08 1.51E+07 1.47E+07 
CPU time (s) 44.87 218.61 439.12 
# Best 0 1 1  

0.3 Total cost 1.33E+08 2.56E+07 1.43E+07 
CPU time (s) 45.00 221.05 432.05 
# Best 1 1 0  

0.4 Total cost 1.56E+07 1.48E+07 1.44E+07 
CPU time (s) 44.40 217.36 434.90 
# Best 2 1 1  

0.5 Total cost 2.74E+07 2.29E+07 1.41E+07 
CPU time (s) 45.01 219.67 441.65 
# Best 0 0 0  

Table 2 
Comparison of the solution quality and CPU time for the proposed local search 
procedures and VND methodology.  

Local 
search 

Total 
cost (%) 

Fixed 
cost (%) 

Assignment 
cost (%) 

Shortage 
cost (%) 

CPU 
time (s) 

Insert  66.69  100.00  98.74  50.34  5.12 
Swap  34.08  100.00  98.53  1.65  24.98 
Replace  65.32  100.00  90.89  48.96  102.76 
Remove  96.30  98.89  88.43  95.89  10.08 
Substitute  53.05  88.25  97.20  34.92  45.12 
VND  27.40  83.79  78.46  0.00  303.78  

S. Cavero et al.                                                                                                                                                                                                                                  



Computers & Industrial Engineering 189 (2024) 109978

8

evaluation on a larger set of instances. Specifically, we used irace to 
determine the best order to consider the neighborhood searches within 
VND and to choose the best neighborhood exploration strategy (i.e., first 
or best improvement). The final configuration of our procedure and the 
one we used for the experiments reported in the next subsection is: 

• Randomly select α between 0.1 and 0.3 at each step of the con-
struction procedure  

• Use VND as the local search by exploring the neighborhoods in the 
order substitute, replace, swap, insert, and remove. 

• Use N2 as the neighborhood exploration strategy for all neighbor-
hoods except replace, for which N1 is used. 

As part of or preliminary experimentation, we wanted to understand 
the impact of the key model parameters on the effectiveness of the MIP 
formulation. To study the model’s efficacy, we vary one parameter at a 
time from the base case of |R| = 12 resources, |J| = 6 ports, |T| = 25 
days, and a demand factor δ = 1. This allowed us to identify which 
parameters have the greatest impact on the model’s performance. 

Fig. 3 summarizes the results of this experiment in four charts. The 
charts depict the impact of changes in the number of ports (Fig. 3a), the 
periods in the planning horizon (Fig. 3b), the number of resources 
(Fig. 3c), and the demand factor (Fig. 3d). The solid blue lines show the 
changes in the CPU time (in seconds). The time values are shown on the 
left vertical axis, with an upper limit of 1 h (i.e., 3600 s). The orange 
dashed lines show the changes in the optimality gap, as reported by 
Gurobi. The optimality gap values are shown on the right vertical axis. 
The base case (i.e., of |R| = 12, |J| = 6, |T| = 25, δ = 1) is solved to 
optimality (i.e., with an optimality gap of zero) in 731.5 s of computer 
time. An increase in the number of ports from 6 to 9 causes an increase in 
the optimality gap from 0 to 0.3 by the time the optimization process 
reaches the 1-hour limit. When the number of ports is increased to 12, 
the gap balloons to 0.45. We also observe large increases in the opti-
mality gap as the number of days in the planning horizon increases from 
the base case of 25 to 50 and then 75. The gaps are 0.38 and 0.56, 
respectively. Fig. 3c shows that the model is practically insensitive to 
changes in the number of resources. All cases are solved to optimality 
within the allotted computational time. When varying the demand 

factor, we observe that for demand factors between 0.5 and 1, the MIP 
model can optimally solve the problem within the time limit. However, 
for the higher demand values associated with δ = 1.15, the CPU time 
reaches the maximum limit, and the optimality gap increases to 0.19. 
We were not able to test larger δ values because the MIP model was 
unable to find an integer solution within the specified time limit. 

For optimization runs with large optimality gaps we collected data to 
analyze the behavior of the solution process. We were interested in 
observing the trend of the values of the upper and lower bounds as re-
ported by the optimizer. 

Fig. 4 shows the cost of the incumbent solution (Upper bound), the 
cost of the best bound (Lower bound), and the optimality gap (GAP) 
reported during a Gurobi run of the MIP model for a representative 
instance. The horizontal axis in Fig. 4 represents the time in seconds, the 
left vertical axis represents the value of the bounds, and the right vertical 
axis represents the value of the optimality gap. To illustrate our point, 
we have zoomed in on the left vertical axis and therefore the origin is not 
zero. The dark green line represents the evolution of the cost of the 

Fig. 3. Impact of varying one of the parameters on the performance of the MIP model.  

Fig. 4. Evolution of the best solution found, the best bound and the GAP during 
the execution time. 
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incumbent solution (i.e., the upper bound), which starts at a large value 
(not shown on the chart) and quickly settles on a value that experiences 
a small relative improvement over the remaining time of the optimiza-
tion run. Specifically, the optimizer finds a solution with a cost of 
11,424,000 within the first two minutes of the run and, after one hour of 
the branch-and-bound search, the solution improves to 11,397,000. This 
represents an improvement of less than 1%. The light green line repre-
sents the value of the lower bound, which over the same period of one 
hour experiences a larger relative change than the upper bound. This 
means that most of the reduction of the optimality gap is due to the 
increase of the lower bound as opposed to any significant improvement 
of the incumbent solution. A conjecture from the extrapolation of this 
trend seems to indicate that the quality of the incumbent solution may 
be better than the 83.3% of optimality measured by the lower bound 
found at the end of the one-hour run. We have observed this behavior in 
all other representative instances in our data set. 

Overall, this experimental analysis revealed several insights about 
our MIP model’s performance. The variations of the values of the various 
parameters, such as number of ports, planning horizon, resources, and 
demand, notably impact the performance of the model. While the model 
showed higher sensitivity to certain parameters such as the number of 
ports or the planning horizon, it exhibited relative insensitivity to the 
number of resources, for the problem instances in the test set. Clearly, 
the growth in the size of the problem deeply impacts the performance of 
the model due to the combinatorial explosion of the number of binary 
variables. As in many practical settings, the effectiveness of the model is 
contingent upon the accuracy of the input data, especially in the demand 
forecasts, travel times, and cost parameters. Furthermore, the static 
nature of the model presents limitations when adapted to dynamic real- 
world operations, which might include disruptions in the demand/ 
supply during the planning horizon. In such cases, our static model must 
be resolved by fixing some variables to represent the state of the system 
at the time of the disruption. 

Next, we report the results obtained with both the mixed-integer 
programming formulation and the GRASP-VND matheuristic. 

5.2. Final experiments 

The goal was to solve the original problem and provide insights for 
solving other cases in both directions, some that are more complex than 
the original data and some that are simpler. The instances were designed 
to analyze the performance of the MIP model, determine its limits, and 
identify the situations when the matheuristic becomes the better solu-
tion approach. 

The main goals of these experiments are:  

1. to test the limits of the mixed-integer programming (MIP) model and 
to determine the circumstances under which switching from the 
proposed MIP to the matheuristic is the better approach for solving 
the short sea inventory routing problem;  

2. to assess the quality of the solutions found with the matheuristic for 
the instances where the MIP formulation can provide a benchmark. 

To test the limits of the MIP, we sequentially solved problem with 
increased number of ports, periods in the planning horizon, and demand 
factor. For each instance, we recorded whether at least one integer so-
lution was found, the total computing time, the time to find the best 
solution, and the optimality gap. When the MIP solver was able to find 
an integer solution within the first hour of computational time, we 
stopped the process at the one-hour limit. Otherwise, we continued, for 
up to 24h, until the first integer solution was found. 

Table 3 shows the main results of this experiment. The first three 
columns identify the group of problem instances. The “Instances with 
solution” show the number of instances, out of 10, or which the MIP was 
able to find at least one integer solution. The “Total time” column in-
dicates the average time at the end of the run. The “Time to best” shows 

the average tie to reach the best solution. The “Gap” is the average 
optimality gap for the instances with at least on integer solution. The 
table does not include results for instances with 6 ports and 25 periods 
because those turned out to be trivial for the MIP solver. Likewise, the 
MIP solver can provide optimal solutions in a few seconds for instances 
with 6 ports, 50 periods and demand factor of 1, and therefore those 
results are also omitted. All other cases that are not shown in Table 3 are 
due to the inability of the MIP solver to find at least one integer solution 
to the instances in the corresponding set. This includes all instances with 
9 ports and 75 periods and all instances with 12 ports and 50 or 75 
periods. For the practical setting that we studied, it seems reasonable to 
conclude that our MIP model is ideal for problems with 6 ports and no 
more than 50 periods. It also provides reasonable solutions to all in-
stances with up to 25 periods in the planning horizon. This is consistent 
with the preliminary analysis shown on Fig. 3. 

To gain insight on the performance of the matheuristic, we applied it 
to the problems in Table 3 for which the MIP solver reaches and confirms 
optimality. The results indicated that the matheuristic was able to find 
feasible solutions for all the instances while producing an average 
optimality gap of 11.3% after 30 min and 9.7% after an hour of 
computational time. Clearly, for the problem sizes in Table 3 for which 
the MIP solver finds and confirms optimality, this should be the 
preferred solution method. 

We now use all the solutions found with the MIP solver that we 
summarized in Table 3 (i.e., those solution that are confirmed to be 
optimal as well as those that are feasible but not confirmed to be 
optimal) to assess when the matheuristic becomes the better solution 
alterative. We recorded the solutions found with the MIP solver and the 
matheuristic after 30 min of computational time and then after one 
hour. For each instance that the MIP solver can find at least one integer 
solution, we calculate the deviation between the matheuristic solutions 
and those found with the MIP model, where negative deviations indicate 
that the matheuristic found better solutions than the MIP solver. 

Table 4 shows the deviations of the matheuristic solutions relative to 
the MIP solutions. For the 30-minute mark, Table 4 shows the average 
deviation on column 4. For the 1-hour mark, the table shows minimum, 
maximum, and average values. The matheuristic was able to find at least 
one integer solution to all the problems in our data set. We do not show 
the results for groups without the MIP benchmark, namely, those with 9 
ports and 75 periods, as well as 12 ports and 50 or 75 periods. From the 
results in Table 4, we can conclude that the MIP model is the better 
option for all problems with a planning horizon of 25 periods and those 
with 6 ports and up to 50 planning periods. For all other instances, the 
matheuristic becomes the preferred or in many cases the only option. 

In our analysis, we have identified that the matheuristic main diffi-
culty stems from the selection of resources. Throughout our experi-
mentation, we have determined that our “Substitute” move is not 
enough to produce significant saving in the fixed cost. Since the number 
and type of resources is relatively small, our recommendation to the 
company associated with this project was to execute the matheuristic 
with a preselected set of vessels. In this way, the optimization process 
focuses on the minimization of the operational costs. To verify that the 

Table 3 
Results of tests with MIP solver.  

Ports Horizon Demand 
factor 

Instances with 
solution 

Total 
time 

Time to 
best 

Gap 

6 50 1.15 5 3600 1462 34.8% 
6 75 1 8 3600 3365 47.8% 
6 75 1.15 8 5328 4841 47.8% 
9 25 1 8 3600 1306 30.4% 
9 25 1.15 1 3600 564 34.0% 
9 50 1 8 9845 9845 59.9% 
9 50 1.15 1 7689 7689 53.0% 
12 25 1 6 3600 1961 36.4% 
12 25 1.15 3 3600 2093 47.3%  
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matheuristic performs at a higher level when the resources have been 
preselected, we reran the procedure on all the problems in Table 4 to 
calculate a new set of deviation values. These runs were performed using 
the set of resources chosen by the MIP solutions. We have been able to 
verify that when the resources are preselected, the matheuristc is the 
better alternative for all but those instances in which the MIP can rea-
ches optimality (i.e., 6 ports and 25 periods as well as 6 ports and 50 
periods with demand factor of 1). The matheuristic is able to reduce the 
operational cost by 12.9% across the board. 

6. Conclusions 

Our research addresses a tangible challenge faced by a company in 
the oil industry, contributing to the operations research literature by 
introducing a Mixed-Integer Programming model to optimize the 
transportation of refined products. This model accommodates the 
complexities of multiple products, a diverse fleet of ships, and long 
planning horizons, effectively balancing cost components to derive cost- 
efficient plans. 

Through experiments, focusing on a Gulf of Mexico’s short sea in-
ventory routing problem, we observed the ability of the MIP model to 
perform optimally within a 25-day planning horizon or with a limited 
number of ports. For larger scenarios, a matheuristic approach, 
combining heuristic search and a simplified mathematical programming 
model, showed promise in overcoming computational hurdles. 

Key findings highlight the substantial cost savings achievable by 
preselecting resources, particularly relevant as the company often leases 
rather than own these assets within specific time frames. Despite these 
advancements, our study recognizes several limitations inherent in the 
MIP model, including its computational intensity for large instances, 
reliance on accurate input data, and its static nature without accounting 
for dynamic real-world operations. 

From a managerial point of view, we asked the company to evaluate 
one of our solutions and the feedback obtained was extremely positive. 
Specifically, they reported a 6% reduction in total cost, a 5% decrease in 
assignment cost, a 4% reduction in loading cost, and a 6% decrease in 
unloading cost. The cost per barrel was estimated to decrease by 6%, and 
the number of voyages to decrease by 12%. These results underscore the 
importance of using optimization tools in logistics and operations ac-
cording to the company’s own evaluation of their practices and the 
proposed solutions in a real scenario. 

Future research directions should target the improvement of the 
matheuristic by exploring additional search strategies that can deal with 
larger problem instances and integrating stochastic elements to effec-
tively handle uncertainties in real scenarios. 
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